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Abstract
We compute equilibrium strategies in multi-stage
games with continuous signal and action spaces
as they are widely used in the management sci-
ences and economics. Examples include sequen-
tial sales via auctions, multi-stage elimination
contests, and Stackelberg Bertrand competitions.
While such models are fundamental to game the-
ory and its applications, equilibrium strategies are
rarely known. The resulting system of non-linear
differential equations is considered intractable for
all but elementary models. This has been limit-
ing progress in game theory and is a barrier to its
adoption in the field. We show that Deep Rein-
forcement Learning and self-play can learn equi-
librium bidding strategies for various multi-stage
games. We find equilibrium in models that have
not yet been explored analytically and new asym-
metric equilibrium bid functions for established
models of sequential auctions. The verification of
equilibrium is challenging in such games due to
the continuous signal and action spaces. We intro-
duce a verification algorithm and prove that the
error of this verifier decreases when considering
Lipschitz continuous strategies with increasing
levels of discretization and sample sizes.

1 Introduction
Auction theory studies allocation and prices on markets with
self-interested participants in equilibrium. Nobel laureate
William Vickrey (1961) was the first to model markets as
games of incomplete information, using the Bayes-Nash
equilibrium concept. An equilibrium bid function deter-
mines how much they bid based on their value draw and
their knowledge of the prior distribution. Today, auction the-
ory is arguably the best-known application of game theory
(Klemperer, 2000). These models, however, are also applied
to other economic problems like crowd-sourcing, procure-
ment, R&D contests (Konrad et al., 2009; Vojnović, 2015),
and oligopoly pricing (e.g., Stackelberg competition).

Despite the enormous academic attention, equilibrium strate-

gies are only known for simple market models such as single-
object auctions with independent value distributions. For
complex scenarios like multi-object auctions, bidders with
interdependent valuations, or non-quasilinear utilities, ex-
plicit equilibrium bid functions are usually unknown. These
equilibrium problems form non-linear differential equations
without general mathematical solution theory.

Numerical techniques for these equations are challenging
and have received limited attention. Fibich & Gavish (2011)
criticize the instability of standard techniques. Equilibrium
learning, an alternative numerical approach, explores the
equilibrium arising from a simple learning process where
agents adapt and maximize their payoff based on others’
actions (Fudenberg & Levine, 1998; Hart & Mas-Colell,
2003; Young, 2004). However, learning dynamics can fail
to converge to Nash equilibrium and may result in cycles, di-
vergence, or chaos, even in zero-sum games (Mertikopoulos
et al., 2018; Bailey & Piliouras, 2018; Cheung & Piliouras,
2020).

However, certain types of games, like potential games, fea-
ture learning algorithms that always converge to equilibrium
(Monderer & Shapley, 1996; Fudenberg & Levine, 1998).
Whether auction games are learnable remains unresolved,
even for single-stage auctions (Bichler et al., 2023b). Re-
search on equilibrium computation for auctions is limited
(Bosshard et al., 2020; Rabinovich et al., 2013; Naroditskiy
& Greenwald, 2007, july; Greenwald & Boyan, 2001; Walsh
et al., 2004). Recently, neural equilibrium learning algo-
rithms have been introduced for Bayesian auction games,
finding equilibrium in various single-stage auction games
(Bichler et al., 2021). Ex-post verification can determine if
a learned strategy profile is an equilibrium, but this is costly
without known analytical strategies and relies on strong
assumptions (Bosshard et al., 2020; Bichler et al., 2023a).

Most studies focus on simultaneous-move, single-stage auc-
tion games, while many practical mechanisms have multiple
stages. Examples include sequential sales and multi-stage
elimination contests. Myerson and Reny (Myerson & Reny,
2020) introduced multi-stage games with infinite signals and
actions, referred to as continuous multi-stage games, which
include Bayesian and stochastic games with finite horizons.
Computing equilibrium in these games is challenging. For
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finite, complete-information games, Nash equilibrium com-
putation is PPAD-hard (Daskalakis et al., 2009). Finding
Bayesian Nash equilibrium in simultaneous auctions is hard
for PP and even an approximate equilibrium is NP-hard
(Cai & Papadimitriou, 2014). Computing coarse correlated
equilibria in stochastic games is also computationally hard
(Daskalakis et al., 2022).

Verification of strategy profiles as equilibria is also challeng-
ing. While verifying Nash equilibrium in finite, complete-
information games is in P, for Bayesian games with different
agent types, it is hard for PP and remains NP-hard even
with constant error (Cai & Papadimitriou, 2014). Verifi-
cation techniques for games with continuous signals and
actions are not readily applicable. Approximate methods
for verifying equilibria in single-stage auctions with con-
tinuous actions have been proposed (Bosshard et al., 2020;
Hosoya & Yu, 2022), but in dynamic games interdepen-
dencies naturally arise due to signals–such as priors and
actions–revealing information in previous stages of the game
upon which future actions can be based on. As a result, the
techniques previously employed for verification are not ap-
plicable in our case.

We aim to find equilibrium in continuous multi-stage games
via reinforcement learning algorithms. Unlike single-stage
games, this requires considering the state of the game and
different learning algorithms. Reinforcement learning (RL),
developed for single-agent learning in discrete-time stochas-
tic control processes, has been applied in various fields,
including robot control and elevator scheduling (Sutton &
Barto, 2018). Multi-agent RL has achieved super-human
performance in finite games like chess, shogi, Go (Silver
et al., 2016; 2018), and imperfect information games like
poker (Brown & Sandholm, 2018; 2019). However, it is
unknown how far learned strategies are from equilibrium in
these large games.

Convergence guarantees for learning algorithms are lim-
ited to special game classes or require strong equilibrium
properties (Lockhart et al., 2019; Marden, 2012; Macua
et al., 2018, april; Leonardos et al., 2022, april; Giannou
et al., 2022). Multi-stage games with continuous signals and
actions do not fall into these categories. Current understand-
ing of learning dynamics and equilibrium in games remains
limited (Yang & Wang, 2020; Zhang et al., 2021).

1.1 Contributions

We study the convergence of deep reinforcement learning
(DRL) algorithms to equilibrium in multi-stage games with
continuous signal and action spaces. These games cover
various strategic situations, but there is no general solution
theory for deriving equilibrium in such cases. Sequential
auctions with unit-demand bidders or restricted elimina-
tion contests are exceptions where analytical equilibrium

strategies can be derived. The equilibrium problem here
forms a system of non-linear partial differential equations
(PDEs). Hence, the solution methods differ from those in
combinatorial but finite games, which have been the focus
of multi-agent reinforcement learning. The continuous sig-
nal space requires finding an equilibrium bid function rather
than a specific bid or action.

In the absence of analytical solutions for most continuous
multi-stage games, numerical methods are crucial for ad-
vancing game theory and its applications. Standard nu-
merical PDE solvers have failed. We use policy gradient
methods like REINFORCE and Proximal Policy Optimiza-
tion (PPO) and neural networks to approximate equilibrium
bid functions. These algorithms are designed for single-
agent tasks, and convergence results rely on the environ-
ment being stationary and Markovian (Sutton et al., 1999),
which does not apply in multi-agent and imperfect informa-
tion settings. Generally, these algorithms do not converge
even in zero-sum settings (Littman, 1994; Srinivasan et al.,
2018) or linear quadratic games (Mazumdar et al., 2020).
Our experiments show we can find equilibrium strategies in
sequential auctions, elimination contests, and Stackelberg
Bertrand competitions using appropriate DRL algorithms.
Additionally, DRL techniques allow scaling to larger in-
stances. It is remarkable that DRL with self-play converges
to such a strategy profile. We also analyze equilibrium in
auctions with interdependent valuations and risk-averse bid-
ders, where no analytical equilibrium strategy is known. We
find new asymmetric equilibrium in well-known sequential
sales models previously undiscovered.

Our second main contribution is an algorithm to verify an
approximate global Nash equilibrium in continuous multi-
stage games. Verification in these games is costly due to
the infinite space of alternative strategies. We prove that the
error of our verifier decreases with higher discretization lev-
els and increased sample sizes. This provides a foundation
for equilibrium solvers widely applicable in this significant
game class.

2 The Model
In what follows, we introduce continuous multi-stage games
with continuous signal and action spaces and reinforcement
learning algorithms used.

2.1 Continuous Multi-Stage Games

We study games with multiple stages, where players can
have uncountably many actions, such as bids in auctions.
Also, agents receive signals that may be from uncountable
sets, such as a continuous type (or value) space in auction
theory. In a multi-stage game Γ, N players plus nature
interact simultaneously for T stages. In each stage t, each
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player i and nature i = 0 receives a signal sit and chooses its
action ait. After T stages, each agent receives a utility ui(a)
based on an outcome a. Multi-stage auctions or contests
are illustrative examples and the focus of this paper, but
the game class is very general and allows to model single-
stage Bayesian games, signaling games, and finite-horizon
partially observable stochastic games. A strategy for player
i in stage t is a mapping βit : Sit → ∆(Ait).

The most prominent equilibrium solution concept in non-
cooperative game theory is the Nash equilibrium (NE) (Nash
et al., 1950). Let Γ be a multi-stage game, ε ≥ 0, and
β∗ ∈ Σ a strategy profile. Then β∗ is an ε-Nash equilibrium
(ε-NE) if and only if for all i ∈ N and βi ∈ Σi

ũi(βi, β
∗
−i) ≤ ũi(β

∗) + ε. (1)

For a formal description of the model, we refer to Section A.

2.2 Learning for Equilibrium Selection

A game theoretic solution concept such as the NE usually
follows the normative approach, telling the players how to
act. This neglects the question of how the players would
find and agree on an equilibrium (Ashlagi et al., 2006). In-
stead, we use learning as equilibrium refinement and analyze
whether the resulting strategy profile is a ε-Nash equilib-
rium.

Consider a parametrization of the players’ strategies so that
for every it ∈ L, there is a set of parameters Θit and a
mapping Θit 7→ Σit that maps onto a strategy. We focus
on policy gradient learning algorithms. Player i updates the
parameters θri with a learning rate ηri in iteration r by

θr+1
i = θri + ηri · ∇θi ũi

(
βθr

i
, βθr

−i

)
.

We focus on two common policy gradient algorithms,
namely REINFORCE (Mohamed et al., 2020) and PPO
(Schulman et al., 2017). We provide additional informa-
tion on these DRL algorithms in Section B.

3 Evaluation Metrics
The ex-ante utility loss is a metric to measure the loss of
an agent by not playing a best-response to the opponents’
strategies β (Srinivasan et al., 2018; Brown et al., 2019). It is
given by ℓ̃i(βi, β−i) = supβ′

i∈Σi
ũi(β

′
i, β−i)− ũi(βi, β−i).

