
Published as a conference paper at ICLR 2024

STOCHASTIC MODIFIED EQUATIONS AND DYNAMICS
OF DROPOUT ALGORITHM

Zhongwang Zhang1, Yuqing Li1,2 ∗, Tao Luo1,2,3,4,5 †, Zhi-Qin John Xu1,3,4,6‡
1 School of Mathematical Sciences, Shanghai Jiao Tong University
2 CMA-Shanghai, Shanghai Jiao Tong University
3 Institute of Natural Sciences, MOE-LSC, Shanghai Jiao Tong University
4 Qing Yuan Research Institute, Shanghai Jiao Tong University
5 Shanghai Artificial Intelligence Laboratory
6 Shanghai Seres Information Technology Company, Ltd

ABSTRACT

Dropout is a widely utilized regularization technique in the training of neural
networks, nevertheless, its underlying mechanism and impact on achieving good
generalization abilities remain to be further understood. In this work, we start by
undertaking a rigorous theoretical derivation of the stochastic modified equations,
with the primary aim of providing an effective approximation for the discrete
iterative process of dropout. Meanwhile, we experimentally verify SDE’s ability to
approximate dropout under a wider range of settings. Subsequently, we empirically
delve into the intricate mechanisms by which dropout facilitates the identification
of flatter minima. This exploration is conducted through intuitive approximations,
exploiting the structural analogies inherent in the Hessian of loss landscape and
the covariance of dropout. Our empirical findings substantiate the ubiquitous
presence of the Hessian-variance alignment relation throughout the training process
of dropout.

1 INTRODUCTION

Dropout is a technique integrated into gradient-based algorithms for training neural networks (NNs)
(Hinton et al., 2012; Srivastava et al., 2014). It constitutes a pivotal component contributing to the
attainment of state-of-the-art test performance in deep learning (Tan and Le, 2019; Helmbold and
Long, 2015). The key idea behind dropout is to randomly deactivate a subset of neurons during
the training process. Specifically, the output of each neuron is multiplied by a random variable that
takes the value 1/p with probability p and zero otherwise. This random variable is independently
sampled at each feedforward operation. Despite its widespread adoption and empirical success, the
mechanism by which dropout enhances generalization in deep learning remains an ongoing area of
research.

The noise structure introduced by stochastic algorithms plays a crucial role in understanding their
training behaviors. A series of recent works reveal that the noise structure inherent in stochastic
gradient descent (SGD) is vital for exploring flatter solutions (Keskar et al., 2016; Feng and Tu, 2021;
Zhu et al., 2018). Analogously, the dropout algorithm introduces a specific form of noise, acting as an
implicit regularizer that facilitates improved generalization abilities (Hinton et al., 2012; Srivastava
et al., 2014; Wei et al., 2020; Zhang and Xu, 2022; Zhu et al., 2018).

In this paper, we first employ the stochastic modified equations (SMEs) (Li et al., 2017) framework
to analyze the dynamics of the dropout algorithm applied to two-layer NNs. By application of SMEs,
we embark on an exhaustive quantification of the leading order dynamics governing dropout, and
we fortify this analytical approach through some empirical validations. In addition, we calculate the
covariance matrix associated with the noise introduced by dropout. Hence our analytical exploration
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is further enriched by an investigation of the alignment relation between this covariance matrix and the
Hessian matrix, a relationship conceptually framed as the Hessian-variance alignment relation (Zhu
et al., 2018; Wu et al., 2022). We emphasize that this alignment property occupies a central role in
sculpting the flatness attributes inherent in the solutions favored by NN models, and it has been firmly
established that flatter solutions tend to exhibit enhanced generalization capabilities (Keskar et al.,
2016; Neyshabur et al., 2017).

2 RELATED WORKS

A flurry of recent works aims to shed light on the regularization effect conferred by dropout. Wager
et al. (2013) show that dropout performs a form of adaptive regularization in the context of linear
regression and logistic problems. McAllester (2013) propose a PAC-Bayesian bound, whereas Wan
et al. (2013); Mou et al. (2018) derive some Rademacher-complexity-type error bounds specifically
tailored for dropout. Cavazza et al. (2018); Mianjy and Arora (2020); Wei et al. (2020); Arora
et al. (2021) demonstrate that dropout regularizes the inductive bias under different settings. Jin
et al. (2022) try to explain the generalization ability of dropout from the new perspective of weight
expansion. Finally, Zhang and Xu (2022) establish that dropout facilitates condensation (Luo et al.,
2021; Zhou et al., 2021; 2022) through an additional regularization term endowed by dropout.

Continuous formulations have been extensively utilized to study the dynamical behavior of stochastic
algorithms. Li et al. (2017; 2019) present an entirely rigorous and self-contained mathematical
formulation of the SME framework that applies to a wide class of stochastic algorithms. Furthermore,
Feng et al. (2017) adopt a semigroup approach to investigate the dynamics of SGD and online PCA.
Malladi et al. (2022) derive the SME approximations for the adaptive stochastic algorithms including
RMSprop and Adam, additionally, they provide efficient experimental verification of the validity of
square root scaling rules arising from the SMEs.

One noteworthy observation is the association between the flatness of minima and improved gen-
eralization ability (Li et al., 2017; Jastrzebski et al., 2017; 2018). Specifically, SGD is shown to
preferentially select flat minima, especially under conditions of large learning rates and small batch
sizes (Jastrzebski et al., 2017; 2018; Wu et al., 2018). Papyan (2018; 2019) attribute such enhance-
ment of flatness by SGD to the similarity between covariance of the noise and Hessian of the loss
function. Furthermore, Zhu et al. (2018); Wu et al. (2022) unveil the Hessian-variance alignment
property of SGD noise, shedding light on the role of SGD in escaping from sharper minima and
locating flatter minima.

3 PRELIMINARY

In this section, we present the notations and definitions utilized in our theoretical analysis. We remark
that our experimental settings are more general than the counterparts in the theoretical analysis.

3.1 NOTATIONS

We set a special vector (1, 1, 1, . . . , 1)⊺ by 1 := (1, 1, 1, . . . , 1)⊺ whose dimension varies. We set
n for the number of input samples and m for the width of the NN. We let [n] = {1, 2, . . . , n}. We
denote ⊗ as the Kronecker tensor product, and ⟨·, ·⟩ for standard inner product between two vectors.
We denote vector L2 norm as ∥·∥2, vector or function L∞ norm as ∥·∥∞. We also denote Tr(·) as the
trace of a square matrix, Id as the identity matrix of size d× d, and ∥·∥F signifies the Frobenius norm
of a matrix. Finally, we denote the set of continuous functions f(·) : RD → R possessing continuous
derivatives of order up to and including r by Cr(RD), the space of bounded measurable functions by
Bb(RD), and the space of bounded continuous functions by Cb(RD).

3.2 TWO-LAYER NEURAL NETWORKS AND LOSS FUNCTION

We consider the empirical risk minimization problem given by the quadratic loss:

min
θ

RS(θ) =
1

2n

n∑
i=1

(fθ(xi)− yi)
2
, (1)
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where S := {(xi, yi)}ni=1 is the training sample, fθ(x) is the prediction function, θ are the parame-
ters, and their dependence is modeled by a two-layer NN with m hidden neurons

fθ(x) :=

m∑
r=1

arσ(w
⊺
rx), (2)

where x ∈ Rd, θ = vec(θa,θw) ∈ RD, where D := m(d+1) throughout this paper. We remark that
θ is the set of parameters with θa = vec({ar}mr=1), θw = vec({wr}mr=1), and we impose hereafther
that the activation function σ(·) to be continuously differentiable up to order 6, i.e., σ ∈ C6(R).
More precisely, θ = vec({qr}mr=1), where for each r ∈ [m], qr := (ar,w

⊺
r )

⊺, and the bias term br
can be incorporated by expanding x and wr to (x⊺, 1)⊺ and (w⊺

r , br)
⊺.

3.3 DROPOUT

For a fixed learning rate η > 0, then at the N -th iteration where tN := Nη, a scaling vector δN ∈ Rm

is sampled with independent random coordinates: For each k ∈ [m],

(δN )k =

{
1
p with probability p,

0 with probability 1− p,
(3)

and we observe that {δN}N≥1 is an i.i.d. Bernoulli sequence with EδN = 1. With slight abuse of
notations, the σ-fields FN := {σ(δ1, δ2, · · · δN )} forms a natural filtration. We then apply dropout
to the two-layer NNs by computing

fθ(x; δ) :=

m∑
r=1

(δ)rarσ(w
⊺
rx), (4)

and we denote the empirical risk associated with dropout by

Rdrop
S (θ; δ) :=

1

2n

n∑
i=1

(fθ(xi; δ)− yi)
2
=

1

2n

n∑
i=1

(
m∑
r=1

(δ)rarσ(w
⊺
rxi)− yi

)2

. (5)

We remark that the parameters at the N -th step are updated as follows:

θN = θN−1 − η∇θR
drop
S (θN−1; δN ) , (6)

where θ0 := θ(0). Finally, we denote hereafter that for all i ∈ [n],

eNi := ei(θN−1; δN ) := fθN−1
(xi; δN )− yi.

4 STOCHASTIC MODIFIED EQUATIONS FOR DROPOUT

In this section, we approximate the iterative process of dropout (6) in the weak sense (Definition 1).

4.1 MODIFIED LOSS

As the dropout iteration (6) reads

θN − θN−1 = −η∇θR
drop
S (θN−1; δN ) = − η

n

n∑
i=1

eNi ∇θe
N
i .

Since θ = vec({qr}mr=1) = vec ({(ar,wr)}mr=1), then given θN−1, for each k ∈ [m], the expecta-
tion of the increment restricted to qk reads

EθN−1

[
n∑

i=1

eNi ∇qk
eNi

]
= EθN−1

[
n∑

i=1

eNi (δN )k∇qk
(akσ(w

⊺
kxi))

]

=

n∑
i=1

ei∇qk
(akσ(w

⊺
kxi)) +

1− p

p

n∑
i=1

akσ(w
⊺
kxi)∇qk

(akσ(w
⊺
kxi)) ,
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where we denote for simplicity that ei := ei(θ) :=
∑m

r=1 arσ(w
⊺
rxi)− yi. Compared with eNi , ei

does not depend on the random variable δN . Hence, as we define the modified loss LS(·) : RD → R
for dropout:

LS(θ) :=
1

2n

n∑
i=1

e2i +
1− p

2np

n∑
i=1

m∑
r=1

a2rσ(w
⊺
rxi)

2. (7)

We observe that for each k ∈ [m], the gradient of LS restricted to qk reads

∇qk
LS(θ) =

1

n

n∑
i=1

ei∇qk
(akσ(w

⊺
kxi)) +

1− p

np

n∑
i=1

akσ(w
⊺
kxi)∇qk

(akσ(w
⊺
kxi)) ,

which indicates that given θN−1, the conditional expectation of the increment of the parameter at the
N -th step reads

θN − θN−1 = −ηEθN−1

[
∇θR

drop
S (θN−1; δN )

]
= −η∇θLS(θ)

∣∣
θ=θN−1

.

Then in the sense of expectations, {θN}N≥0 follows close to the gradient descent (GD) trajectory of
LS(θ) with fixed learning rate η. In the above procedure, we focus on the drift term of dropout and
disregard its fluctuation term as we merely consider the first conditional moment of the parameter
increment. Please refer to Appendix G.1 for the detailed derivation of LS .

4.2 STOCHASTIC MODIFIED EQUATIONS

In pursuit of a more comprehensive understanding of the dynamics of dropout, we integrate the
fluctuation term of dropout into our analysis. Firstly, as shown above, we observe that given θN−1,

θN − θN−1 = −η∇θLS(θ)
∣∣
θ=θN−1

+
√
ηV (θN−1), (8)

where LS(·) : RD → R is the modified loss defined in (7), and V (·) : RD → RD represents the
fluctuation term of dropout. When given θN−1, V (θN−1) has mean 0 and covariance ηΣ(θN−1),
where Σ(·) : RD → RD×D, whose expression is deferred to Section 5.1.

Consider the stochastic differential equation (SDE),

dΘt = b (Θt) dt+ σ (Θt) dWt, Θ0 = Θ(0), (9)

where Wt is a standard D-dimensional Brownian motion. Its Euler–Maruyama discretization with
step size η > 0 at the N -th step reads

ΘηN = Θη(N−1) + ηb
(
Θη(N−1)

)
+

√
ησ
(
Θη(N−1)

)
ZN ,

where ZN ∼ N (0, ID) and Θ0 = Θ(0). Thus, if we set

b (Θ) := −∇ΘLS(Θ),

σ (Θ) :=
√
η (Σ (Θ))

1
2 ,

Θ0 := θ0,

(10)

then we would expect (9) to be a “good” approximation of (8) with time identification t = ηN . Based
on the previous work (Li et al., 2017), we use approximations in the weak sense (Kloeden and Platen,
2011, Section 9.7) since the path of dropout and the corresponding SDE are driven by noises sampled
in different spaces.

To compare different discrete time approximations, we need to take the rate of weak convergence
into consideration, and we also need to choose an appropriate class of functions as the space of test
functions. We introduce the following set of smooth functions:

CM
b

(
RD
)
=

f ∈ CM
(
RD
) ∣∣∣∣∣ ∥f∥CM :=

∑
|β|≤M

∥∥Dβf
∥∥
∞ < ∞

 , (11)

where D is the usual differential operator. We remark that CM
b (RD) is a subset of G(RD), the class

of functions with polynomial growth, which is chosen to be the space of test functions in previous
works (Li et al., 2017; Kloeden and Platen, 2011). To ensure validity of our analysis, we assume that
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Assumption 1. There exists T ∗ > 0, such that for any t ∈ [0, T ∗], there exists a unique t-continuous
solution Θt to SDE (9). Furthermore, for each l ∈ [3], there exists C(T ∗,Θ0) > 0, such that

sup
0≤s≤T∗

E
(
∥Θs(·)∥2l2

)
≤ C(T ∗,Θ0). (12)

Moreover, for the dropout iterations (6), let 0 < η < 1, T > 0 and set NT,η := ⌊T
η ⌋. There exists

η0 > 0, such that given any learning rate η ≤ η0, then for all N ∈ [0 : NT∗,η] and for each l ∈ [3],
there exists C(T ∗,θ0, η0) > 0, such that

sup
0≤N≤[NT∗,η ]

E
(
∥θN∥2l2

)
≤ C(T ∗,θ0, η0). (13)

We remark that local existence of the solution to SDE and estimates of all 2l-moments of the solution
to SDE can be guaranteed for smooth coefficients and sufficiently small time T ∗ > 0. Moreover, as
the constants C(T ∗,Θ0) and C(T ∗,θ0, η0) are exponential in time, the 2l-moments of the solution
might blow up for large enough T ∗, which is unavoidable since we are unable to impose the uniform
Lipschitz condition on ∇LS and Σ. However, our empirical findings suggest that the SME still
possess the desired approximation ability to dropout even for a large learning rate, as shown in Fig. 1
(a). We also remark that if G(RD) is chosen to be the test functions in Li et al. (2019), then similar
relations to (12) and (13) shall be imposed, except that in our cases, we only require the second,
fourth and sixth moments to be uniformly bounded.
Definition 1. The SDE (9) is an order α weak approximation to the dropout (6), if for every
g ∈ CM

b

(
RD
)
, there exists C > 0 and η0 > 0, such that given any η ≤ η0 and T ≤ T ∗, then for all

N ∈ [NT,η],
|Eg(ΘηN )− Eg(θN )| ≤ C(T ∗, g, η0)η

α. (14)

We now state formally our approximation results.
Theorem 1. Fix time T ≤ T ∗ and learning rate η > 0. If σ ∈ C6(R), then for all t ∈ [0, T ], the
stochastic processes Θt satisfying

dΘt = b1 (Θt) dt+ σ1 (Θt) dWt, (15)

is an order-1 approximation of dropout (6), where

b1(Θ) = −∇ΘLS(Θ),

σ1(Θ) =
√
η (Σ (Θ))

1
2 ,

and the expression of LS(·) is located in (7), and the expression of Σ(·) can be found in Appendix J.
Moreover, if σ ∈ C6(R), then for all t ∈ [0, T ], the stochastic processes Θt satisfying

dΘt = b2 (Θt) dt+ σ2 (Θt) dWt, (16)

is an order-2 approximation of dropout (6), where

b2(Θ) = −∇Θ

(
LS(Θ) +

η

4
∥∇ΘLS(Θ)∥22

)
,

σ2(Θ) =
√
η (Σ (Θ))

1
2 .

It is noteworthy that our findings reproduce the explicit regularization effect attributed to dropout (Wei
et al., 2020; Zhang and Xu, 2022). This regularization effect modifies the expected training objective
from the empirical risk RS(θ) to LS(θ), and it stems from the inherent stochastic nature of dropout.
Unlike SGD, where the noise arises from the stochasticity involved in the selection of training
samples, dropout introduces noise by means of the stochastic removal of parameters.

4.3 NUMERICAL SIMULATION OF STOCHASTIC MODIFIED EQUATIONS

In this subsection, we conduct an empirical validation of the effectiveness of SMEs for dropout. This
validation is conducted through an exploration of the resemblance between the numerical simulation
of the SME and the real-time training process of dropout. For the numerical simulation of the SME,
unless otherwise specified, we employ the Euler-Maruyama method to approximate its dynamic
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evolution by the order-1 approximation. It is worth noting that the noise term σ(θ) in Equ. (10)
involves the computation of the square root of the covariance matrix Σ(θ). Consequently, the size
of the covariance matrix significantly affects the speed and accuracy of the numerical simulation
process. To mitigate the computational demands associated with the covariance matrix, we resize the
MNIST data to 7×7, thereby reducing the number of network parameters involved in the simulations.
Additional details of the experimental setup can be found in Appendix A.

0 2000 4000 6000 8000 10000
epoch

10 1

100

lo
ss

SDE, = 1, p = 0.3
SDE, = 1, p = 0.5
dropout, = 1, p = 0.3
dropout, = 1, p = 0.5

9700 99000.04

0.06

(a) loss trajectory (b) order-1 approximation (c) order-2 approximation

Figure 1: We train two-layer fully connected networks on MNIST. The curves and points are derived
from the average results of individual trials, each of which utilized the same initialization distribution.
(a) The training loss trajectory obtained by SME simulation or dropout training under four cases
of different learning rates and dropout rates. The error bands, portrayed with greater transparency,
are derived from the maximum and minimum loss values observed across these six random trials
at each training step. (b, c) Convergence-order verification of first-order and second-order SME
approximations. Each point represents the value of ∥E(Θt)− E(θt)∥2 under a given learning rate
(abscissa) and dropout rate (color).

Fig. 1 illustrates the close correspondence between the dynamics of the SME and dropout throughout
the training process. This similarity is examined from two perspectives: the trajectory of loss
functions and the approximation order. In Fig. 2, we emphasize that although dropout introduces a
noise component that modifies the loss function from RS(θ) to LS(θ), when contrasted with SMEs,
the training behavior of gradient descent utilizing LS(θ) as the loss function is distinct from dropout.
This distinction becomes apparent when large learning rates are employed in the optimization process.

To comprehensively assess the similarity between dropout and SME simulations, we first consider
four distinct cases, each characterized by various dropout rates and learning rates shown in Fig. 1(a).
Fig. 1(a) depicts the evolution of loss values under these distinct settings for both dropout and
SME simulations. To ensure the robustness of our analysis, for each configuration, we conduct six
independent trials of dropout and SME simulations, all initialized with identical distribution. The
displayed curves represent the means of these six random trials. Moreover, the error band, indicated
by lighter colors, covers the range between the maximum and minimum loss values obtained from
the six trials. The observed alignment of loss trajectories between the SME simulation and dropout,
as evident in Fig. 1(a), underscores a prominent resemblance in their respective loss trajectories.

