
Under review as submission to TMLR

Noise Stability Optimization For Flat Minima With Tight
Rates

Anonymous authors
Paper under double-blind review

Abstract

We consider minimizing a perturbed function F (W ) = EU [f(W + U)], given a function
f : Rd → R and a random sample U from a distribution P with mean zero. When P
is the isotropic Gaussian, F (W ) is roughly equal to f(W ) plus a penalty on the trace of
∇2f(W ), scaled by the variance of P. This penalty on the Hessian has the benefit of
improving generalization, through PAC-Bayes analysis. It is useful in low-sample regimes,
for instance, when a (large) pre-trained model is fine-tuned on a small data set. One way
to minimize F is by adding U to W , and then run SGD. We observe, empirically, that this
noise injection does not provide significant gains over SGD, in our experiments of conducting
fine-tuning on three image classification data sets. We design a simple, practical algorithm
that adds noise along both U and −U , with the option of adding several perturbations and
taking their average. We analyze the convergence of this algorithm, showing tight rates on
the norm of the output’s gradient.

We provide a comprehensive empirical analysis to show that this modified noise injection
algorithm can be competitive and even outperform sharpness-reducing training methods.
First, we show that in an over-parameterized matrix sensing problem, it can find solutions
with lower test loss than naive noise injection. Then, we compare our algorithm with four
sharpness-reducing training methods (including the Sharpness-Aware Minimization (Foret
et al., 2021)). We find that our algorithm can outperform them by up to 1.8% test ac-
curacy, for fine-tuning ResNet on six image classification data sets. It leads to a 17.7%
(and 12.8%) reduction in the trace (and largest eigenvalue) of the Hessian matrix of the
loss surface. This form of regularization on the Hessian is compatible with ℓ2 weight decay
(and data augmentation), in the sense that combining both can lead to improved empirical
performance.

1 Introduction

The loss landscape of neural networks and how it can affect the performance of the neural network has
received much studies. Algorithmically, this can amount to searching a local region of the loss surface that is
flat (Hochreiter & Schmidhuber, 1997). Recent work, notably Sharpness-Aware Minimization (Foret et al.,
2021), designs an algorithm based on the principle of penalizing the largest eigenvalue of the Hessian (of the
loss), to train neural networks with better generalization (give limited labeled data), and also robustness (to
label noise). The algorithm by Foret et al. (2021) is based on a (constrained) min-max problem. In this
paper, we examine a min-average problem, which injects noise to a function f : Rd → R by sampling from a
d-dimensional distribution P (with mean zero)

min
W ∈Rd

F (W ) := E
U∼P

[f(W + U)] . (1)

The difference between the perturbed function F and the original function indicates the sensitivity or re-
silience of f around its local neighborhood, leading algorithms to converge to wide minima. In particular,
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the noise injection operates as smoothing on the loss surface, with connection to the generalization via PAC-
Bayes (Nagarajan & Kolter, 2020; Dziugaite et al., 2021; Ju et al., 2022). Before proceeding, we describe an
example to illustrate the regularization effect of Problem equation 1 upon the original function.
Example 1.1. Let P = N (0, σ2 Idd) denote the d-dimensional isotropic Gaussian. Then, F (W ) can be
approximated by f(W ) + σ2

2 Tr
[
∇2f(W )

]
, plus an error term whose order scales as O(σ3). If σ is small,

then F is roughly equal to f plus a penalty of 2−1σ2 times Tr
[
∇2f

]
.

This regularization can be further fleshed out in the matrix sensing problem. Suppose there is an unknown,
rank-r positive semi-definite matrix X⋆ = U⋆U⋆⊤ ∈ Rd×d that one aims to learn. One is given measurement
yi that take the matrix inner product between X⋆ and a Gaussian measurement matrix Ai ∈ Rd×d, yi =
⟨Ai, X⋆⟩, for i = 1, 2, . . . n. Consider the Mean Squared Error parameterized by a d × d matrix W :

L̂(W ) = 1
2n

n∑
i=1

(
⟨Ai, WW ⊤⟩ − yi

)2
. (2)

Provided that L̂(W ) = 0, the Hessian is equal to (see Section A) 1
n

∑n
i=1 ∥AiW∥2

F , which is approximately
d ∥W∥2

F = d
∥∥WW ⊤

∥∥
⋆
. By a well-known result, among all X = WW ⊤ such that L̂(W ) = 0, X⋆ has the

lowest nuclear norm (Recht et al., 2010). Thus, the regularization placed on L̂(W ) is similar to nuclear norm
regularization under interpolation.

Having discussed the regularization of Problem equation 1, the next question is how this works and whether
this adds utility to directly minimizing the function itself. A naive way to instantiate this idea is to add noise
to the neural network’s weight before computing its gradient. This type of noise injection has been studied
before (An, 1996) (which should not be confused with injecting label noise (Müller et al., 2019; Damian
et al., 2021)). However, whether they will work well in practice is not always clear (Hinton & Van Camp,
1993; Graves, 2011). For example, a layer-wise regularization considering the different layer weight scaling
performs better than this noise injection method (Orvieto et al., 2023).

In our empirical analysis (starting Section 4.2.1), we also observe that the naive way of perturbing the
weight matrices before running SGD does not work well and only introduces marginal benefit on top of the
SGD algorithm. By contrast, we design a modified noise injection scheme, which works very well through a
comprehensive empirical analysis, with a detailed theoretical analysis. To our knowledge, our algorithm is
the first to perform competitively with SAM (and its variants) empirically, outperforming its regularization
effect on the Hessian while permitting a clean analysis of its convergence.

Results. We start by designing a simple, practical algorithm to solve Problem equation 1. In our design, we
observe that naively perturbing the weight introduces a first-order term of U⊤∇f(W ), where U is sampled
from P and W is the weight. Thus, although this term has a mean of zero, its standard deviation may
dominate the second-order Hessian term of U⊤∇2f(W )U , where we recall that U is a random sample from
P. This is especially important if the algorithm is run only for a few iterations (e.g., fine-tuning transformer
neural networks such as the BERT). Thus, we introduce a negative perturbation along W − U to cancel out
the first-order term, while keeping the second-order term unaffected. Besides, to reduce the variance of the
gradient, we sample multiple perturbations at each step and take their average. See Algorithm 1 for the full
procedure. In particular, when k (number of perturbations) is equal to 1, our algorithm incurs twice the
computation cost of the SGD, which is the same as SAM. Then, we analyze the convergence of Algorithm
1, by showing matching upper and lower bounds on the expected gradient of its output.

Next, we conduct a comprehensive empirical analysis of our algorithm, including a comparison to existing
sharpness-reducing training methods, the regularization effect on the Hessian, and interaction with existing
methods, including weight decay, data augmentation, and distance-based regularization (for fine-tuning pre-
trained models). We demonstrate the benefit of our algorithm compared to Perturbed SGD in the setting of
Example 1.1. Then, we present a suite of experiments to demonstrate that, across various image classification
data sets, our algorithm can find neural networks whose test loss is also comparably lower and whose Hessian
is better regularized than several established training methods. Our experiments focus on the setting of fine-
tuning a large, pre-trained neural network on a downstream task. This is an important setting of practical
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Algorithm 1 Noise Stability Optimization (NSO)
Input: Initialization W0 ∈ Rd, a function f : Rd → R
Require: An estimator g : Rd → Rd that for any W , returns g(W ) s.t. E [g(W )] = ∇f(W )
Parameters: # perturbations k, # epochs T , step sizes η0, . . . , ηT −1

1: for i = 0, 1, . . . , T − 1 do
2: for j = 0, 1, . . . , k − 1 do
3: Sample U

(j)
i independently from P

4: Let G
(j)
i = g

(
Wi + U

(j)
i

)
+ g
(
Wi − U

(j)
i

)
5: end for
6: Update iterates according to Wi+1 = Wi − ηi

2k

∑k
j=1 G

(j)
i

7: end for
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Figure 1: Comparing NSO, SAM, SGD, in terms of their test loss (left) and the trace of the Hessian of the
training loss (measured at the last epoch), across five data sets, by fine-tuning ResNet-34. The results are
averaged over five random seeds (their standard deviations will be included in Section 4, which also include
expanded comparisons).

interest, yet it is sensitive to overfitting due to the low number of samples compared to the number of model
parameters required for fine-tuning. We provide an illustration to show the comparison in Figure 1.

Summary. This paper makes the following contributions to designing regularization methods for training
neural networks from algorithmic, and empirical aspects, respectively as follows:

• We revisit the injection of noise to the weight matrices in modern neural network fine-tuning, to
design a simple algorithm that can also regularize the trace of the Hessian matrix of neural networks,
with the strength of the regularization determined by the magnitude of the noise perturbation.
We give matching upper and lower bounds on the gradient norms of the converged solution of our
proposed algorithm. The bounds can also be extended to momentum updates.

• We conduct a comprehensive experimental evaluation of our algorithm, compared with a number of
“sharpness” reducing training methods. We empirically validate the regularization of our algorithm
on the Hessian matrix.
We also show that this regularization is compatible with ℓ2 weight decay, data augmentation, and
distance-based regularization to improve empirical performance.

2 Related Work

The PAC-Bayes analysis framework gives a way to reason about the generalization of a model by postulating
a prior and a posterior distribution on the hypothesis space. One may then argue about the generalization
of the model, based on the KL divergence between the prior and the posterior, and the information already
available in the prior (McAllester, 1999; Shawe-Taylor & Williamson, 1997). See also Alquier (2021) for
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references. PAC-Bayesian bounds are used to obtain measurements of the generalization gap in a “data-
dependent” manner. Through optimizing the covariance matrices in both the prior and the posterior, one
can obtain non-vacuous generalization bounds for realistic neural network settings (Dziugaite & Roy, 2017;
Dziugaite et al., 2021). For Gaussian perturbations, one can derive a connection between PAC-Bayes bounds
and the loss Hessian (Tsuzuku et al., 2020), leading to a Hessian-based generalization bound, which is also
non-vacuous in various empirical settings (Ju et al., 2022; Yang et al., 2022).

The idea that injecting noise (through various forms) to neural networks can induce flatness in the found
minima may be traced to very early works such as An (1996), Hinton & Van Camp (1993) (among others).
However, whether or not such injection can improve empirical performance is not always clear. In particular,
Graves (2011) develop a variational inference approach to test different priors and posteriors (e.g., Delta,
Laplace, Uniform, Gauss) on recurrent neural networks. The work of Camuto et al. (2020) proposes a
layer-wise regularization scheme motivated by how weight matrices adapt through deeper layers. Bisla
et al. (2022) conduct empirical studies investigating the connection between sharpness and generalization.
Orvieto et al. (2023) examine Taylor’s expansion of the stochastic objective after noise injection and analyze
the regularization induced by this noise (for various neural network settings). They also empirically analyze
this noise injection, as well as layer-wise noise perturbation, on both convolutional and Residual networks,
to find that layer-wise perturbation can lead to improved generalization and test accuracy.