A strategy profile β is a ε-NE if and only if ℓ̃i(βi, β−i) ≤
ε. In a setting with a known analytical equilibrium β∗ =
(β∗

i , β
∗
−i), we estimate closeness in utility of a strategy βi

to β∗
i by the utility loss in equilibrium by

ℓ̃equ
i (βi) := ℓ̃i(βi, β

∗
−i) = ũi(β

∗
i , β

∗
−i)− ũi(βi, β

∗
−i). (2)

Additionally, we evaluate convergence in strategy space
with the probability-weighted root mean squared error of

βit and β∗
it to approximate the weighted L2 distance of these

functions

Lit
2 (β, β

∗) =

(∫
(βit(sit)− β∗

it(sit))
2

) 1
2

dPit (· |β∗),

(3)

where Pit (· |β∗) denotes the probability measure over sig-
nals induced by strategy profile β∗. Li,avg

2 denotes the mean
over all stages. In general, we cannot evaluate the these met-
rics directly. Therefore, we estimate them via Monte-Carlo
approximation.

4 Verification in Settings with Unknown
Equilibrium

In cases where no analytical solution is known, estimating
the best-response utility for the utility loss becomes neces-
sary in order to verify whether a strategy profile is indeed
an approximate NE. However, deriving such guarantees
ex-post is challenging in continuous games with multiple
stages. Without imposing any additional regularity on the
strategy profile β = (βi, β−i), it is very hard to give any
theoretical guarantees. Therefore, we limit each strategy βi
to be from the set of Lipschitz continuous functions, that is
denoted by ΣLip

i .

The search for best-responses is limited further to the space
of pure Lipschitz continuous functions ΣLip, p

i . The utility
loss with regard to pure Lipschitz continuous functions is
denoted by

ℓ̃Lip, p
i (β) := sup

β′
i∈ΣLip, p

i

ũi(β
′
i, β−i)− ũi(βi, β−i). (4)

We face two challenges in estimating ℓ̃Lip, p
i (β). First, one

needs to search within the infinite-dimensional function
space ΣLip,p

i for a best-response. The second challenge per-
tains to the precise evaluation of ex-ante utility, even for a
single strategy profile β = (βi, β−i). Only a precise esti-
mate of the ex-ante utility allows for an accurate verification
of equilibrium. Our verifier employs two core concepts to
address these challenges.

First, we limit the search space by approximating the utility
of a best response with a set of finite precision step functions
denoted as ΣD

i . Here, D ∈ N represents the number of steps
or discretization points in both the domain and image space.
This means that for a single agent, we consider strategies
that only allow responses to signals with finite precision.
Second, we employ Monte-Carlo estimation for the ex-ante
utility. As a result, we only need to consider a finite set of
strategies, but we can still prove that the estimated utility
loss by our verifier ℓver

i (β) serves as an upper bound for
ℓ̃Lip, p
i (β) with sufficient resources. This allows us to prove

the following convergence guarantees for our verifier.
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Theorem 4.1 (informal). For a given multi-stage game
Γ = (N , T, S,A, p, σ, u), strategy profile β = (βi, β−i)
with βi ∈ Σi and β−i ∈ ΣLip

−i, and a continuous utility
function ui, we have that with a sufficiently high precision
D and initial simulation count MIS the estimated utility loss
is an upper bound for the utility loss over pure Lipschitz
continuous functions, i.e.,

lim
D→∞

lim
MIS→∞

ℓver
i (β) ≥ ℓ̃Lip, p

i (β) almost surely.

For these guarantees, we make standard regularity assump-
tions on the game and the players’ strategies. We also
assume that the ex-post utility functions, denoted as ui, are
continuous. While the latter is not satisfied in auctions,
Section C.2 provides experimental evidence for the esti-
mation error becomes very small with increasing levels of
discretization and increasing sample size. We refer to Sec-
tion D.2 for a more detailed description of the verifier and
to Section D.3 for the proof.

5 Experimental Results
We report results for sequential auctions in this section. For
the standard independent private values model of a first-
and second-price auction with risk-neutral bidders, we have
an analytical solution (Milgrom & Weber, 2000; Krishna,
2009). We also learn the equilibrium for risk-averse bidders
with interdependent valuations, for which the equilibrium
strategy was unknown so far. The approach is suitable for
continuous multi-stage games in general, and in Section C
we report additional results on elimination contests, Stackel-
berg Bertrand competitions and new asymmetric equilibria
that we found for the sequential second-price auction model.

The baseline model of sequential sales is as follows: Let
T be the number of homogeneous units for sale and there
be N > T bidders. In each stage t, there is exactly one
unit for sale. Bidders are only interested in winning a single
item, and they are privately informed of their valuation vi
before the beginning of the first stage. Based on the sub-
mitted sealed-bids a·t in each stage, an auction mechanism
calculates the allocation of the good and the price pit(a·t)
for the winner. Here, we assume risk-neutrality with a util-
ity of vi − pit(at) for the winner and zero for the losers.
The prices from previous stages are revealed. If only the
winner’s bid is announced and the winner drops out of the
upcoming stages, there is no additional information on the
remaining opponents that can be leveraged.

We evaluate the learning algorithms for the first-price mech-
anism and for different numbers of stages T . For simplicity,
we set the number of bidders N to T + 1 such that there
remains competition in the final stage. The full results for
PPO and REINFORCE, first-price sequential sales, and dif-
ferent numbers of objects T can be found in Table 1. We use

Table 1. Learning results for sequential sales with various numbers
of stages. We report the mean Lavg

2 (Equation 3) and utility loss ℓequ

with respect to the analytical symmetric equilibirum (Equation 2),
as well as the estimated utility loss ℓver (Equation 23) across ten
runs together with the standard deviations.

T metric REINFORCE PPO

1 Lavg
2 0.0060 (0.0010) 0.0047 (0.0009)

ℓequ 0.0001 (0.0002) 0.0001 (0.0001)
ℓver 0.0003 (0.0001) 0.0003 (0.0001)

2 Lavg
2 0.0098 (0.0046) 0.0054 (0.0020)

ℓequ 0.0002 (0.0002) 0.0000 (0.0002)
ℓver 0.0013 (0.0002) 0.0003 (0.0003)

4 Lavg
2 0.0110 (0.0044) 0.0056 (0.0034)

ℓequ 0.0003 (0.0003) 0.0000 (0.0003)
ℓver -0.0005 (0.0013) -0.0016 (0.0010)

the same set of hyperparameters for almost all settings (see
subsection B.3). The utility loss is very low for all settings
considered.

6 Conclusions
We investigate the application of DRL for continuous multi-
stage games. Although such games are central to theory and
in numerous real-world applications, we know equilibrium
strategies for only a few restricted models. Infinite type and
action spaces make the analysis of such games challenging
and different from combinatorial games such as Go and
Poker, as they have been the focus of multi-agent reinforce-
ment learning so far. Besides, scholars are interested in
equilibrium strategies of respective games. Computing such
equilibrium strategies has long been considered intractable.

We employed deep reinforcement learning to approximate
the equilibrium bidding strategies in these continuous multi-
stage games. Interestingly, our experiments showed that
these methods find equilibrium strategies in sequential auc-
tions and contests under very different model assumptions.
Importantly, the analysis can be performed quickly. We can
explore new environments but also unravel new equilibria
that were not known before.

A key contribution is a verifier, which is able to certify an
approximate equilibrium in continuous multi-stage games,
even when no analytical equilibrium is known, and prove
that we receive an upper bound on the utility loss as the
number of samples (games played) grows large and the level
of discretization increases. The fact that deep reinforcement
learning converges to an equilibrium in continuous multi-
stage auctions and contests is remarkable and provides the
foundation for widely applicable equilibrium solvers.
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A The formal game model
We assume all functions to be measurable over suitable sigma-algebras and denote with ∆(X) the set of countably additive
probability measures on the measurable subsets of X . For measurable spaces X and Y , a mapping f : Y → ∆(X) is called
a transition probability if, for every measurable subset A ⊂ X , the function f(A | · ) : Y → R is measurable.

Definition A.1 (Multi-stage game (Myerson & Reny, 2020)). A multi-stage game is specified by a tuple Γ =
(N , T, S,A, p, σ, u), where

1. N = {1, . . . , N} is the set of N ∈ N players. Let N ∗ = N ∪ {0}, where 0 is nature.

2. T ∈ N is the number of stages. Let L = N × {1, . . . , T} denote the set of dated players and L∗ = N ∗ × {1, . . . , T}.
For simplicity, we write “it” for (i, t) and t ∈ T to express t ∈ {1, . . . , T}.

3. S =×it∈L
Sit, where Sit is the set of possible signals that player i can receive at stage t. It holds Si1 = {∅} for all

i ∈ N .

4. Ait denotes the set of player i’s actions in stage t. A0t is nature’s set of actions in stage t. A =×it∈L∗ Ait denotes
the set of possible outcomes of the game. Each element in A describes a game’s complete roll-out. We denote the
projection onto stages before t by a subscript < t. For example, for a ∈ A, a<t = (air)i∈N∗,r<t denotes the history
proceeding stage t.

5. p = (p1, . . . , pT ) is nature’s fixed probability function, where pt : A<t → ∆(A0t) for all t ∈ T .

6. σit : A<t → Sit denotes player i’s signal function for stage t, and σ = (σit)it∈L.

7. ui : A → R is player i’s bounded utility function, and u = (ui)i∈N .

In subsection D.1, we discuss additional assumptions such as perfect recall of players about their own actions and information
received and standard assumptions about the bid functions to be pure and Lipschitz continuous, which we use in our analysis.
One can model various different settings as a multi-stage game, including single-stage Bayesian games, signaling games,
finitely-repeated games, and finite-horizon stochastic games. Most importantly, this definition allows for high-dimensional
continuous signals and actions. By including dummy actions and signals, one can also model sequential move games or,
more generally, games where a subset of players acts in each stage. For example, in the settings considered in section 5,
nature moves first and draws players’ types. The players receive their types as signals in the second stage and act. This can
be modeled by setting Ai1 to be a singleton for i ∈ N . So, a two-stage sequential auction can be modeled by a three-stage
game.

A strategy for player i in stage t is a transition probability βit : Sit → ∆(Ait). Let Σit denote i’s set of strategies at
time t and Σi =×t∈T

Σit player i’s set of strategies. Finally, Σ =×it∈L
Σit is the set of all strategies. We denote with

β·t = (βit)i∈N the strategy vector of stage t. Likewise, the ·t notation denotes corresponding product spaces and vectors for
stage t, e.g., A·t =×i∈N∗ Ait and Σ·t =×i∈N Σit. We use ·̃ to refer to variables in the ex-ante state of the game. For
example, ũ : Σ → R describes the ex-ante utility with strategy profile β.

The most prominent equilibrium solution concept in non-cooperative game theory is the Nash equilibrium (NE) (Nash et al.,
1950). Informally, it is a fixed point in strategy space where no player unilaterally wants to deviate from.