To further evaluate the similarity of their parameters, we verify the approximation orders of different
SME simulations. Figs. 1(b, c) numerically verify the approximation orders of the first-order and the
second-order approximation equation in Theorem 1 respectively. Each point represents the value of
∥E(Θt)− E(θt)∥2 under a given learning rate (abscissa) and dropout rate (color). The expectation
is obtained by calculating the mean of 10 independent experiments with the same initialization for
both dropout and SME simulation. The logarithmic plots clearly illustrate the experimental validation
of the theoretical approximation order of SME, for both order-1, shown in Fig. 1(b), and order-2,
shown in Fig. 1(c). Additionally, under the same learning rate, larger values of p exhibit enhanced
approximation capabilities. This improvement is attributed to the reduction in noise with increasing
p, consequently minimizing the impact of noise on the training process.

We also conduct experiments to validate the applicability of the SME approximation in complex
networks and SGD settings. In the former, we simulate complex networks through numerical
approximation of the drift term, while in the latter, we rely on the fact that SGD noise is unbiased.
For a thorough discussion and detailed numerical results, please refer to Appendix C.
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(a) η = 0.005, p = 0.9
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(b) η = 1, p = 0.3

Figure 2: The test loss and test accuracy trajectory obtained by SME simulation, dropout training, and
gradient descent training with loss function LS(θ) under two settings. The curves are derived from
the average results of six individual trials, each of which utilized the same initialization distribution.
The error bands, portrayed with greater transparency, are derived from the maximum and minimum
loss values observed across these six random trials at each training step.

Fig. 2 depicts the test loss and test accuracy associated with η = 0.005, p = 0.9 and η = 1, p = 0.3.
In Fig. 2(a), the trajectories of loss and accuracy, generated using three different training methods,
exhibit a remarkable degree of concurrence. This phenomenon can be primarily attributed to
the utilization of a small learning rate, where the diffusion component significantly diminishes,
consequently endowing the drift term LS(θ) with a dominant influence. In contrast, as illustrated in
Fig. 2(b), a notable divergence becomes evident in the loss and accuracy trajectories. This discrepancy
arises from the impact of the diffusion term during training, particularly with the application of large
learning rates. Notably, in contrast to the training behavior of gradient descent utilizing LS(θ) as
the loss function, the trajectory generated by SME simulation exhibits a closer alignment with the
trajectory of dropout.

It is noteworthy that as large learning rate and dropout rate contribute to an increased amplitude
of diffusion, methods incorporating noise such as SME and dropout tend to exhibit enhanced
generalization performance. As demonstrated in Figure 2(b), the test accuracy attained by LS(θ)
consistently remains below the lower threshold of test accuracy attained by noise-inclusive methods
for the major portion of the training duration. In the sequel, we delve into an in-depth exploration of
the influence exerted by noise on our learning outcomes.

5 THE EFFECT OF DROPOUT NOISE STRUCTURE

We begin this section by examining the noise structure of dropout.

5.1 EXPLICIT FORM OF THE NOISE STRUCTURE OF DROPOUT

In this subsection, we present the expression for the covariance Σ(θ). Once again, as θ =

vec({qr}mr=1) = vec ({(ar,wr)}mr=1), then as we denote covariance of ∇θR
drop
S (θN−1; δN ) by

Σ(θN−1), i.e.,

Σkr(θN−1) := Cov
(
∇qk

Rdrop
S (θN−1; δN ) ,∇qrR

drop
S (θN−1; δN )

)
,

then

Σ =


Σ11 Σ12 · · · Σ1m

Σ21 Σ22 · · · Σ2m

...
...

...
...

Σm1 Σm2 · · · Σmm

 .

Such expression of Σ arises from the inherent decoupling properties among neurons within the
two-layer neural network. Due to space limitation, we defer the detailed expression of Σkr to
Appendix J.
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5.2 INTUITIVE EXPLANATION FOR THE HESSIAN-VARIANCE ALIGNMENT RELATIONS

In this subsection, we endeavor to show the structural similarity between the covariance and the
Hessian in terms of Hessian-variance alignment relations. Under the assumption that θ is close
to a global minimum, we intuitively derive the structural similarity between the Hessian and the
covariance at the final stage of the training process as follows:

H(θ) ≈ 1

n

n∑
i=1

[
∇θfθ (xi)⊗∇θfθ (xi) +

1− p

p

m∑
r=1

∇qr (arσ(w
⊺
rxi))⊗∇qr (arσ(w

⊺
rxi))

]
,

Σ(θ) ≈ 1

n

n∑
i=1

[
li,1∇θfθ(xi)⊗∇θfθ(xi) + li,2

1− p

p

m∑
r=1

∇qr
(arσ(w

⊺
rxi))⊗∇qr

(arσ(w
⊺
rxi))

]
,

(17)
where H(θ) := ∇2

θLS(θ), and li,1 := (ei)
2 + 1−p

p

∑m
r=1 a

2
rσ(w

⊺
rxi)

2, li,2 := (ei)
2. A detailed

derivation of (17) is provided in Appendix K. With the establishment of structural similarity through
the aforementioned intuitive approximations outlined in (17), we proceed to empirically investigate
the intricate relationship between the Hessian and the covariance, and details of the experimental
settings can be found in Appendix A.

5.3 EXPERIMENTAL RESULTS ON THE HESSIAN-VARIANCE ALIGNMENT RELATIONS

Motivated by the relation (17), we empirically demonstrate the structural similarity between the
Hessian and the covariance of dropout, and this demonstration serves to validate the Hessian-variance
alignment relation. Based on this relation, the introduction of dropout noise has the potential to
expedite the escape of the model from locating sharp minima, thereby effectively enhancing the
flatness of the solution. Furthermore, in Appendix B, we also explore another relationship between
the Hessian and the covariance known as the inverse variance-flatness relation (Feng and Tu, 2021),
which also contributes to aiding the model in avoidance of the sharp minima during its optimization
process.

0 1000 2000 3000
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0.9

1.0

(
t)

p = 0.9, = 0.1
p = 0.9, = 0.05
p = 0.8, = 0.1
p = 0.8, = 0.05

(a) FNN, MNIST

0 50 100 150
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0.6
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0.9

(
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p = 0.8, = 0.1
p = 0.6, = 0.1
p = 0.8, = 0.02
p = 0.6, = 0.02

(b) VGG16, CIFAR-10

Figure 3: The cosine similarity α(θt) between the Hessian of the loss function and the covariance of
the dropout noise at each training epoch t for different choices of dropout rate and learning rate. (a)
The FNN with size 784-50-50-10 is trained on the MNIST dataset using the first 10000 examples
as the training dataset. The dropout layer is added after the first hidden layer. (b) The VGG16 is
trained on the CFIAR-10 dataset using the full examples as the training dataset. The dropout layers
are added after the first two convolutional layers of each block and the first fully-connected layer.
The calculation of α(θt) is performed every five epochs.

To investigate the Hessian-Variance alignment relation, we study the cosine similarity quantity α(θt)
1

between the covariance matrix Σt := Σ(θt) and the Hessian matrix Ht := H(θt) at each time step
t. Σt is the covariance matrix of Dgrad, a collection of gradients calculated with different dropout
variables δ sampled at the tth step, whose detailed definition can be found in Section B.1. On the
other hand, Ht is the Hessian of the loss function evaluated at the tth iteration. Then the crucial

1This variable is also used in Wu et al. (2022) for studying SGD.
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cosine similarity metric α(θt) is formally expressed as:

α(θt) =
Tr(HtΣt)

∥Ht∥F∥Σt∥F
(18)

As depicted in Fig. 3, it is evident that throughout the training process, α(θt) consistently attains
values surpassing 0.85 in Fig. 3(a) and 0.7 in Fig. 3(b), and these observations hold true across varying
learning rates and dropout rates. It’s worth noting that, based on 100 samples, the average cosine
similarity between the two random matrices based on the selected parameters is only 7.8 × 10−4.
The eigenvalues of the two random matrices are derived from the eigenvalues of the Hessian matrix
and covariance matrix of the selected parameters, and the corresponding eigenvectors are sampled
from a normal distribution and normalized. The model parameters are derived from the final model
represented by the blue line in Fig. 3(a). Consequently, the introduced noise is highly anisotropic
in that it aligns well with the Hessian matrix across all directions. We acknowledged that due to
computational constraints, this experiment limits the trace calculation to a subset of parameters.

6 CONCLUSIONS AND DISCUSSIONS

Our main contribution comprises two key aspects. First, we derive the SMEs that provide a weak
approximation to the dynamics of the dropout algorithm applied to two-layer NNs. Second, we con-
duct an empirical inquiry that demonstrates the persistent validity of the Hessian-variance alignment
relation throughout the training process of dropout. The Hessian-variance alignment relation has
been established to be beneficial for the model to locate flatter minima, thus indicating that dropout
acts as an implicit regularizer that enhances the generalization power possessed by the model.

Extension of the SME framework to multi-layer networks and SGD. While our theoretical analysis
has predominantly centered around the dropout algorithm applied to two-layer neural networks and
GD, it is important to note that the derivation of SMEs is not confined exclusively to two-layer neural
networks, GD, or even to the dropout algorithm. For various types of neural networks, the feasibility
of constructing such modified equations remains viable, provided that the stochastic algorithm
iteratively updates the parameters in a recursive manner, i.e., iterations form a time-homogeneous
Markov chain. Furthermore, this applicability holds as long as Taylor’s theorem with the Lagrange
form of the remainder remains valid for sufficiently small learning rates. It is worth acknowledging
that the complexity introduced by multi-layer networks primarily arises from the presence of dropout
layers within the activation functions. This introduces a high degree of non-linearity to the loss
with respect to the dropout variable, rendering it challenging to explicitly calculate the drift and
diffusion components of the SME. We numerically verify the SDE approximation capability of
complex network structures and SGD in Appendix C.

The effect of learning rate on dropout. In the small learning rate regime, wherein the noise
term exerts slight influence, the loss trajectories of LS(θ) and Rdrop

S (θ; δ) exhibit a notable degree
of congruence. This observation has been affirmed through theoretical and empirical validations.
However, it remains imperative to maintain the diffusion term is important if we aspire to gain
deeper insights into the nature of dropout algorithms or other stochastic algorithms. As illustrated in
Fig. 2(b), in the large learning rate regime, the trajectory derived from the SME simulation aligns
more closely with its dropout counterpart, in stark contrast to the trajectory arising from GD training
on LS(θ). Furthermore, SMEs consistently exhibit better generalization capability in comparison
to GD. Therefore, a comprehensive analytical framework that duly accommodates both drift and
diffusion terms stands as a more informative tool for the insightful analysis of dropout algorithms.

More refined analysis of noise structures. In addition to the Hessian-Variance alignment relation,
the structural similarity between the Hessian and the covariance engenders yet another intriguing
relationship known as the inverse variance-flatness relation (Feng and Tu, 2021). Different from the
Hessian-Variance alignment relation, it focuses more on the similarity of the two feature directions.
In Appendix B, an investigation has been conducted to examine the correlation between the noise
structure introduced by dropout and the nature of the loss landscape. This relationship also plays
a pivotal role in assisting the model to steer clear of sharp minima. The high similarity of the
eigenvectors of two matrices is a natural extension of the inverse variance-flatness relation, please
refer to Appendix B for detailed validation results. In Appendix D, we compare the effect of noise on
the model in three training strategies, dropout, SGD, and parametric noise injection (Orvieto et al.,
2023), which all appear to be helpful for flatness.
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A EXPERIMENTAL SETUPS

For Fig. 1, Fig. 2, Fig. 7(b), we use the FNN with size 49-40-10 for the MNIST classification task,
where the input data is resized to 7×7 to reduce the amount of calculation of the root of the parameter
covariance matrix. For Fig. 1, Fig. 2, we train the network using GD with the first 1000 images as the
training set. We add a dropout layer behind the hidden layer. The dropout rate and learning rate are
specified and unchanged in each experiment. For Fig. 7(b), we train the network using SGD with the
whole training set, the batch size is 32. We add a dropout layer behind the hidden layer. The learning
rate is 0.1 and p = 0.8. For the accuracy of SDE simulation, all parameters are used to calculate the
Hessian matrix and covariance matrix.

For Fig. 3(a), Fig. 4, Fig. 6, Fig. 8(a), we use the FNN with size 784-50-50-10 for the MNIST
classification task. We add a dropout layer behind the second layer. The dropout rate and learning
rate are specified and unchanged in each experiment. We only consider the parameter matrix
corresponding to the weight and the bias of the fully-connected layer between two hidden layers.
Therefore, for experiments in Fig. 3(a), D = 2500. For Fig. 3(a), Fig. 4, Fig. 6, we train the network
using GD with the first 10000 images as the training set. For Fig. 8(a), we train the network using
SGD with the whole training set with batch size 32.

For Fig. 3(b), Fig. 8(b), we use the VGG16 for the CIFAR10 classification task. We train the network
using SGD with batch size 128 for Fig. 3(b), and 32 for Fig. 8(b). We add the dropout layer after the
first two convolutional layers of each block and the first fully-connected layer. The dropout rate and
learning rate are specified and unchanged in each experiment. We only consider the parameter matrix
corresponding to the weight and the bias of the first convolutional layer. Therefore, D = 1728 for the
two experiments. Due to the computational cost of the Hessian matrix and the covariance matrix, we
calculate cosine similarity every five epochs.

For Fig. 5(a, c, e, g), we add dropout layers after the convolutional layers, and for each dropout
layer, p = 0.8. We only consider the parameter matrix corresponding to the weight of the first
convolutional layer of the first block of the ResNet-20. Models are trained using full-batch GD on
the CIFAR100 classification task for 1200 epochs. The learning rate is initialized at 0.01. Since the
Hessian calculation of ResNet takes much time, we only perform it at a specific dropout rate and
learning rate.

For Fig. 5(b, d, f, h), we use transformer Vaswani et al. (2017) with dmodel = 50, dk = dv =
20, dff = 256, h = 4, N = 3, the meaning of the parameters is consistent with the original paper. We
only consider the parameter matrix corresponding to the weight of the fully-connected layer whose
output is queried in the Multi-Head Attention layer of the first block of the decoder. We apply dropout
to the output of each sub-layer before it is added to the sub-layer input and normalized. In addition,
we apply dropout to the sums of the embeddings and the positional encodings in both the encoder and
decoder stacks. For each dropout layer, p = 0.9. For the English-German translation problem, we
use the cross-entropy loss with label smoothing trained by full-batch Adam based on the Multi30k
dataset. The learning rate strategy is the same as that in Vaswani et al. (2017). The warm-up step is
4000 epochs, the training step is 10000 epochs. We only use the first 2048 examples for training to
compromise with the computational burden.

For Fig. 7(a), we use the FNN with size 49-40-40-40-10 for the MNIST classification task, where
the input data is resized to 7 × 7 to reduce the amount of calculation of the root of the parameter
covariance matrix. We train the network using GD with the first 1000 images as the training set. We
add a dropout layer behind each hidden layer. The learning rate is 0.1 and p = 0.5. For the accuracy
of SDE simulation, all parameters are used to calculate the Hessian matrix and covariance matrix.
The drift term is simulated by sampling the random variable 2000 times.

For Fig. 9(a), we use the ReLU FNN with the width of 1000 to fit the target function as follows,

f(x) =
1

2
σ(−x− 1

3
) +

1

2
σ(x− 1

3
),

where σ(x) = ReLU(x). The learning rate is 1× 10−3. For SGD, the batch size is 1. For dropout,
the dropout layer is added after the hidden layer with p = 0.8. For parameter noise injection, we use
the layer noise with the noise standard deviation σ = 0.001. We initialize the parameters in the linear
regime, θ ∼ N

(
0, 1

m0.2

)
, where m = 1000 is the width of the hidden layer.
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For Fig. 9(b), Fig. 9(c), we use the ReLU FNN with the size of 784-500-500-500-10 to classify the
MNIST dataset, and the learning rate is 0.01. The batch size is 128. For dropout, the dropout layer
is added after the hidden layers with p = 0.8. For parameter noise injection, we use the layer noise
with the noise standard deviation σ = 0.03.
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B EXTENDED EXPERIMENTS ON NOISE STRUCTURES.

B.1 RANDOM DATA COLLECTION METHODS

We first introduce two types of dynamical datasets collected during dropout training to study the
noise structure of dropout. These datasets are different from the training sample S.

Random trajectory data. The training process of NNs usually consists of two phases: the fast
convergence phase and the exploration phase (Shwartz-Ziv and Tishby, 2017). In the exploration
phase, the network is often considered to be near a minimum, and the movement of parameters is
largely affected by the noise structure. Based on the previous work (Feng and Tu, 2021), we collect
parameter sets Dpara := {θi}Ni=1 from N consecutive training steps in the exploration phase, where
θi is the network parameter set at i-th sample step. This sampling method requires a large number of
training steps, so model parameters often have large fluctuations during the sampling process. To
improve the sampling accuracy, we propose another type of random data to characterize the noise
structure of dropout as follows.

Random gradient data. We train the network until the loss is near zero and then we freeze the
training process, then we sample N realizations of the dropout variable to get the random gradient
dataset, i.e., Dgrad := {gi}Ni=1. The i-th sample point gi is obtained as follows: i) Firstly, we generate
a realization of the dropout variable δi under a given dropout rate; ii) Then, we compute the gradient
of the loss function with respect to the parameters, denoted by gi(·) := ∇Rdrop

S (·; δi). Each element
in Dgrad represents an evolution direction of network parameters, determined by the dropout variable.
Therefore, studying the structure of Dgrad can help us understand how the dropout noise exerts an
impact throughout the training process.

B.2 INVERSE VARIANCE-FLATNESS RELATION

The alignment relation studied above also implies the inverse variance-flatness relation, i.e., the noise
variance is large along the sharp direction of the loss landscape, and small along the flat direction. In
this subsection, we verify this relation by two sets of experiments. Firstly, we present two different
approaches to characterize the flatness of loss landscape and the covariance of noise from the random
trajectory data Dpara and random gradient data Dgrad, then we numerically demonstrate the inverse
variance-flatness relation. For convenience, D refers to either the dataset Dpara or the dataset Dpara

depending on its context, so is the case for their corresponding covariance Σ and Hessian H . We
then proceed to the definitions of noise variance and interval flatness.
Definition 2 (noise variance). For dataset D and its covariance Σ, we denote λi(Σ) as the ith
eigenvalue of Σ and its corresponding eigen direction as vi(Σ). Then we term λi(Σ) the noise
variance of D at the eigen direction vi(Σ).

The interval flatness below characterizes the flatness of the landscape around a local minimum.
Definition 3 (interval flatness2 ). For a a local minimum θ∗

0 , the loss function profile Rv along
direction v reads:

Rv(γ) ≡ RS(θ
∗
0 + γv),

where γ represents the distance moved in the v direction. The interval flatness Fv is then defined
as the width of the region within which Rv(γ) ≤ 2Rv(0). We determine Fv by finding two closest
points θlv < 0 and θrv > 0 on each side of the minimum that satisfy Rv(θ

l
v) = Rv(θ

r
v) = 2Rv(0).

The interval flatness is defined as:
Fv ≡ θrv − θlv. (19)

Remark. The experiments show that the result is not sensitive to the selection of the pre-factor 2. A
larger value of Fv means a flatter landscape in the direction v.