A popular empirical method for training neural networks is Sharpness-Aware Minimization (SAM), which
is motivated by a constrained min-max optimization problem. The problem itself is computationally in-
tractable (Daskalakis et al., 2021), and there have been theoretical developments in the analysis of SAM
(Wen et al., 2023; Andriushchenko et al., 2024). Bartlett et al. (2023), considering a convex quadratic func-
tion, finds that the stationary point of SAM oscillates locally, according to the eigenvector corresponding to
the largest eigenvalue. This behavior is also noted in simulations. One insight from our empirical analysis is
that examining the min-averaging formulation can lead to algorithms that perform comparably with SAM
empirically. Thus, we believe this offers a new perspective to the existing literature, which may be worth
further investigation in future work.

The interplay between Hessian and optimization is recently examined through the Edge of Stability (Cohen
et al., 2021), which is inverse to the operator norm of the Hessian matrix. The work of Long & Bartlett (2023)
identifies the Edge of Stability regime for the SAM algorithm, which has a few distinguishing properties in
contrast to gradient descent. Besides, there have been studies using Gaussian smoothing to estimate gradients
in zeroth-order optimization (Nesterov & Spokoiny, 2017).

The query complexity of finding stationary points of nonconvex functions has been studied in recent work;
see, e.g., Carmon et al. (2020) and references therein. Our analysis is restricted to first-order oracles, and
there may well be other statistical query models worth considering (Ge et al., 2015; Jin et al., 2017) and
higher-order local minimum (Anandkumar & Ge, 2016). There seems to be a rich connection between
generalization and optimization via the Hessian, which would be interesting to explore in future studies. For
instance, it may be worth considering how one might set the covariance of the noise perturbation—A recent
work by Möllenhoff & Khan (2023) sets the off-diagonals of the variance as zero to simplify the choice set.

3 Algorithm

We describe the design of the algorithm. Its regularization of the Hessian matrix can be seen through the
following proposition, stated for the completeness of this paper.1 We state a few standard notations first.
Given two matrices X, Y , let ⟨X, Y ⟩ = Tr[X⊤Y ] denote the matrix inner product of X and Y . Let ∥X∥
denote the spectral norm (largest singular value) of X. We use the big-O notation f(x) = O(g(x)) to indicate
that there exists a fixed constant C independent of x such that f(x) ≤ C · g(x) for large enough values of x.

Proposition 3.1. Suppose f(W ) is twice-differentiable in W . Let Σ denote a d by d positive semi-
definite matrix. For a random vector U sampled from a Gaussian distribution P = N (0, Σ), we have that

1See also Theorem 1, Orvieto et al. (2023), who derive a similar result for the standard Gaussian, but without the negative
perturbation of W − U .
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E
[ 1

2 (f(W + U) + f(W − U))
]

= f(W ) + 1
2 ⟨Σ, ∇2f(W )⟩ + O(∥Σ∥3/2) holds w.h.p. over the randomness of

the vector U .

Proof. Given a random perturbation U whose magnitude is small, the Taylor’s expansion implies f(W +U) =
f(W ) + ⟨U, ∇f(W )⟩ + 2−1U⊤∇2f(W )U + O(∥Σ∥3/2). Likewise, one can apply this expansion to f(W − U)
to get f(W ) − ⟨U, ∇f(W )⟩ + 2−1U⊤∇2f(W )U . Thus, in expectation over U , using the fact that E [U ] = 0
and E

[
UU⊤] = Σ, we may conclude E

[
1
2

(
f(W + U) + f(W − U)

)]
is equal to f(W ) + 1

2 ⟨Σ, ∇2f(W )⟩ +

O(∥Σ∥3/2). This completes the proof.

Notice that the above differs from (naively) injecting noise to the gradient, as we also inject noise in the
negative direction.2 However, there is still a gap between the value of F (W ) and f(W ) plus the Hessian
regularization, (σ2/2) Tr[∇2f(W )], due to the expansion error term. Next, we validate that this error term
is negligible in a few real scenarios:

• A two-layer Multi-Layer Perceptron (MLP) trained on the MNIST digit classification data set;

• A twelve-layer BERT-Base model trained on the MRPC sentence classification data set (from the
GLUE benchmark);

• A two-layer Graph Convolutional Network (GCN) trained on the COLLAB node classification data
set (from TUDataset).

In more detail, we set both MLP and GCN with a hidden dimension of 128 for model architectures and
initialize them randomly. We initialize the BERT model from pretrained BERT-Base-Uncased. We train
each model on the provided training set for the training process until the training loss is close to zero.
Specifically, we train the MLP, BERT, and GCN models for 30, 10, and 100 epochs. We use the model of
the last epoch to measure ϵ.

We first perturb the model weights by injecting isotropic Gaussian noise into them. We then compute
F (W ) − f(W ), averaged over 100 independent runs. We measure Tr[∇2f ] as the average over the training
data set. The comparisons are shown in Table 1.

Table 1: We sample 100 perturbations and compute the averaged perturbed loss values. We measure the
Hessian trace using Hessian vector product computations in PyTorch (the reported values are rescaled by
102).

MNIST, MLP MRPC, BERT-Base-Uncased COLLAB, GCN

σ F − f σ2

2 Tr[∇2] σ F − f σ2

2 Tr[∇2] σ F − f σ2

2 Tr[∇2]

0.020 1.22 ± 0.27 0.96 0.0070 0.83 ± 0.31 0.95 0.040 2.97 ± 0.97 2.78
0.021 1.24 ± 0.26 1.06 0.0071 0.88 ± 0.31 0.98 0.041 2.66 ± 1.41 2.92
0.022 1.37 ± 0.42 1.17 0.0072 0.93 ± 0.32 1.01 0.042 3.63 ± 0.86 3.06
0.023 1.42 ± 0.49 1.28 0.0073 0.98 ± 0.34 1.03 0.043 2.43 ± 1.09 3.21
0.024 1.52 ± 0.46 1.39 0.0074 1.04 ± 0.35 1.06 0.044 2.87 ± 1.11 3.36
0.025 1.75 ± 0.47 1.51 0.0075 1.10 ± 0.36 1.09 0.045 2.98 ± 0.92 3.51
0.026 1.82 ± 0.38 1.63 0.0076 1.17 ± 0.38 1.12 0.046 4.14 ± 1.05 3.67
0.027 2.09 ± 0.35 1.76 0.0077 1.24 ± 0.40 1.15 0.047 3.13 ± 1.09 3.83
0.028 2.15 ± 0.49 1.89 0.0078 1.31 ± 0.42 1.18 0.048 4.55 ± 0.89 4.00
0.029 2.44 ± 0.75 2.03 0.0079 1.39 ± 0.44 1.21 0.049 4.49 ± 1.60 4.17
0.030 2.58 ± 0.59 2.18 0.0080 1.47 ± 0.47 1.24 0.050 4.82 ± 1.00 4.34

Relative RSS 2.74% 1.03% 2.16%

2We refer the analysis to Section 4.2.
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Figure 2: Comparison between SGD and NSO, for fine-tuning ResNet-34 and BERT-Base, on an image and
a text classification data set, respectively, in terms of the test loss, trace of the Hessian (W taken at last
epoch), and gap between test/training losses.

Remarkably, the comparison suggests that the ϵ is within 3%.3 Based on this comparison, the next question
is how to estimate this Hessian more accurately. Our algorithm thus samples multiple perturbations and
takes their average to reduce the variance.

Next, we state two standard assumptions to set up the analysis of our algorithm.
Assumption 3.2. Given a random seed z, let gz : Rd → Rd be a continuous function that gives an unbiased
estimate of the gradient: Ez [gz(W )] = ∇f(W ), for any W ∈ Rd. Additionally, the variance is bounded in
the sense that Ez

[
∥gz(W ) − ∇f(W )∥2

]
≤ σ2.

Assumption 3.3. Let C, D be fixed, positive constants. Let W0 ∈ Rd denote the initialization. We require
that F (W0) − minW ∈Rd F (W ) ≤ D2. Let ∇f(W ) denote the gradient of f(W ). For any W1 ∈ Rd and
W2 ∈ Rd, we have ∥∇f(W2) − ∇f(W1)∥ ≤ C ∥W2 − W1∥ . A corollary is that ∇F (W ) is also C-Lipschitz.

Illustration. We illustrate a comparison between NSO and SGD in Figure 2. Notice that NSO significantly
reduces Tr[∇2L̂(fW )], the trace of the Hessian of the empirical risk, for W taken at the last epoch, by more
than 60%, while lowering the test loss. The generalization gap lowers by over 20% as well. This improvement
in generalization can be explained by PAC-Bayes analysis (Nagarajan & Kolter, 2020; Dziugaite et al., 2021;
Ju et al., 2022).

3.1 Rates

We now turn to analyzing our algorithm by showing tight convergence rates to stationary points of F . Notice
that our algorithm can be viewed as minimizing f(W ) plus a regularization term on the trace of ∇2f(W ),
multiplied by 2−1σ2. In our experiments, σ is set as a small value, and our goal is to find a stationary
point of F (W ) instead of f(W ) because otherwise, we would not have the desired regularization added to
the Hessian. Concretely, let ϵ > 0 be a small value. W is an ϵ-approximate (first-order) stationary point if
∥∇F (W )∥ ≤ ϵ. For a random sample U ∼ P, denote E[∥U∥2] as H(P).

We start by showing an upper bound on the norm of the gradient, on the solution returned by NSO. Our
result may be viewed as a slight generalization of Theorem 2.1 by Ghadimi & Lan (2013). Notice that we
are studying a radically different setting from that work. We state the result below.
Theorem 3.4. Given Assumptions 3.2 and 3.3, let P be a distribution that is symmetric at zero. There
exists a fixed learning rate η < C−1 such that if we run Algorithm 1 with ηi = η for all i, arbitrary number

3The range of σ2 differs across architectures because of the differing scales of their weights.
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of perturbations k, for T steps, the algorithm returns Wt, where t is a random integer between 1, 2, . . . , T ,
such that in expectation over the randomness of Wt:

E
[
∥∇F (Wt)∥2

]
≤
√

2CD2(σ2 + C2H(P))
kT

+ 2CD2

T
. (3)

To unpack this result, recall that each iteration involves two sources of randomness stemming from gz and
{U

(j)
i }k

j=1, respectively. Let us define

δi = 1
2k

k∑
j=1

(
∇f
(
Wi + U

(j)
i

)
+ ∇f

(
Wi − U

(j)
i

))
− ∇F (Wi),

ξi = 1
2k

k∑
j=1

(
G

(j)
i − ∇f

(
Wi + U

(j)
i

)
− ∇f

(
Wi − U

(j)
i

))
,

for i = 0, . . . , T − 1. One can see that both δi and ξi have mean zero. The former is by the symmetry of P.
The latter is because gz is unbiased under Assumption 3.2. The next result gives their variance.
Lemma 3.5. In the setting of Theorem 3.4, for any i = 1, . . . , T , we have

E
[
∥ξi∥2

]
≤ σ2

k
and E

[
∥δi∥2

]
≤ C2H(P)

k
. (4)

The last step (which is quite standard) is using the smoothness of F to show that ∥∇F (Wt)∥ keep reducing.
For details, see Appendix B.