Definition A.2 (ε-Nash equilibrium). Let Γ = (N , T, S,A, p, σ, u) be a multi-stage game, ε ≥ 0, and β∗ ∈ Σ a strategy
profile. Then β∗ is an ε-Nash equilibrium (ε-NE) if and only if for all i ∈ N and βi ∈ Σi

ũi(βi, β
∗
−i) ≤ ũi(β

∗) + ε. (5)

We denote β∗ simply as Nash equilibrium for ε = 0.

The NE is prevalent for normal-form games: single-stage games with complete information. However, in games with
multiple stages, one might want to exclude Nash equilibria that rely on non-credible threats or non-best responses in some
subgames. One way to exclude these unwanted equilibria is to demand the strategies to be sequentially rational. Krishna
(2009) defines this recursively as equilibria with the property that following an outcome of the current stage, the strategies in
the next stage form an equilibrium. In the complete information case, this leads to subgame perfect (Nash) equilibrium,
eliminating unreasonable Nash equilibria.
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B Deep Reinforcement Learning Methods
Deep reinforcement learning (DRL) combines deep learning techniques with reinforcement learning algorithms to train
agents capable of making decisions in complex environments. DRL algorithms learn stochastic policies (or mixed strategies
in games) by interacting with the environment, receiving feedback in the form of rewards or penalties, and adjusting their
behavior to maximize cumulative rewards over time. REINFORCE and Proximal Policy Optimization are two of the most
important representatives.

B.1 REINFORCE

REINFORCE is a policy gradient algorithm based on the idea of optimizing the policy directly without explicitly estimating
the value function. The REINFORCE algorithm computes the gradient of the expected return with respect to the policy
parameters and updates the policy accordingly. This allows the agent to learn to take actions that lead to higher rewards.
This estimator is also known as the score-function estimator. REINFORCE learns mixed or distributional strategies, which
gets around the problem with discontinuous ex-post utility functions discussed in Bichler et al. (2021). A player wants to
maximize his or her expected utility over the opponents. The gradient is given as

∇θi ũi
(
βθi , βθ−i

)
= ∇θi Ea∼P(· | βθi

,βθ−i)
[ui(a)]

= ∇θi

∫
A
ui(a)ρ

(
a |βθi , βθ−i

)
da

=

∫
A
ui(a)∇θi log

(
ρ
(
a |βθi , βθ−i

))
da

= Ea∼P(· | βθi
,βθ−i)

[
ui(a)∇θi log

(
ρ
(
a |βθi , βθ−i

))]
,

where ρ
(
· |βθi , βθ−i

)
denotes the density function of P

(
· |βθi , βθ−i

)
. This derivation follows the policy gradient theorem

(Sutton & Barto, 2018). We parametrize the neural network to output the mean and standard deviation of a Gaussian
distribution so that one can assume ρ to exist. Now one is able to state this expression as an expectation that can be
approximated by sampling when following the well-known score-function reformulation. More details on this estimator,
including a broader discussion, can be found in the study of Mohamed et al. (2020).

B.2 Proximal Policy Optimization

Proximal Policy Optimization (PPO) has been introduced by Schulman et al. (2017) and can be considered an extension of
the REINFORCE algorithm. PPO is designed to strike a balance between sample efficiency and stability during training. It
addresses the challenges of policy optimization by using multiple iterations of stochastic gradient ascent, where the update
in each iteration is limited to a certain range, thus avoiding large policy updates that could disrupt learning. This constraint
helps maintain stability and prevents the agent from deviating too far from its previous policy.

PPO has been widely adopted and has demonstrated strong performance across a range of complex tasks. It falls in the
broader class of actor-critic algorithms – thereby introducing a second network that estimates the state’s value – and
additionally uses a technique called trust region policy optimization, which helps to prevent the algorithm from making
large, potentially harmful changes to the policy. This tends to make learning more stable compared to REINFORCE. PPO is
considered a state-of-the-art method for reinforcement learning, particularly in complex environments with high-dimensional
state spaces, and it has been particularly successful in combinatorial games (Yu et al., 2022).

B.3 Hyperparameters

We employ common hyperparameters for our experiments, utilizing fully connected neural networks with two hidden layers,
each consisting of 64 nodes, and employing SeLU activations on the inner nodes (Klambauer et al., 2017). The weights and
biases of these networks determine the parameters θi. All experiments were conducted on a single Nvidia GeForce 2080Ti
GPU with 11 gigabytes of RAM, accommodating a parallel simulation of 20, 000 environments. We employed the ADAM
optimizer with a learning rate of 8 × 10−6 for all experiments, except for the Stackelberg Bertrand competition, where
we used a learning rate of 5× 10−5. The initial log-standard deviation is set to −3.0, except for the REINFORCE method
in the elimination contest, specifically in the information case of published bids, where we set it to −2.0. All remaining
parameters are set to the default values used in the framework by Raffin et al. (2021).
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Figure 1. Equilibrium and PPO-based learned strategies in sequential sales with a first-price mechanism, two-stages, and three bidders.

For our verification procedure, we employ a discretization parameter of D = 64 and an initial number of simulations
MIS = 221 as default. We increase the discretization to D = 128 in the Stackelberg Bertrand competition, and reduce it to
D = 16 for the four-stage Sequential Auction, so that the information set tree fits onto a single GPU.

C Additional Empirical Results
In this section, we give additional empirical results. First, we state the known analytical equilibrium strategies in the
standard sequential auctions model and report our results for the first- and second-price rule. Second, we empirically
analyze the number of samples needed to achieve a small approximated utility loss for the verifier in a two-stage sequential
auction. Third, we report approximate equilibria in sequential auctions under risk-averse bidders, budget constraints, and
interdependent priors. Additionally, we study an elimination contest and a Stackelberg Bertrand competition.

C.1 Sequential Sales: Independent Private Values

The analytical equilibrium in the symmetric sequential auction model with independent private values and risk-neutral
bidders, is as follows:

Proposition C.1 (Krishna (2009)). Suppose bidders have unit-demand drawn uniformly from [0, 1] and T units are sold by
means of sequential auctions. Then, the following strategies constitute symmetric equilibria in the t-th stage:

1. First-price:

βit(vi) =
N − T

N − t+ 1
vi,

2. Second-price:

βit(vi) =
N − T

N − t
vi.

Because the ratio of supply to demand is decreasing over time, bidders are forced to increase their bids in both mechanisms.
Commonly, one assumes that the prices from previous stages are revealed.

Here, we evaluate the learning algorithms for the first- and second-price mechanism and for different numbers of stages
T . Figure 1 depicts exemplary strategies in a two-stage auction. The full results for PPO and REINFORCE, first- and
second-price sequential sales, and different numbers of objects T can be found in Table 2.

C.2 Discretization and Number of Samples for the verifier

The utility loss estimates calculated by the verifier as described in Theorem D.4 depend on the level of discretization and the
number of simulated games. Former ensures that game state, observation, and action space closely resemble the original
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Table 2. Learning results for sequential sales with various numbers of stages. We report the mean Lavg
2 (Equation 3) and utility loss ℓequ

with respect to the analytical symmetric equilibirum (Equation 2), as well as the estimated utility loss ℓver (Equation 23) across ten runs
together with the standard deviations.

mechanism T metric REINFORCE PPO

first 1 Lavg
2 0.0060 (0.0010) 0.0047 (0.0009)

ℓequ 0.0001 (0.0002) 0.0001 (0.0001)
ℓver 0.0003 (0.0001) 0.0003 (0.0001)

2 Lavg
2 0.0098 (0.0046) 0.0054 (0.0020)

ℓequ 0.0002 (0.0002) 0.0000 (0.0002)
ℓver 0.0013 (0.0002) 0.0003 (0.0003)

4 Lavg
2 0.0110 (0.0044) 0.0056 (0.0034)

ℓequ 0.0003 (0.0003) 0.0000 (0.0003)
ℓver -0.0005 (0.0013) -0.0016 (0.0010)

second 1 Lavg
2 0.0091 (0.0007) 0.0063 (0.0022)

ℓequ 0.0001 (0.0002) 0.0002 (0.0001)
ℓver 0.0000 (0.0000) 0.0000 (0.0000)

2 Lavg
2 0.0075 (0.0028) 0.0068 (0.0028)

ℓequ 0.0001 (0.0002) -0.0001 (0.0003)
ℓver 0.0033 (0.0005) 0.0020 (0.0006)

4 Lavg
2 0.0140 (0.0036) 0.0072 (0.0031)

ℓequ 0.0002 (0.0002) 0.0000 (0.0004)
ℓver 0.0050 (0.0003) 0.0039 (0.0008)

continuous game, whereas the latter ensures that the approximated utilities are close to their expectations (with respect to
the distribution of the valuations and actions). We illustrate which precision can be reached for multiple configurations of
these parameters. For this, we deploy the verifier in the two-stage sequential sales with three participants and a first-price
payment rule. The opponents play their equilibrium strategy, ensuring that the exact utility loss is zero. Figure 2 shows
how the discretization size and the number of simulations influence the utility loss. For a low number of initial simulations,
the simulation error εMIS dominates and strongly overestimates the utility loss. That is because our procedure chooses
the maximum attainable utility over the simulated data. For a sufficient amount of simulations, the estimated utility loss
becomes negative, showing the discretization error’s εD effect. For a finer discretization, εD tends towards zero. We use a
discretization of D = 64 and an initial number of simulations MIS = 221 if not stated otherwise.

The verifier does make use of a vectorized implementation, which allows parallel evaluation of thousands of games. The run
times increase linearly as parallel batches are split into sequentially evaluated mini-batches.

C.3 Sequential Sales: Interdependence, Risk-Aversion, and Budget Constraints

We present a series of additional experiments that explore the effects of various adaptations to the standard sequential auction
setting. These adaptations aim to capture important behavioral factors and practical considerations.

One popular behavioral effect we investigate is the influence of risk aversion on bidding behavior. Bidders may exhibit risk
aversion leading to diminishing marginal utilities, making it more important for them to secure a win than to maximize their
payoff. To incorporate this aspect, we introduce a risk parameter, denoted as ρ ∈ (0, 1], that modifies the utility function to
ui(vi, a) = (xi(a)vi − pi(a))

ρ.

Moreover, we consider the effect of budget constraints among bidders. While this assumption likely holds in virtually all
practical settings, it is often disregarded in theoretical models when deriving equilibrium strategies. We introduce a maximal
budget that restricts the bidding actions of participants, thereby reflecting a fixed budget constraint for all valuations.