We use PCA to study the weight variations when the training accuracy is nearly 100%. The networks
are trained with full-batch GD for different learning rates and dropout rates under the same random
seed. When the loss is small enough, we sample the parameters or gradients of parameters N times
(N = 3000 for this experiment) and study the relationship between {λi(Σ)}Ni=1 and {Fvi(Σ)}Ni=1
for both weight dataset Dpara and gradient dataset Dgrad.

2This definition is also used in Feng and Tu (2021)
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Figure 4: (a, b) The inverse relation between the variance {λi(Σ)}Ni=1 and the interval flatness
{Fvi(Σ)}Ni=1 for different choices of p and learning rate lr with different network structures. The
PCA is done for different datasets D sampled from parameters for the top line and sampled from
gradients of parameters for the bottom line. The dashed lines give the approximate slope of the scatter.
(c, d) The relation between the variance {Var(Projvi(H)(D))}Ni=1 and the eigenvalue {λi(H)}Ni=1

for different choices of p and learning rate lr with different network structures. The projection is
done for different datasets D sampled from parameters for the top line and sampled from gradients of
parameters for the bottom line. The dashed lines give the approximate slope of the scatter.

For different learning rates and dropout rates, Fig. 4(a, b) reveal an inverse relationship between the
interval flatness of the loss landscape denoted as {Fvi(Σ)}Ni=1, and the noise variance represented
by the PCA spectrum {λi(Σ)}Ni=1. Notably, a power-law relationship can be established between
{Fvi(Σ)}Ni=1 and {λi(Σ)}Ni=1. Specifically, in the low flatness region, the dropout-induced noise
exhibits a large variance. As the loss landscape transitions into the high flatness regime, the linear
relationship between variance and flatness becomes more evident. Overall, These findings consistently
demonstrate the inverse relation between variance and flatness, as exemplified in Fig. 4(a, b).
Subsequently, we delve into the definitions of Projected variance and Hessian flatness.
Definition 4 (projected variance). For a given direction v ∈ RD and dataset D = {θi}Ni=1, where
θi ∈ RD, the inner product of v and θi is denoted by Projv(θi) := ⟨θi,v⟩, then we can define the
projected variance for D at the direction v as follows,

Var(Projv(D)) =

∑N
i=1(Projv(θi)− µ)2

N
,

where µ is the mean value of {Projv(θi)}Ni=1.

Definition 5 (Hessian flatness). For Hessian H , as we denote λi(H) by the i-th eigenvalue of H
corresponding to the eigenvector vi(H), we term λi(H) the Hessian flatness along direction vi(H).

The eigenvalues of the Hessian evaluated at a local minimum often serve as indicators of the flatness
of the loss landscape, and larger eigenvalues correspond to sharper directions. In our investigation, we
analyze the interplay between the eigenvalues of Hessian H at the final stage of the training process
and the projected variance of dropout at each of the corresponding eigen directions, i.e., λi(H)
v.s. {Var(Projvi(H)(D))}Ni=1. Specifically, we sample the parameters or gradients of parameters
N times (N = 1000 for this experiment), and examine the relationship between {λi(H)}Ni=1 and
{Var(Projvi(H)(D))}Ni=1 for both the parameter dataset Dpara and the gradient dataset Dgrad.

Under various dropout rates and learning rates, Fig. 4(c, d) presents establishes a consistent power-
law relationship between {λi(H)}Ni=1 and {Var(Projvi(H)(D))}Ni=1, and this relationship remains
robust irrespective of the choice between parameter dataset Dpara or the gradient dataset Dgrad.
The positive correlation observed between the Hessian flatness and the projection variance provides
insights into the structural characteristics of the dropout-induced noise. Specifically, these character-
istics have the potential to facilitate the escape from sharp minima and enhance the generalization
capabilities of NNs. Additionally, Fig. 4 highlights the distinct linear structure exhibited by gradient
sampling in comparison to parameter sampling, which corroborates the discussions outlined in
Section B.1.

Furthermore, we verify the inverse relation between the covariance matrix and the Hessian matrix
of dropout through different data collection methods and projection methods on larger network
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Figure 5: (a, b, c, d) The inverse relation between the variance {λi(Σ)}Ni=1 and the interval flatness
{Fvi(Σ)}Ni=1 for different choices of p and learning rate lr with different network structures. The
PCA is done for different datasets D sampled from parameters for the top line and sampled from
gradients of parameters for the bottom line. The dashed lines give the approximate slope of the
scatter. (e, f, g, h) The relation between the variance {Var(Projvi(H)(D))}Ni=1 and the eigenvalue
{λi(H)}Ni=1 for different choices of p and learning rate lr with different network structures. The
projection is done for different datasets D sampled from parameters for the top line and sampled
from gradients of parameters for the bottom line. The dashed lines give the approximate slope of the
scatter.

structures, such as ResNet-20 and transformer, and more complex datasets, such as CIFAR-100 and
Multi30k, as shown in Fig. 5.

B.3 THE SIMILARITY OF EIGENVECTORS BETWEEN THE HESSIAN MATRIX AND THE
COVARIANCE MATRIX

(a) inner product (b) projection ratio

Figure 6: (a) The cosine similarity between the first 15 eigenvectors of the Hessian matrix and the
covariance matrix. The color represents the value of cosine similarity, and the lines on the top and left
represent the energy ratio of the first k eigenvalues of the covariance matrix and the Hessian matrix,
respectively. (b) The projection ratio of the first 9 eigenvectors of the covariance matrix in different
eigendirections of the Hessian matrix.

We study the similarity of eigenvectors between the Hessian matrix and the covariance matrix. The
model parameters are derived from the final model represented by the blue line in Fig. 3(a). In
Fig. 6(a), we study the cosine similarity between the first 15 eigenvectors of the Hessian matrix and
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the covariance matrix. The color represents the value of cosine similarity, and the lines on the top and
left represent the energy ratio E(k) of the first k eigenvalues of the covariance matrix and the Hessian
matrix respectively, that is, E(k) = Σk

i=1(λi)
2/ΣN

i=1(λi)
2, where λi is the i-th eigenvalue, and N is

the number of the eigenvalues for the two matrices. It is easy to find that the energy ratio of the first
9 eigenvectors of the two matrices far exceeds the energy ratio of other eigenvectors. Meanwhile,
the first 9 eigenvectors of the two matrices are highly similar, which implies the alignment property
between the Hessian matrix and the covariance matrices in the eigenspace.

In order to further characterize the similarity between the first few eigenvectors of the two matrices,
we study the projection of the first 9 eigenvectors of the covariance matrix in different eigendirections
of the Hessian matrix. As shown in Fig. 6(b), we calculate the value of Σk

i=1α(vi(H),vj(Σ))
2

for the index k of the Hessian eigenvector and the index j of the covariance eigenvector, where
α(vi,vj) is the cosine similarity between the two vectors vi, vj). The energy proportions of the
first nine eigenvectors of the covariance matrix in the first nine directions of the Hessian matrix are
all greater than 0.95, which means that the similarity of the eigenvectors corresponding to the first
few eigenvalues of the Hessian matrix and the covariance matrix is much higher than the similarity
between them and other feature directions, which further confirms the alignment properties between
the Hessian matrix and the covariance matrix in the eigenspace.
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C EXTENDED ANALYSIS OF DROPOUT UNDER COMPLEX NETWORK
STRUCTURES AND SGD SETTING

In the main text, the theoretical part and experimental verification mainly focus on the settings of the
two-layer network and GD. This is mainly due to the derivation of the specific forms of the drift term
and covariance matrix. In fact, the SME framework in this work can be applied to more complex
network structures and SGD settings without being limited to the explicit calculation of drift terms
and covariance matrices. In the following, we conduct a detailed analysis of the feasibility of SME
under complex network structures and SGD settings, and verify it through SME numerical simulation
and the alignment between the Hessian matrix and covariance matrix under broader settings.

C.1 FEASIBILITY ANALYSIS FOR NETWORK STRUCTURES AND SGD SETTING

The formulation of our stochastic modified equations relies on two critical components. Firstly, the
algorithm updates parameters iteratively in a recursive manner, i.e., θN = F (θN−1, δN ), thereby
forming iterations as a time-homogeneous Markov chain. This characteristic is foundational for
applying the stochastic modified equation approach to weakly approximate the dynamics of dropout.
The second crucial component involves the utilization of Taylor’s theorem with the Lagrange form
of the remainder. In light of these two foundational components, we assert that the derivation and
analysis of stochastic modified equations extend beyond the confines of two-layer neural networks
and dropout. This approach is applicable to a broader spectrum of stochastic algorithms, including
but not limited to SGD and ADAM, and extends naturally to deeper or more complex neural network
architectures.

One might wonder why we only demonstrate our results limited to two-layer neural networks. For
one thing, two-layer neural networks are indeed a meaningful step towards a thorough understanding
of dropout. For another, the specific structure of two-layer neural networks, wherein parameters
are ’decoupled’, i.e., θ = qr = (ar,wr), facilitates the demonstration of dropout’s effect through
the computation of the network output. Finally, for two-layer neural networks, we are able to give
out an explicit expression for the modified loss, since we are able to calculate the first and second
moment of the random variable (δ)r. In the case of multi-layer neural networks, if dropout is
applied only to the outermost layer, we can still calculate the explicit expression for the modified
loss, since its calculation involves solely the first and second moments of the random variable (δ)r.
However, the situation becomes significantly more challenging when dropout is applied to the inner
layers of the multi-layer neural network. In this scenario, obtaining a closed-form expression for
the expectation E[h(δ)], where h is a highly nonlinear function with respect to δ, becomes nearly
impossible. Moreover, the computation of the covariance is even more infeasible in multi-layer neural
networks compared to two-layer neural networks.

While the structural dynamics of dropout within nonlinear activations for deep neural networks
remain uncertain, we assert that the same structure is retained if we apply dropout in a linear manner
to the deep neural networks by computing fθ(x) =

∑m
r=1 ar(δ)rσ(w

T
r x

[L]), where x[L] is the
output function of a L-layer neural network for L ≥ 2, the same structure remains, and the modified
loss LS(·) reads:

LS(θ) :=
1

2n

n∑
i=1

e2i +
1− p

2np

n∑
i=1

m∑
r=1

a2rσ(w
T
r x

[L]
i )2.

As for the SGD setting, given the nature of SGD as an unbiased estimator with respect to the full
sample, we conjecture that an order-1 approximation utilizing SME for SGD combined with dropout
shall be in the form:

dθt = −∇θLS(θt)dt+ Σ̃ (θt) dWt,

wherein the drift term remains invariant regardless of GD or SGD, while the diffusion term Σ̃ (θt)
combines noise from both dropout and SGD.

As for the scenario where dropout is applied within the nonlinear activations, this exact form of the
SME remains unexplored. However, we design numerical experiments to verify the approximation
ability of deeper network SMEs in the next subsection, where the drift term here is calculated
numerically through multiple samplings on dropout variable δ.
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C.2 EXTENDED EXPERIMENTS FOR NETWORK STRUCTURES AND SGD SETTING

In this section, we verify the feasibility of the above analysis through numerical experiments. We
all use first-order SME for approximation. Please refer to the Appendix A for specific experimental
settings.

C.2.1 SME SIMULATION

In this subsection, we conduct an empirical validation of the feasibility analysis of SMEs for dropout.
This validation is conducted through an exploration of the resemblance between the numerical
simulation of the SME and the real-time training process of dropout. For the numerical simulation
of the SME, unless otherwise specified, we employ the Euler-Maruyama method to approximate its
dynamic evolution by the order-1 approximation. To mitigate the computational demands associated
with the covariance matrix, we resize the MNIST data to 7 × 7, thereby reducing the number of
network parameters involved in the simulations.

(a) deep network (b) SGD setting

Figure 7: We train fully connected networks on MNIST. The curves and points are derived from
the average results of 20 individual trials, each of which utilized the same initialization distribution.
The training loss trajectory obtained by SME simulation or dropout training under four cases of
different learning rates and dropout rates. The error bands, portrayed with greater transparency, are
derived from the maximum and minimum loss values observed across these 20 random trials at each
training step. (a) Four-layer network, each layer width is 40. The learning rate is 0.1 and p = 0.5. (b)
Two-layer network training with SGD, the batch size is 32. The learning rate is 0.1 and p = 0.8.

As shown in Fig. 7, we compare the SME simulation results under deep network and SGD settings
with dropout. For deep networks, we add a dropout layer after each hidden layer. Since the drift term
cannot be calculated explicitly, we approximate the expectation by sampling the noise multiple times.
This also limits the number of parameters in our model. For dropout under the SGD setting, we use
the same drift term as under the GD setting, and calculate the noise structure from the combined
noise of the two random algorithms, dropout and SGD.

C.2.2 HESSIAN-VARIANCE ALIGNMENT

In this section, we mainly study the impact of dropout of complex network structures on Hessian-
variance alignment under the SGD setting. In the main text, we have conducted relevant experiments
on complex network structures under the GD setting. To investigate the Hessian-Variance alignment
relation for dropout with SGD, we study the cosine similarity quantity α(θt) between the covariance
matrix Σt := Σ(θt) and the Hessian matrix Ht := H(θt) at each time step t under the SGD setting.
Σt is the covariance matrix of Dgrad, a collection of gradients calculated with different dropout
variables δ and input data x sampled at the tth step. On the other hand, Ht is the Hessian of the loss
function evaluated at the tth iteration. Then the crucial cosine similarity metric α(θt) is formally
expressed as:

α(θt) =
Tr(HtΣt)

∥Ht∥F∥Σt∥F
(20)

As depicted in Fig. 8, it is evident that throughout the training process, α(θt) consistently attains
values surpassing 0.85 in Fig. 8(a) and 0.65 in Fig. 8(b), and these observations hold true across
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varying learning rates and dropout rates. It’s worth noting that, based on 100 samples, the average
cosine similarity between the two random matrices based on the selected parameters is only 8.6×10−4.
The eigenvalues of the two random matrices are derived from the eigenvalues of the Hessian matrix
and covariance matrix of the selected parameters, and the corresponding eigenvectors are sampled
from a normal distribution and normalized. The model parameters are derived from the final model
represented by the blue line in Fig. 8(a). Consequently, the introduced noise is highly anisotropic
in that it aligns well with the Hessian matrix across all directions. We acknowledged that due to
computational constraints, this experiment limits the trace calculation to a subset of parameters, which
can be effectively regarded as the projection of the Hessian and the noise into specific directions.

(a) three-layer FNN, MNIST (b) VGG16, CIFAR-10

Figure 8: The cosine similarity α(θt) between the Hessian of the loss function and the covariance
of the dropout noise at each training epoch t for different choices of dropout rate and learning rate.
(a) The FNN with size 784-50-50-10 is trained on the MNIST dataset with a batch size of 32. The
dropout layer is added after the first hidden layer. (b) The VGG16 is trained on the CFIAR-10 dataset
with a batch size of 32. The dropout layers are added after the first two convolutional layers of each
block and the first fully-connected layer. The calculation of α(θt) is performed every five epochs.
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D EFFECT OF NOISE FROM DIFFERENT TRAINING STRATEGIES ON RESULTS.

In this subsection, we compare the effect of noise from different training strategies on model output
and generalization. We mainly compared three training strategies: SGD, dropout, and parameter noise
injection. Parameter noise injection is well known as the explicit regularizer on the trace of the hessian
(Orvieto et al., 2023). We first study the results of ReLU NNs training under three training strategies,
as shown in Fig. 9(a). It is easy to see that the model output of GD+dropout has better smoothness
and is more in line with expectations. In Fig. 9(b), we compare the generalization capabilities of
three randomized algorithms. We follow the settings in Orvieto et al. (2023) and conduct experiments
using MLP1 in the corresponding code, with the network size 784-500-500-500-10. We use a batch
size of 128 for the three algorithms. The mean (solid line) and standard deviation (shaded range)
were calculated from five independent experiments for each setting. For dropout, we add the dropout
layer under each hidden layer, and we set p = 0.8. For parameter noise injection, we set the noise
standard deviation σ = 0.03. At the same time, we compared the traces of the Hessian matrix of the
three training strategies, which is a metric widely used to characterize flatness. As shown in Fig. 9(c),
the trace of the Hessian matrix of dropout is smaller than that of the other two training strategies
during the entire training process, suggesting a stronger tendency for the flat solution.

(a) two-layer FNN, output (b) deep FNN, accuracy (c) deep FNN, Hessian trace

Figure 9: (a) Two-layer ReLU NN output under different training strategies. The width of the hidden
layer is 1000, and the learning rate is 1×10−3. For SGD, the batch size is 1. For dropout, the dropout
layer is added after the hidden layer with p = 0.8. For parameter noise injection, we use the layer
noise with the noise standard deviation σ = 0.001. (b, c) The deep FNN trained on MNIST under
different training strategies. The network size is 784-500-500-500-10, and the learning rate is 0.01.
The batch size is 128. For dropout, the dropout layer is added after the hidden layers with p = 0.8.
For parameter noise injection, we use the layer noise with the noise standard deviation σ = 0.03. (b)
Test accuracy. (c) Trace of the Hessian matrix.
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E EXTENDED EXPERIMENTS OF DROPOUT UNDER MEAN-FIELD LIMIT

In the above, we do not treat the network width as the variable under study, but treat it as a constant
value of order one. However, if we take the mean-field limit of the two-layer network, i.e.,

fθ(x) :=
1

m

m∑
r=1

arσ(w
⊺
rx),

where m → ∞, then the modified equation has the following form:

LS(θ) :=
1

2n

n∑
i=1

e2i +
1− p

2npm2

n∑
i=1

m∑
r=1

a2rσ(w
⊺
rxi)

2.

The additional regularity of the dropout modified equation disappears in the infinite width limit, which
is contrary to our common sense. Intuitively speaking, if we take each neuron to be independent and
identically distributed, even if we ‘drop’ some neurons, dropout does not seem to exert an impact on
the training process. We carefully verified this by experimentally studying different wide networks
with and without dropout. As shown in Fig. 10, for narrow networks, dropout will have a certain
impact on the training process, and this impact will become insignificant when the network is wide
enough.

We design experiments with and without dropout at different hidden layer widths under the mean-
field setting. The quantity R1 we study is defined as 1−p

2nm2p

∑n
i=1

∑m
r=1 a

2
rσ(w

⊺
rxi)

2. As shown in
Fig. 10, for the wide network, the model loss trajectory is almost consistent with or without dropout,
and the cosine similarity between the two model parameter vectors i.e., flatten all the parameters of
the model into one vector, is 0.9999998, but there is no such similarity for the narrow network.
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Figure 10: The two-layer network with and without dropout at different hidden layer widths m under
the mean-field setting. The learning rate is 0.01 for all experiments, and p = 0.9 for experiments
with dropout. These settings can make the dropout noise have little effect on the results.
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F PRELIMINARIES

F.1 NOTATIONS

We adhere wherever possible to the following notation. Dimensional indices are written as subscripts
with a bracket to avoid confusion with other sequential indices (e.g. time, iteration number), which
do not have brackets. When more than one indices are present, we separate them with a comma, e.g.
xk,(i) is the i-th coordinate of the vector xk, the kth member of a sequence.

We set a special vector (1, 1, 1, . . . , 1)⊺ by 1 := (1, 1, 1, . . . , 1)⊺ whose dimension varies. We set
n for the number of input samples, m for the width of the neural network, and D := m(d + 1)
hereafter in this paper. We let [n] = {1, 2, . . . , n}. We set N (µ,Σ) as the normal distribution with
mean µ and covariance Σ. We denote ⊗ as the Kronecker tensor product, ⟨·, ·⟩ for standard inner
product between two vectors, and A : B for the Frobenius inner product between two matrices
A and B. We denote vector L2 norm as ∥·∥2, vector or function L∞ norm as ∥·∥∞, function L1

norm as ∥·∥1, matrix infinity norm as ∥·∥∞→∞, matrix spectral (operator) norm as ∥·∥2→2, and
matrix Frobenius norm as ∥·∥F . Finally, we denote the set of continuous functions f(·) : RD → R
possessing continuous derivatives of order up to and including r by Cr(RD), and for a Polish space
X , we denote the space of bounded measurable functions by Bb(X ), and the space of bounded
continuous functions by Cb(X ). In the mathematical discipline of general topology, a Polish space is
a separable complete metric space.