3.2 Lower Bounds

Next, we construct an example to match the rate of the above analysis, essentially showing that the gradient
norm bounds are tight (under the current assumptions). We use an example from the work of Drori &
Shamir (2020). In particular, the difference here is that we have to deal with the perturbations added to
the objective additionally. For t = 0, 1, . . . , d − 1, let et ∈ Rd be the basis vector in dimension d, whose t-th
coordinate is 1, while the remaining coordinates are all zero. Let f : Rd → R be defined as

f(W ) = 1
2G

⟨W, e0⟩2 +
T −1∑
i=0

hi(⟨W, ei+1⟩), (5)

where hi is a piece-wise quadratic function parameterized by αi, defined as follow:

hi(x) =



Cα2
i

4 |x| ≤ αi,

− C
(

|x|−αi

)2

2 + Cα2
i

4 αi ≤ |x| ≤ 3
2 αi,

C
(

|x|−2αi

)2

2
3
2 αi ≤ |x| ≤ 2αi,

0 2αi ≤ |x|.

One can verify that for each piece above, ∇hi is C-Lipschitz. As a result, provided that G ≤ C−1, ∇f is
C-Lipschitz, based on the definition of f in equation equation 5.

The stochastic function F requires setting the perturbation distribution P. We set P by truncating an
isotropic Gaussian N(0, σ2 Idd) so that the i-th coordinate is at most 2−1αi−1, for i = 1, . . . , T . Additionally,
we set the initialization W0 to satisfy ⟨W0, ei⟩ = 0 for any i ≥ 1 while ⟨W0, e0⟩ ̸= 0. Finally, we choose the
gradient oracle to satisfy that the i-th step’s gradient noise ξi = ⟨ξi, ei+1⟩ei+1, which means that ξi is along
the direction of the basis vector ei+1. In particular, this implies only coordinate i + 1 is updated in step i,
as long as ⟨ξi, ei+1⟩ ≤ 2−1αi.
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Theorem 3.6. Let the learning rates η0, . . . , ηT −1 be at most C−1. Let D > 0 be a fixed value. When
they either satisfy

∑T −1
i=0 ηi ≲

√
kT , or ηi = η < C−1 for any epoch i, then for the above construction, the

following must hold

min
1≤t≤T

E
[
∥∇F (Wt)∥2

]
≥ D

√
Cσ2

32k · T
. (6)

We remark that the above construction requires T ≤ d. Notice that this is purely for technical reasons due
to the construction. It is an interesting question whether this condition can be removed or not. We briefly
illustrate the key ideas of the result. At step i, the gradient noise ξi plus the perturbation noise is less than
2−1αi + 2−1αi = αi at coordinate i + 1 (by triangle inequality). Thus, h′

i(⟨Wt, ei+1⟩) = 0, which holds for
all prior update steps. This implies

∇f(Wi) = G−1⟨Wi, e0⟩.

Recall from Assumption 3.3 that F (W0) ≤ D2. This condition imposes how large the αi’s can be. In
particular, in the proof we will set αi = 2ηiσ/

√
k. Then, based on the definition of f(W0),

hi(⟨W0, ei+1⟩) = Cα2
i

4 , since ⟨W0 + U, ei+1⟩ ≤ αi.

In Lemma C.1, we then argue that the learning rates in this case must satisfy
∑T −1

i=0 ηi ≤ O(
√

T ).

When the learning rate is fixed and at least Ω(T −1/2), we construct a piece-wise quadratic function (similar
to equation equation 5), now with a fixed α. This is described in Lemma C.2. In this case, the gradient
noise grows by 1 − C−1η up to T steps. We then carefully set α to lower bound the norm of the gradient.
Combining these two cases, we conclude the proof of Theorem 3.6. For details, see Appendix C. As is typical
in lower-bound constructions, our result holds for a specific instance that covers a specific range of learning
rates. It may be an interesting question to examine a broader range of instances for future work.

The proof can also be extended to adaptive learning rate schedules. Notice that the above construction
holds for arbitrary learning rates defined as a function of previous iterates. Then, we set the width of each
function ht, αt, proportional to ηt > 0, for any ηt that may depend on previous iterates, as long as they
satisfy the constraint that

∑T −1
i=0 ηi ≤ O(

√
T ).

Momentum. We can also show a similar lower bound for the momentum update rule; Recall this is defined
as

Mi+1 = µMi − ηiGi, and Wi+1 = Wi + Mi+1, (7)

for i = 0, 1, . . . , T − 1, where Gi is the specific gradient at step i. To handle this case we will need a more
fine-grained control on the gradient, so we consider a quadratic function as f(W ) = C

2 ∥W∥2
.4 We state the

following, whose proof can be found in Appendix D.
Theorem 3.7. For the f function defined above, and the iterates W1, . . . , WT generated by equation equa-
tion 7, we must have: min1≤t≤T E

[
∥∇F (Wt)∥2

]
≥ O

(
D
√

Cσ2

k·T
)
.

4 Experiments

We now turn to the empirical analysis of our proposed algorithm. We will illustrate the simulation following
Example 1.1. We find that, starting at an isotropic Gaussian initialization, gradient descent can minimize
the training error to zero, but the validation error remains non-negligible, suggesting the found solution does
not “generalize.” By contrast, Weight-Perturbed GD (which injects noise to the gradient) and our algorithm
(NSO) manage to find solutions with low training and validation errors. Further, our algorithm finds a
solution with even lower validation errors than WP GD.

4We remark that a quadratic function with a generalized diagonal covariance is used in Long & Bartlett (2023) to derive
the Edge of Stability of SAM.
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Next, we study the behavior of our algorithm on a wide range of real-world data sets. Here, we find that
on both natural and medical image classification data sets, WP SGD provides marginal gains over SGD, in
terms of their test performance. By contrast, our algorithm (recall that it uses both negative perturbations
and multiple noise injections to reduce the variance of the gradient) can significantly improve upon SGD.

• Across various image classification data sets, NSO can outperform four previous sharpness-reducing
methods by up to 1.8%. We control the amount of computation in the experiments to allow for a
fair comparison.

• We justify each step of the algorithm design, detailing their incremental effect on the final perfor-
mance.

Third, we notice that NSO regularizes the Hessian of the loss surface much more significantly, by noting
reductions in the trace (and the largest eigenvalue) of the (loss) Hessian by 17.7% (and 12.8%), respectively.
Our method is compatible with existing regularization techniques, including weight decay, distance-based
regularization, and data augmentation, as combining these techniques leads to even greater improvement in
both the Hessian regularization and the test performance.

4.1 Simulations

As discussed briefly in Example 1.1, the Hessian regularization is similar to nuclear norm regularization in
the matrix sensing problem. We now flesh this out by conducting a numerical simulation. We generate a
low-rank matrix U⋆ ∈ Rd×r from the isotropic Gaussian. We set d = 100 and r = 5. Then, we test three
algorithms: Gradient Descent (GD), Weight-Perturbed Gradient Descent (WP GD), and Noise Stability
Optimization (NSO). We use an initialization U0 ∈ Rd×d where each matrix entry is sampled independently
from N (0, 1) (the standard Gaussian).

Recall that WP GD and NSO require setting the noise variance σ. We choose σ between
0.001, 0.002, 0.004, 0.008, 0.0016. NSO additionally requires setting the number of sampled perturbations
k; We choose k = 1 (for faster computation).

Our findings are illustrated in Figure 3. We can see that all three algorithms can reduce the training MSE
to near zero, as shown in Figure 3a. Regarding the validation loss, GD suffers from overfitting the training
data, while both WP GD and NSO can generalize to the validation samples. Moreover, NSO manages to
reduce this validation loss further.
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Figure 3: Comparing the training and validation losses between GD, NSO, and Weight Perturbed GD.

4.2 Training Neural Networks

Next, we study the behavior of noise injection for training neural networks. We focus on a setting concerning
the fine-tuning of pre-trained neural networks, as overfitting is quite common in this setting, hence improving
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generalization is crucial. We consider fine-tuning a pre-trained ResNet-34 on image classification data sets.
The data sets include natural image classification (namely, Aircraft, Caltech-256, Indoor, CIFAR-10, and
CIFAR-100), and medical image classification (namely, retina images for diabetic retinopathy classification),
downloaded online. For details, see Appendix E.

We use the same training hyper-parameters for the following experiments, including a learning rate of 0.02,
batch size of 32, and training epochs of 30. We reduce the learning rate by 0.1 every 10 epochs. We
choose these hyper-parameters based on a grid search on the validation split. The value range for each
hyper-parameter is described in Appendix E. We do not use momentum or weight decay (or other advanced
techniques in this study), but we will discuss them in the next subsection.

4.2.1 Comparison to Perturbed SGD

We first compare the effect of Weight Perturbed SGD (WP SGD) with SGD. The former samples one
perturbation to the model weights in each iteration and conducts SGD using the gradients on the perturbed
weights. We compare three image classification data sets, including the aircraft recognition task, the indoor
scene recognition task, and the medical image classification task. The results on other datasets are expected
to be similar. Recall that this requires setting the standard deviation σ of P. We sample perturbation from
an isotropic Gaussian distribution and pick σ based on validation results between 0.008, 0.01, and 0.012. As
shown in Table 2, WP SGD only performs slightly better than SGD.

In addition, we evaluate several alternative types of distributions for sampling the noise perturbations,
including Laplace, Uniform, and Binomial distributions. For each distribution, we also select its standard
deviation between 0.008, 0.01, and 0.012 using a validation set. We find that using the Laplace or Uniform
distribution achieves a performance comparable to Gaussian. However, WP SGD struggles to converge using
the Binomial distribution, resulting in significantly lower training and test results.

Table 2: Comparing Weight Perturbed SGD (WP SGD) to SGD, across four types of perturbation distri-
butions (denoted as P), measured over three image classification data sets. The results and their standard
deviations are averaged over five independent seeds.

Aircrafts Indoor Retina
P Train Acc. Test Acc. Train Acc. Test Acc. Train Acc. Test Acc.