Furthermore, we investigate the impact of interdependencies among bidders’ valuations. Specifically, we use the well-known
common and affiliated values settings in sequential auctions (Krishna, 2009). In both settings, all bidders have the same
valuation v but only receive a noisy signal in the form of an observation xi. In the common values setting, the valuation v is
drawn uniformly from the interval [0, 1], while the bidders’ observations, denoted as xi, are uniformly drawn from [0, 2v].
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Figure 2. Approximate utility loss for different configurations of the discretization size and the number of simulations (left) and their
corresponding run times (right).

Table 3. Approximated utility losses of the experiments with valuation interdependencies and risk-averse bidders. Here, no analytical
equilibrium is available for comparion.

mechanism prior risk ρ metric REINFORCE PPO

first-price affiliated 0.25 ℓver 0.0013 (0.0004) -0.0004 (0.0001)
0.50 ℓver 0.0008 (0.0002) -0.0002 (0.0001)
0.75 ℓver 0.0005 (0.0001) -0.0001 (0.0001)

second-price common 0.25 ℓver 0.0014 (0.0004) 0.0029 (0.0029)
0.50 ℓver 0.0010 (0.0002) 0.0026 (0.0020)
0.75 ℓver 0.0011 (0.0006) 0.0029 (0.0023)

On the other hand, in the standard uniform affiliated values model, the common valuation is determined by the mean of all
observations xi, while the individual observations are given by xi = zi + s, where zi and s are uniformly drawn from [0, 1],
resulting in correlated observations.

It is worth noting that each of the aforementioned adaptations significantly increases the complexity of analytical derivations,
often leading to isolated studies of their individual effects. However, our approach allows us to explore settings that
incorporate multiple effects simultaneously, showcasing the versatility of our approach.

Table 3 shows estimated utility losses in the common and affiliated values settings, considering different levels of risk
aversion. Additionally, Figure 3 presents an approximate equilibrium strategy in the common values setting with a second-
price rule and a risk parameter of ρ = 0.25. One observes a significant increase in bids from the first to the second stage of
the auction. Presumably, this can be attributed to two factors. Firstly, bidders have a second chance to win the item in the
second stage, leading to lower bids in the first stage. Secondly, reaching the second stage means that the first stage’s winner
had a higher estimation of the true value, leading bidders to perceive their initial estimation as an underestimation of the true
valuation. Consequently, they bid more aggressively in the second stage.

Table 4 presents the estimated utility losses under different levels of budget constraints in the affiliated values setting. To
illustrate an approximate equilibrium strategy in the presence of budget constraints, Figure 4 showcases a scenario involving
a second-price auction with a budget of 0.8. Similar to our previous findings, we observe a pattern where bids increase from
the first to the second stage of the auction. This behavior can be attributed to the same underlying reasons identified in
the common values experiment. Bidders place lower initial bids in the first stage, as they have the opportunity to win in
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Figure 3. REINFORCE-based learned strategies in sequential sales with a second-price mechanism, a common values among the agents,
and three risk-averse bidders with ρ = 0.25 in two stages.

Table 4. Approximated utility losses in a two-stage sequential auction with affiliated values and budget constrainted bidders.

mechanism budget metric REINFORCE PPO

first-price 0.6 ℓver 0.0058 (0.0002) 0.0058 (0.0002)
0.8 ℓver 0.0104 (0.0002) 0.0069 (0.0003)

second-price 0.6 ℓver 0.0045 (0.0002) 0.0043 (0.0002)
0.8 ℓver 0.0039 (0.0001) 0.0036 (0.0002)

the second stage if they lose initially. Additionally, the knowledge that another bidder won in the first stage with a higher
estimation of the true valuation prompts bidders to increase their own estimation.

C.4 Sequential Sales: Asymmetric Equilibria

In previous experiments, the focus was on the symmetric setting. Here, each agent faces the identical decision problem and,
therefore, as is commonly assumed in the literature, all agents employ the same strategy in equilibrium (Krishna, 2009). We
model this by letting the agents share a single neural network.

We relax this by allowing each agent to employ a different strategy. Specifically, we consider a two-stage second-price
sequential auction with uniform prior and risk-neutral bidders, where each agent trains its own neural network. Our
empirical findings show that both the REINFORCE and PPO algorithms consistently converge to an approximate asymmetric
equilibrium, as depicted in Figure 5. The estimated utility loss is very low for all agents (see Table 5).

In this equilibrium, two bidders utilize almost identical strategies, which significantly deviate from the symmetric equilibrium
strategy. The remaining bidder places slightly higher bids for valuations below 0.15 and then maintains almost constant
bids, resulting in significantly lower bids than from the other two bidders for higher valuations. In the second stage, all
agents employ a truthful strategy.

Interestingly, the estimated utility for each agent is nearly identical, with a mean of 0.2476 for the lower bidding agent
and 0.2466 for the two higher bidding ones. Furthermore, the expected utility closely matches the expected utility in
the symmetric equilibrium, which is 0.25 analytically and 0.2465 in the approximated equilibrium reported in Section 5.
Notably, we did not observe a similar effect in sequential auctions using a first-price rule, where all bidders converge
approximately to the symmetric equilibrium.
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Figure 4. REINFORCE-based learned strategies in sequential sales with affiliated values under the second-price mechanism with a budget
constraint of 0.8, two-stages, and three bidders.

Table 5. Approximated utility losses for all agents i in a second-price two-stage auction with three bidders that end up in an asymmetric
equilibrium.

i metric REINFORCE PPO

1 ℓver 0.0009 (0.0003) 0.0006 (0.0003)
2 ℓver 0.0008 (0.0003) 0.0007 (0.0001)
3 ℓver 0.0009 (0.0002) 0.0005 (0.0002)

This empirical observation is particularly intriguing as it shows the existence of an approximate asymmetric equilibrium,
even when the overall decision problem is symmetric. Furthermore, in this case, the approximate asymmetric equilibrium is
attracting under simple learning dynamics.

C.5 Elimination Contests

Contests are used to model lobbying, political campaigns, and R&D competitions, among others (Konrad et al., 2009;
Corchón et al., 2018). Equilibrium analysis has been a central approach to analyzing competition in contests. Almost the
entire literature focuses on Nash equilibria and models contests as complete-information games (Corchón et al., 2018).
However, similar to auction theory, much of the strategic complexity in contests is due to the fact that contestants only have
incomplete information about their competitors, and they aim to find a bid function for a continuous set of signals.

Importantly, here we analyze multi-stage contests. In many real-life contests, players are initially divided into a few groups,
they first compete within their subgroups, and then winners from each group compete again in later stages. The central
question is whether pre-commitments in sequential or elimination contests incentivize players to invest more effort than in a
single-stage contest. Furthermore, it is important to understand the effects of information revelation between stages.

We study the signaling contest as introduced by Zhang (2008) as it has some interesting properties. He analyzes the effect of
publishing private information (valuations) or submitted bids (signaling effect) on the equilibrium in a two-round elimination
contest. The work is inspired by Moldovanu & Sela (2006) who leave open to analyze the role of information in contests
with multiple rounds. While the paper studies a fairly general case, the equilibrium strategies are provided as abstract
integral solutions. Therefore, we consider a special instance where we can solve the related integrals and provide an explicit
equilibrium strategy.
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Figure 5. Asymmetric PPO-based learned strategies in sequential sales with a second-price mechanism, two stages, and three bidders.

Consider N = 4 risk-neutral bidders that privately learn their valuations v = (v1, v2, v3, v4) for the prize, which are
independently and uniformly distributed on the interval [1.0, 1.5]. In the first stage, they compete within two equally sized
groups of two bidders by simultaneously submitting bids. Here, all bidders pay for their bids regardless of success (all-pay
auction). Then, the two winners compete in the final round. Before the final round, either their true valuations or their bids
are revealed to the others. Thus, the finalists can now base their decisions on their private information about the prize and
the public information about their opponent. In the second round, the players’ winning probabilities are equal to the ratio of
their own bid to the cumulative bids of the finalists (Tullock contest).

To reduce sample variance, we directly model their utility as the expected utility for given valuations and efforts by weighting
their valuation for the prize by the probability of winning. For a finalist i, we have ui(vi, ai, a−i) =

ai2

ai2+aj2
vi − ai2 − ai1,

where j denotes the other finalist, and for a non-finalist k, we have uk(vk, ak, a−k) = −ak1. Zhang (2008) derived the
following equilibrium:
Proposition C.2 (Zhang (2008)). Consider a four-bidder two stage-contest as described above. Let i be some bidder, and
denote with j the first round’s winner of the other group. Then there exists a separating equilibrium for both information
cases, which is given by the following.

1. Assuming the true valuations are revealed after the first stage, i.e., σi2(a·1) = vj , we have the following symmetric
equilibrium:

βi1(vi) = WE(vi)

βi2(vi, vj) =
v2i vj

(vi + vj)
2

2. Assuming the winning bids of the other group are revealed after the first stage, i.e., σi2(a·1) = a1j , we have the
following equilibrium:

βi1(vi) = WE(vi) + SE(vi)

βi2(vi, aj1) =
v2i β

−1
i1 (aj1)(

vi + β−1
i1 (aj1)

)2
where the functions WE and SE are defined as follows:

WE(vi) = 27 log

(
vi +

3

2

)
− 17 vi

2
−

43 log
(
5
2

)
4

+
7 v2i
2

− 2 v3i − 4 log (vi + 1)
(
v4i − 1

)
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Table 6. Learning results in the signaling contest. We again report the mean L2 loss for both stages and the utility losses ℓequ and ℓver and
their standard deviations over ten runs.

public information metric REINFORCE PPO

valuations ℓequ 0.0001 (0.0002) 0.0000 (0.0001)
ℓver 0.0013 (0.0004) -0.0003 (0.0003)
LS1
2 0.0059 (0.0015) 0.0029 (0.0011)

LS2
2 0.0060 (0.0010) 0.0013 (0.0004)

bids ℓequ 0.0002 (0.0001) 0.0000 (0.0001)
ℓver -0.0008 (0.0004) 0.0000 (0.0004)
LS1
2 0.0072 (0.0012) 0.0029 (0.0008)

LS2
2 0.0066 (0.0010) 0.0014 (0.0003)

+ 4 log

(
vi +

3

2

) (
v4i −

81

16

)
+ 7

SE(1) = 0

SE(vi) = 17 log (5)− 8 log (vi + 1)− 9 log

(
vi +

3

2

)
− 17 log (2)− 16 vi + 8 v2i log (vi + 1)

+ 16 v3i log (vi + 1)− 16 v4i log (vi + 1)− 8 v2i log

(
vi +

3

2

)
− 16 v3i log

(
vi +

3

2

)
+ 16 v4i log

(
vi +

3

2

)
− 135

2 vi + 3
+ 18 v2i − 8 v3i + 33 for vi ∈ (1, 1.5].

The results are presented in Table 6 and again show a very small utility loss. If the estimated utility loss is negative, this
means the learned strategy is better than the best finite precision step function strategy.