F.2 PROBLEM SETUP

For the empirical risk minimization problem given by the quadratic loss:

min
θ

RS(θ) =
1

2n

n∑
i=1

(fθ(xi)− yi)
2
, (21)

where S := {(xi, yi)}ni=1 is the training sample, fθ(x) is the prediction function, θ are the parameters
to be optimized over, and their dependence is modeled by a two-layer neural network (NN) with m
hidden neurons

fθ(x) :=

m∑
r=1

arσ(w
⊺
rx), (22)

where x ∈ Rd, θ = vec(θa,θw) with θa = vec({ar}mr=1), θw = vec({wr}mr=1) is the set of
parameters, σ(·) is the activation function applied coordinate-wisely to its input, and σ is 1-Lipschitz
with σ ∈ C∞(R). More precisely, θ = vec({qr}mr=1) whereas for each r ∈ [m], qr := (ar,w

⊺
r )

⊺.
We remark that the bias term br can be incorporated by expanding x and wr to (x⊺, 1)⊺ and
(w⊺

r , br)
⊺.

Given fixed learning rate η > 0, then at the N -th iteration, where

tN := Nη,

and a scaling vector δN ∈ Rm is sampled with independent random coordinates: For each k ∈ [m],

(δN )k =

{
1
p with probability p,

0 with probability 1− p,
(23)

and we observe that {δN}N≥1 is an i.i.d. Bernulli sequence with Eδ1 = 1, and naturally, with slight
abuse of notations, the σ-fields FN := {σ(δ1, δ2, · · · δN )} forms a filtration.

We then apply dropout to two-layer NNs by computing

fθ(x; δ) :=

m∑
r=1

(δ)rarσ(w
⊺
rx), (24)
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and we denote the empirical risk associated with dropout by

Rdrop
S (θ; δ) : =

1

2n

n∑
i=1

(fθ(xi; δ)− yi)
2

=
1

2n

n∑
i=1

(
m∑
r=1

(δ)rarσ(w
⊺
rxi)− yi

)2

.

(25)

We observe that the parameters at the N -th step are updated via back propagation as follows:

θN = θN−1 − η∇θR
drop
S (θN−1; δN ) , (26)

where θ0 := θ(0). Finally, we denote hereafter that for all i ∈ [n],

eNi := ei(θN−1; δN ) := fθN−1
(xi; δN )− yi,

hence the empirical risk associated with dropout Rdrop
S (θN−1; δN ) can be written into

Rdrop
S (θN−1; δN ) =

1

2n

n∑
i=1

(
eNi
)2

,

thus the dropout iteration (26) reads

θN − θN−1 = −η∇θR
drop
S (θN−1; δN ) = − η

n

n∑
i=1

eNi ∇θe
N
i ,

and we may proceed to the introduction of the SME approximation.
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G STOCHASTIC MODIFIED EQUATIONS FOR DROPOUT

G.1 MODIFIED LOSS

Recall that the parameters at the N -th step are updated as follows:

θN = θN−1 −
η

n

n∑
i=1

eNi ∇θe
N
i , (27)

and since {δN}N≥1 is an i.i.d. sequence, then the dropout iteration (27) updates the parameters in a
recursion form of

θN = F (θN−1, δN ), (28)
where F (·, ·) : RD × Rm → RD is a smooth (C∞) function, and {δN}N≥1 is a disturbance
sequence on Rm, whose marginal distribution possesses a density supported on an open subset of
Rm. Then, based on the results in Meyn and Tweedie (2012), the dropout iterations (27) forms a
time-homogeneous Markov chain. Thus, we may misuse E[· | FN ], the conditional expectation given
FN , with EθN−1

[·], the conditional expectation given θN−1. Then, for each k ∈ [m], the conditional
expectation of the increment restricted to qk reads

EθN−1

[
n∑

i=1

eNi ∇qk
eNi

]
= EθN−1

[
n∑

i=1

eNi (δN )k∇qk
(akσ(w

⊺
kxi))

]
,

and since

EθN−1

[
eNi (δN )k

]
= EθN−1

 m∑
r=1,r ̸=k

(δN )rarσ(w
⊺
rxi)− yi

EθN−1
[(δN )k]

+ EθN−1

[
(δN )2k

]
akσ(w

⊺
kxi)

=

 m∑
r=1,r ̸=k

arσ(w
⊺
rxi)− yi

+
1

p
akσ(w

⊺
kxi)

=

(
m∑
r=1

arσ(w
⊺
rxi)− yi

)
+

(
1

p
− 1

)
akσ(w

⊺
kxi).

For simplicity, given fixed k ∈ [m], for any i ∈ [n], we denote hereafter that

ei := ei(θ) :=

m∑
r=1

arσ(w
⊺
rxi)− yi,

ei,\k := ei,\k(θ) :=

m∑
r=1,r ̸=k

arσ(w
⊺
rxi)− yi,

we remark that compared with eNi , ei and ei,\k do not depend on the random variable δN . Then
EθN−1

(
eNi (δN )k

)
can be written in short by

EθN−1

[
eNi (δN )k

]
= ei,\k +

1

p
akσ(w

⊺
kxi)

= ei +

(
1

p
− 1

)
akσ(w

⊺
kxi).

(29)

Hence for each k ∈ [m], expectation of the increment restricted to qk reads

EθN−1

[
n∑

i=1

eNi (δN )k∇qk
(akσ(w

⊺
kxi))

]

=

n∑
i=1

ei∇qk
(akσ(w

⊺
kxi)) +

n∑
i=1

(
1

p
− 1

)
akσ(w

⊺
kxi)∇qk

(akσ(w
⊺
kxi)) ,
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then we define the modified loss LS(·) : Rm(d+1) → R for dropout:

LS(θ) :=
1

2n

n∑
i=1

e2i +
1− p

2np

n∑
i=1

m∑
r=1

a2rσ(w
⊺
rxi)

2, (30)

since as θN−1 is given, then by taking the conditional expectation, increment of the dropout iteration
(27) reads

θN − θN−1 = −ηEθN−1

[
∇θR

drop
S (θN−1; δN )

]
= −η∇θLS(θ)

∣∣
θ=θN−1

,

which implies that in the sense of expectations, {θN}N≥0 follows close to the gradient descent
trajectory of LS(θ) with fixed learning rate η.

G.2 STOCHASTIC MODIFIED EQUATIONS

We then follow the strategy of Li et al. (2017) to derive the stochastic modified equations (SME) for
dropout. Firstly, from the results in Section G.1, we observe that given θN−1,

θN − θN−1 = −η∇θLS(θ)
∣∣
θ=θN−1

+
√
ηV (θN−1), (31)

where LS(·) : Rm(d+1) → R is the modified loss defined in (30), and V (·) : Rm(d+1) → Rm(d+1) is
a m(d+1)-dimensional random vector, and when given θN−1, V (θN−1) has mean 0 and covariance
ηΣ(θN−1), where Σ(·) : Rm(d+1) → Rm(d+1)×m(d+1) is the covariance of ∇θR

drop
S (θN−1; δN ).

Recall that θ = vec({qr}mr=1) = vec ({(ar,wr)}mr=1), and for any k, r ∈ [m], we denote that

Σkr(θN−1) := Cov
(
∇qk

Rdrop
S (θN−1; δN ) ,∇qrR

drop
S (θN−1; δN )

)
,

then

Σ =


Σ11 Σ12 · · · Σ1m

Σ21 Σ22 · · · Σ2m

...
...

...
...

Σm1 Σm2 · · · Σmm

 .

For each k ∈ [m], we obtain that

Σkk(θN−1) = Cov
(
∇qk

Rdrop
S (θN−1; δN ) ,∇qk

Rdrop
S (θN−1; δN )

)
=

(
1

p
− 1

)(
1

n

n∑
i=1

(
ei,\k +

1

p
akσ(w

⊺
kxi)

)
∇qk

(akσ(w
⊺
kxi))

)

⊗

(
1

n

n∑
i=1

(
ei,\k +

1

p
akσ(w

⊺
kxi)

)
∇qk

(akσ(w
⊺
kxi))

)

+

(
1

p2
− 1

p

) m∑
l=1,l ̸=k

(
1

n

n∑
i=1

alσ(w
⊺
l xi)∇qk

(akσ(w
⊺
kxi))

)

⊗

(
1

n

n∑
i=1

alσ(w
⊺
l xi)∇qk

(akσ(w
⊺
kxi))

)
,
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and for each k, r ∈ [m] with k ̸= r,

Σkr(θN−1) = Cov
(
∇qk

Rdrop
S (θN−1; δN ) ,∇qr

Rdrop
S (θN−1; δN )

)
=

(
1

p
− 1

)(
1

n

n∑
i=1

(
ei,\k,\r +

1

p
akσ(w

⊺
kxi) +

1

p
arσ(w

⊺
rxi)

)
∇qk

(akσ(w
⊺
kxi))

)

⊗

(
1

n

n∑
i=1

akσ(w
⊺
kxi)∇qr (arσ(w

⊺
rxi))

)

+

(
1

p
− 1

)(
1

n

n∑
i=1

arσ(w
⊺
rxi)∇qk

(akσ(w
⊺
kxi))

)

⊗

(
1

n

n∑
i=1

(
ei,\k,\r + akσ(w

⊺
kxi) +

1

p
arσ(w

⊺
rxi)

)
∇qr (arσ(w

⊺
rxi))

)
,

where we denote hereafter that

ei,\k,\r := ei,\k,\r(θ) :=

m∑
l=1,l ̸=k,l ̸=r

alσ(w
⊺
l xi)− yi,

and compared with eNi , ei,\k,\r still does not depend on the random variable δN . We remark that the
expression above is consistent in that for the extreme case where p = 1, dropout ‘degenerates’ to
gradient descent (GD), hence the covariance matrix degenerates to a zero matrix, i.e., Σ = 0D×D.
We remark that details for the derivation of Σ is deferred to Section J.

Now, as we consider the stochastic differential equation (SDE),

dΘt = b (Θt) dt+ σ (Θt) dWt, Θ0 = Θ(0), (32)

where Wt is a standard m(d+ 1)-dimensional standard Wiener process, whose Euler–Maruyama
discretization with step size η > 0 at the N -th step reads

ΘηN = Θη(N−1) + ηb
(
Θη(N−1)

)
+

√
ησ
(
Θη(N−1)

)
ZN ,

where ZN ∼ N (0, Im(d+1)) and Θ0 = Θ(0). Thus, if we set

b (Θ) := −∇ΘLS(Θ),

σ (Θ) :=
√
η (Σ (Θ))

1
2 ,

Θ0 := θ0,

(33)

then we would expect (32) to be a ‘good’ approximation of (31) with the time identification t = ηN .
Based on the earlier work of Li et al. (2017), since the path of dropout and the counterpart of SDE
are driven by noises sampled in different spaces. Firstly, notice that the stochastic process {θN}N≥0

induces a probability measure on the product space RD × RD × · · · × RD × · · · , whereas {Θt}t≥0

induces a probability measure on C
(
[0,∞),RD

)
. To compare them, one can form a piece-wise

linear interpolation of the former. Alternatively, as we do in this work, we sample a discrete number
of points from the latter. Secondly, the process {θN}N≥0 is adapted to the filtration generated
by FN whereas the process {Θt}t≥0 is adapted to an independent Wiener filtration Ft. Hence, it
is not appropriate to compare individual sample paths. Rather, we define below a sense of weak
approximations (Kloeden and Platen, 2011, Section 9.7) by comparing the distributions of the two
processes.

To compare different discrete time approximations, we need to take the rate of weak convergence
into consideration, and we also need to choose an appropriate class of functions as the space of test
functions. We introduce the following set of smooth functions:

CM
b

(
Rm(d+1)

)
=

f ∈ CM
(
Rm(d+1)

) ∣∣∣∣∣ ∥f∥CM :=
∑

|β|≤M

∥∥Dβf
∥∥
∞ < ∞

 ,
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where D is the usual differential operator. We remark that CM
b (RD) is a subset of G(RD), the class

of functions with polynomial growth, which is chosen to be the space of test functions in previous
works (Li et al., 2017; Kloeden and Platen, 2011; Malladi et al., 2022).

Before we proceed to the definition of weak approximation, to ensure the rigor and validity of our
analysis, we shall assert an assumption regarding the existence and uniqueness of solutions to the
SDE (32).
Assumption 2. There exists T ∗ > 0, such that for any time t ∈ [0, T ∗], there exists a unique
t-continuous solution Θt of the initial value problem:

dΘt = b (Θt) dt+ σ (Θt) dWt, Θ0 = Θ(0),

with the property that Θt is adapted to the filtration Ft generated by Ws for all time s ≤ t.
Furthermore, for any t ∈ [0, T ∗],

E
∫ t

0

∥Θs(·)∥22 ds < ∞.

Moreover, we assume that the second, fourth and sixth moments of the solution to SDE (32) are
uniformly bounded with respect to time t, i.e., for each l ∈ [3], there exists C(T ∗,Θ0) > 0, such that

sup
0≤s≤T∗

E ∥Θs(·)∥2l2 ≤ C(T ∗,Θ0). (34)

As for the dropout iterations (27), we assume further that the second, fourth and sixth moments of
the dropout iterations (27) are uniformly bounded with respect to the number of iterations N , i.e.,
let 0 < η < 1, T > 0 and set NT,η := ⌊T

η ⌋, then for each l ∈ [3], there exists T ∗ > 0 and η0 > 0,
such that for any given learning rate η ≤ η0 and all N ∈ [0 : NT∗,η], there exists C(T ∗,θ0, η0) > 0,
such that

sup
0≤N≤[NT∗,η ]

E ∥θN∥2l2 ≤ C(T ∗,θ0, η0). (35)

We remark that if G(RD) is chosen to be the test functions in Li et al. (2019), then similar relations
to (34) and (35) shall be imposed, except that in our cases, we only require the second, fourth
and sixth moments to be uniformly bounded, while in their cases, all 2l-moments are required for
l ≥ 1.Establishments of the validity of Assumption 2 regarding the existence and uniqueness of the
SDE will be exhibited in Section I.

The definition of weak approximation is stated out as follows.
Definition 6. The SDE (32) is an order α weak approximation to the dropout (27), if for every
g ∈ CM

b

(
Rm(d+1)

)
, there exists C > 0 and η0 > 0, such that given any η ≤ η0 and T ≤ T ∗, then

for all N ∈ [NT,η],
|Eg(ΘηN )− Eg(θN )| ≤ C(T, g, η0)η

α. (36)
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H SEMIGROUP AND PROOF DETAILS FOR THE MAIN THEOREM

In this section, we use a semigroup approach (Feng et al., 2018) to study the time-homogeneous
Markov chains (processes) formed by dropout.

H.1 DISCRETE AND CONTINUOUS SEMIGROUP

Definition 7. A Markov operator over a Polish space X is a bounded linear operator P : Bb(X ) →
Bb(X ) satisfying

• P1 = 1;

• Pφ is positive whenever φ is positive;

• If a sequence {φn} ⊂ Bb(X ) converges pointwise to an element φ ∈ Bb(X ), then Pφn

converges pointwise to Pφ;

To demonstrate further inequalities that Markov operators satisfy, we offer the following proposition
Proposition 1. A Markov operator P : Bb(X ) → Bb(X ) over a Polish space X satisfies

• (Pf(x))+ ≤ Pf+(x);

• (Pf(x))− ≤ Pf−(x);

• |Pf(x)| ≤ P|f(x)|.

Moreover, if the Polish space X is equipped with a measure µ, a function f : X → R is said to be an
element of L1(X ) if ∫

X
|f |dµ < ∞.

Then for every f ∈ L1(X ), the following holds

• ∥Pf∥1 ≤ ∥f∥1.

In mathematics, the positive part of a real function is defined by the formula

f+(x) = max(f(x), 0) =

{
f(x) if f(x) > 0,

0 otherwise.

Similarly, the negative part of f is defined as

f−(x) = max(−f(x), 0) = −min(f(x), 0) =

{
−f(x) if f(x) < 0,

0 otherwise.

We proceed to the proof for Proposition 1

Proof. From the definition of f+and f−, it follows that

(Pf)+ =
(
Pf+ − Pf−)+ = max

(
0,Pf+ − Pf−)

≤ max
(
0,Pf+

)
= Pf+.

Similarly, we obtain that

(Pf)− =
(
Pf+ − Pf−)− = max

(
0,Pf− − Pf+

)
≤ max

(
0,Pf−) = Pf−.

Hence for the last inequality

|Pf | = (Pf)+ + (Pf)−

≤ Pf+ + Pf−

= P
(
f+ + f−) = P|f |.
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Finally, by integrating the above relation over X , we obtain that

∥Pf∥1 =

∫
X
|Pf |dµ

≤
∫
X
P |f |dµ =

∫
X
|f |dµ = ∥f∥1 .

(37)

Inequality (37) is extremely important, and any operator P that satisfies it is called a contraction.
This relation is known as the contractive property of P . To illustrate its power, note that for any
f ∈ L1(X ), we have

∥Pnf∥1 =
∥∥P ◦ Pn−1f

∥∥
1
≤
∥∥Pn−1f

∥∥
1
.

As we consider Markov processes with continuous time, it is natural to consider a family of Markov
operators indexed by time. We call such a family a Markov semigroup (Hairer, 2008), provided that
it satisfies the relation

Pt+s = Pt ◦ Ps, for any time s, t > 0. (38)
And if given A ∈ B(X ), where B(X ) is the Borel σ-algebra on X , and given any two times s < t, if
the following holds almost surely

P (Xt ∈ A | Xs) = (Pt−s1A) (Xs) ,

then we call Xt a time-homogeneous Markov process with semigroup {Pt}t≥0.

In our case for dropout, we set the Polish space X = RD, and since CM
b (RD) ⊂ Bb(RD), then

WLOG we fix g ∈ CM
b (RD) and define

Pηg(θ̃) := E
[
g
(
θ̃ − η∇θR

drop
S (θ; δ) |θ=θ̃

)]
. (39)

We conclude that the dropout iterations (27) forms a time-homogeneous Markov chain with discrete
Markov semigroup

{
Pn
η

}
n≥0

.

As for the SDE (32), based on Assumption 2 and combined with the results in (Hairer, 2008,
Example 2.11), the Markov semigroup {Pt}t≥0 associated to the solutions of the SDE reads: For any
g ∈ Bb(RD),

∂tPtg = LPtg,

where L is termed the generator of the diffusion process (32), which reads

Lg := ⟨b,∇Θg⟩+ 1

2
σσ⊺ : ∇2

Θg. (40)

Moreover, for a fixed test function g ∈ CM
b (RD), then for any two times s, t ≥ 0,

Ptg(Θs) := exp(tL)g(Θs) := EΘs
[g(Θt+s)] , (41)

and {Pt}t≥0 forms a continuous Markov semigroup for the SDE (32).