SGD None 100.0% ± 0.0 59.8% ± 0.7 100.0% ± 0.0 76.0% ± 0.4 100.0% ± 0.0 61.7% ± 0.8
WP SGD Gaussian 98.4% ± 0.2 60.4% ± 0.1 99.0% ± 0.3 76.3% ± 0.0 100.0% ± 0.0 62.3% ± 0.5
WP SGD Laplace 98.3% ± 0.1 60.3% ± 0.3 98.9% ± 0.1 76.4% ± 0.3 100.0% ± 0.0 62.0% ± 0.1
WP SGD Uniform 98.6% ± 0.3 60.3% ± 0.5 98.6% ± 0.3 76.6% ± 0.1 100.0% ± 0.0 62.3% ± 0.0
WP SGD Binomial 19.6% ± 0.1 11.3% ± 0.1 18.2% ± 0.9 10.7% ± 0.1 58.1% ± 0.1 57.1% ± 0.0

4.2.2 Comparison to Sharpness Reducing Training Methods

We now compare Algorithm 1 (or NSO in short) with four established training methods, which are designed
to reduce the sharpness of the loss surface of a neural network, including Sharpness-Aware Minimization
(SAM) (Foret et al., 2021), Adaptive SAM (ASAM) (Kwon et al., 2021), Random SAM (RSAM) (Liu et al.,
2022), and Bayesian SAM (BSAM) (Möllenhoff & Khan, 2023). These algorithms all compute gradient
twice in each iteration. When comparing their comparison with our algorithm, we make sure to use the
same amount of computation, by setting the number of sampled injections to be k = 1. Thus, all of these
methods will use twice the cost of SGD in the end. For NSO, we sample perturbation from an isotropic
Gaussian distribution and tune σ between 0.008, 0.01, and 0.012 using a validation split. For SAM, we tune
the ℓ2 norm of the perturbation between 0.01, 0.02, and 0.05. Since each other training method involves its
own set of hyper-parameters, we make sure they are carefully selected. The details are tedious; See Appendix
E for the range of values used for each hyper-parameter. To calibrate these results, we include both SGD
and Label Smoothing (LS), as they are both widely used in practice.

We report the overall comparison in Table 3. In a nutshell, NSO performs competitively with all the baseline
variants. Across these six data sets, NSO can achieve up to 1.8% accuracy gain, with an average test
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accuracy improvement of 0.9%, relative to the best-performing baselines. The results are aggregated over
five independent runs, suggesting that our findings are statistically significant.

Table 3: Comparison between NSO, SGD, Label Smoothing (LS), SAM (and its variants including Adaptive
SAM, Random-SAM, and Bayesian SAM), on six image classification data sets, by fine-tuning a pre-trained
ResNet-34 neural network on them. In this table, we report the test accuracy, the trace of the Hessian
Tr[∇2L̂(fW )] (for W found in the last epoch of each training algorithm), and also the largest eigenvalue of
the Hessian λ1[∇2L̂(fW )]. For the latter two measures, lower values indicate wider loss surfaces. In all test
cases, we report the averaged result over five random seeds, and the standard deviation across these five
runs. The results indicate that NSO outperforms the baselines in terms of the three metrics.

CIFAR-10 CIFAR-100 Aircrafts Caltech-256 Indoor Retina

Basic
Stats

Train 45,000 45,000 3,334 7,680 4,824 1,396
Val. 5,000 5,000 3,333 5,120 536 248
Test 10,000 10,000 3,333 5,120 1,340 250
Classes 10 100 100 256 67 5

Test
Acc.
(↑)

SGD 95.5% ± 0.1 82.3% ± 0.1 59.8% ± 0.7 75.5% ± 0.1 76.0% ± 0.4 61.7% ± 0.8
LS 96.7% ± 0.1 83.8% ± 0.1 58.5% ± 0.2 76.0% ± 0.2 75.9% ± 0.3 63.6% ± 0.7
SAM 96.6% ± 0.4 83.5% ± 0.1 61.5% ± 0.8 76.3% ± 0.1 76.6% ± 0.5 64.4% ± 0.6
ASAM 96.7% ± 0.1 83.8% ± 0.1 62.0% ± 0.6 76.7% ± 0.2 76.7% ± 0.3 64.8% ± 0.3
RSAM 96.4% ± 0.1 83.7% ± 0.2 60.5% ± 0.5 75.8% ± 0.2 76.1% ± 0.7 65.4% ± 0.3
BSAM 96.4% ± 0.0 83.5% ± 0.2 60.5% ± 0.5 76.3% ± 0.3 75.7% ± 0.7 64.9% ± 0.0
NSO 97.1% ± 0.2 84.3% ± 0.2 62.3% ± 0.3 77.4% ± 0.3 77.4% ± 0.5 66.6% ± 0.7

Trace
×103 (↓)

SGD 4.7 ± 0.0 14.4 ± 0.3 6.2 ± 0.0 4.1 ± 0.0 4.1 ± 0.0 30.4 ± 0.2
LS 2.9 ± 0.0 11.3 ± 0.4 6.3 ± 0.0 3.8 ± 0.0 4.2 ± 0.0 19.2 ± 0.1
SAM 2.8 ± 0.0 10.2 ± 0.4 5.0 ± 0.0 3.8 ± 0.0 3.8 ± 0.0 16.4 ± 0.2
ASAM 2.8 ± 0.0 10.5 ± 0.3 5.0 ± 0.0 3.8 ± 0.0 3.1 ± 0.0 14.7 ± 0.1
RSAM 2.7 ± 0.0 10.3 ± 0.5 5.5 ± 0.2 3.5 ± 0.0 4.1 ± 0.0 19.9 ± 0.5
BSAM 3.0 ± 0.1 10.3 ± 0.5 5.6 ± 0.1 3.9 ± 0.0 3.5 ± 0.0 18.2 ± 0.3
NSO 2.2 ± 0.0 5.9 ± 0.0 4.2 ± 0.0 3.3 ± 0.0 3.0 ± 0.0 11.6 ± 0.0

λ1
×103 (↓)

SGD 1.5 ± 0.0 4.9 ± 0.1 1.2 ± 0.0 1.1 ± 0.0 1.2 ± 0.1 9.0 ± 0.1
LS 1.4 ± 0.0 3.5 ± 0.1 1.3 ± 0.1 1.0 ± 0.1 0.9 ± 0.1 4.9 ± 0.0
SAM 1.4 ± 0.0 2.8 ± 0.1 0.9 ± 0.1 1.0 ± 0.0 1.0 ± 0.1 4.2 ± 0.0
ASAM 1.4 ± 0.1 2.8 ± 0.1 0.6 ± 0.1 0.8 ± 0.0 0.7 ± 0.1 4.2 ± 0.0
RSAM 1.4 ± 0.1 3.0 ± 0.1 0.9 ± 0.1 0.8 ± 0.1 1.0 ± 0.0 5.0 ± 0.0
BSAM 1.4 ± 0.0 3.0 ± 0.1 1.0 ± 0.1 0.9 ± 0.0 1.0 ± 0.1 4.3 ± 0.2
NSO 1.1 ± 0.1 2.2 ± 0.1 0.5 ± 0.1 0.6 ± 0.0 0.7 ± 0.1 3.9 ± 0.0

4.2.3 Ablation Studies

Next, we conduct ablation studies of two components in NSO, i.e., using negative perturbations and sampling
multiple perturbations in each iteration, showing both are essential.

Comparing using vs. not using negative perturbations. Recall that our algorithm uses negative
perturbations to zero out the first-order order in Taylor’s expansion of F (W ), leading to a better estima-
tion of ∇F (W ). We validate this by comparing the performance between using and not using the negative
perturbation. To ensure that both use the same amount of computation, we sample two independent pertur-
bations when not using negative perturbations. We find that using negative perturbations achieves a 1.8%
improvement in test accuracy on average over the one without negative perturbations.

Varying k. Furthermore, increasing the number of perturbations k reduces the variance of the estimated
∇F (W ). Thus, we consider increasing k in NSO and compare that with WP SGD with comparable compu-
tation. We find that using k = 2 perturbations improves the test accuracy by 1.2% on average compared to
k = 1. However, increasing k over 3 brings no obvious improvement (but adds more compute cost).
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Figure 4: The Hessian regularization can be used in compatible with weight decay, ℓ2 distance-based regu-
larization, and data augmentation. We illustrate this for fine-tuning a pre-trained ResNet-34 neural network
on an image classification data set. Combining each regularization method with ours generally leads to lower
test losses and lowers the trace of the Hessian of the loss surface. Note that the shaded area indicates the
deviation across five independent runs, suggesting the statistical significance of these findings.

4.3 Compatibility with Alternative Regularization

Table 3 also shows the regularization effect of each training method on the Hessian. We compute the
trace and the λ1 of the loss Hessian matrix using power iteration implemented by Hessian vector product
operations in PyTorch. Notably, in the middle and lower tables, where lower sharpness means better, NSO
can significantly reduce them compared to the baselines, averaging 17.7% (on trace) and 12.8% (on λ1).

The regularization on the Hessian can serve as a complement to existing regularization methods, including
weight decay, distance-based regularization, and data augmentation. We combine NSO with these methods
in the same experiment setup to validate this.5

The results are shown in Figure 4. We confirm that combining our algorithm with each regularization method
further reduces the trace of the loss Hessian matrix. Quite strikingly, this leads to 16.3% lower test loss
of the fine-tuned neural network, suggesting that our method can be used on top of these already existing
regularization methods.

5 Conclusion

This paper revisits the injection of perturbation to the weight matrices of a neural network. This approach
can be rooted in the PAC-Bayes generalization framework, which provides an algorithmic lens to the search
for wide minima through regularizing the Hessian. Through extensive empirical analysis in the fine-tuning
of pre-trained neural networks, we demonstrate that, a modified version of the noise injection, can indeed be
used to effectively regularize the Hessian, improving upon SGD and perturbed SGD. Compared with several
sharpness-reducing methods, the modified algorithm uses the same compute cost (twice the cost of running
SGD) and yields (statistically significant) empirical improvement. This algorithm’s convergence analysis is
provided.

5For distance-based regularization, we penalize the ℓ2 distance from the fine-tuned model to the pre-trained initialization.
For data augmentation, we use a popular scheme that sequentially applies random horizontal flipping and random cropping to
each training image.
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A Details for Example 1.1

In this section, we expand on Example 1.1. Concretely, for i = 1, 2, . . . , n, let Ai ∈ Rd×d be a Gaussian
random matrix, whose entries are drawn independently from an isotropic Gaussian with mean zero and
variance one. Prior work (Gunasekar et al., 2017; Li et al., 2018) has shown that the loss surface of L̂(W )
may have spurious solutions whose empirical risk is zero, but differ from the true solution (even after
rotation). Below, we argue that among all minimizers such that L̂(W ) ≤ ϵ, U⋆ incurs the lowest Hessian
trace among all d by d matrices. For a small enough ϵ, the Taylor’s expansion of L̂(W + ϵ) is:

L̂(W + ϵ) = L̂(W ) + ⟨ϵ, ∇L̂(W )⟩ + 1
2ϵ⊤∇2L̂(W )ϵ + O

(
∥ϵ∥3 + ∥ϵ∥4

)
. (8)

Provided that W is a minimizer of L̂(W ), we must have L̂(W ) = 0. Consequently, the gradient of L̂(W ),
∇L̂(W ), is equal to zero:

∇L̂(W ) = 1
n

n∑
i=1

(
⟨Ai, WW ⊤⟩ − yi

)
AiW = 0. (9)

Therefore, equation equation 8 primarily depends on the second-order Hessian term. We formalize this and
state the proof below for completeness.
Proposition A.1. In the setting of Example 1.1, for any W that satisfies L̂(W ) = 0, the following must
hold with high probability:

Tr
[
∇2L̂(U⋆)

]
≤ Tr

[
∇2L̂(W )

]
+ O(n−1/2). (10)

Proof. We can calculate the gradient as

∇L̂(W ) = 1
n

n∑
i=1

(⟨Ai, WW ⊤⟩ − yi)AiW. (11)

For a particular entry Wj,k of W , for any 1 ≤ j, k ≤ d, the derivative of the above gradient with respect to
Wj,k is

1
n

n∑
i=1

(
[AiW ]j,kAiW +

(
⟨Ai, WW ⊤⟩ − yi

)∂(AiW )
∂Wj,k

)
. (12)

When L̂(W ) is zero, the second term of equation equation 12 above must be zero, because ⟨Ai, WW ⊤⟩ is
equal to yi, for any i = 1, . . . , n.