C.6 Stackelberg Bertrand Competition

Stackelberg games, originally introduced by Von Stackelberg in 1934, hold significant importance in economic theory and
find various applications today (Li, 1985; Dowrick, 1986; Powell, 2007). These game models involves a two-step process,
where a leader makes the initial move, which is then observed by a follower who subsequently decides on its action. One
crucial question that arises is the relative advantage of being the leader or the follower in such scenarios.

In our study, we focus on a specific variation known as the Stackelberg duopoly with incomplete information, as introduced
by Arozamena & Weinschelbaum (2009). Their work explores equilibrium strategies in both simultaneous and Stackelberg-
Bertrand competitions, comparing the behavior of the leader firm in these settings under different assumptions. Notably, they
establish the existence of a second-mover advantage in the Stackelberg setting. While their paper provides a general analysis
and implicitly presents the equilibrium solution by providing its inverse, we delve into a special case within this framework.

Consider a Stackelberg-Bertrand competition with two firms competing in a homogeneous-good market. Each firm sets its
price, and the goal is to investigate the strategic interactions between the leader (Firm 1) and the follower (Firm 2). Let c1
and c2 represent the unit costs of firms 1 and 2, respectively, which are drawn independently and identically distributed from
the cumulative distribution function F (c) = 1

2c+
c2

2 . These costs are considered private information for each firm.

The game unfolds in the following manner: Firm 1 observes its private cost c1 and subsequently sets its price p1. Firm 2
observes its private cost c2 and also the leader’s posted price p1. Based on this information, Firm 2 then sets its own price
p2. Firm 1 wins the competition if p1 < p2, otherwise Firm 2 wins. The loser gets a utility of zero, whereas the winner i
receives a utility of ui(ci, p1, p2) = (pi − ci) ·Q(pi), where Q(p) = 10 − p denotes the demand and pi = min{p1, p2}.
Arozamena & Weinschelbaum (2009) derived the following class of equilibria.
Proposition C.3 (Arozamena & Weinschelbaum (2009)). Consider a two-firm Stackelberg-Bertrand competition as
described above. Then for every measurable function f : R → R such that f(x) > x, an equilibrium is given as follows:

β−1
11 (p1) = p1 −

Q(p1)(1− F (p1))

Q(p1)F ′(p1)−Q′(p1)(1− F (p1))
=

4p31 − 27p21 − 24p1 + 20

3p21 − 18p1 − 12
,
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Table 7. Learning results in the Bertrand competition. We again report the L2 loss for each stage and agent, and the utility losses ℓequ and
ℓver with their standard deviations over ten runs.

agent metric REINFORCE PPO

leader ℓequ 0.0006 (0.0008) 0.0001 (0.0006)
ℓver 0.0004 (0.0002) 0.0008 (0.0003)
LS1
2 0.0064 (0.0036) 0.0053 (0.0025)

follower ℓequ 0.0337 (0.0031) 0.0435 (0.0078)
ℓver -0.0129 (0.0032) -0.0031 (0.0081)
LS2
2 0.0046 (0.0005) 0.0059 (0.0010)

β22(c2, p1) =

{
min{p1, pM (c2)}, for p1 ≥ c2,

f(b1), else,

where pM (c2) = maxp2 Q(p2)(p2 − c2) = 5 + c2
2 denotes the monopoly price, and β−1

11 is the leader’s inverse equilibrium
strategy.

The leader’s equilibrium strategy β11 is guaranteed to be invertible in the above setting, so that we recover it by numerically
inverting β−1

11 from above. The results of the algorithms under consideration in this study are presented in Table 7. They
show a small L2-loss and (estimated) utility loss. If the estimated utility loss is negative, this means the learned strategy is
better than the best finite precision step function strategy. Note that the utility losses’ specific values ℓequ and ℓver are not
directly comparable to other experiments as the equilibrium utilities are about ten to fifteen times larger in this experiment.

D Verification
Let us outline our methodology for verifying approximate equilibria in continuous multi-stage games. First, we describe
some preliminaries needed for the main theorem on its appropriateness. Next, we introduce the verification procedure
formally and provide a proof for the main theorem.

D.1 Preliminaries

In Theorem A.1, we defined a multi-stage game with continuous signals and actions. In what follows, we summarize some
additional assumptions required for bounding the error of our verifier.

Throughout, we assume the game to have perfect recall. This means that players remember all information they received,
and in particular, their own actions. This assumption greatly simplifies theory and is usually made in literature (Myerson &
Reny, 2020).
Definition D.1 (Perfect recall). Let Γ = (N , T, S,A, p, σ, u) be a multi-stage game. It is said to have perfect recall if for
all it ∈ L and r > t, there are measurable functions Ψ : Sir → Sit and ψ : Sir → Ait such that Ψ(σir(a<r)) = σit(a<t)
and ψ(σir(a<r)) = ait, for all a ∈ A.

Under perfect recall, one can extract all of i’s actions and received signals up to that point from a signal sir ∈ Sir. That is,
there exist functions ψirt : Sir → Ait and Ψirt : Sir → Sit such that ψirt(σir(a<r)) = ait and Ψirt(σir(a<r)) = σit(a<t)
for all a<r = (a·1, · · · , a·r−1) ∈ A<r. Denote with ψir = (ψir1, ψir2, . . . , ψirr−1) and Ψir = (Ψir1,Ψir2, . . . ,Ψirr−1)
the corresponding mappings from Sir into Ai<r and from Sir into Si<r respectively.

Later on, we are interested in two restrictions of the strategy spaces and their intersection. The first restriction allows only
pure strategies, i.e., strategies that map onto Dirac measures for a given signal, which we denote by

Σp
it := {β ∈ Σit | β(sit) = δa for sit ∈ Sit and a ∈ Ait} . (6)

We can identify this with the set of measurable functions from signals to actions. With slight abuse of notation, we denote
both sets by Σp

it and note where it does not become clear from the context. We set Σp
i =×t∈T

Σp
it.

For verification, we are interested in whether one can achieve the same best-response utility by restricting the space of a
single-agent to pure strategies. This is often satisfied under mild assumptions. For example, it is satisfied in most Bayesian
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games (Milgrom & Weber, 1985; Hosoya & Yu, 2022). Furthermore, it can often be guaranteed to be viable whenever a
pure strategy equilibrium exists (Horst, 2005; Reny, 2011).

Another important restriction is the set of Lipschitz continuous functions, which we denote by

ΣLip
it = {βit ∈ Σit | βit : Sit → ∆(Ait) is Lipschitz continuous in dW } , (7)

where dW denotes the Wasserstein distance (see Theorem E.5). We set ΣLip
i =×t∈T

ΣLip
it . Note that common function

approximators for distributional strategies, such as neural networks, fall into the space of Lipschitz continuous strategies.

Finally, we consider the intersection of pure and Lipschitz continuous strategies, which we denote by ΣLip, p
it := ΣLip

it ∩ Σp
it,

and ΣLip, p
i :=×t∈T

ΣLip, p
it .

For a given β·t, one can define a probability distribution from stage t to t+ 1. Let B ⊂ A·t be measurable and a<t ∈ A<t,
then the mapping Pt defines a transition probability from A<t into the set of measurable subsets of A·t by

Pt(B | a<t, β·t) = pt(B0t | a<t)
∏
i∈N

βit(Bit |σit(a<t)), (8)

where βit(Bit |σit(a<t)) is the probability that player i takes actions from Bit when receiving the signal σit(a<t). The
players need to reason about several stages. Therefore, we inductively define probabilities that describe events from the
beginning up to a certain stage.

Let P<1({∅}|β) = 1, and for all t ∈ T and measurable B ⊂ A<t+1, define the rollout measure up to stage t under strategy
profile β as

P<t+1(B|β) =
∫
A<t

Pt ({a·t : (a<t, a·t) ∈ B} | a<t, β·t) dP<t (a<t |β) . (9)

Intuitively speaking, this defines the probability of an intermediate history B up to stage t to occur when all players act
according to β. The probability measure P ( · |β) := P<T+1( · |β) denotes the probability measure over outcomes induced
by the strategy profile β.

Finally, player i’s ex-ante utility is defined as the expected utility over all possible outcomes of the game and is given by

ũi (β) =

∫
A
ui(a)dP (a |β). (10)

In the game’s interim stages, the individual agent reasons about what action to take after receiving a signal. To describe this
optimization problem, we introduce the conditional probabilities and utilities to describe the expected utility given a certain
signal and strategies. Let β ∈ Σ be a strategy profile, it ∈ L, and Z ⊂ Sit measurable, then define

Pit(Z |β) = P<t(σ
−1
it (Z) | b) = P<t({a<t : σit(a<t) ∈ Z} |β), (11)

to be the probability that player i’s date t signal is in Z under strategy profile β. Consequently, for any it ∈ L and measurable
Z ⊂ Sit such that Pit(Z|β) > 0, we define, with a slight abuse of notation, the conditional probabilities as

P<t(B |Z, β) = P<t(B ∩ σ−1
it (Z) |β)/Pit(Z|β) ∀B ⊂ A<t measurable, (12)

and

P (B |Z, β) = P ({a ∈ B : σit(a<t) ∈ Z} |β)/Pit(Z|β) ∀B ⊂ A measurable. (13)

With all of this, the conditional expected utilities for a measurable Z ⊂ Sit are defined as

ũi(β |Z) =
∫
A
ui(a)dP (a |Z, β). (14)
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D.2 Verification Procedure

The verification procedure of an agent’s learned strategy consists of two main parts. First, the strategy space must be
discretized such that the search space is reduced to finite size, and the number of simulations must be set such that the
expected utilities (across nature and the opponents’ action probabilities) can be approximated via sampling. Second, the
deployment of all possible strategies is simulated, and the best-performing strategy with the highest utility is compared to
the utility of the actual strategy.

D.2.1 FINITE PRECISION STEP-FUNCTIONS

In our approach, we aim to restrict the search for a best-response from the view of a single agent to a finite set. To achieve
this, it is necessary to ensure that a finite discretization adequately captures both the signal and action spaces. To facilitate
our theoretical analysis and ensure the practicality of our approach, we make the following assumption.

Assumption D.2. For every it ∈ L∗, we assume there exist finitely many bounded closed intervals Ar
it and Sr

it, such that
Ait =×NAit

r=1
Ar

it and Sit =×NSit

r=1
Sr
it for dimensions NAit

, NSit
∈ N.

Under this assumption, we can divide the signal and action spaces into grids. For it ∈ L, we denote the grid points of the
signal and action spaces as SD

it and AD
it, respectively. Here, D ∈ N denotes a precision parameter, where an increasing D

translates to an increase in grid points. Furthermore, for every it ∈ L and D ∈ N there exists a finite number of disjoint grid
cells that consist of a product of half-open intervals, partitioning Sit. We denote these grid cells by Ck

it, where 1 ≤ k ≤ GD
Sit

and GD
Sit

∈ N is the number of grid cells. Finally, let the tuple Git =
(
SD
it,AD

it, Cit,D
)

denote the signal and action space
discretization for it ∈ L.