H.2 SEMIGROUP EXPANSION WITH ACCURACY OF ORDER ONE

Our results are essentially based on Itô-Taylor expansions (Kloeden and Platen, 2011) or Taylor’s
theorem with the Lagrange form of the remainder (Li et al., 2019, Lemma 27).
Theorem 2 (Order-1 accuracy). Fix time T ≤ T ∗, if we choose

b (Θ) := −∇ΘLS(Θ),

σ (Θ) :=
√
η (Σ (Θ))

1
2 ,

then for all t ∈ [0, T ], the stochastic processes Θt satisfying
dΘt = b (Θt) dt+ σ (Θt) dWt, Θ0 = Θ(0), (42)

is an order-1 approximation of dropout (27), i.e., given any test function g ∈ C4
b (RD), there exists

η0 > 0 and C(T, ∥g∥C4 , η0) > 0, such that for any η ≤ η0 and T ≤ T ∗, and for all N ∈ [NT,η],
the following holds:

|Eg(θN )− Eg(ΘηN )| ≤ C(T, ∥g∥C4 ,θ0, η0)δ, (43)
where θ0 = Θ0.
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Proof. By application of Taylor’s theorem with the Lagrange form of the remainder, we have that for
some α ≥ 1,

g(ϑ)− g(ϑ̃) =

α∑
s=1

1

s!

D∑
i1,...,ij=1

s∏
j=1

[
ϑ(ij) − ϑ̃(ij)

] ∂sg

∂ϑ(i1) . . . ∂ϑ(ij)
(ϑ̃)

+
1

(α+ 1)!

D∑
i1,...,ij=1

α+1∏
j=1

[
ϑ(ij) − ϑ̃(ij)

] ∂α+1g

∂ϑ(i1) . . . ∂ϑ(ij)
(γϑ+ (1− γ)ϑ̃),

for some γ ∈ (0, 1). We adopt the Einstein’s summation convention, where repeated (spatial) indices
are summed, i.e.,

x(i)x(i) :=

D∑
i=1

x(i)x(i).

As we choose ϑ := θ1, ϑ̃ := θ0 and α = 1, then we obtain that

g(θ1)− g(θ0) = ⟨∇θg(θ0),θ1 − θ0⟩

+
1

2
∇2

θg(γθ1 + (1− γ)θ0) : (θ1 − θ0)⊗ (θ1 − θ0)

= ⟨∇θg(θ0),θ1 − θ0⟩+
1

2
∇2

θg(θ̃0) : (θ1 − θ0)⊗ (θ1 − θ0),

where θ̃0 := γθ1 + (1− γ)θ0, and we observe that since

θ1 − θ0 = −η∇θLS(θ)
∣∣
θ=θ0

+
√
ηV (θ0),

then

Eg(θ1)− Eg(θ0) = ⟨∇θg(θ0),Eθ1 − Eθ0⟩+
1

2
E
[
∇2

θg(θ̃0) : (θ1 − θ0)⊗ (θ1 − θ0)
]

= −η
〈
∇θg(θ0),∇θLS(θ)

∣∣
θ=θ0

〉
+ E1

η(θ0),

where the remainder term E1
η(·) : RD → R, whose expression reads

E1
η(θ0) :=

1

2
E
[
∇2

θg(θ̃0) : (θ1 − θ0)⊗ (θ1 − θ0)
]
, (44)

and we remark that θ̃0 and θ1 are implicitly defined by θ0. Then, directly from Assumption 2, we
obtain that

E1
η(θ0) =

1

2
E
[
∇2

θg(θ̃0) : (θ1 − θ0)⊗ (θ1 − θ0)
]

≤ 1

2
∥g∥C4 E ∥θ1 − θ0∥22 = η2 ∥g∥C4 E

[∥∥∥∇θR
drop
S (θ0; δ1)

∥∥∥2
2

]
≤ η2 ∥g∥C4 C(T ∗,θ0, η0),

since ∇θLS(θ) and Σ (θ) can be bounded above by the second and fourth moments of the dropout
iteration (27).

We observe that

Θη −Θ0 =

∫ η

0

b(Θs)ds+

∫ η

0

σ(Θs)dWs.

As we choose ϑ := Θη , ϑ̃ := Θ0 and α = 1, then we obtain that

g(Θη)− g(Θ0) = ⟨∇Θg(Θ0),Θη −Θ0⟩

+
1

2
∇2

Θg(Θ̃0) : (Θη −Θ0)⊗ (Θη −Θ0),

where
Θ̃0 := γΘη + (1− γ)Θ0,
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for some γ ∈ (0, 1). Then
Eg(Θη)− Eg(Θ0)

= ⟨∇Θg(Θ0),EΘη − EΘ0⟩+
1

2
E
[
∇2

Θg(Θ̃0) : (Θη −Θ0)⊗ (Θη −Θ0)
]

=

〈
∇Θg(Θ0),

∫ η

0

E[b(Θs)]ds

〉
+

1

2
E
[
∇2

Θg(Θ̃0) : (Θη −Θ0)⊗ (Θη −Θ0)
]
,

and since

⟨∇Θg(Θ0),E[b(Θs)]⟩ = ⟨∇Θg(Θ0),E[b(Θ0)]⟩+
∫ s

0

L ⟨∇Θg(Θ0), b⟩ (Θv)dv,

then we obtain that

Eg(Θη)− Eg(Θ0) = η ⟨∇Θg(Θ0),E[b(Θ0)]⟩+
∫ η

0

∫ s

0

L ⟨∇Θg(Θ0), b⟩ (Θv)dvds

+
1

2
E
[
∇2

Θg(Θ̃0) : (Θη −Θ0)⊗ (Θη −Θ0)
]

= η ⟨∇Θg(Θ0), b(Θ0)⟩+ η2Ē1
η(Θ0),

where the remainder term Ē1
η(·) : RD → R, whose expression reads

Ē1
η(Θ0) :=

∫ η

0

∫ s

0

L ⟨∇Θg(Θ0), b⟩ (Θv)dvds

+
1

2
E
[
∇2

Θg(Θ̃0) : (Θη −Θ0)⊗ (Θη −Θ0)
]
,

(45)

and we remark that Θ̃0 and Θη are implicitly defined by Θ0. As we choose
b (Θ) = −∇ΘLS(Θ),

σ (Θ) =
√
η (Σ (Θ))

1
2 ,

then we carry out the computation for L ⟨∇Θg(Θ0), b⟩ (Θv),
L ⟨∇Θg(Θ0), b⟩ (Θv) = ⟨∇ΘLS(Θv),∇Θ ⟨∇Θg(Θ0),∇ΘLS(Θ)⟩ |Θ=Θv ⟩

+
η

2
Σ (Θv) : ∇2

Θ (⟨∇Θg(Θ0),∇ΘLS(Θ)⟩) |Θ=Θv ,

since ∇ΘLS(Θ), ∇2
ΘLS(Θ), ∇3

ΘLS(Θ) and Σ (Θ) can be bounded above by the second, fourth
and sixth moments of the solution to SDE (32), hence we may apply the mean value theorem to (45)
and obtain that∣∣Ē1

η(Θ0)
∣∣ = ∣∣∣∣∫ η

0

sL ⟨∇Θg(Θ0), b⟩ (Θ̃s)ds+
1

2
E
[
∇2

Θg(Θ̃0) : (Θη −Θ0)⊗ (Θη −Θ0)
]∣∣∣∣

≤
∫ η

0

s ∥g∥C4 C(T ∗,Θ0)ds+
1

2
∥g∥C4 E ∥Θη −Θ0∥22

≤ η2

2
∥g∥C4 C(T ∗,Θ0) + ∥g∥C4 E

∥∥∥∥∫ η

0

b(Θs)ds+

∫ η

0

σ(Θs)dWs

∥∥∥∥2
2

≤ η2

2
∥g∥C4 C(T ∗,Θ0) + 2 ∥g∥C4 E

∥∥∥∥∫ η

0

b(Θs)ds

∥∥∥∥2
2

+ 2 ∥g∥C4 E
∥∥∥∥∫ η

0

σ(Θs)dWs

∥∥∥∥2
2

≤ η2

2
∥g∥C4 C(T ∗,Θ0) + 2 ∥g∥C4 η

2E
∥∥∥∇ΘLS(Θ̃0)

∥∥∥2
2

+ 2 ∥g∥C4 E
∫ η

0

∥σ(Θs)∥2F ds

≤ η2

2
∥g∥C4 C(T ∗,Θ0) + 2 ∥g∥C4 η

2E
∥∥∥∇ΘLS(Θ̃0)

∥∥∥2
2

+ 2 ∥g∥C4 ηE
[
η
∥∥∥Σ(Θ̃0)

∥∥∥
F

]
≤ η2 ∥g∥C4 C(T ∗,Θ0).
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To sum up for now,

|Eg(θ1)− Eg(Θη)| =
∣∣∣Eg(θ0)− η

〈
∇θg(θ0),∇θLS(θ)

∣∣
θ=θ0

〉
+ E1

η(θ0)

− Eg(Θ0)− η ⟨∇Θg(Θ0), b(Θ0)⟩+ Ē1
η(Θ0)

∣∣∣,
since θ0 = Θ0 and b (Θ0) = −∇ΘLS(Θ)

∣∣
θ=θ0

, thus∣∣P1
ηg(θ0)− Pηg(Θ0)

∣∣ = |Eg(θ1)− Eg(Θη)|
≤
∣∣E1

η(θ0)
∣∣+ ∣∣Ē1

η(Θ0)
∣∣

≤ η2 ∥g∥C4 C(T ∗,θ0, η0) + η2 ∥g∥C4 C(T ∗,Θ0)

= O(η2).

(46)

For the N -th step iteration, since
|Eg(θN )− Eg(ΘηN )| =

∣∣PN
η g(θ0)− PηNg(Θ0)

∣∣ ,
and the RHS of the above equation can be written into a telescoping sum as

PN
η g(θ0)− PηNg(Θ0) =

N∑
l=1

(
PN−l+1
η ◦ P(l−1)ηg(θ0)− PN−l

η ◦ Plηg(Θ0)
)
,

hence by application of Proposition 1, we obtain that

|Eg(θN )− Eg(ΘηN )| ≤
N∑
l=1

∣∣PN−l+1
η ◦ P(l−1)ηg(θ0)− PN−l

η ◦ Plηg(Θ0)
∣∣

≤
N∑
l=1

∣∣PN−l
η ◦

(
P1
η ◦ P(l−1)η − Pη ◦ P(l−1)η

)
g(Θ0)

∣∣ ,
since

(
P1
η ◦ P(l−1)η − Pη ◦ P(l−1)η

)
g(Θ0) can be regarded as L1(RD) if we choose measure µ to

be the delta measure concentrated on Θ0. i.e.,
µ := δΘ0

,

hence by the conctration property of Markov operators, we obtain further that

|Eg(θN )− Eg(ΘηN )| ≤
N∑
l=1

∣∣(P1
η ◦ P(l−1)η − Pη ◦ P(l−1)η

)
g(Θ0)

∣∣
≤

N∑
l=1

∣∣P1
ηg(Θ(l−1)η)− Pηg(Θ(l−1)η)

∣∣ .
By taking expectation conditioned on Θ(l−1)η , then similar to the relation (46), the following holds∣∣P1

ηg(Θ(l−1)η)− Pηg(Θ(l−1)η)
∣∣ = E

[[
|Eg(θl)− Eg(Θηl)|

∣∣∣Θ(l−1)η

]]
≤ E

∣∣E1
η(Θ(l−1)η)

∣∣+ E
∣∣Ē1

η(Θ(l−1)η)
∣∣

≤ η2 ∥g∥C4 C(T ∗,θ0, η0) + η2 ∥g∥C4 C(T ∗,Θ0)

= O(η2).

We remark that the last line of the above relation is essentially based on Assumption 2, since
E
∣∣E1

η(Θ(l−1)η)
∣∣ and E

∣∣Ē1
η(Θ(l−1)η)

∣∣ can be bounded above by the second, fourth and sixth mo-
ments of the solution to SDE (32), hence we may apply dominated convergence theorem to obtain
the last line of the above relation.

To sum up, as∣∣PN
η g(θ0)− PηNg(Θ0)

∣∣ ≤ N∑
l=1

∣∣PN−l+1
η ◦ P(l−1)ηg(θ0)− PN−l

η ◦ Plηg(Θ0)
∣∣ = NO(η2),

hence for N = NT,η ,∣∣PN
η g(θ0)− PηNg(Θ0)

∣∣ = NO(η2) = NηO(η) ≤ TO(η) = O(η).
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H.3 SEMIGROUP EXPANSION WITH ACCURACY OF ORDER TWO

Theorem 3 (Order-2 accuracy). Fix time T ≤ T ∗, if we choose

b(Θ) = −∇Θ

(
LS(Θ) +

η

4
∥∇ΘLS(Θ)∥22

)
,

σ(Θ) =
√
η (Σ (Θ))

1
2 ,

then for all t ∈ [0, T ], the stochastic processes Θt satisfying

dΘt = b (Θt) dt+ σ (Θt) dWt, Θ0 = Θ(0), (47)

is an order-2 approximation of dropout (27), i.e., given any test function g ∈ C6
b (RD), there exists

η0 > 0 and C(T, ∥g∥C6 , η0) > 0, such that for any η ≤ η0 and T ≤ T ∗, and for all N ∈ [NT,η],
the following holds:

|Eg(θN )− Eg(ΘηN )| ≤ C(T, ∥g∥C6 ,θ0, η0)δ, (48)
where θ0 = Θ0.

Proof. By application of Taylor’s theorem with the Lagrange form of the remainder, we have that for
some α ≥ 1,

g(ϑ)− g(ϑ̃) =

α∑
s=1

1

s!

D∑
i1,...,ij=1

s∏
j=1

[
ϑ(ij) − ϑ̃(ij)

] ∂sg

∂ϑ(i1) . . . ∂ϑ(ij)
(ϑ̃)

+
1

(α+ 1)!

D∑
i1,...,ij=1

α+1∏
j=1

[
ϑ(ij) − ϑ̃(ij)

] ∂α+1g

∂ϑ(i1) . . . ∂ϑ(ij)
(γϑ+ (1− γ)ϑ̃),

for some γ ∈ (0, 1).

As we choose ϑ := θ1, ϑ̃ := θ0 and α = 2, with slight misuse of the Frobenius inner product
notation, we obtain that

g(θ1)− g(θ0) = ⟨∇θg(θ0),θ1 − θ0⟩+
1

2
∇2

θg(θ0) : (θ1 − θ0)⊗ (θ1 − θ0)

+
1

6
∇3

θg(γθ1 + (1− γ)θ0) : (θ1 − θ0)⊗ (θ1 − θ0)⊗ (θ1 − θ0)

= ⟨∇θg(θ0),θ1 − θ0⟩+
1

2
∇2

θg(θ0) : (θ1 − θ0)⊗ (θ1 − θ0)

+
1

6
∇3

θg(θ̃0) : (θ1 − θ0)⊗ (θ1 − θ0)⊗ (θ1 − θ0),

where θ̃0 := γθ1 + (1− γ)θ0, and we observe that since

θ1 − θ0 = −η∇θLS(θ)
∣∣
θ=θ0

+
√
ηV (θ0),

then

Eg(θ1)− Eg(θ0) = ⟨∇θg(θ0),Eθ1 − Eθ0⟩+
1

2
∇2

θg(θ0) : E [(θ1 − θ0)⊗ (θ1 − θ0)]

+
1

6
E
[
∇3

θg(θ̃0) : (θ1 − θ0)⊗ (θ1 − θ0)⊗ (θ1 − θ0)
]

= −η
〈
∇θg(θ0),∇θLS(θ)

∣∣
θ=θ0

〉
+

η2

2
∇2

θg(θ0) :
(
∇θLS(θ)

∣∣
θ=θ0

⊗∇θLS(θ)
∣∣
θ=θ0

+Σ(θ0)
)

+ E2
η(θ0),

where the remainder term E2
η(·) : RD → R, whose expression reads

E2
η(θ0) :=

1

6
E
[
∇3

θg(θ̃0) : (θ1 − θ0)⊗ (θ1 − θ0)⊗ (θ1 − θ0)
]
, (49)
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and we remark that θ̃0 and θ1 are implicitly defined by θ0. Then, directly from Assumption 2, we
obtain that

E2
η(θ0) ≤

1

6
∥g∥C6 E ∥θ1 − θ0∥32 = η3 ∥g∥C6 E

[∥∥∥∇θR
drop
S (θ0; δ1)

∥∥∥3
2

]
≤ η3 ∥g∥C6 C(T ∗,θ0, η0),

since ∇θLS(θ) and Σ (θ) can be bounded above by the second and fourth moments of the dropout
iteration (27).

We observe that

Θη −Θ0 =

∫ η

0

b(Θs)ds+

∫ η

0

σ(Θs)dWs.

As we choose ϑ := Θη , ϑ̃ := Θ0 and α = 3, then we obtain that

g(Θη)− g(Θ0) = ⟨∇Θg(Θ0),Θη −Θ0⟩

+
1

2
∇2

Θg(Θ0) : (Θη −Θ0)⊗ (Θη −Θ0)

+
1

6
∇3

Θg(Θ0) : (Θη −Θ0)⊗ (Θη −Θ0)⊗ (Θη −Θ0)

+
1

24
∇4

Θg(Θ̃0) : (Θη −Θ0)⊗ (Θη −Θ0)⊗ (Θη −Θ0)⊗ (Θη −Θ0),

where
Θ̃0 := γΘη + (1− γ)Θ0,

for some γ ∈ (0, 1). Then

Eg(Θη)− Eg(Θ0)

= ⟨∇Θg(Θ0),EΘη − EΘ0⟩+
1

2
∇2

Θg(Θ0) : E [(Θη −Θ0)⊗ (Θη −Θ0)]

+
1

6
∇3

Θg(Θ0) : E [(Θη −Θ0)⊗ (Θη −Θ0)⊗ (Θη −Θ0)]

+
1

24
E
[
∇4

Θg(Θ̃0) : (Θη −Θ0)⊗ (Θη −Θ0)⊗ (Θη −Θ0)⊗ (Θη −Θ0)
]

=

〈
∇Θg(Θ0),

∫ η

0

E[b(Θs)]ds

〉
+

1

2
∇2

Θg(Θ0) : E [(Θη −Θ0)⊗ (Θη −Θ0)]

+
1

6
∇3

Θg(Θ0) : E [(Θη −Θ0)⊗ (Θη −Θ0)⊗ (Θη −Θ0)]

+
1

24
E
[
∇4

Θg(Θ̃0) : (Θη −Θ0)⊗ (Θη −Θ0)⊗ (Θη −Θ0)⊗ (Θη −Θ0)
]
,

and since

⟨∇Θg(Θ0),E[b(Θs)]⟩ = ⟨∇Θg(Θ0),E[b(Θ0)]⟩+
∫ s

0

L ⟨∇Θg(Θ0), b⟩ (Θv)dv,

then we obtain that

Eg(Θη)− Eg(Θ0) = η ⟨∇Θg(Θ0),E[b(Θ0)]⟩+
∫ η

0

∫ s

0

L ⟨∇Θg(Θ0), b⟩ (Θv)dvds

+
1

2
∇2

Θg(Θ0) : E [(Θη −Θ0)⊗ (Θη −Θ0)]

+
1

6
∇3

Θg(Θ0) : E [(Θη −Θ0)⊗ (Θη −Θ0)⊗ (Θη −Θ0)]

+
1

24
E
[
∇4

Θg(Θ̃0) : (Θη −Θ0)⊗ (Θη −Θ0)⊗ (Θη −Θ0)⊗ (Θη −Θ0)
]
,

and once again since

L ⟨∇Θg(Θ0), b⟩ (Θv) = L ⟨∇Θg(Θ0), b⟩ (Θ0) +

∫ v

0

L (L ⟨∇Θg(Θ0), b⟩) (Θu)du,
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then we obtain that