Now, we use the assumption that Ai is a random Gaussian matrix, in which every entry is drawn from a
normal distribution with mean zero and variance one. Notice that the expectation of ∥AiW∥2

F satisfies:

E
[
∥AiW∥2

F

]
= E

[
Tr
[
W ⊤A⊤

i AiW
]]

= Tr
[
W ⊤(d · Idd×d)W ⊤] = d · Tr

[
W ⊤W

]
= d ∥W∥2

F .

Thus, by concentration inequality for χ2 random variables (e.g., Wainwright (2019, equation (2.19))), the
following holds for any 0 < ϵ < 1,

Pr
[∣∣∣∣∣ 1n

n∑
i=1

∥AiW∥2
F − d ∥W∥2

F

∣∣∣∣∣ ≥ ϵd ∥W∥2
F

]
≤ 2 exp

(
−nϵ2

8

)
. (13)

This implies that ϵ must be smaller than O(n−1/2) with high probability. As a result, the average of ∥AiW∥2
F

must be d ∥W∥2
F plus some deviation error that scales with n−1/2 times the expectation.

By Theorem 3.2, Recht et al. (2010), the minimum Frobenius norm (∥W∥2
F

) solution that satisfies L̂(W ) = 0
(for Gaussian random matrices) is precisely U⋆. Thus, we conclude that equation equation 10 holds.
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Remark A.2. The same conclusion holds when we replace the trace with the largest eigenvalue of the
Hessian in equation equation 10. To see this, we can focus on the first term of equation equation 12. We can
look at the quadratic form of the Hessian in order to find the maximum eigenvalue. Let u be a d2 dimension
vector with length equal to one, ∥u∥ = 1. Based on equation equation 12, one can derive that:

λ1(∇2L̂(W )) = max
u∈Rd2 :∥u∥=1

u⊤∇2L̂(W )u = max
u∈Rd2 :∥u∥=1

1
n

n∑
i=1

⟨AiW, u⟩2 ≥ 1
d2n

n∑
i=1

∥AiW∥2
F .

The last step is by setting u = d−11d2 , whose length is equal to one.

B Proof of Theorem 3.4

First, let us show that ∇F is C-Lipschitz. To see this, we apply the Lipschitz condition of the gradient inside
the expectation of F (W ). For any W1, W2 ∈ Rd, by definition,

∥∇F (W1) − ∇F (W2)∥ =
∥∥∥∥∇ E

U∼P
[f(W1 + U)] − ∇ E

U∼P
[f(W2 + U)]

∥∥∥∥
=
∥∥∥∥ E

U∼P
[∇f(W1 + U) − ∇f(W2 + U)]

∥∥∥∥
≤ E

U∼P
[∥∇f(W1 + U) − ∇f(W2 + U)∥] ≤ C ∥W1 − W2∥ .

Next, we provide the proof for bounding the variance of δi and ξi for i = 0, 1, . . . , T − 1.

Proof. First, we can see that

E
U1

i
,...,Uk

i

[
∥δi∥2

]
= E

U1
i

,...,Uk
i


∥∥∥∥∥∥ 1

2k

k∑
j=1

(
∇f(Wi + U j

i ) + ∇f(Wi − U j
i ) − 2∇F (Wi)

)∥∥∥∥∥∥
2


= 1
k2

k∑
j=1

E
Uj

i

[∥∥∥∥1
2

(
∇f(Wi + U j

i ) + ∇f(Wi − U j
i ) − 2∇F (Wi)

)∥∥∥∥2
]

(14)

= 1
k

E
U1

i

[∥∥∥∥1
2

(
∇f(Wi + U1

i ) + ∇f(Wi − U1
i )
)

− ∇F (Wi)
∥∥∥∥2
]

(15)

where in the second line we use that U j1
i and U j2

i are independent when j1 ̸= j2, in the last line we use fact
that U1

i , . . . , Uk
i are identically distributed. In the second step, we use the fact that for two independent

random variables U, V , and any continuous functions h(U), g(V ), h(U) and g(V ) are still independent (recall
that f is continuous since it is twice-differentiable). We include a short proof of this fact for completeness.
If U and V are independent, we have Pr[U ∈ A, V ∈ B] = Pr[U ∈ A] · Pr[V ∈ B], for any A, B ∈ Borel(R).
Thus, if h and g are continuous functions, we obtain

Pr[h(U) ∈ A, g(V ) ∈ B] = Pr[U ∈ h−1(A), V ∈ g−1(B)]
= Pr[U ∈ h−1(A)] · Pr[V ∈ g−1(B)] = Pr[h(U) ∈ A] · Pr[g(V ) ∈ B].

Thus, we have shown that

E
[
∥δi∥2

]
= 1

k
E

U∼P

[∥∥∥∥1
2

(
∇f(Wi + U) + f(Wi − U)

)
− ∇F (Wi)

∥∥∥∥2
]

. (16)

Next, we deal with the variance of the two-point stochastic gradient. We will show that

E
U

[∥∥∥∥1
2

(
∇f(W + U) + ∇f(W − U)

)
− ∇F (W )

∥∥∥∥2
]

≤ C2H(P). (17)
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We mainly use the Lipschitz continuity of the gradient of F . The left-hand side of equation equation 17 is
equal to

E
U

[∥∥∥∥1
2

(
∇f(W + U) − ∇F (W )

)
+ 1

2

(
∇f(W − U) − ∇F (W )

)∥∥∥∥2
]

≤E
U

[
1
2 ∥∇f(W + U) − ∇F (W )∥2 + 1

2 ∥∇f(W − U) − ∇F (W )∥2
]

(by Cauchy-Schwartz)

=1
2 E

U

[
∥∇f(W + U) − ∇F (W )∥2

]
(by symmetry of P since it has mean zero)

=1
2 E

U

[∥∥∥∥ E
U ′∼P

[∇f(W + U) − ∇f(W + U ′)]
∥∥∥∥2
]

≤1
2 E

U

[
E

U ′∼P

[
∥∇f(W + U) − ∇f(W + U ′)∥2

]]
≤1

2 E
U,U ′

[
C2 ∥U − U ′∥2

]
= 1

2C2 E
U,U ′

[
∥U∥2 + ∥U ′∥2

]
= C2H(P) (by equation equation 19)

As for the variance of ξi, we note that U
(1)
i , . . . , U

(j)
i are all independent from each other. Therefore,

E{
U

(j)
i

,z
(j)
i

}k

j=1

[
∥ξi∥2

]
= 1

4k
E

U,z

[
∥gz(W + U) − ∇f(W + U) + gz(W − U) − f(W − U)∥2

]
≤ 1

2k
E

U,z

[
∥gz(W + U) − ∇f(W + U)∥2 + ∥gz(W − U) − ∇f(W − U)∥2

]
≤σ2

k
.

The first step uses the fact that both gz(·) and f(·) are continuous functions The second step above uses
Cauchy-Schwartz inequality. The last step uses the variance bound of gz(·), Thus, the proof is finished.

Next, we show the convergence of the gradient, which is based on the classical work of Ghadimi & Lan
(2013).
Lemma B.1. In the setting of Theorem 3.4, for any η0, · · · , ηT −1 less than C−1 and a random variable
according to a distribution Pr[t = j] = ηj∑T −1

i=0
ηi

, for any j = 0, . . . , T − 1, the following holds:

E
[
∥∇F (Wt)∥2

]
≤ 2C∑T −1

i=0 ηi

D2 +
C
∑T −1

i=0 η2
i

(
E
[
∥δi∥2

]
+ E

[
∥ξi∥2

] )
∑T −1

i=0 ηi

. (18)

Proof. The smoothness condition in Assumption 3.3 implies the following domination inequality:

|F (W2) − F (W1) − ⟨∇F (W1), W2 − W1⟩| ≤ C

2 ∥W2 − W1∥2
. (19)

See, e.g., Bach (2021, Chapter 5). Here, we use the fact that ∇F (W ) is L-Lipschitz continuous. Based on
the above smoothness inequality, we have

F (Wi+1)

≤F (Wi) + ⟨∇F (Wi), Wi+1 − Wi⟩ + C

2 η2
i

∥∥∥∥1
2

(
∇f(Wi + Ui) + ∇f(Wi − Ui)

)
+ ξi

∥∥∥∥2

=F (Wi) − ηi⟨∇F (Wi), δi + ξi + ∇F (Wi)⟩ + Cη2
i

2 ∥δi + ξi + ∇F (Wi)∥2

=F (Wi) −
(

ηi − Cη2
i

2

)
∥∇F (Wi)∥2 −

(
ηi − Cη2

i

)
⟨∇F (Wi), δi + ξi⟩ + Cη2

i

2 ∥δi + ξi∥2
.

17
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Summing up the above inequalities for i = 0, 1, . . . , T − 1, we obtain
T −1∑
i=0

F (Wi+1) ≤
T −1∑
i=0

F (Wi) −
T −1∑
i=0

(
ηi − Cη2

i

2

)
∥∇F (Wi)∥2

−
T −1∑
i=0

(
ηi − Cη2

i

)
⟨∇F (Wi), δi + ξi⟩ +

T −1∑
i=0

Cη2
i

2 ∥δi + ξi∥2
,

which implies that
T −1∑
i=0

(
ηi − Cη2

i

2

)
∥∇F (Wi)∥2 (20)

≤F (W0) − F (WT ) −
T −1∑
i=0

(
ηi − Cη2

i

)
⟨∇F (Wi), δi + ξi⟩ + C

2

T −1∑
i=0

η2
i ∥δi + ξi∥2

≤D2 −
T −1∑
i=0

(
ηi − Cη2

i

)
⟨∇F (Wi), δi + ξi⟩ + C

2

T −1∑
i=0

η2
i ∥δi + ξi∥2

. (21)

where in the last step, we use the fact that

F (W0) − F (WT ) ≤ F (W0) − min
W ∈Rd

F (W ) ≤ D2.

For any t = 0, 1, . . . , T − 1, notice that as long as 0 < ηt ≤ 1
C , then

ηt ≤ 2ηt − Cη2
t .