We define the set of step functions with precision D for it ∈ L by

ΣD
it (Git) :=

sit 7→
GD

Sit∑
k=1

χCk
it
(sit)a

k
it

∣∣∣∣∣ akit ∈ AD
it

 , (15)

and ΣD
i (Gi) =×t∈T

ΣD
it (Git). Any grid so that ΣD

it can approximate any pure Lipschitz continuous function well for
sufficiently high D (see Theorem E.4) can be used. In the following, we restrict ourselves to the regular grid and show that it
satisfies this property. Therefore, we drop the discretization and write ΣD

i instead of ΣD
i (Git).

For any given finite precision D ∈ N, we make a discretization error, which we denote by

εD := sup
β′
i∈ΣLip, p

i

ũi(β
′
i, β−i)− sup

β′
i∈ΣD

i

ũi(β
′
i, β−i). (16)

D.2.2 BACKWARD INDUCTION OVER FINITE PRECISION STEP FUNCTIONS

For every finite precision D, there are finitely many elements in ΣD
i , which can be translated into finitely many decision

points for player i. That is, we can build a finite game or decision tree representing all possible step functions from ΣD
i . We

perform a backward induction scheme on this finite decision tree to get the maximal ex-ante utility from any step function.

To achieve this, we define player i’s counterfactual conditional utility as the conditional utility for taking a specific action
given a certain signal, excluding player i’s influence of reaching this signal. This is similar to formulations of counterfactual
reach probabilities and utilities from literature in finite games (Zinkevich et al., 2007). Before the counterfactual conditional
utilities can be formally defined, we need to introduce some other objects first.

We exclude player i’s influence of reaching a certain signal grid cellCk
it ⊂ Sit by considering a strategy that deterministically

plays to reach Ck
it. That is possible because, without loss of generality, one can assume that there exists a unique sequence

of grid actions aC
k
it

i<t ∈ AD
i<t that need to be taken for every grid cell Ck

it. To see this, note that due to perfect recall, agent i’s
actions taken prior to stage t can be extracted from every signal sit. Due to our construction, this is a unique sequence for
every grid cell Ck

it if, for example, each action space Air gets appended to the signaling space in the following stage Sir+1.
Therefore, for every Ck

it, there exist sit ∈ Ck
it and ai<t ∈ AD

i<t such that ψit(sit) = ai<t. At the same time, there exists no

s′it ∈ Ck
it such that ψit(s

′
it) ̸= ai<t and ψit(s

′
it) ∈ AD

i<t. Therefore, we define functions ψD
it(C

k
it) = a

Ck
it

i<t that map a grid
cell to its unique history of grid actions.
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Given a finite precision step function strategy βi ∈ ΣD
i , we can now construct a strategy for player i that plays to reach

Ck
it (adapting stages 1, . . . , t − 1), takes a certain action in stage t, and remains the same for stages t + 1, . . . , T . More

specifically, let it ∈ L, β = (βi, β−i) be a strategy profile with βi ∈ ΣD
i and β−i ∈ Σ−i, and akit ∈ AD

it. Then we define a

function (βi)
Ck

it,a
k
it =

(
(βi1)

Ck
it,a

k
it , . . . , (βiT )

Ck
it,a

k
it

)
that is playing to reach Ck

it in the following way:

(βir)
Ck

it,a
k
it = βir for r > t,

(βit)
Ck

it,a
k
it (sit) =

{
akit for sit ∈ Ck

it,

βit(sit) for sit ∈ Sit \ Ck
it,

(βi<t)
Ck

it,a
k
it (Ψit(sit)) =

{
ψD
it(C

k
it) for sit ∈ Ck

it,

βi<t (Ψit(sit)) for sit ∈ Sit \ Ck
it,

The counterfactual conditional utilities for precision D are then defined as

ũc, D
i

(
β |Ck

it, a
k
it

)
= ũi

(
(βi)

Ck
it,a

k
it , β−i |Ck

it

)
, (17)

where ũi( · | · ) is the conditional utility defined in Equation 14. Note that ũc, D
i is independent of βi<t ∈ ΣD

i<t, as only
histories conditioned on observing signals from Ck

it are considered. All actions that may be taken off paths that lead
to this set of signals do not matter. Therefore, we write ũc, D

i

(
βi>t, β−i |Ck

it, a
k
it

)
instead of ũc, D

i

(
β |Ck

it, a
k
it

)
, where

βi>t = (βit+1, . . . , βiT ), to emphasize this independence. We are now ready to define a best response over the finite
strategy set ΣD

i via backward induction. For a given opponent strategy profile β−i, we inductively define a step function
βD,∗
i ∈ ΣD

i . For the last stage siT ∈ SiT , define

βD,∗
iT (siT ) = argmax

aiT∈AD
iT

ũc, D
i

(
β−i |Ck

iT , aiT
)
, (18)

where Ck
iT is the unique set such that siT ∈ Ck

iT . For preceding stages t < T , we define

βD,∗
it (sit) = argmax

ait∈AD
it

ũc, D
i

(
βD,∗
i>t, β−i |Ck

it, ait

)
, (19)

again with sit ∈ Ck
it. Note that the argmaxait∈AD

it
is non-empty, as the utility functions are bounded, and there are only

finitely many values to consider. If there is more than one element in the argmaxait∈AD
it

, then we simply choose one
discrete action for a whole grid cell Ck

it. This backward induction procedure gives us a best response over the set ΣD
i (see

Theorem E.2).

D.2.3 MONTE-CARLO INTEGRATION FOR CONDITIONAL UTILITIES

The backward induction procedure above assumes that the conditional expected utilities from Equations 18 and 19 can be
evaluated, which is, in general, impossible. It would require having access to the expectations of the conditional utilities
(Equation 14) for which there are no closed-form solutions in general. Therefore, we employ Monte-Carlo approximation to
estimate βD,∗

i and its ex-ante utility. We separate the approximation into a simulation and an aggregation phase.

We start with the simulation phase by sampling a single initial game state, and the players receive their respective signals
s · 1. We collect the opponent actions a−i1 according to β−i1. For player i, we register into which grid cell Ck

i1 the signal si1
belongs and increase the cell’s counter (aka. visitation count), which we denote by M(Ck

i1). Then, we simulate the transition
to the next stage for every possible action ai1 ∈ AD

i1, multiplying the number of simulated games by a factor of |AD
i1|. We

proceed in this pattern; for each simulation, collect the opponent actions according to β−it, register the corresponding grid
cell Ck

it for player i’s signal sit, increase a respective counter M(Ck
it), and simulate the state transition for every possible

action ait ∈ AD
it multiplying the number of simulated games by a factor of |AD

it|.1 After T stages, there are
∏

t∈T | AD
it|

complete histories a, for which the utility ui(a) is evaluated. This procedure is performed for MIS ∈ N initial states,

1One can decrease this branching factor sometimes using game-specific knowledge. For example, if an agent loses in the first stage of
the signaling contest, he or she may no longer bid in the second stage.
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resulting in a total of MTot =MIS ·
∏

t∈T | AD
it| simulated histories and evaluated utilities, concluding the simulation phase.

We denote the set of all simulated histories by AMIS .

After performing MTot simulations, the aggregation phase starts. Depending on which subsets of AMIS are chosen, we get
samples from different distributions. For example, let βi ∈ ΣD

i arbitrary. Consider the rollout procedure above with a single
initial state. Then, as we explore every discrete action, there exists a simulated history al that is consistent with βi. That is,
alit = βi(σit(a

l
<t)) for 1 ≤ t ≤ T . Due to construction, we have that al ∼ P ( · |βi, β−i). Therefore, for every initial state,

we get at least one sample for every possible βi ∈ ΣD
i .

To perform the backward induction procedure as described above, we want to sample from conditional measures as well. So,
for a grid cell Ck

it ⊂ Sit and discretized action akit ∈ AD
it, let βi ∈ ΣD

i such that βi = (βi)
Ck

it,a
k
it . That is, βi is playing to

reach Ck
it and then plays akit. The above procedure allows us to sample al ∼ P ( · |βi, β−i). Suppose Pit(C

k
it |βi, β−i) > 0

and we only consider those ãl with σit(ãl<t) ∈ Ck
it, then ãl ∼ P ( · |Ck

it, (βi, β−i)). The set of simulated histories ãl for
grid cell Ck

it, discrete action ait ∈ AD
it, and step functions βD

i>t ∈ ΣD
>t is given by

A
(
βD
i>t, C

k
it, ait;MIS

)
:=
{
al ∈ AMIS

∣∣σit(al<t) ∈ Ck
it, a

l
it = ait,

βD
it+m

(
σit+m−1

(
al<t+m

))
= alit+m for 1 ≤ m ≤ T − t

}
.

It holds that
∣∣A (βD

i>t, C
k
it, ait;MIS

)∣∣ = M(Ck
it) for any ait ∈ AD

it and βD
i>t ∈ ΣD

>t. That is, we get a valid sample from
P ( · |Ck

it, ((βi>t)
Ck

it,a
k
it , β−i)) whenever a simulation falls into Ck

it for every discrete action akit. We define the estimated
counterfactual conditional utility by

ûc, D
i

(
βD
i>t, β−i

∣∣At

(
βD
i>t, C

k
it, ait;MIS

))
:=

1

M(Ck
it)

M(Ck
it)∑

l=1

ui
(
al
)
, (20)

for βD
i>t ∈ ΣD

i>t, ait ∈ AD
it, grid cell Ck

it, and al ∈ A
(
βD
i>t, C

k
it, ait;MIS

)
. If M(Ck

it) = 0, we set the value to zero.