Eg(Θη)− Eg(Θ0) = η ⟨∇Θg(Θ0),E[b(Θ0)]⟩+
∫ η

0

∫ s

0

L ⟨∇Θg(Θ0), b⟩ (Θv)dvds

+
1

2
∇2

Θg(Θ0) : E [(Θη −Θ0)⊗ (Θη −Θ0)]

+
1

6
∇3

Θg(Θ0) : E [(Θη −Θ0)⊗ (Θη −Θ0)⊗ (Θη −Θ0)]

+
1

24
E
[
∇4

Θg(Θ̃0) : (Θη −Θ0)⊗ (Θη −Θ0)⊗ (Θη −Θ0)⊗ (Θη −Θ0)
]

= η ⟨∇Θg(Θ0),E[b(Θ0)]⟩+
∫ η

0

∫ s

0

L ⟨∇Θg(Θ0), b⟩ (Θ0)dvds

+

∫ η

0

∫ s

0

∫ v

0

L (L ⟨∇Θg(Θ0), b⟩) (Θu)dudvds

+
1

2
∇2

Θg(Θ0) : E [(Θη −Θ0)⊗ (Θη −Θ0)]

+
1

6
∇3

Θg(Θ0) : E [(Θη −Θ0)⊗ (Θη −Θ0)⊗ (Θη −Θ0)]

+
1

24
E
[
∇4

Θg(Θ̃0) : (Θη −Θ0)⊗ (Θη −Θ0)⊗ (Θη −Θ0)⊗ (Θη −Θ0)
]

= η ⟨∇Θg(Θ0),E[b(Θ0)]⟩+
η2

2
L ⟨∇Θg(Θ0), b⟩ (Θ0)

+
1

2
∇2

Θg(Θ0) : E [(Θη −Θ0)⊗ (Θη −Θ0)] + Ē2
η(Θ0),

where the remainder term Ē2
η(·) : RD → R, whose expression reads

Ē2
η(Θ0) :=

∫ η

0

∫ s

0

∫ v

0

L (L ⟨∇Θg(Θ0), b⟩) (Θu)dudvds

+
1

6
∇3

Θg(Θ0) : E [(Θη −Θ0)⊗ (Θη −Θ0)⊗ (Θη −Θ0)]

+
1

24
E
[
∇4

Θg(Θ̃0) : (Θη −Θ0)⊗ (Θη −Θ0)⊗ (Θη −Θ0)⊗ (Θη −Θ0)
]
,

(50)

and we remark that Θ̃0 and Θη are implicitly defined by Θ0. As we choose

b (Θ) = −∇Θ

(
LS(Θ) +

η

4
∥∇ΘLS(Θ)∥22

)
,

σ (Θ) =
√
η (Σ (Θ))

1
2 ,

then we carry out the computation for L (L ⟨∇Θg(Θ0), b⟩) (Θu),

L (L ⟨∇Θg(Θ0), b⟩) (Θu)

=L (⟨b,∇Θ (⟨∇Θg(Θ0), b⟩)⟩) (Θu) + L
(η
2
Σ : ∇2

Θ (⟨∇Θg(Θ0), b⟩)
)
(Θu)

= ⟨b,∇Θ (⟨b,∇Θ (⟨∇Θg(Θ0), b⟩)⟩)⟩+
η

2
Σ : ∇Θ

(〈
b,∇2

Θ (⟨∇Θg(Θ0), b⟩)
〉)

+
η

2

〈
b,∇Θ

(
Σ : ∇2

Θ (⟨∇Θg(Θ0), b⟩)
)〉

+
η2

4
Σ : ∇2

Θ

(
Σ : ∇2

Θ (⟨∇Θg(Θ0), b⟩)
)

=b⊺∇Θ (b⊺∇Θb∇Θg(Θ0)) (Θu) + ηRη(Θu)

=

〈
∇ΘLS(Θu),∇Θ

(〈
1

2
∇Θ

(
∥∇ΘLS(Θu)∥22

)
,∇Θg(Θ0)

〉)〉
+ ηR′

η(Θu),
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since ∇ΘLS(Θ), ∇2
ΘLS(Θ), ∇3

ΘLS(Θ), Σ (Θ), Rη(Θu) and R′
η(Θu) can be bounded above by

the second, fourth and sixth moments of the solution to SDE (32). Moreover, we observe that

E [(Θη −Θ0)⊗ (Θη −Θ0)⊗ (Θη −Θ0)]

=E

[(∫ η

0

b(Θs)ds+

∫ η

0

σ(Θs)dWs

)
⊗
(∫ η

0

b(Θs)ds+

∫ η

0

σ(Θs)dWs

)

⊗
(∫ η

0

b(Θs)ds+

∫ η

0

σ(Θs)dWs

)]
,

and its entry can be categorized into four types. The first one is the pure drift part, i.e.,∫ η

0

b(Θs)ds⊗
∫ η

0

b(Θs)ds⊗
∫ η

0

b(Θs)ds,

then by application of the mean value theorem and the fact that ∇ΘLS(Θ), ∇2
ΘLS(Θ), ∇3

ΘLS(Θ),
and Σ (Θ) can be bounded above by the second, fourth and sixth moments of the solution to SDE
(32), we obtain that

E
∫ η

0

b(Θs)ds⊗
∫ η

0

b(Θs)ds⊗
∫ η

0

b(Θs)ds

=η3Eb(Θ̃s)⊗ b(Θ̃s)⊗ b(Θ̃s) = O(η3).

The second one is the pure noise part, i.e.,(∫ η

0

σ(Θs)dWs

)
⊗
(∫ η

0

σ(Θs)dWs

)
⊗
(∫ η

0

σ(Θs)dWs

)
,

and as the odd moments of zero mean Gaussian variables are zero, hence we have

E
[(∫ η

0

σ(Θs)dWs

)
⊗
(∫ η

0

σ(Θs)dWs

)
⊗
(∫ η

0

σ(Θs)dWs

)]
= 0,

the third and fourth one are both of the mixed part, for the third one∫ η

0

b(Θs)ds⊗
∫ η

0

b(Θs)ds⊗
(∫ η

0

σ(Θs)dWs

)
,

whose expectation is of course zero since the drift part and the noise part is independent, and the fact
the odd moments of zero mean Gaussian variables are zero, and for the fourth one∫ η

0

b(Θs)ds⊗
(∫ η

0

σ(Θs)dWs

)
⊗
(∫ η

0

σ(Θs)dWs

)
,

we obtain that

E
[∫ η

0

b(Θs)ds⊗
(∫ η

0

σ(Θs)dWs

)
⊗
(∫ η

0

σ(Θs)dWs

)]
=ηEb(Θ̃s)⊗ E

[(∫ η

0

σ(Θs)dWs

)
⊗
(∫ η

0

σ(Θs)dWs

)]
= O(η3).

As we denote

R̄3(Θ0) := E [(Θη −Θ0)⊗ (Θη −Θ0)⊗ (Θη −Θ0)] ,

then we obtain that ∥∥vec(R̄3(Θ0))
∥∥
2
≤ η3C(T ∗,Θ0).
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Hence we may apply the mean value theorem to (50) and obtain that

∣∣Ē2
η(Θ0)

∣∣ = ∣∣∣ ∫ η

0

∫ s

0

vL (L ⟨∇Θg(Θ0), b⟩) (Θ̃u)dvds

+
1

6
∇3

Θg(Θ0) : E [(Θη −Θ0)⊗ (Θη −Θ0)⊗ (Θη −Θ0)]

+
1

24
E
[
∇4

Θg(Θ̃0) : (Θη −Θ0)⊗ (Θη −Θ0)⊗ (Θη −Θ0)⊗ (Θη −Θ0)
] ∣∣∣

≤
∫ η

0

∫ s

0

v ∥g∥C6 C(T ∗,Θ0)dvds+
1

6
∥g∥C6 η

3C(T ∗,Θ0)

+
1

24
∥g∥C6 ∥Θη −Θ0∥42

=
η3

6
∥g∥C6 C(T ∗,Θ0) +

1

6
∥g∥C6 η

3C(T ∗,Θ0)

+
1

24
∥g∥C6 E

∥∥∥∥∫ η

0

b(Θs)ds+

∫ η

0

σ(Θs)dWs

∥∥∥∥4
2

≤ η3 ∥g∥C6 C(T ∗,Θ0) +
1

6
∥g∥C6 η

3C(T ∗,Θ0)

+
4

24
∥g∥C6 η

3E
∥∥∥∇ΘLS(Θ̃0)

∥∥∥2
2
+

4

24
∥g∥C6 E

∥∥∥∥∫ η

0

σ(Θs)dWs

∥∥∥∥4
2

≤ η3 ∥g∥C6 C(T ∗,Θ0) +
1

6
∥g∥C6 η

3C(T ∗,Θ0)

+
4

24
∥g∥C6 η

3E
∥∥∥∇ΘLS(Θ̃0)

∥∥∥2
2
+

C

24
∥g∥C6 E

∫ η

0

∥σ(Θs)∥4F ds

≤ η3 ∥g∥C6 C(T ∗,Θ0) +
1

6
∥g∥C6 η

3C(T ∗,Θ0)

+ η3 ∥g∥C6 E
∥∥∥∇ΘLS(Θ̃0)

∥∥∥2
2
+ C ∥g∥C6 ηE

[
η2
∥∥∥Σ(Θ̃0)

∥∥∥2
F

]
≤ η3 ∥g∥C6 C(T ∗,Θ0).

We remark that for the last but third line we apply the Burkholder-Davis-Gundy inequality.

To sum up for now,

Eg(θ1)− Eg(θ0) = −η
〈
∇θg(θ0),∇θLS(θ)

∣∣
θ=θ0

〉
+

η2

2
∇2

θg(θ0) :
(
∇θLS(θ)

∣∣
θ=θ0

⊗∇θLS(θ)
∣∣
θ=θ0

+Σ(θ0)
)
+ E2

η(θ0),
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and

Eg(Θη)− Eg(Θ0) = η ⟨∇Θg(Θ0),E[b(Θ0)]⟩+
η2

2
L ⟨∇Θg(Θ0), b⟩ (Θ0)

+
1

2
∇2

Θg(Θ0) : E [(Θη −Θ0)⊗ (Θη −Θ0)] + Ē2
η(Θ0)

= η ⟨∇Θg(Θ0),E[b(Θ0)]⟩+
η2

2
L ⟨∇Θg(Θ0), b⟩ (Θ0)

+
1

2
∇2

Θg(Θ0) : E

[(∫ η

0

b(Θs)ds+

∫ η

0

σ(Θs)dWs

)

⊗
(∫ η

0

b(Θs)ds+

∫ η

0

σ(Θs)dWs

)]
+ Ē2

η(Θ0)

= η ⟨∇Θg(Θ0),E[b(Θ0)]⟩+
η2

2
L ⟨∇Θg(Θ0), b⟩ (Θ0)

+
1

2
∇2

Θg(Θ0) : E
[∫ η

0

b(Θs)ds⊗
∫ η

0

b(Θs)ds

]
+

1

2
∇2

Θg(Θ0) : E
[∫ η

0

σ(Θs)dWs ⊗
∫ η

0

σ(Θs)dWs

]
+ Ē2

η(Θ0)

= η ⟨∇Θg(Θ0),E[b(Θ0)]⟩+
η2

2
L ⟨∇Θg(Θ0), b⟩ (Θ0)

+
1

2
∇2

Θg(Θ0) : E
[∫ η

0

∫ η

0

b(Θs)⊗ b(Θu)dsdu

]
+

1

2
∇2

Θg(Θ0) : E
[∫ η

0

σ(Θs)dWs ⊗
∫ η

0

σ(Θs)dWs

]
+ Ē2

η(Θ0),

we observe that

1

2
∇2

Θg(Θ0) : E
[∫ η

0

σ(Θs)dWs ⊗
∫ η

0

σ(Θs)dWs

]
=E

[∫ η

0

1

2
∇2

Θg(Θ0) : σσ
⊺(Θs)ds

]
=
η

2
E
[∫ η

0

∇2
Θg(Θ0) : Σ(Θs)ds

]
,

thus

Eg(Θη)− Eg(Θ0) = η ⟨∇Θg(Θ0),E[b(Θ0)]⟩+
η2

2
L ⟨∇Θg(Θ0), b⟩ (Θ0)

+
1

2
∇2

Θg(Θ0) : E
[∫ η

0

∫ η

0

b(Θs)⊗ b(Θu)dsdu

]
+

η

2
E
[∫ η

0

∇2
Θg(Θ0) : Σ(Θs)ds

]
+ Ē2

η(Θ0).

Since

∇2
Θg(Θ0) : E [b(Θs)⊗ b(Θu)]

=∇2
Θg(Θ0) : E[b(Θs)⊗ b(Θ0)] +

∫ u

0

L
(
∇2

Θg(Θ0) : b(Θs)⊗ b(Θv)
)
dv

=∇2
Θg(Θ0) : E[b(Θ0)⊗ b(Θ0)] +

∫ s

0

L
(
∇2

Θg(Θ0) : b(Θw)⊗ b(Θ0)
)
dw

+

∫ u

0

L
(
∇2

Θg(Θ0) : b(Θs)⊗ b(Θv)
)
dv,
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and since

∇2
Θg(Θ0) : E [Σ(Θs)]

=∇2
Θg(Θ0) : E [Σ(Θ0)] +

∫ s

0

L
(
∇2

Θg(Θ0) : Σ(Θs)
)
dv,

we are one step away to finish our proof,

Eg(Θη)− Eg(Θ0) = η ⟨∇Θg(Θ0),E[b(Θ0)]⟩+
η2

2
L ⟨∇Θg(Θ0), b⟩ (Θ0)

+
1

2
∇2

Θg(Θ0) : E
[∫ η

0

∫ η

0

b(Θ0)⊗ b(Θ0)dsdu

]
+

η

2
E
[∫ η

0

∇2
Θg(Θ0) : Σ(Θ0)ds

]
+ Ē2

η(Θ0),

where we misuse our notations for Ē2
η(Θ0), and the term∫ η

0

∫ η

0

∫ s

0

L
(
∇2

Θg(Θ0) : b(Θw)⊗ b(Θ0)
)
dwdsdu

+

∫ η

0

∫ η

0

∫ u

0

L
(
∇2

Θg(Θ0) : b(Θs)⊗ b(Θv)
)
dvdsdu

+

∫ η

0

∫ s

0

L
(
∇2

Θg(Θ0) : Σ(Θs)
)
dvds,

is included, and Ē2
η(Θ0) is still of order O(η3) by similar reasoning and we omit its demonstration.

Thus

Eg(Θη)− Eg(Θ0) = η ⟨∇Θg(Θ0),E[b(Θ0)]⟩+
η2

2
⟨b(Θ0),∇Θ ⟨∇Θg(Θ0), b⟩ (Θ0)⟩

+
η3

2
Σ(Θ0) : ∇2

Θ ⟨∇Θg(Θ0), b⟩ (Θ0)

+
η2

2
∇2

Θg(Θ0) : E [b(Θ0)⊗ b(Θ0)]

+
η2

2
E
[
∇2

Θg(Θ0) : Σ(Θ0)
]
+ Ē2

η(Θ0),

and recall that since we choose

b (Θ) = −∇Θ

(
LS(Θ) +

η

4
∥∇ΘLS(Θ)∥22

)
,

σ (Θ) =
√
η (Σ (Θ))

1
2 ,

then

Eg(Θη)− Eg(Θ0) = −η ⟨∇Θg(Θ0),∇Θ (LS(Θ)) |Θ=Θ0
⟩

− η2

4

〈
∇Θg(Θ0),∇Θ

(
∥∇ΘLS(Θ)∥22

)
|Θ=Θ0

〉
+

η2

2
⟨∇Θ (LS(Θ)) |Θ=Θ0

,∇Θ ⟨∇Θg(Θ0),∇Θ (LS(Θ))⟩ |Θ=Θ0
⟩

+
η2

2
∇2

Θg(Θ0) : (∇Θ (LS(Θ)) |Θ=Θ0
)⊗∇Θ (LS(Θ)) |Θ=Θ0

)

+
η2

2
∇2

Θg(Θ0) : Σ(Θ0) + Ē2
η(Θ0)

= −η ⟨∇Θg(Θ0),∇Θ (LS(Θ)) |Θ=Θ0
⟩

+
η2

2
∇2

Θg(Θ0) : (∇Θ (LS(Θ)) |Θ=Θ0)⊗∇Θ (LS(Θ)) |Θ=Θ0)

+
η2

2
∇2

Θg(Θ0) : Σ(Θ0) + Ē2
η(Θ0),
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thus, we have

|Eg(θ1)− Eg(Θη)| =
∣∣∣Eg(θ0)− η

〈
∇θg(θ0),∇θLS(θ)

∣∣
θ=θ0

〉
+

η2

2
∇2

θg(θ0) :
(
∇θLS(θ)

∣∣
θ=θ0

⊗∇θLS(θ)
∣∣
θ=θ0

+Σ(θ0)
)

+ E2
η(θ0)

− Eg(Θ0) + η ⟨∇Θg(Θ0),∇Θ (LS(Θ)) |Θ=Θ0⟩

− η2

2
∇2

Θg(Θ0) : (∇Θ (LS(Θ)) |Θ=Θ0)⊗∇Θ (LS(Θ)) |Θ=Θ0)

− η2

2
∇2

Θg(Θ0) : Σ(Θ0) + Ē2
η(Θ0)

∣∣∣
≤
∣∣E2

η(θ0)
∣∣+ ∣∣Ē2

η(Θ0)
∣∣

≤ η3 ∥g∥C6 C(T ∗,θ0, η0) + η3 ∥g∥C6 C(T ∗,Θ0)

= O(η3).

For the N -th step iteration, since

|Eg(θN )− Eg(ΘηN )| =
∣∣PN

η g(θ0)− PηNg(Θ0)
∣∣ ,

and the RHS of the above equation can be written into a telescoping sum as

PN
η g(θ0)− PηNg(Θ0) =

N∑
l=1

(
PN−l+1
η ◦ P(l−1)ηg(θ0)− PN−l

η ◦ Plηg(Θ0)
)
,

hence by application of Proposition 1, we obtain that

|Eg(θN )− Eg(ΘηN )| ≤
N∑
l=1

∣∣PN−l+1
η ◦ P(l−1)ηg(θ0)− PN−l

η ◦ Plηg(Θ0)
∣∣

≤
N∑
l=1

∣∣PN−l
η ◦

(
P1
η ◦ P(l−1)η − Pη ◦ P(l−1)η

)
g(Θ0)

∣∣ ,
since

(
P1
η ◦ P(l−1)η − Pη ◦ P(l−1)η

)
g(Θ0) can be regarded as L1(RD) if we choose measure µ to

be the delta measure concentrated on Θ0. i.e.,

µ := δΘ0
,

hence by the conctration property of Markov operators, we obtain further that

|Eg(θN )− Eg(ΘηN )| ≤
N∑
l=1

∣∣(P1
η ◦ P(l−1)η − Pη ◦ P(l−1)η

)
g(Θ0)

∣∣
≤

N∑
l=1

∣∣P1
ηg(Θ(l−1)η)− Pηg(Θ(l−1)η)

∣∣ .
By taking expectation conditioned on Θ(l−1)η , then similar to the relation (46), the following holds∣∣P1

ηg(Θ(l−1)η)− Pηg(Θ(l−1)η)
∣∣ = E

[[
|Eg(θl)− Eg(Θηl)|

∣∣∣Θ(l−1)η

]]
≤ E

∣∣E2
η(Θ(l−1)η)

∣∣+ E
∣∣Ē2

η(Θ(l−1)η)
∣∣

≤ η3 ∥g∥C6 C(T ∗,θ0, η0) + η3 ∥g∥C6 C(T ∗,Θ0)

= O(η3).