Hence, we have

1
2

T −1∑
t=0

ηt ∥∇F (Wt)∥2 ≤
T −1∑
t=0

(
ηt − Cη2

t

2

)
∥∇F (Wt)∥2

,

which implies that

1
2

T −1∑
i=0

ηi ∥∇F (Wi)∥2 ≤ D2 −
T −1∑
i=0

(
ηi − Cη2

i

)
⟨∇F (Wi), δi + ξi⟩ + C

2

T −1∑
i=0

η2
i ∥δi + ξi∥2

. (22)

Additionally, since Ut is drawn from a distribution with mean zero. Hence, by symmetry, we get that

E
Ut

[δt] = 1
2 E

Ut

[∇f(Wt − Ut) − ∇f(Wt + Ut)] = 0. (23)

Thus, if we take the expectation over U0, U1, . . . , UT −1, ξ0, ξ1, . . . , ξT −1, then

E [⟨∇F (Wi), δi + ξi⟩] = 0.

Recall that t is a random variable whose probability mass is specified in Lemma B.1. We can write equation
equation 22 equivalently as (below, we take expectation over all the random variables along the update since
Wt is a function of the previous gradient updates, for each t = 0, 1, . . . , T − 1, recalling that Pr[t = i] =

ηi∑T −1
j=0

ηj

)

E
t; U0,...,UT −1,ξ0,ξ1,...,ξT −1

[
∥∇F (Wt)∥2

]
=

∑T −1
i=0 ηi E

[
∥∇F (Wi)∥2

]
∑T −1

i=0 ηi

≤
2D2 + C

∑T −1
i=0 η2

i E
[
∥δi + ξi∥2

]
∑T −1

i=0 ηi

=
2D2 + C

∑T −1
i=0 η2

i

(
E
[
∥δi∥2

]
+ E

[
∥ξi∥2

] )
∑T −1

i=0 ηi

.
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where we use the fact that δi and ξi are independent for any i. Hence, we have finished the proof of equation
equation 18.

Based on the above result, we now finish the proof of the upper bound in Proposition 3.4.

Proof. Let the step sizes be equal to a fixed η for all epochs. Thus, Eq. equation 18 becomes

E
[
∥∇F (Wt)∥2

]
≤ 2

Tη
D2 + Cη

T

T −1∑
i=0

(
E
[
∥δi∥2

]
+ E

[
∥ξi∥2

] )
. (24)

By Lemma 3.5,
T −1∑
i=0

(
E
[
∥δi∥2

]
+ E

[
∥ξi∥2

] )
≤ T · σ2 + C2H(P)

k
. (25)

For simplicity, let us denote ∆ = σ2+C2H(P)
k . The proof is divided into two cases.

Case 1: ∆ is large. More precisely, suppose that ∆ ≥ 2CD2/T . Then, minimizing over η above leads us
to the following upper bound on the right-hand side of equation equation 24:√

2CD2∆
T

, (26)

which is obtained by setting

η =
√

2D2

C∆T
.

One can verify that this step size is less than 1
C since ∆ is at least 2CD2. Thus, we conclude that equation

equation 24 must be less than √
2CD2∆

T
=
√

2CD2(σ2 + C2H(P)))
kT

. (27)

Case 2: ∆ is small. In this case, suppose ∆ < 2CD2/T . Then, the right-hand side of equation equation 24
must be less than

2D2

Tη
+ 2C2D2η

T
≤ 2CD2

T
. (28)

Thus, combining equations equation 27 and equation 28, we have completed the proof of equation equation 3.

C Proof of Theorem 3.6

Recall our construction from Section 3.2 as follows. Let et be the basis vector for the t-th dimension, for
t = 0, 1, . . . , T − 1. Define f(W ) as

f(W ) = 1
2G

⟨W, e0⟩2 +
T −1∑
i=0

hi(⟨W, ei+1⟩),

where hi a quadratic function parameterized by αi, defined as follow:

hi(x) =


Cα2

i

4 |x| ≤ αi

− C(|x|−αi)2

2 + Cα2
i

4 αi ≤ |x| ≤ 3
2 αi

C(|x|−2αi)2

2
3
2 αi ≤ |x| ≤ 2αi

0 2αi ≤ |x|.
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For technical reasons, we define a truncated perturbation distribution P as follows. Given a sample U from
a d-dimensional isotropic Gaussian N(0, Idd), we truncate the i-th coordinate of U so that Ũi = min(Ui, ai),
for some fixed ai > 0 that we will specify below, for all i = 0, 1, . . . , d − 1. We let P denote the distribution
of Ũ .

The proof of Theorem 3.6 is divided into two cases. In the first, we examine the case when the averaged
learning rate is O(T −1/2).

Lemma C.1. In the setting of Theorem 3.6, suppose the learning rates satisfy that
∑T −1

i=0 ηi ≤
√

D2kT
2σ2C ,

consider the function f(W ) constructed in equation equation 5, we have

min
1≤t≤T

E
[
∥∇F (Wt)∥2

]
≥ D

√
Cσ2

32kT
.

Proof. We start by defining a gradient oracle by choosing the noise vectors {ξt}T −1
t=0 to be independent random

variables such that

ξt = ⟨ξt, et+1⟩et+1 and |⟨ξt, et+1⟩| ≤ σ√
k

, (29)

where et+1 is a basis vector whose (t + 1)-th entry is one and otherwise is zero. In other words, only the
(t + 1)-th coordinate of ξt is nonzero, otherwise the rest of the vector remains zero. We use ξ̄t to denote the
averaged noise variable as

ξ̄t = 1
k

k∑
i=1

ξ
(i)
t ,

where ξ
(i)
t is defined following the condition specified in equation equation 29. Thus, we can also conclude

that

|⟨ξ̄t, et+1⟩| ≤ σ√
k

.

We consider the objective function f(W ) : Rd → R defined above (see also equation equation 5, Section 3.1),
with

αi = 2ηiσ√
k

, for i = 0, 1, . . . , T. (30)

We will analyze the dynamics of Algorithm 1 with the objective function f(W ) and the starting point
W0 = D

√
G · e0, where G = max

{
C−1, 2

∑T −1
i=0 ηi

}
. For the first iteration, we have

W1 = W0 − η0

(1
2

k∑
i=1

(
∇f(W0 + U

(i)
0 ) + ∇f(W0 − U

(i)
0 )
)

+ ξ̄0

)
= (1 − η0G−1)W0 − η0ξ̄0,

where U is a random draw from the truncated distribution P with ⟨U, ei⟩ = min{Pi, ai} for ai = ηi−1σ√
k

.
Next, from the construction of h1, we get

1
2
(
∇f(W1 + U) + ∇f(W1 − U)

)
= G−1⟨W1, e0⟩e0 + 1

2

(
h′

0
(
η0⟨ξ̄0, e1⟩ + ⟨U, e1⟩

)
e1 + h′

0
(
η0⟨ξ̄0, e1⟩ − ⟨U, e1⟩

)
e1

)
.

Here, using the fact that α0 = 2η0σ√
k

from equation equation 30 above, and the truncation of U , which implies
|⟨U, e1⟩| ≤ η0σ√

k
, and ⟨ξ̄0, e1⟩ ≤ σ√

k
, we obtain∣∣η0⟨ξ̄0, e1⟩ + ⟨U, e1⟩

∣∣ ≤ 2η0σ√
k

= α0, and similarly
∣∣η0⟨ξ̄0, e1⟩ − ⟨U, e1⟩

∣∣ ≤ 2η0σ√
k

= α0,
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which implies that
h′

0(η0⟨ξ̄0, e1⟩ + ⟨U, e1⟩) = h′
0(η0⟨ξ̄0, e1⟩ − ⟨U, e1⟩) = 0.

This is the first update. Then, in the next iteration,

W2 = W1 − η1

(
G−1⟨W1, e0⟩ + ξ̄1

)
= −(1 − η1G−1)(1 − η0G−1)W0 − η0ξ̄0 − η1ξ̄1.

Similarly, we use the fact that αi = 2ηiσ√
k

and the fact that |⟨U, ei+1⟩| ≤ ηiσ√
k

, which renders the gradient as
zero similar to the above reasoning. This holds for any i = 1, 2, . . . , T − 1.

At the t-th iteration, suppose we have that

Wt = W0

t−1∏
i=0

(
1 − ηiG

−1
)

−
t−1∑
i=0

ηiξ̄i.

Then by induction, at the (t + 1)-th iteration, we must have

Wt+1 = Wt − ηt

(
G−1⟨Wt, e0⟩ + ξ̄t

)
= W0

t∏
i=0

(
1 − ηiG

−1
)

−
t∑

i=0
ηiξ̄i. (31)

Next, from the definition of ht above, we have that

F (W0) − min
W ∈Rd

F (W ) = F (W0) (the minimum can be attained at zero)

= 1
2G

(D
√

G)2 +
T −1∑
i=0

C

4

(2ηiσ√
k

)2
(since ⟨W0 + U, ei+1⟩ ≤ αi)

The above must be at most D2, which implies that we should set the learning rates to satisfy (after some
calculation)

1
T

( T −1∑
i=0

ηi

)2
≤

T −1∑
i=0

η2
i ≤ kD2

2Cσ2 . (32)

We note that for all z ∈ [0, 1], 1 − z
2 ≥ exp(log z

2 ). Thus, applying this to the right-hand side of equation
equation 31, we obtain that for any t,

t∏
i=0

(
1 − ηiG

−1
)

≥ 1
2 , (33)

where we recall that G = max{C−1, 2
∑T −1

i=0 ηi}. Essentially, our calculation so far shows that for all the hi

except h0, the algorithm has not moved at all from its initialization at W0 under the above gradient noise.
We thus conclude that

min
1≤i≤T

∥∇F (Wi)∥2 = min
1≤i≤T

(
G−1⟨W0, e0⟩

)2
(by the construction of F (·))

≥ 1
4G−2(D

√
G)2 (by equations equation 31 and equation 33)

= D2

4 min
{

C,
1

2
∑T −1

i=0 ηi

}
(recall the definition of G above)

≥ D2

4 min
{

C,

√
2Cσ2

2D
√

kT

}
(by equation equation 32)

≥ D

√
Cσ2

32kT
.
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In the first step, we use the fact that ⟨ξ̄i, e0⟩ = 0, for all 0 = 1, 2, . . . , T − 1.

Thus, we have proved that equation equation 6 holds for Wi for any i = 1, 2, . . . , T . The proof of Lemma
C.1 is finished.

Next, let us consider the case of large, fixed learning rates.

Lemma C.2. In the setting of Theorem 3.6, suppose the learning rates satisfy that
∑T −1

i=0 ηi ≥
√

D2kT
2σ2C

and ηi = η for some fixed η ≤ C−1. Then, consider the function from equation equation 5, we have that
min1≤t≤T E

[
∥∇F (Wt)∥2

]
≥ D

√
Cσ2

32kT .