This approximates the counterfactual conditional utility from Equation 18. We use these to construct a step function
βD,MIS
i ∈ ΣD

i according to the backward induction procedure from Equations 18 and 19. From this, using the relation
between the counterfactual conditional and ex-ante utilities (see Lemma E.1), we get an estimated best response utility over
the simulations AMIS which we define by

ûver, D
i (β−i |AMIS) :=

GD
Si1∑

k=1

M(Ck
i1)∑

j M(Cj
i1)
ûc, D
i

(
βD,MIS
i>1 , β−i

∣∣A1

(
βD,MIS
i>1 , Ck

i1, β
D,MIS
i1 (Ck

i1);MIS

))
. (21)

In the limit, the approximation recovers the maximum utility and best response over the set of step function ΣD
i (see Lemma

E.3). We denote the simulation error by

εMIS := sup
β′
i∈ΣD

i

ũi(β
′
i, β−i)− ûver, D

i (β−i |AMIS). (22)

Finally, let β ∈ Σ be a strategy profile. Then, we simulate MIS complete histories from P (· |β), and collect them into a data
set BMIS . Using Monte-Carlo estimation, we obtain an estimation of the expected utility, which we denote by ûi(β|BMIS).
The final estimation of our verification procedure for the utility loss over pure Lipschitz continuous strategies is then given
by

ℓver(β) := ûver, D
i (β−i |AMIS)− ûi(β|BMIS). (23)

It is important to acknowledge that the computational demand of the procedure is high, primarily due to the exponential
growth of the tree as the number of stages and dimensions of signal and action spaces increase. Consequently, the
applicability of the procedure is limited to games with a few stages only. Nevertheless, through parallelization and various
techniques that optimize the utilization of precomputed results (Johanson et al., 2011), we can achieve a high precision using
a single GPU for games. For example, the runtime for two-stage games is about two minutes. A similar game with four
stages takes about five hours. Note that this level of precision is sufficient for studying a wide range of relevant continuous
multi-stage games. Examples of such games include Sequential Auctions (Krishna, 2009), multi-stage contests (Yildirim,
2005), or sequential Colonel Blotto Games (Powell, 2007). These games are of significant interest and can be effectively
analyzed within the computational capabilities of our procedure.
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D.3 Verifier Convergence Theorem

We now introduce central assumptions and the main theorem proving convergence of our verifier. We draw on a number of
auxiliary results and lemmata in the supplement E.

The second assumption required to control errors in our verifier consists of regularity assumptions on the game and the
players’ strategies. One assumption is that players do not respond significantly differently to slightly different signals.
Additionally, we assume that the ex-post utility functions, denoted as ui, are continuous. To be more precise, we make the
following assumption.

Assumption D.3. The signaling functions σit : A<t → Sit are Lipschitz continuous for all it ∈ L. Furthermore, there
exists K0t > 0 such that nature’s probability distribution p0t is K0t-Lipschitz continuous with respect to the Wasserstein
distance for every t ∈ T . More specifically, dW (p0t ( · | a<t) , p0t ( · | a′<t)) ≤ K0t ||a<t − a′<t|| for all a<t, a

′
<t ∈ A<t

and some norm || · ||.
Theorem D.4. Let Γ = (N , T, S,A, p, σ, u) be a multi-stage game, where Assumptions D.2 and D.3 hold, and that the
utility function ui is continuous. Further, let β−i ∈ ΣLip

−i, βi ∈ Σi, and AMIS and BMIS be simulated data sets with initial
simulation size MIS ∈ N as described in Section D.2.3. Then we have that

lim
D→∞

εD ≤ 0 and lim
MIS→∞

εMIS = 0 almost surely.

Furthermore, we receive an upper bound on the utility loss over pure Lipschitz continuous strategies for the strategy profile
β = (βi, β−i) by

lim
D→∞

lim
MIS→∞

ℓver
i (β) = lim

D→∞
lim

MIS→∞
ûver, D
i (β−i |AMIS)− ûi(β |BMIS)

≥ sup
β′
i∈ΣLip, p

i

ũi(β
′
i, β−i)− ũi(β) = ℓ̃Lip, p

i (β) a. s.

Proof. By Theorem E.3, we have almost sure convergence of limMIS→∞ εMIS = 0. To finish the first statement, it remains
to show limD→∞ εD ≤ 0.

Let ϵ > 0 and β̄i ∈ ΣLip, p
i such that supβ′

i∈ΣLip, p
i

ũi (β
′
i, β−i) − ũi

(
β̄i, β−i

)
≤ ϵ. Then, by Theorem E.4, there exists a

sequence
{
βD
i

}
D∈N with βD

i ∈ ΣD
i such that

lim
D→∞

∣∣∣∣β̄i − βD
i

∣∣∣∣
∞ = 0.

By Theorem E.12, we further get

lim
D→∞

dW
(
P
(
· | β̄i, β−i

)
, P
(
· |βD

i , β−i

))
= 0.

The utility functions ui are bounded and continuous by assumption. Therefore, we can use Theorem E.7 and get

lim
D→∞

ũi
(
βD
i , β−i

)
= lim

D→∞

∫
A
ui(a)dP

(
a |βD

i , β−i

)
= ũi

(
β̄i, β−i

)
.

As this holds for every ϵ > 0, we get for ΣSF
i :=

⋃
D∈N ΣD

i

sup
β′
i∈ΣLip, p

i

ũi (β
′
i, β−i) ≤ sup

βSF
i ∈ΣSF

i

ũi
(
βSF
i , β−i

)
,

finishing the first statement. For the second statement, note that due to the boundedness of ui, we can use Kolmogorov’s law
of large numbers and get

lim
MIS→∞

ûi(β |BMIS) = ũi(β). (24)

Furthermore, we get that∣∣∣ℓver
i (β)− ℓ̃Lip, p

i (β)
∣∣∣ = ∣∣∣∣∣ûver, D

i (β−i |AMIS)− ûi(β |BMIS)− sup
β′
i∈ΣLip, p

i

ũi(β
′
i, β−i) + ũi(β)

∣∣∣∣∣
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≤

∣∣∣∣∣ûver, D
i (β−i |AMIS)− sup

β′
i∈ΣD

i

ũi(β
′
i, β−i)

∣∣∣∣∣+
∣∣∣∣∣ supβ′

i∈ΣD
i

ũi(β
′
i, β−i)− sup

β′
i∈ΣLip, p

i

ũi(β
′
i, β−i)

∣∣∣∣∣
+ |ûi(β |BMIS)− ũi(β)|
= εD + εMIS + |ûi(β |BMIS)− ũi(β)| .

From the first statement and using the relation of Equation 24, we get

lim
D→∞

lim
MIS→∞

∣∣∣ℓver
i (β)− ℓ̃Lip, p

i (β)
∣∣∣ ≥ 0,

finishing the statement.

It is important to note that while some of the assumptions made in our analysis are relatively mild, others are not satisfied by
some interesting settings. Let’s discuss these assumptions in more detail.

Firstly, assuming the signal and action spaces to be bounded can be considered a mild restriction. Most settings already
satisfy this assumption, and imposing bounds on unbounded variables usually has little practical relevance. For instance, in
auctions, while bids may not have an upper bound in general, capping them to a sufficiently high value has no impact on
known strategic considerations in most cases. The second assumption deals with nature being Lipschitz continuous in the
players’ actions, which can also be considered a weak assumption. In many settings, nature is treated as a fixed probability
distribution where events are drawn independently of the players’ actions. The assumption that the opponent strategies
β−i are Lipschitz continuous usually is satisfied in our use cases, as many learning algorithms’ parameterizations naturally
satisfy this condition. However, for example, considering step functions for the opponents as well does not satisfy this
assumption.

Lastly, the most stringent restrictions involve the signaling functions being Lipschitz continuous and the ex-post utilities
being continuous. While relevant settings fulfill these assumptions, e.g., dynamic oligopolies (Bylka et al., 2000), several
other interesting ones do not. For instance, in market settings with indivisible goods, the allocation function is discontinuous,
violating both Lipschitz continuity of the signaling functions and continuity of the utilities. However, as this assumption is
common for many theoretical guarantees (Glicksberg, 1952; Reny, 1999; Ui, 2016), there is ongoing research to relate the
original game to a smoothed version (Kohring et al., 2023) to overcome these challenges.

Despite our statement’s limitations, we conjecture that the above result does hold under less strict assumptions as well. In
Supplement C.2, we observe empirically that the verifier also reliably estimates the utility loss in settings where some of the
assumptions are not satisfied. We leave a theoretical analysis of this observation to future work.

E Auxiliary Results for the Main Theorem

Lemma E.1. Let Γ = (N , T, S,A, p, σ, u) be a multi-stage game under Theorem D.2, β−i ∈ Σ−i, and βi ∈ ΣD
i for

D ∈ N. For a grid cell Ck
it ⊂ Sit that Ck

it is reachable under β−i and akit ∈ AD
it, consider J ⊂ {1, . . . , GSit+1} such that

Cj
it+1 is reachable from Ck

it by taking akit under β−i, i.e., Pit+1

(
Cj

it+1| (βi)
Ck

it,a
k
it , β−i

)
> 0, then there is the following

relationship between the conditional probabilities from stage t+ 1 to stage t:

Pit

(
Ck

it| (βi)
Ck

it,a
k
it , β−i

)
· ũc, D

i

(
βi, β−i|Ck

it, a
k
it

)
=
∑
j∈J

Pit+1

(
Cj

it+1| (βi)
Cj

it+1,βi(C
j
it+1) , β−i

)
· ũc, D

i

(
βi, β−i|Cj

it+1, βi(C
j
it+1)

)

In particular, it holds that

ũi(βi, β−i) =

GD
Si1∑

k=1

Pi1

(
Ck

i1|βi, β−i

)
· ũc, D

i

(
βi, β−i |Ck

i1, βi(C
k
i1)
)
.

So, choosing akit = βi(C
k
it) for every t, we can calculate player i’s ex-ante utility ũi(βi, β−i) by iteratively summing up the

conditional probabilities.
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Proof. The second statement follows directly from the first by seeing that GSD
i1
= 1, as there is only a single signal that can

be received in stage t = 1.

For the first statement, note that due to construction and perfect recall, it holds that (βi)
Ck

it,a
k
it = (βi)

Cj
it+1,βi(C

j
it+1) for all

j ∈ J . We then have∑
j∈J

Pit+1

(
Cj

it+1| (βi)
Cj

it+1,βi(C
j
it+1) , β−i

)
· ũc, D

i

(
βi, β−i|Cj

it+1, βi(C
j
it+1)

)
(25)

=
∑
j∈J

Pit+1

(
Cj

it+1| (βi)
Cj

it+1,βi(C
j
it+1) , β−i

)
·
∫
A
ui(a)dP

(
a|Cj

it+1, (βi)
Cj

it+1,βi(C
j
it+1) , β−i

)
(26)

=
∑
j∈J

∫
{a∈A|σit+1(a<t+1∈Cj

it+1)}
ui(a)dP

(
a| (βi)C

j
it+1,βi(C

j
it+1) , β−i

)
(27)

=
∑
j∈J

∫
{a∈A|σit+1(a<t+1∈Cj

it+1)}
ui(a)dP

(
a| (βi)C

k
it,a

k
it , β−i

)
(28)

=

∫
{a∈A|σit+1(a<t+1∈

⋃
j∈J Cj

it+1)}
ui(a)dP

(
a| (βi)C

k
it,a

k
it , β−i

)
(29)

= Pit

(
Ck

it| (βi)
Ck

it,a
k
it , β−i

)
· ũi
(
(βi)

Ck
it,a

k
it , β−i|Ck

it

)
(30)

= Pit

(
Ck

it| (βi)
Ck

it,a
k
it , β−i

)
· ũc, D

i

(
βi, β−i|Ck

it, a
k
it

)
, (31)

where we used the definitions of the counterfactual conditional utilities and the conditional measures in Equations 26 and 27.
Finally, we used that the Cj

it+1’s are disjoint and Pit

(
Ck

it| (βi)
Ck

it,a
k
it , β−i

)
=
∑

j∈J Pit+1

(
Cj

it+1| (βi)
Ck

it,a
k
it , β−i

)
in

Equations 29 and 30 respectively.