We remark that the last line of the above relation is essentially based on Assumption 2, since
E
∣∣E2

η(Θ(l−1)η)
∣∣ and E

∣∣Ē2
η(Θ(l−1)η)

∣∣ can be bounded above by the second, fourth and sixth mo-
ments of the solution to SDE (32), hence we may apply dominated convergence theorem to obtain
the last line of the above relation.
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To sum up, as

∣∣PN
η g(θ0)− PηNg(Θ0)

∣∣ ≤ N∑
l=1

∣∣PN−l+1
η ◦ P(l−1)ηg(θ0)− PN−l

η ◦ Plηg(Θ0)
∣∣ = NO(η3),

hence for N = NT,η ,∣∣PN
η g(θ0)− PηNg(Θ0)

∣∣ = NO(η3) = NηO(η) ≤ TO(η2) = O(η2).
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I VALIDATION FOR ASSUMPTION 1

In this section, we endeavor to demonstrate the validity of Assumption 1. We begin this section by
making some estimates on the modified loss LS and covariance Σ.

I.1 ESTIMATES ON MODIFIED LOSS AND COVARIANCE

For the modified loss, recall that θ = vec({qr}mr=1) = vec ({(ar,wr)}mr=1), as we have

∇qk
LS(Θ) =

1

n

n∑
i=1

ei∇qk
(akσ(w

⊺
kxi)) +

1− p

np

n∑
i=1

akσ(w
⊺
kxi)∇qk

(akσ(w
⊺
kxi)) ,

and under the usual convention that for all i ∈ [n],
1

c
≤ ∥xi∥2 , |yi| ≤ c,

where c is some universal constant, and that σ(0) = 0, we obtain that

|ei| =

∣∣∣∣∣
m∑
r=1

arσ(w
⊺
rxi)− yi

∣∣∣∣∣
≤ 1 +

m∑
r=1

|ar| ∥wr∥2

≤ 1 +
1

2

m∑
r=1

(
|ar|2 + ∥wr∥22

)
≤ 1 + ∥Θ∥22 ,

hence

∥∇qk
LS(Θ)∥2 ≤

(
1 + ∥Θ∥22

)
∥qk∥2 +

1− p

p
∥qk∥32 ,

thus we have

∥∇ΘLS(Θ)∥2 ≤
(
1 + ∥Θ∥22

)
∥Θ∥2 +

1− p

p
∥Θ∥32

≤ Cp(1 + ∥Θ∥32).
Moreover, since

∇2
ΘLS(Θ) =

1

n

n∑
i=1

(
∇Θei ⊗∇Θei + ei∇2

Θei
)

+
1− p

np

n∑
i=1

diag
{
∇2

qk

(
a2kσ(w

⊺
kxi)

2
)}

,

as we denote only for now × as matrix multiplication,
∇2

ΘLS(Θ)∇ΘLS(Θ)

=

(
1

n

n∑
i=1

(
∇Θei ⊗∇Θei + ei∇2

Θei
)
+

1− p

np

n∑
i=1

diag
{
∇2

qk

(
a2kσ(w

⊺
kxi)

2
)})

×

(
1

n

n∑
i=1

ei∇Θei +
1− p

np

n∑
i=1

∇Θ

(
a2kσ(w

⊺
kxi)

2
))

,

then the components in ∇2
ΘLS(Θ)∇ΘLS(Θ) can be categorized into six different types: Firstly,

∥(∇Θei ⊗∇Θei) ej∇Θej∥2
≤ |ej | ∥∇Θei∥22 ∥∇Θej∥2
≤
(
1 + ∥Θ∥22

)
∥Θ∥32

≤
(
1 + ∥Θ∥52

)
.
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Secondly, ∥∥(ei∇2
Θei
)
ej∇Θej

∥∥
2

≤
(
1 + ∥Θ∥22

)2 ∥∥∇2
Θei
∥∥
2→2

∥∇Θej∥2

≤
(
1 + ∥Θ∥42

)
∥Θ∥22

≤
(
1 + ∥Θ∥62

)
.

Thirdly, ∥∥(diag {∇2
qk

(
a2kσ(w

⊺
kxi)

2
)})

ej∇Θej
∥∥
2

≤
(
1 + ∥Θ∥22

)∥∥diag {∇2
qk

(
a2kσ(w

⊺
kxi)

2
)}∥∥

2→2
∥Θ∥2

≤
(
1 + ∥Θ∥22

)(
1 + ∥Θ∥32

)
∥Θ∥2

≤
(
1 + ∥Θ∥62

)
.

Fourthly, ∥∥(∇Θei ⊗∇Θei)∇Θ

(
a2kσ(w

⊺
kxj)

2
)∥∥

2

≤∥∇Θei∥22 ∥Θ∥32
≤
(
1 + ∥Θ∥52

)
.

Fifthly, ∥∥(ei∇2
Θei
)
∇Θ

(
a2kσ(w

⊺
kxj)

2
)∥∥

2

≤
(
1 + ∥Θ∥22

)∥∥∇2
Θei
∥∥
2→2

∥Θ∥32

≤
(
1 + ∥Θ∥22

)
∥Θ∥42

≤
(
1 + ∥Θ∥62

)
.

Finally, ∥∥(diag {∇2
qk

(
a2kσ(w

⊺
kxi)

2
)})

∇Θ

(
a2kσ(w

⊺
kxj)

2
)∥∥

2

≤
∥∥diag {∇2

qk

(
a2kσ(w

⊺
kxi)

2
)}∥∥

2→2
∥Θ∥32

≤
(
1 + ∥Θ∥32

)
∥Θ∥32

≤
(
1 + ∥Θ∥62

)
.

To sum up, for the drift term b(Θ), regardless of the choice of first order or second order accuracy,
we obtain that

∥b(Θ)∥2 ≤ 1 + ∥Θ∥62 .

As for the covariance Σ, recall that θ = vec({qr}mr=1) = vec ({(ar,wr)}mr=1), then we obtain that
the covariance Σ reads

Σ =


Σ11 Σ12 · · · Σ1m

Σ21 Σ22 · · · Σ2m

...
...

...
...

Σm1 Σm2 · · · Σmm

 .
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For each k ∈ [m], we obtain that

Σkk(Θ) =

(
1

p
− 1

)(
1

n

n∑
i=1

(
ei,\k +

1

p
akσ(w

⊺
kxi)

)
∇qk

(akσ(w
⊺
kxi))

)

⊗

(
1

n

n∑
i=1

(
ei,\k +

1

p
akσ(w

⊺
kxi)

)
∇qk

(akσ(w
⊺
kxi))

)

+

(
1

p2
− 1

p

) m∑
l=1,l ̸=k

(
1

n

n∑
i=1

alσ(w
⊺
l xi)∇qk

(akσ(w
⊺
kxi))

)

⊗

(
1

n

n∑
i=1

alσ(w
⊺
l xi)∇qk

(akσ(w
⊺
kxi))

)
,

and for each k, r ∈ [m] with k ̸= r,

Σkr(Θ) =

(
1

p
− 1

)(
1

n

n∑
i=1

(
ei,\k,\r +

1

p
akσ(w

⊺
kxi) +

1

p
arσ(w

⊺
rxi)

)
∇qk

(akσ(w
⊺
kxi))

)

⊗

(
1

n

n∑
i=1

akσ(w
⊺
kxi)∇qr (arσ(w

⊺
rxi))

)

+

(
1

p
− 1

)(
1

n

n∑
i=1

arσ(w
⊺
rxi)∇qk

(akσ(w
⊺
kxi))

)

⊗

(
1

n

n∑
i=1

(
ei,\k,\r + akσ(w

⊺
kxi) +

1

p
arσ(w

⊺
rxi)

)
∇qr

(arσ(w
⊺
rxi))

)
,

hence we obtain that

∥Σkk(Θ)∥2F ≤ Cp

∣∣∣∣ei,\k +
1

p
akσ(w

⊺
kxi)

∣∣∣∣2 + m∑
l=1,l ̸=k

a2l σ(w
⊺
l xi)

2

 ∥∇Θei∥22

≤ Cp(1 + ∥Θ∥22)
2 ∥Θ∥22

≤ (1 + ∥Θ∥62),

and by similar reasoning

∥Σkr(Θ)∥2F ≤ (1 + ∥Θ∥62).

I.2 EXISTENCE, UNIQUENESS AND MOMENT ESTIMATES OF THE SOLUTION TO SDE

Existence of the solution to SDE (32) is proved by a truncation procedure: For each M ≥ 1, define
the truncation function

bM (Θ) :=

{
b(Θ) if ∥Θ∥2 ≤ M,

b(M Θ
∥Θ∥2

) if ∥Θ∥2 > M.

We also perform similar truncation to σ(Θ) and obtain its truncation σM (Θ). Then bM and σM

satisfy the Lipschitz condition and the linear growth condition, hence by application of the classical
results (Oksendal, 2013, Theorem 5.2.1) in SDE, there exists a unique solution ΘM (·) to the truncated
SDE

dΘt = bM (Θt) dt+ σM (Θt) dWt, Θ0 = Θ(0). (51)
We may choose M large enough, such that

∥Θ0∥2 < M,

and the solution to SDE (32) coincides with the solution to SDE (51) at least for a period of time
T ∗ > 0 since ∥Θ0∥2 < M . We remark that T ∗ is the desired time in Assumption 2. We also remark
that not only for any time t ∈ [0, T ∗], the second, fourth and sixth moments of the solution to SDE
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(32) are uniformly bounded with respect to time t, but also that for any time t ∈ [0, T ∗], all moments
of the solution to SDE (32) are uniformly bounded with respect to time t.

At this point, it is important to discuss that we prove is that for fixed time T , we can take the learning
rate η > 0 small enough so that the SME is a good approximation of the distribution of the dropout
iterates. What we did not prove is that for fixed η, the approximations hold for arbitrary time T . In
particular, it is not hard to construct systems where for fixed η, both the SME and the asymptotic
expansion fails when time T is large enough.

I.3 MOMENT ESTIMATES OF THE DROPOUT ITERATION

Recall that the dropout iteration reads

θN = θN−1 − η∇θR
drop
S (θN−1; δN ) ,

then we obtain that

E ∥θN∥2l2 = E ∥θN−1∥2l2 − 2lηE
[
∥θN−1∥2l−2

2

〈
θN−1,∇θR

drop
S (θN−1; δN )

〉]
+O(η2),

then for learning rate η small enough, we observe that {E ∥θN∥2l2 }N≥0 follows close to the trajectory
of a ordinary differential equation (ODE). Moreover, from the estimates obtained in Section I.1,

∥θN−1∥2l−2
2

〈
θN−1,∇θR

drop
S (θN−1; δN )

〉
≤∥θN−1∥2l−1

2

∥∥∥∇θR
drop
S (θN−1; δN )

∥∥∥
2

= ∥θN−1∥2l−1
2

∣∣eNi ∣∣ ∥∥∇θe
N
i

∥∥
2

≤∥θN−1∥2l−1
2 Cp(1 + ∥θN−1∥22) ∥θN−1∥2

≤Cp(1 + ∥θN−1∥2l+2
2 ),

we remark that as the above estimates hold almost surely, then for learning rate η small enough, we
may apply Gronwall inequality to {E ∥θN∥2l2 }N≥0 and shows that for some N∗, all moments of the
dropout iterations are uniformly bounded with respect to N , since for the ODE

du

dt
= 1 + u1+λ, u0 := u(0), (52)

with λ > 0. There exists time T ∗ > 0, such that for any time t ∈ [0, T ∗], its solution {ut}t≥0 is
uniformly bounded with respect to time t. And since for small enough learning rate, all moments of
the dropout iterations {E ∥θN∥2l2 }N≥0 follows close to the trajectory of ODEs of (52) type, hence all
these moments are also uniformly bounded with respect to N .
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J EXPLICIT FORM AND DERIVATION ON THE COVARIANCE

In this section, we present the expression for Σ. As θ = vec({qr}mr=1) = vec ({(ar,wr)}mr=1), then
covariance of ∇θR

drop
S (θN−1; δN ) equals to Σ(θN−1). We denote

Σkr(θN−1) := Cov
(
∇qk

Rdrop
S (θN−1; δN ) ,∇qr

Rdrop
S (θN−1; δN )

)
,

then

Σ =


Σ11 Σ12 · · · Σ1m

Σ21 Σ22 · · · Σ2m

...
...

...
...

Σm1 Σm2 · · · Σmm

 .

For each k ∈ [m], we obtain that

Σkk(θN−1) =Cov
(
∇qk

Rdrop
S (θN−1; δN ) ,∇qk

Rdrop
S (θN−1; δN )

)
=

(
1

p
− 1

)(
1

n

n∑
i=1

(
ei,\k +

1

p
akσ(w

⊺
kxi)

)
∇qk

(akσ(w
⊺
kxi))

)

⊗

(
1

n

n∑
i=1

(
ei,\k +

1

p
akσ(w

⊺
kxi)

)
∇qk

(akσ(w
⊺
kxi))

)

+

(
1

p2
− 1

p

) m∑
k′=1,k′ ̸=k

(
1

n

n∑
i=1

ak′σ(w⊺
k′xi)∇qk

(akσ(w
⊺
kxi))

)

⊗

(
1

n

n∑
i=1

ak′σ(w⊺
k′xi)∇qk

(akσ(w
⊺
kxi))

)
,

where ei,\k := ei,\k(θ) :=
∑m

l=1,l ̸=k alσ(w
⊺
l xi)− yi, and for each k, r ∈ [m] with k ̸= r,

Σkr(θN−1) =Cov
(
∇qk

Rdrop
S (θN−1; δN ) ,∇qr

Rdrop
S (θN−1; δN )

)
=

(
1

p
− 1

) m∑
k′=1,k′ ̸=k,k′ ̸=r

(
1

n

n∑
i=1

ak′σ(w⊺
k′xi)∇qk

(akσ(w
⊺
kxi))

)

⊗

(
1

n

n∑
i=1

ak′σ(w⊺
k′xi)∇qr (arσ(w

⊺
rxi))

)

+

(
1

p
− 1

)(
1

n

n∑
i=1

(
ei,\k,\r +

1

p
akσ(w

⊺
kxi) +

1

p
arσ(w

⊺
rxi)

)
∇qk

(akσ(w
⊺
kxi))

)

⊗

(
1

n

n∑
i=1

akσ(w
⊺
kxi)∇qr

(arσ(w
⊺
rxi))

)

+

(
1

p
− 1

)(
1

n

n∑
i=1

arσ(w
⊺
rxi)∇qk

(akσ(w
⊺
kxi))

)

⊗

(
1

n

n∑
i=1

(
ei,\k,\r + akσ(w

⊺
kxi) +

1

p
arσ(w

⊺
rxi)

)
∇qr

(arσ(w
⊺
rxi))

)
,

where ei,\k,\r := ei,\k,\r(θ) :=
∑m

l=1,l ̸=k,l ̸=r alσ(w
⊺
l xi) − yi. We remark that such expression

is consistent in that for the extreme case where p = 1, dropout ‘degenerates’ to GD, hence the
covariance matrix degenerates to a zero matrix, i.e., Σ = 0D×D. The following part is the specific
derivation process of the covariance matrix.
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J.1 ELEMENTS ON THE DIAGONAL

In this part, we compute Σkk for all k ∈ [m].

Σkk(θN−1) = Cov
(
∇qk

Rdrop
S (θN−1; δN ) ,∇qk

Rdrop
S (θN−1; δN )

)
=

1

n2

n∑
i,j=1

Cov
(
eNi (δN )k, e

N
j (δN )k

)
∇qk

(akσ(w
⊺
kxi))⊗∇qk

(akσ(w
⊺
kxj)) ,

in order to compute Cov
(
eNi (δN )k, e

N
j (δN )k

)
, we need to compute firstly E

[
eNi eNj (δN )2k

]
, and

since E
[
eNi eNj (δN )2k

]
consists of four parts, one of which is

E

 m∑
k′=1,k′ ̸=k

(δN )k′ak′σ(w⊺
k′xi)− yi

 m∑
l=1,l ̸=k

(δN )lalσ(w
⊺
l xj)− yj

 (δN )2k


=E

 m∑
k′=1,k′ ̸=k

(δN )k′ak′σ(w⊺
k′xi)− yi

 m∑
l=1,l ̸=k

(δN )lalσ(w
⊺
l xj)− yj

E
[
(δN )2k

]

=
1

p

(
E

 m∑
k′=1,k′ ̸=k

(δN )2k′a2k′σ(w
⊺
k′xi)σ(w

⊺
k′xj)

+ E

 ∑
k′ ̸=l, k′,l ̸=k

(δN )k′(δN )lak′alσ(w
⊺
k′xi)σ(w

⊺
l xj)


− yiE

 m∑
k′=1,k′ ̸=k

(δN )k′ak′σ(w⊺
k′xj)

− yjE

 m∑
k′=1,k′ ̸=k

(δN )k′ak′σ(w⊺
k′xi)

+ yiyj

)

=
1

p2

m∑
k′=1,k′ ̸=k

a2k′σ(w
⊺
k′xi)σ(w

⊺
k′xj) +

1

p

∑
k′ ̸=l, k′,l ̸=k

ak′alσ(w
⊺
k′xi)σ(w

⊺
l xj)

− yi
p

m∑
k′=1,k′ ̸=k

ak′σ(w⊺
k′xj)−

yj
p

m∑
k′=1,k′ ̸=k

ak′σ(w⊺
k′xi) +

yiyj
p

=
1

p

 m∑
k′=1,k′ ̸=k

ak′σ(w⊺
k′xi)− yi

 m∑
k′=1,k′ ̸=k

ak′σ(w⊺
k′xj)− yj


+

(
1

p2
− 1

p

) m∑
k′=1,k′ ̸=k

a2k′σ(w
⊺
k′xi)σ(w

⊺
k′xj)

 ,

and the second part reads

E

(δN )kakσ(w
⊺
kxi)

 m∑
l=1,l ̸=k

(δN )lalσ(w
⊺
l xj)− yj

 (δN )2k


=
akσ(w

⊺
kxi)

p2

 m∑
k′=1,k′ ̸=k

ak′σ(w⊺
k′xj)− yj

 ,

and by symmetry, the third part reads

E

(δN )kakσ(w
⊺
kxj)

 m∑
l=1,l ̸=k

(δN )lalσ(w
⊺
l xi)− yi

 (δN )2k


=
akσ(w

⊺
kxj)

p2

 m∑
k′=1,k′ ̸=k

ak′σ(w⊺
k′xi)− yi

 ,
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and finally, the fourth part reads

E
[
(δN )kakσ(w

⊺
kxi)(δN )kakσ(w

⊺
kxj)(δN )2k

]
=

1

p3
a2kσ(w

⊺
kxi)σ(w

⊺
kxj).