Proof. We define the functions g, parametrized by a fixed, positive constants α = 1−ρT

1−ρ · 2cησ, as follows:

g(x) =

 − C
2 x2 + C

4 α2 |x| ≤ α
2 ,

C
2 (|x| − α)2 α

2 ≤ |x| ≤ α,
0 α ≤ |x|.

One can verify that g has C-Lipschitz gradient, but g is not twice-differentiable. We also consider a chain-like
function:

f(W ) = g(⟨W, e0⟩) +
d−1∑
t=0

C

2 ⟨W, et+1⟩2. (34)

From the definition of f , f also has C-Lipschitz gradient. Similar to equation equation 29, we start by
defining an adversarial gradient oracle by choosing the noise vectors {ξt}T −1

t=0 to be independent random
variables such that

ξt = ⟨ξt, et+1⟩,E
[
⟨ξt, et+1⟩2] = σ2, and |⟨ξt, et+1⟩| ≤ cσ,

where c is a fixed constant. We use ξ̄t to denote the averaged noise variable as

ξ̄t =
k∑

i=1
ξ

(i)
t .

Suppose {ξ
(i)
t }k

i=1 are i.i.d. random variables for any t, we have

|⟨ξ̄t, et+1⟩| ≤ cσ and E
[∥∥ξ̄t

∥∥2] ≤ σ2

k
. (35)

Next, we analyze the dynamics of Algorithm 1 with the objective function f(W ) and the starting point
W0 =

∑d
i=1

√
D2

Cd · ei. In this case, by setting ηi = η for all i = 0, 1, . . . , T − 1. Recall that η < C−1. Denote
by ρ = Cη, which is strictly less than one.

Since ht is an even function, its derivative h′
t is odd. For the first iteration, we have

W1 = W0 − η
(1

2
(
∇f(W0 + U) + ∇f(W0 − U)

)
+ ξ̄0

)
= (1 − Cη)W0 − ηξ̄0.

where U is a truncate distribution of P ∼ N(0, Idd) with ⟨U, e0⟩ = min{P0, a0} and a0 = cησ.

Using the fact that α = 1−ρT

1−ρ · 2cησ, |⟨U, e0⟩| ≤ cησ, and ⟨ξ̄0, e0⟩ ≤ cσ, we have

g′(η⟨ξ̄0, e0⟩ + ⟨U, e0⟩) + g′(η⟨ξ̄0, e0⟩ − ⟨U, e0⟩) = −2Cη⟨ξ̄0, e0⟩.
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Then, in the next iteration,

W2 = W1 − η
(

C

d∑
i=1

⟨W1, ei⟩ − Cηξ̄0 + ξ̄1

)
= (1 − Cη)2W0 − (1 − Cη)ηξ̄0 − ηξ̄1.

Similarly, we use the fact that α = 1−ρT

1−ρ · 2cησ and the fact that |⟨U, e0⟩| ≤ cησ, which renders the gradient
as g′(x) = −Cx, for any i = 1, 2, . . . , T − 1.

At the t-th iteration, suppose that

Wt = (1 − Cη)tW0 −
t−1∑
i=0

(1 − Cη)t−1−iηξ̄i.

Then by induction, at the (t + 1)-th iteration, we have

Wt+1 = Wt − η
(

C

d∑
i=1

⟨Wt, ei⟩ − C

t−1∑
i=0

(1 − Cη)t−1−iηξ̄i + ξ̄t

)
= (1 − Cη)t+1W0 −

t∑
i=0

(1 − Cη)t−1−iηξ̄i. (36)

Next, from the definition of F above, we have that

F (W0) − min
W ∈Rd

F (W ) = F (W0)

= dC

2

(√D2

Cd

)2
+ C

4

(2(1 − ρT )cησ

(1 − ρ)

)2
, (since ⟨W0 + U, e0⟩ ≤ α)

which must be at most D2. Thus, we must have (after some calculation)

c2 ≤ D2(1 − ρ)2

2σ2ρ2(1 − ρT )2 .

We conclude that

min
1≤i≤T

E
[
∥∇F (Wi)∥2

]
= min

1≤i≤T
E

 d∑
j=1

C2⟨Wi, ej⟩2 + C2⟨Wi, e0⟩2


= min

1≤i≤T

(
dC2(1 − ρ)2t

(√D2

Cd

)2
+ σ2

k
· ρ2

t∑
i=0

(1 − ρ)2(t−1−i)
)

≥ min
1≤i≤T

(
CD2(1 − ρ)2t + σ2

k

ρ

2 − ρ

(
1 − (1 − ρ)2t

))
≥ min

{
CD2,

σ2

k

ρ

2 − ρ

}
≥ σ2

k
C

√
kD2

2Tσ2C

1

2 − C
√

kD2

2T σ2C

≥ D

√
Cσ2

16k · T
. (after some calculation)

Thus, we have proved this lemma.

Taking both Lemma C.1 and C.2 together, we thus conclude the proof of Theorem 3.6.
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D Proof of Theorem 3.7

We will focus on a perturbation distribution P equal to the isotropic Gaussian distribution for this result.
In this case, we know that F (W ) = f(W ) + d. For the quadratic function f(W ) = C

2 ∥W∥2, its gradient is
clearly C-Lipschitz. We set the initialization W0 ∈ Rd such that

F (W0) − min
W ∈Rd

F (W ) = D2.

This condition can be met when we set W0 as a vector whose Euclidean norm is equal to

D

√√√√2 max
{

C−1, 2
T −1∑
i=0

ηi

}
.

The case when µ = 0. We begin by considering the case when µ = 0. In this case, the update reduces to
SGD, and the iterate Wt+1 evolves as follows:

Wt+1 =
(

1 − Cηt

)
Wt − ηtξ̄t, (37)

where we denote ξ̄t as the averaged noise k−1∑k
j=1 ξ

(j)
t , and the noise perturbation U

(j)
t cancelled out

between the plus and minus perturbations. The case when µ > 0 builds on this simpler case, as we will
describe below.

The key observation is that the gradient noise sequence ξ̄1, ξ̄2, . . . , ξ̄T forms a martingale sequence:

• For any i = 1, 2, . . . , T , conditioned on the previous random variables ξ
(j)
i′ for any i′ < i and any

j = 1, 2, . . . , k, the expectation of ξ̄i is equal to zero.

• In addition, the variance of ξ̄i is equal to k−1σ2, since conditional on the previous random variables,
the ξ

(j)
i s are all independent from each other.

The martingale property allows us to characterize the SGD path of ∥Wt∥2, as shown in the following result.
Lemma D.1. In the setting of Theorem 3.7, for any step sizes η0, . . . , ηT −1 less than C−1, and any t =
1, . . . , T , the expected gradient of Wt, E

[
∥∇F (Wt)∥2

]
, is equal to

2CD2
t−1∏
j=0

(
1 − Cηj

)2 + Cσ2

k

t−1∑
i=0

η2
i

t−1∏
j=i+1

(
1 − Cηj

)2
.

Proof. By iterating over equation equation 37, we can get

Wt = W0

t−1∏
j=0

(
1 − Cηj

)
−

t−1∑
i=0

ηiξ̄i

t−1∏
j=i+1

(
1 − Cηj

)
.

Meanwhile,

∇F (Wt) = CWt ⇒ ∥∇F (Wt)∥2 = C2 ∥Wt∥2
.

Thus, by squaring the norm of Wt and taking the expectation, we can get

E
[
∥∇F (Wt)∥2

]
= C2 ∥W0∥2

t−1∏
j=0

(
1 − Cηj

)2

+ C2
t−1∑
i=0

E
[∣∣∣∣∣∣ηiξ̄i

t−1∏
j=i+1

(
1 − Cηj

)∣∣∣∣∣∣2]. (38)
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Above, we use martingale property a), which says the expectation of ξ̄i is equal to zero for all i. In addition,
based on property b), equation equation 38 is equal to

C2
t−1∑
i=0

η2
i

 t−1∏
j=i+1

(
1 − Cηj

)2
E
[∥∥ξ̄i

∥∥2]
=C2σ2

k

t−1∑
i=0

η2
i

t−1∏
j=i+1

(
1 − Cηj

)2
.

To see this, based on the martingale property of ξ̄ again, the cross terms between ξ̄i and ξ̄j for different i, j
are equal to zero in expectation:

E
[
⟨ξ̄i, ξ̄j⟩|ξ̄j

]
= 0, for all 1 ≤ j < i ≤ T.

Additionally, the second moment of ξ̄i satisfies:

E
[∥∥ξ̄i

∥∥2] = σ2

k
, for any i = 1, . . . , T.

Lastly, let W0 be a vector such that

∥W0∥ = D
√

2C−1 ⇒ F (W0) − min
W ∈Rd

F (W ) ≤ D2.

Setting ∥W0∥ = D
√

2C−1 in equation equation 38 leads to

E
[
∥∇F (Wt)∥2

]
= 2CD2

t−1∏
j=0

(
1 − Cηj

)2

+ C2σ2

k

t−1∑
i=0

η2
i

t−1∏
j=i+1

(
1 − Cηj

)2
.

Thus, we conclude the proof of this result.

We now present the proof for the case when
∑T −1

i=0 ηi ≤ O(
√

T ). For this result, we will use the following
quadratic function:

f(W ) = 1
2κ

∥W∥2
, where κ = max{C−1, 2

T −1∑
i=0

ηi}, (39)

Lemma D.2. Consider f given in equation equation 39 above. For any step sizes η0, . . . , ηT −1 less than
C−1, the following holds for the stochastic objective F :

min
1≤t≤T

E
[
∥∇F (Wt)∥2

]
≥ D2

2 max{C−1, 2
∑T −1

i=0 ηi}
.

Proof. Clearly, the norm of the gradient of F (W ) is equal to

∥∇F (W )∥ = 1
κ

∥W∥ . (40)

Following the update rule in NSO, similar to equation equation 37, Wt evolves as follows:

Wt+1 =
(

1 − ηt

κ

)
Wt − ηtξ̄t, (41)
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where ξ̄t has variance equal to σ2/k, according to the proof of Lemma D.1. By iterating equation equation 41
from the initialization, we can get a closed-form equation for W

(1)
t , for any t = 1, 2, . . . , T :

Wt = W0

t−1∏
j=0

(
1 − ηj

κ

)
−

t−1∑
k=0

ηkξk

t−1∏
j=k+1

(
1 − ηj

κ

)
. (42)

Following equation equation 40, we can show that

∥∇F (W )∥2 = κ−2 ∥Wt∥2
.