To sum up,

E
[
eNi eNj (δN )2k

]
=

(
1

p2
− 1

p

) m∑
k′=1,k′ ̸=k

a2k′σ(w
⊺
k′xi)σ(w

⊺
k′xj)


+

1

p
ei,\kej,\k +

akσ(w
⊺
kxj)

p2
ei,\k +

akσ(w
⊺
kxi)

p2
ej,\k

+
1

p3
a2kσ(w

⊺
kxi)σ(w

⊺
kxj),

and

E
[
eNi (δN )k

]
E
[
eNj (δN )k

]
=

(
ei,\k +

1

p
akσ(w

⊺
kxi)

)(
ej,\k +

1

p
akσ(w

⊺
kxj)

)
=ei,\kej,\k +

akσ(w
⊺
kxj)

p
ei,\k +

akσ(w
⊺
kxi)

p
ej,\k +

1

p2
a2kσ(w

⊺
kxi)σ(w

⊺
kxj),

hence

Cov
(
eNi (δN )k, e

N
j (δN )k

)
=E

[
eNi eNj (δN )2k

]
− E

[
eNi (δN )k

]
E
[
eNi (δN )k

]
=

(
1

p2
− 1

p

) m∑
k′=1,k′ ̸=k

a2k′σ(w
⊺
k′xi)σ(w

⊺
k′xj)


+

(
1

p
− 1

)
ei,\kej,\k +

(
1

p2
− 1

p

)
akσ(w

⊺
kxi)ej,\k

+

(
1

p2
− 1

p

)
akσ(w

⊺
kxj)ei,\k +

(
1

p3
− 1

p2

)
a2kσ(w

⊺
kxi)σ(w

⊺
kxj)

=

(
1

p
− 1

)
E
(
eNi (δN )k

)
E
(
eNj (δN )k

)
+

(
1

p2
− 1

p

) m∑
k′=1,k′ ̸=k

a2k′σ(w
⊺
k′xi)σ(w

⊺
k′xj)

 ,

by summation over the indices i and j, for each k ∈ [m], the covariance matrix reads:

Σkk(θN−1) = Cov
(
∇qk

Rdrop
S (θN−1; δN ) ,∇qk

Rdrop
S (θN−1; δN )

)
=

(
1

p
− 1

)(
1

n

n∑
i=1

(
ei,\k +

1

p
akσ(w

⊺
kxi)

)
∇qk

(akσ(w
⊺
kxi))

)

⊗

(
1

n

n∑
i=1

(
ei,\k +

1

p
akσ(w

⊺
kxi)

)
∇qk

(akσ(w
⊺
kxi))

)

+

(
1

p2
− 1

p

) m∑
l=1,l ̸=k

(
1

n

n∑
i=1

alσ(w
⊺
l xi)∇qk

(akσ(w
⊺
kxi))

)

⊗

(
1

n

n∑
i=1

alσ(w
⊺
l xi)∇qk

(akσ(w
⊺
kxi))

)
.
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J.2 ELEMENTS OFF THE DIAGONAL

In this part, we compute Σkr for all k, r ∈ [m], where k ̸= r.

Σkr(θN−1) = Cov
(
∇qk

Rdrop
S (θN−1; δN ) ,∇qr

Rdrop
S (θN−1; δN )

)
=

1

n2

n∑
i,j=1

Cov
(
eNi (δN )k, e

N
j (δN )r

)
∇qk

(akσ(w
⊺
kxi))⊗∇qr

(akσ(w
⊺
kxj)) ,

in order to compute Cov
(
eNi (δN )k, e

N
j (δN )r

)
, we need to compute firstly E

[
eNi eNj (δN )k(δN )r

]
,

and since E
[
eNi eNj (δN )k(δN )r

]
consists of nine parts, one of which is

E

 m∑
k′=1,k′ ̸=k,k′ ̸=r

(δN )k′ak′σ(w⊺
k′xi)− yi

 m∑
l=1,l ̸=k,l ̸=r

(δN )lalσ(w
⊺
l xj)− yj

 (δN )k(δN )r


=E

 m∑
k′=1,k′ ̸=k,k′ ̸=r

(δN )k′ak′σ(w⊺
k′xi)− yi

 m∑
l=1,l ̸=k,l ̸=r

(δN )lalσ(w
⊺
l xj)− yj

E [(δN )k(δN )r]

=
1

p

m∑
k′=1,k′ ̸=k,k′ ̸=r

a2k′σ(w
⊺
k′xi)σ(w

⊺
k′xj) +

∑
k′ ̸=l and k′,l ̸=k,r

ak′alσ(w
⊺
k′xi)σ(w

⊺
l xj)

− yi

m∑
k′=1,k′ ̸=k,k′ ̸=r

ak′σ(w⊺
k′xj)− yj

m∑
k′=1,k′ ̸=k,k′ ̸=r

ak′σ(w⊺
k′xi) + yiyj

=

 m∑
k′=1,k′ ̸=k,k′ ̸=r

ak′σ(w⊺
k′xi)− yi

 m∑
k′=1,k′ ̸=k,k′ ̸=r

ak′σ(w⊺
k′xj)− yj


+

(
1

p
− 1

) m∑
k′=1,k′ ̸=k,k′ ̸=r

a2k′σ(w
⊺
k′xi)σ(w

⊺
k′xj)


= ei,\k,\rej,\k,\r +

(
1

p
− 1

) m∑
k′=1,k′ ̸=k,k′ ̸=r

a2k′σ(w
⊺
k′xi)σ(w

⊺
k′xj)

 ,

and the second part reads

E

 m∑
k′=1,k′ ̸=k,k′ ̸=r

(δN )k′ak′σ(w⊺
k′xi)− yi

 (δN )kakσ(w
⊺
kxj)(δN )k(δN )r


=E

 m∑
k′=1,k′ ̸=k,k′ ̸=r

(δN )k′ak′σ(w⊺
k′xi)− yi

 akσ(w
⊺
kxj)E

[
(δN )2k(δN )r

]
=

akσ(w
⊺
kxj)

p
ei,\k,\r,

by similar reasoning and symmetry, the third part reads

E

 m∑
k′=1,k′ ̸=k,k′ ̸=r

(δN )k′ak′σ(w⊺
k′xi)− yi

 (δN )rarσ(w
⊺
rxj)(δN )k(δN )r


=E

 m∑
k′=1,k′ ̸=k,k′ ̸=r

(δN )k′ak′σ(w⊺
k′xi)− yi

 arσ(w
⊺
rxj)E

[
(δN )k(δN )2r

]
=

arσ(w
⊺
rxj)

p
ei,\k,\r,
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also by similar reasoning and symmetry, the fourth part reads

E

 m∑
k′=1,k′ ̸=k,k′ ̸=r

(δN )k′ak′σ(w⊺
k′xj)− yj

 (δN )kakσ(w
⊺
kxi)(δN )k(δN )r


=E

 m∑
k′=1,k′ ̸=k,k′ ̸=r

(δN )k′ak′σ(w⊺
k′xj)− yj

 akσ(w
⊺
kxi)E

[
(δN )2k(δN )r

]
=

akσ(w
⊺
kxi)

p
ej,\k,\r,

and the fifth part reads

E [(δN )kakσ(w
⊺
kxi)(δN )kakσ(w

⊺
kxj)(δN )k(δN )r] = E

[
(δN )3k(δN )ra

2
kσ(w

⊺
kxi)σ(w

⊺
kxj)

]
=

1

p2
a2kσ(w

⊺
kxi)σ(w

⊺
kxj),

and the sixth part reads

E [(δN )kakσ(w
⊺
kxi)(δN )rarσ(w

⊺
rxj)(δN )k(δN )r]

=E
[
(δN )2k(δN )2rakarσ(w

⊺
kxi)σ(w

⊺
rxj)

]
=

1

p2
akarσ(w

⊺
kxi)σ(w

⊺
rxj),

also by similar reasoning and symmetry, the seventh part reads

E

 m∑
k′=1,k′ ̸=k,k′ ̸=r

(δN )k′ak′σ(w⊺
k′xj)− yj

 (δN )rarσ(w
⊺
rxi)(δN )k(δN )r


=E

 m∑
k′=1,k′ ̸=k,k′ ̸=r

(δN )k′ak′σ(w⊺
k′xj)− yj

 arσ(w
⊺
rxi)E

[
(δN )k(δN )2r

]
=

arσ(w
⊺
rxi)

p
ej,\k,\r,

and the eighth part reads

E [(δN )rarσ(w
⊺
rxi)(δN )kakσ(w

⊺
kxj)(δN )k(δN )r] = E

[
(δN )2k(δN )2rakarσ(w

⊺
kxi)σ(w

⊺
rxj)

]
=

1

p2
akarσ(w

⊺
kxi)σ(w

⊺
rxj),

and the ninth part reads

E [(δN )rarσ(w
⊺
rxi)(δN )rarσ(w

⊺
rxj)(δN )k(δN )r]

=E
[
(δN )k(δN )3ra

2
rσ(w

⊺
rxi)σ(w

⊺
rxj)

]
=

1

p2
a2rσ(w

⊺
rxi)σ(w

⊺
rxj).

To sum up,

E
[
eNi eNj (δN )k(δN )r

]
=ei,\k,\rej,\k,\r +

(
1

p
− 1

) m∑
k′=1,k′ ̸=k,k′ ̸=r

a2k′σ(w
⊺
k′xi)σ(w

⊺
k′xj)

+
akσ(w

⊺
kxj)

p
ei,\k,\r

+
arσ(w

⊺
rxj)

p
ei,\k,\r +

akσ(w
⊺
kxi)

p
ej,\k,\r +

1

p2
a2kσ(w

⊺
kxi)σ(w

⊺
kxj)

+
1

p2
akarσ(w

⊺
kxi)σ(w

⊺
rxj) +

arσ(w
⊺
rxi)

p
ej,\k,\r

+
1

p2
akarσ(w

⊺
kxi)σ(w

⊺
rxj) +

1

p2
a2rσ(w

⊺
rxi)σ(w

⊺
rxj),
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and

E
[
eNi (δN )k

]
E
[
eNj (δN )r

]
=

(
ei,\k,\r + arσ(w

⊺
rxi) +

1

p
akσ(w

⊺
kxi)

)(
ej,\k,\r + akσ(w

⊺
kxj) +

1

p
arσ(w

⊺
rxj)

)
=ei,\k,\rej,\k,\r + ei,\k,\rakσ(w

⊺
kxj) +

1

p
ei,\k,\rarσ(w

⊺
rxj) + arσ(w

⊺
rxi)ej,\k,\r

+ arakσ(w
⊺
rxi)σ(w

⊺
kxj) +

1

p
a2rσ(w

⊺
rxi)σ(w

⊺
rxj) +

1

p
akσ(w

⊺
kxi)ej,\k,\r

+
1

p
a2kσ(w

⊺
kxi)σ(w

⊺
kxj) +

1

p2
arakσ(w

⊺
kxi)σ(w

⊺
rxj),

hence

Cov
(
eNi (δN )k, e

N
j (δN )r

)
=E

[
eNi eNj (δN )k(δN )r

]
− E

[
eNi (δN )k

]
E
[
eNi (δN )r

]
=

(
1

p
− 1

) m∑
k′=1,k′ ̸=k,k′ ̸=r

a2k′σ(w
⊺
k′xi)σ(w

⊺
k′xj)

+

(
1

p
− 1

)
akσ(w

⊺
kxj)ei,\k,\r

+

(
1

p
− 1

)
arσ(w

⊺
rxi)ej,\k,\r +

(
1

p2
− 1

p

)
a2rσ(w

⊺
rxi)σ(w

⊺
rxj)

+

(
1

p2
− 1

p

)
a2kσ(w

⊺
kxi)σ(w

⊺
kxj) +

(
1

p2
− 1

)
arakσ(w

⊺
rxi)σ(w

⊺
kxj),

by summation over the indices i and j, the covariance matrix reads

Σkr(θN−1) = Cov
(
∇qk

Rdrop
S (θN−1; δN ) ,∇qrR

drop
S (θN−1; δN )

)
=

(
1

p
− 1

)(
1

n

n∑
i=1

(
ei,\k,\r +

1

p
akσ(w

⊺
kxi) +

1

p
arσ(w

⊺
rxi)

)
∇qk

(akσ(w
⊺
kxi))

)

⊗

(
1

n

n∑
i=1

akσ(w
⊺
kxi)∇qr

(arσ(w
⊺
rxi))

)

+

(
1

p
− 1

)(
1

n

n∑
i=1

arσ(w
⊺
rxi)∇qk

(akσ(w
⊺
kxi))

)

⊗

(
1

n

n∑
i=1

(
ei,\k,\r + akσ(w

⊺
kxi) +

1

p
arσ(w

⊺
rxi)

)
∇qr

(arσ(w
⊺
rxi))

)
,
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K THE STRUCTURAL SIMILARITY BETWEEN HESSIAN AND COVARIANCE

We can derive the Hessian of the loss function in the expectation sense with respect to the dropout
noise δ and the covariance matrix of dropout noise under intuitive approximations. We first show our
assumptions as follows:
Assumption 1. The NN piece-wise linear activation.
Assumption 2. The parameters of NN’s output layer are fixed during training.
Assumption 3. We study the loss landscape after training reaches a stable stage, i.e., the loss function
in the sense of expectation is small enough,

Eδ∇θR
drop
S (θ; δ) ≈ 0.

Hessian matrix with dropout regularization Based on the Assumption 1, 2, the Hessian matrix of
the loss function with respect to fdrop

θ,δ (x) can be written in the mean sense as:

H(θ) ≈ 1

n

n∑
i=1

[
∇θfθ (xi)⊗∇θfθ (xi) +

1− p

p

m∑
r=1

∇qr
(arσ(w

⊺
rxi))⊗∇qr

(arσ(w
⊺
rxi))

]
,

where H(θ) := ∇2
θLS(θ).

Proof. We first compute the Hessian matrix after taking expectations with respect to the dropout
variable,

∇2
θLS(θ) = ∇2

θRS(θ) +
1− p

2np

n∑
i=1

m∑
r=1

∇2
qr

(arσ(w
⊺
rxi))

2
. (53)

The first and second terms on the RHS of the Eq. (53) are as follows,

∇2
θRS(θ) =

1

n

n∑
i=1

(
∇θfθ (xi)⊗∇θfθ (xi) + (fθ (xi)− yi) · ∇2

θfθ (xi)
)

1− p

2np

n∑
i=1

m∑
r=1

∇2
qr

(arσ(w
⊺
rxi))

2

=
1− p

np

n∑
i=1

m∑
r=1

(
∇qr

(arσ(w
⊺
rxi))⊗∇qr

(arσ(w
⊺
rxi)) + (arσ(w

⊺
rxi)) · ∇2

qr
(arσ(w

⊺
rxi))

2
)
.

Note that for linear activate function, ∇2
θfθ (xi) = ∇2

qr
(arσ(w

⊺
rxi))

2
= 0, a.e. ∀i ∈ [n],∀r ∈ [m],

we have

∇2
θRS(θ) =

1

n

n∑
i=1

∇θfθ (xi)⊗∇θfθ (xi)

1− p

2np

n∑
i=1

m∑
r=1

∇2
qr

(arσ(w
⊺
rxi))

2
=

1− p

np

n∑
i=1

m∑
r=1

∇qr
(arσ(w

⊺
rxi))⊗∇qr

(arσ(w
⊺
rxi)) .

Thus the Eq. (53) can be rewritten as

H(θ) =
1

n

n∑
i=1

(
∇θfθ (xi)⊗∇θfθ (xi) +

1− p

p

m∑
r=1

∇qr
(arσ(w

⊺
rxi))⊗∇qr

(arσ(w
⊺
rxi))

)
.

Covariance matrix with dropout regularization Based on the Assumption 3, the covariance matrix
of the loss function under the randomness of dropout variable δ and data x can be written as:

Σ(θ) ≈ 1

n

n∑
i=1

[
li,1∇θfθ(xi)⊗∇θfθ(xi) + li,2

1− p

p

m∑
r=1

∇qr (arσ(w
⊺
rxi))⊗∇qr (arσ(w

⊺
rxi))

]
,

where li,1 := (ei)
2 + 1−p

p

∑m
r=1 a

2
rσ(w

⊺
rxi)

2, li,2 := (ei)
2 .
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Proof. For simplicity, we approximate the loss function through Taylor expansion, which is also used
in Wei et al. (2020),

ℓ(fθ(xi; δ), yi) ≈ ℓ(fθ(xi), yi) + (fθ(xi)− yi)

m∑
r=1

ar(δ − 1)rσ(w
⊺
rxi),

where ℓ(fθ(xi; δ), yi) = 1
2 (fθ(xi; δ)− yi)

2, ℓ(fθ(xi), yi) = 1
2 (fθ(xi)− yi)

2. The covariance
matrix under dropout regularization is

Σ(θ) ≈ 1

n

n∑
i=1

Eδ (∇θℓ(fθ(xi; δ), yi)⊗∇θℓ(fθ(xi; δ), yi))−∇θEδR
drop
S (θ; δ)⊗∇θEδR

drop
S (θ; δ)

≈ 1

n

n∑
i=1

Eδ (∇θℓ(fθ(xi; δ), yi)⊗∇θℓ(fθ(xi; δ), yi)) .

Combining the properties of the dropout variable δ, we have,

Σ(θ) ≈ 1

n

n∑
i=1

∇θℓ(fθ(xi), yi)⊗∇θℓ(fθ(xi), yi)

+
1

n

n∑
i=1

Eδ

(
m∑
r=1

(δ − 1)r∇qr
(arσ(w

⊺
rxi)ei)⊗

m∑
r=1

(δ − 1)r∇qr
(arσ(w

⊺
rxi)ei)

)

=
1

n

n∑
i=1

(
∇θℓ(fθ(xi), yi)⊗∇θℓ(fθ(xi), yi) +

1− p

p

m∑
r=1

∇qr (arσ(w
⊺
rxi)ei)⊗∇qr (arσ(w

⊺
rxi)ei)

)

:=
1

n

n∑
i=1

(
Σ1(xi, yi) +

1− p

p
Σ2(xi, yi)

)
.

(54)

We calculate the two terms on the RHS of the Eq. (54) separately:

Σ1(xi, yi) = (ei)
2 · ∇θfθ(xi)⊗∇θfθ(xi),

Σ2(xi, yi) = (ei)
2

m∑
r=1

∇qr
(arσ(w

⊺
rxi))⊗∇qr

(arσ(w
⊺
rxi)) +∇θfθ(xi)⊗∇θfθ(xi)

m∑
r=1

(arσ(w
⊺
rxi))

2

+ 2

m∑
r=1

eiarσ(w
⊺
rxi) · ∇θei ⊗∇qr

(arσ(w
⊺
rxi))

= (ei)
2

m∑
r=1

∇qr
(arσ(w

⊺
rxi))⊗∇qr

(arσ(w
⊺
rxi)) +∇θfθ(xi)⊗∇θfθ(xi)

m∑
r=1

(arσ(w
⊺
rxi))

2

+
1

2

m∑
r=1

∇θ(ei)
2 ⊗∇qr (arσ(w

⊺
rxi))

2.

Under the assumption that ∇θ(ei)
2 = 2 · ∇θℓ(fθ(xi), yi) = 0, ∀i ∈ [n], we have

Σ2(xi, yi) = (ei)
2

m∑
r=1

∇qr (arσ(w
⊺
rxi))⊗∇qr (arσ(w

⊺
rxi))+∇θfθ(xi)⊗∇θfθ(xi)

m∑
r=1

(arσ(w
⊺
rxi))

2.

Thus the Eq. (54) can be rewritten as

Σ(θ) =
1

n

n∑
i=1

∇θfθ(xi)⊗∇θfθ(xi)

(
(ei)

2 +
1− p

p

m∑
r=1

(arσ(w
⊺
rxi))

2

)

+
1− p

np

n∑
i=1

m∑
r=1

(ei)
2 · ∇qr

(arσ(w
⊺
rxi))⊗∇qr

(arσ(w
⊺
rxi)).
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Note that

(ei)
2 +

1− p

p

m∑
r=1

(arσ(w
⊺
rxi))

2 = Eδ2ℓ(fθ(xi; δ), yi),

we have

Σ(θ) =
2

n

n∑
i=1

Eδℓ(fθ(xi; δ), yi) · ∇θfθ(xi)⊗∇θfθ(xi)

+
2(1− p)

np

n∑
i=1

m∑
r=1

(ℓ(fθ(xi), yi)) · ∇qr (arσ(w
⊺
rxi))⊗∇qr (arσ(w

⊺
rxi)).
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