Thus, in expectation,

E
[
∥∇F (Wt)∥2

]
= κ−2 E

[
∥Wt∥2

]
= κ−2 ∥W0∥2

t−1∏
j=0

(
1 − κ−1ηj

)2
+ κ−2

t−1∑
i=0

E


ηiξ̄i

t−1∏
j=i+1

(
1 − κ−1ηj

)2


= κ−2 ∥W0∥2
t−1∏
j=0

(
1 − κ−1ηj

)2
+ κ−2

t−1∑
i=0

η2
i

t−1∏
j=i+1

(
1 − κ−1ηj

)2
E
[∥∥ξ̄i

∥∥2]

= 2D2κ−1
t−1∏
j=0

(
1 − κ−1ηj

)2
+ σ2κ−2

k

t−1∑
i=0

η2
i

t−1∏
j=i+1

(
1 − κ−1ηj

)2
, (43)

where we use the definition of initialization W0 and the variance of ξ̄i in the last step. In order to tackle
equation equation 43, we note that for all z ∈ [0, 1],

1 − z

2 ≥ exp
(

log 1
2 · z

)
. (44)

Hence, applying equation equation 44 to the right-hand side of equation equation 43, we obtain that for any
i = 0, 1, . . . , t − 1,

t−1∏
j=i

(
1 − ηj

max{C−1, 2
∑T −1

j=i ηi}

)

≥ exp
(

log 1
2 ·

t−1∑
j=i

ηj

max{(2C)−1,
∑T −1

i=0 ηi}

)
≥ 1

2 .

Thus, equation equation 43 must be at least

E
[
∥∇F (Wt)∥2

]
≥ 2D2κ−1

4 + σ2κ−2

k

t−1∑
i=0

η2
i

4 . (45)

The above result holds for any t = 1, 2, . . . , T . Therefore, we conclude that

min
1≤t≤T

E
[
∥∇F (Wt)∥2

]
≥ D2

2 max{C−1, 2
∑T −1

i=0 ηi}
.

Thus, the proof of Lemma D.2 is finished.

Next we consider the other case when the learning rates are fixed.
Lemma D.3. There exists convex quadratic functions f such that for any gradient oracle satisfying Assump-
tion 3.2 and any distribution P with mean zero, if ηi = η < C−1 for any i = 1, . . . , T , or if

∑T −1
i=0 ηi ≲

√
T ,

then the following must hold:

min
1≤t≤T

E
[
∥∇F (Wt)∥2

]
≥ D

√
Cσ2

32k · T
. (46)
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Proof. By Lemma D.2, there exists a function such that the left-hand side of equation equation 46 is at least

D2

2 max{C−1, 2
∑T −1

i=0 ηi}
≥ CD2

2 max{1, 2x−1
√

T}
= D2x

4
√

T
, (47)

which holds if
∑T −1

i=0 ηi ≤
√

Tx−1 for any fixed x > 0.

On the other hand, if
∑T −1

i=0 ηi ≥ x−1
√

T and ηi = η for a fixed η, then η > x−1/
√

T . By setting ηi = η for
all i in Lemma D.1, the left-hand side of equation equation 46 is equal to

min
1≤t≤T

(
2CD2(1 − Cη)2t + C2σ2

k

t−1∑
k=0

η2(1 − Cη)2(t−k−1)
)

.

Recall that η < C−1. Thus, ρ = Cη must be less than one. With some calculations, we can simplify the
above to

min
1≤t≤T

(
2CD2(1 − ρ)2t + σ2ρ2

k

1 − (1 − ρ)2t

1 − (1 − ρ)2

)
= min

1≤t≤T

(
σ2ρ

k(2 − ρ) + (1 − ρ)2t
(

2CD2 − σ2ρ

k(2 − ρ)

))
. (48)

If 2CD2 < σ2ρ
k(2−ρ) , the above is the smallest when t = 1. In this case, equation equation 48 is equal to

2CD2(1 − ρ)2 + σ2ρ2

k
≥ 1

1
2CD2 + k

σ2

= O(1).

If 2CD2 ≥ σ2ρ
k(2−ρ) , the above is the smallest when t = T . In this case, equation equation 48 is at least

σ2ρ

k(2 − ρ) ≥ σ2ρ

2k
≥ σ2Cx−1

2k
· 1√

T
. (49)

To conclude the proof, we set x so that the right-hand side of equations equation 47 and equation 49 match
each other. This leads to

x =
√

2σ2C

kD2 .

Thus, by combining the conclusions from both equations equation 47 and equation 49 with this value of x,
we finally conclude that if

∑T −1
i=0 ηi ≤

√
Tx−1, or for all i = 0, . . . , T − 1, ηi = η < C−1, then in both cases,

there exists a function f such that equation equation 46 holds. This completes the proof of Lemma D.3.

The case when µ > 0. In this case, since the update of Wt also depends on the update of the momentum,
it becomes significantly more involved. One can verify that the update from step t to step t + 1 is based on

Xu =
[

1 − Cηt µ
Cηt µ

]
. (50)

Our analysis examines the eigenvalues of the matrix XuX⊤
u and the first entry in the corresponding eigenvec-

tors. Particularly, we show that the two entries are bounded away from zero. Then, we apply the Hölder’s
inequality to reduce the case of µ > 0 to the case of µ = 0, Lemma D.3 in particular.

Proof. First, consider a quadratic function

f(W ) = 1
2C

∥W∥2
.
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Clearly, f(W ) is C-Lipschitz. Further, F (W ) = f(W ) + d, for P being the isotropic Gaussian. Let W0 be a
vector whose Euclidean norm equals D

√
2C. Thus,

F (W0) − min
W ∈Rd

F (W ) = D2.

As for the dynamic of momentum SGD, recall that

Mt+1 = µMt − ηtGt and Wt+1 = Wt + Mt+1.

We consider the case where ηt = η for all steps t. In this case, we can write the above update into a matrix
notation as follows: [

Wt+1
Mt+1

]
=
[

1 − Cη µ
−Cη µ

] [
Wt

Mt

]
+ Cη

[
ξ̄t

ξ̄t

]
.

Let Xµ = [1 − Cη, µ; −Cη, µ] denote the 2 by 2 matrix (that depends on µ) above. Similar to Lemma D.1,
we can apply the above iterative update to obtain the formula for Wt+1 as:[

Wt+1
Mt+1

]
= Xt

u

[
W0
M0

]
+

t∑
i=0

CηXt−i
u

[
ξ̄i

ξ̄i

]
. (51)

By multiplying both sides by the vector e1 = [1, 0]⊤, and then taking the Euclidean norm of the vector
(notice that this now only evolves that Wt+1 vector on the left, and the Wt vector on the right), we now
obtain that, in expectation over the randomness of the ξ̄i’s, the following holds:

E
[
∥Wt+1∥2

]
= 2CD2(e⊤

1 Xt
ue1)2 + C2η2σ2

k

t∑
i=0

∥∥e⊤
1 Xi

ue
∥∥2

. (52)

Above, similar to Lemma D.1, we have set the length of W0 appropriately, so that its length is equal to
D

√
2C−1, which has led to the CD2 term above. Recall that M0 is equal to zero in the beginning. To get

the first term above, we follow this calculation:∥∥∥∥e⊤
1 Xt

µ

[
W0
M0

]∥∥∥∥2
= Tr

[
e⊤

1 Xt
µ

[
W0
M0

] [
W0
M0

]⊤

Xt
µ

⊤
e1

]

= Tr
[
e⊤

1 Xt
µ

[
CD2 0

0 0

]
Xt

µ
⊤

e1

]
= 2CD2(e⊤

1 Xt
µe1)2.

We use e = [1, 1]⊤ to denote the vector of ones. Now, we focus on the 2 by 2 matrix Xu (recall this is the
coefficient matrix on the right side of equation equation 51). Let its singular values be denoted as λ1 and
λ2. In addition, to deal with equation equation 52, let α1 and α2 denote the first entry of Xu’s left singular
vectors, corresponding to a and b, respectively. Thus, we can write

(e⊤
1 Xi

µe)2 = α2
1λ2i

1 + α2
2λ2i

2 . (53)

Now, one can verify that λ2
1 and λ2

2 are the roots of the following quadratic equation over x:

x2 − ((1 − Cη)2 + (Cη)2 + 2µ2)x + µ2 = 0. (54)

This can be checked by first taking Xu times X⊤
u , then using the definition of the eigenvalues by calculating

the determinant of XuX⊤
u − x Id = 0. Thus, we have that λ1 and λ2 are equal to:

λ1, λ2 = (1 − Cη)2 + (Cη)2 + 2µ2 ±
√

((1 − Cη)2 + (Cη)2 + 2µ2)2 − 4µ2

2 . (55)
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Now, α2
1 (and α2

2, respectively) satisfies that:

α2
1 = −Cη(1 − Cη) + µ2

(1 − Cη)2 + µ2 − λ1 + −Cη(1 − Cη) + µ2 . (56)

By enumerating the possible values of Cη between 0 and 1, one can verify that for a fixed value of µ, α2
1 and

α2
2 are both bounded below from zero. Therefore, we can claim that from equation equation 53,

α2
1λ2i

1 + α2
2λ2i

2 ≳ λ2i
1 + λ2i

2 . (57)

By the Hölder’s inequality,

(λ2i
1 + λ2i

2 ) 1
2i (1 + 1)1− 1

2i ≥ λ1 + λ2 = (1 − Cη)2 + (Cη)2 + 2µ2 (58)
≥ (1 − Cη)2 + (Cη)2, (59)

which implies that

λ2i
1 + λ2i

2 ≥ ((1 − Cη)2 + (Cη)2)i

2(2i−1) . (60)

Now, we consider two cases. If Cη < 1/2, then the above is greater than (1 − Cη)2i, which holds for any
i = 0, 1, . . . , T − 1. By way of reduction, we can follow the proof of Lemma D.3 to complete this proof. If
Cη > 1/2, then the above is greater than (Cη)2i. Again by following the proof steps in Lemma D.3, we can
show that

T
min
t=1

E
[
∥Wt∥2

]
≳ D

√
Cσ2

k · T
.

This completes the proof of Theorem 3.7.

E Omitted Experiments

Below, we report the comparison of the λ1 of the Hessian matrix (in the same setting as Figure 1), at the
last epoch of fine-tuning.

Indoor Caltech-256 Aircrafts CIFAR-10 CIFAR-1000

1

2

3

4

λ
1[
∇

2 ]

×103

NSO (k = 1) SAM SGD

Figure 5: Reporting the λ1 of the Hessian matrix in the last iteration of fine-tuning ResNet-34 on five data
sets, comparing NSO with SAM and SGD. The results are averaged over five random seeds.

We describe the range of hyper-parameters in which we search for each algorithm. We conduct a grid search
with a validation split.

• Learning rate: 0.05, 0.02, 0.01, 0.005, 0.002, and 0.001; Epochs: 10, 20, and 30.

• Batch size: 16, 32, and 64.

We also choose the hyper-parameters specifically for each baseline.

• For label smoothing, we choose the weight of the loss calculated from the incorrect labels between
0.1, 0.2, and 0.3.
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• For SAM and BSAM, we choose the ℓ2 norm of the perturbation between 0.01, 0.02, and 0.05.

• For ASAM, we choose the ℓ2 norm of the perturbation for the rescaled weights between 0.5, 1.0, and
2.0.

• For RSAM, we choose the ℓ2 norm of the perturbation between 0.01, 0.02, and 0.05 and the standard
deviation for sampling perturbation between 0.008, 0.01, and 0.012.

The datasets in our experiments can also be found online.
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