Lemma E.2. For a given multi-stage game Γ = (N , T, S,A, p, σ, u), under Theorem D.2, opponent strategies β−i ∈ Σ−i,
and precision parameter D ∈ N, it holds that

ũi

(
βD,∗
i , β−i

)
= sup

β′
i∈ΣD

i

ũi (β
′
i, β−i) .

Proof. First, note the following property for conditional probabilities. For βi, β′
i ∈ ΣD

i and any grid cell Ck
it ⊂ Sk

it, it holds
that

Pit

(
Ck

it| (βi)
Ck

it,βi(C
k
it) , β−i

)
= Pit

(
Ck

it| (β′
i)

Ck
it,β

′
i(C

k
it) , β−i

)
. (32)

That is due to two reasons. First, the conditional probabilities of stage t only depend on the strategies prior to stage t.
Second, a discrete strategy (βi)

Ck
it,ait conditioned on grid cell Ck

it is independent of βi<t.

Next, we show that for all it ∈ L, βi ∈ ΣD
i , and 1 ≤ k ≤ GSit

the following holds

ũc, D
i

(
βi, β−i|Ck

it, βi(C
k
it)
)
≤ ũc, D

i

(
βD,∗
i , β−i|Ck

it, β
D,∗
i (Ck

it)
)
. (33)

We perform a proof by induction. Let k ∈ {1, . . . GSiT
}, then it holds that

ũc, D
i

(
βi, β−i|Ck

iT , βi(C
k
iT )
)
≤ max

aiT∈AD
iT

ũc, D
i

(
βi, β−i|Ck

iT , aiT
)

= ũc, D
i

(
βD,∗
i , β−i|Ck

iT , β
D,∗
i (Ck

iT )
)
.

This can be seen directly as for any Ck
it, the counterfactual conditional utility is independent of βi<t. Suppose Equation 33

holds for t+ 1, . . . , T . Let k ∈ {1, . . . , GSit} and ait ∈ AD
it. Denote with Jait ⊂

{
1, . . . , GSit+1

}
the subset of reachable

grid cells from cell Ck
it by taking action ait. Then we get by Theorem E.1

Pit

(
Ck

it| (βi)
Ck

it,βi(C
k
it) , β−i

)
· ũc, D

i

(
βi, β−i|Ck

it, βi(C
k
it)
)
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=
∑

j∈Jβi(C
k
it

)

Pit+1

(
Cj

it+1| (βi)
Cj

it+1,βi(C
j
it+1) , β−i

)
· ũc, D

i

(
βi, β−i|Cj

it+1, βi(C
j
it+1)

)
≤ max

ait∈AD
it

∑
j∈Jait

Pit+1

(
Cj

it+1| (βi)
Cj

it+1,βi(C
j
it+1) , β−i

)
· ũc, D

i

(
βi, β−i|Cj

it+1, βi(C
j
it+1)

)
(IS)
≤ max

ait∈AD
it

∑
j∈Jait

Pit+1

(
Cj

it+1| (βi)
Cj

it+1,βi(C
j
it+1) , β−i

)
· ũc, D

i

(
βD,∗
i , β−i|Cj

it+1, β
D,∗
i (Cj

it+1)
)

(*)
=

∑
j∈Jβ

D,∗
i

(Ck
it

)

Pit+1

(
Cj

it+1|
(
βD,∗
i

)Cj
it+1,β

D,∗
i (Cj

it+1)

, β−i

)
· ũc, D

i

(
βD,∗
i , β−i|Cj

it+1, β
D,∗
i (Cj

it+1)
)

= Pit

(
Ck

it|
(
βD,∗
i

)Ck
it,β

D,∗
i (Ck

it)

, β−i

)
· ũc, D

i

(
βD,∗
i , β−i|Ck

it, β
D,∗
i (Ck

it)
)
,

where (IS) denotes the induction step. Furthermore, we used Equation 32 and the definition of βD,∗
it from Equation 19 in

step (*). By applying Equation 32 again, we get the statement from Equation 33. Finally, by applying Theorem E.1, we get
the statement.

Lemma E.3. Let Γ = (N , T, S,A, p, σ, u) be a multi-stage game, β−i ∈ Σ−i, assuming Assumptions D.2 and D.3 hold,
D ∈ N, and AMIS with a number of MIS ∈ N initial simulations. It holds that

lim
MIS→∞

εMIS = 0 almost surely.

Proof. Let Ck
it ⊂ Sit be reachable, i.e., Pit(C

k
it |β′

i, β−i) > 0 for some β′
i ∈ ΣD

i , and akit ∈ AD
it and βi ∈ ΣD

i be arbitrary.
Then it follows that M(Ck

it) → ∞ for MIS → ∞. That is, for any reachable Ck
it, we sample infinitely often from the

conditional counterfactual measure P ( · |Ck
it, (βi)

Ck
it,a

k
it , β−i). Furthermore, it holds that

ũc, D
i (βi, β−i |Ck

it, a
k
it) ≤

∫
A
|ui(a)| dP (a |Ck

it, (βi)
Ck

it,a
k
it , β−i) ≤ ||ui||∞ <∞.

Finally, as al ∈ A
(
βi>t, C

k
it, a

k
it;MIS

)
is distributed according to P ( · |Ck

it, (βi)
Ck

it,a
k
it , β−i), Kolmogorov’s law of large

numbers holds and

lim
MIS→∞

ûc, D
i

(
βi>t, β−i|A

(
βi>t, C

k
it, a

k
it;MIS

))
= ũc, D

i

(
βi, β−i|Ck

it, a
k
it

)
almost surely.

In particular, it holds that

lim
MIS→∞

ûc, D
i

(
β−i|A

(
Ck

iT , β
D,MIS
i (Ck

iT );MIS

))
= ũc, D

i

(
βi, β−i|Ck

iT , β
D,∗
i (Ck

iT )
)

almost surely,

as the utility is independent from the choice of the argmax in Equation 18. Therefore, following the backward induction
procedure from Equation 19, we get

lim
MIS→∞

ûc, D
i

(
βD,MIS
i>t , β−i|A

(
βD,MIS
i>t , Ck

it, β
D,MIS
i>t (Ck

it);MIS

))
= ũc, D

i

(
βD,∗
i , β−i|Ck

it, β
D,∗
i (Ck

it)
)

a. s.

Finally, we get

lim
MIS→∞

ûver, D
i (β−i |AMIS) = ũi

(
βD,∗
i , β−i

)
= sup

β′
i∈ΣD

i

ũi (β
′
i, β−i) almost surely,

where we used Theorem E.1 for the first, and Theorem E.2 for the second equation. This gives us the desired statement.

Lemma E.4. Let Γ = (N , T, S,A, p, σ, u) be a multi-stage game, where Theorem D.2 holds. Let Git = (SD
it,AD

it, Cit,D)
be the discretization that results from a regular grid of 2D points along each dimension of Sit and Ait. Then for every pure
Lipschitz continuous strategy βit ∈ ΣLip, p

it there exists a sequence
{
βD
it

}
D∈N with βD

it ∈ ΣD
it (Git) such that

lim
D→∞

∣∣∣∣βit − βD
it

∣∣∣∣
∞ = 0.
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Proof. Let βit ∈ ΣLip, p
it . Then there exists an L > 0 such that for s, s′ ∈ Sit it holds that

dW (βit(s), βit(s
′)) = ||βit(s)− βit(s

′)||∞ ≤ L · ||s− s′|| .

As Ait and Sit are compact, there exists a K > 0 such that ||a− a′||∞ ≤ K and ||s− s′||∞ ≤ K for all a, a′ ∈ Ait

and s, s′ ∈ Sit. Then, for every a ∈ Ait and s ∈ Sit, there exist ã ∈ AD
it and s̃ ∈ SD

it such that ||a− ã||∞ ≤ K2−D and
||s− s̃||∞ ≤ K2−D.

Remember that
(
Ck

it

)
1≤k≤G

SD
it

partitions Sit. Let s ∈ Ck
it, then there is a unique sk ∈ SD

it ∩ Ck
it. Define

βD
it(s) = argmin

aDk
it ∈AD

it

∣∣∣∣akit − βit(s
k)
∣∣∣∣
∞ for s ∈ Ck

it, 1 ≤ k ≤ GD
Sit
.

Then βD
it ∈ ΣD

it for every D ∈ N. Finally, we get for all s ∈ Sit that∣∣∣∣βit(s)− βD
it(s

k)
∣∣∣∣
∞ ≤

∣∣∣∣βit(s)− βit(s
k)
∣∣∣∣
∞ +

∣∣∣∣βit(sk)− βD
it(s

k)
∣∣∣∣
∞

≤ L
∣∣∣∣s− sk

∣∣∣∣+K2−D ≤ K · (1 + L)2−D.

As K and L are constants, and 2−D → 0 for D → ∞, we get the statement.

We now turn to translate a close approximation of a strategy βi by a step function β′
i into closeness of the outcome distribution

in the Wasserstein distance. For completeness, we restate some well-known results about the Wasserstein distance.

Definition E.5 (Wasserstein distance). (Villani, 2009, p.93) Let (X, d) be a Polish metric space. For any probability
measures µ, ν on X , the (1-)Wasserstein distance between µ and ν is defined by

dW (µ, ν) = inf
π∈Π(µ,ν)

∫
X

d(x, y)dπ(x, y),

where Π(µ, ν) denotes the space of couplings between µ and ν. That is π ∈ Π(µ, ν) is a probability measure on X ×X ,
such that

∫
X
π(x, y)dy = µ(x) and

∫
X
π(x, y)dx = ν(x).

In our applications, we always assume the metric d to be induced by some norm || · ||. As we consider finite-dimensional
spaces by Assumption D.2, the choice of a norm is irrelevant.

Lemma E.6 (Kantorovich–Rubinstein duality). (Villani, 2009, p.59) Let (X, d) be a Polish metric space. For any probability
measures µ, ν on X , and K > 0, there holds the following equality

dW (µ, ν) =
1

K
sup

||f ||Lip≤K

{∫
fdµ−

∫
fdν

}
,

where || · ||Lip denotes the Lipschitz norm.

Theorem E.7 (Metrization of weak convergence). (Villani, 2009, p.96) Let (X, d) be a Polish metric space and (µk)k∈N is
a sequence of measures in P (X), and µ ∈ P (X), then the following two statements are equivalent

1. dW (µk, µ) → 0

2. For all bounded continuous functions f : X → R, one has∫
fdµk →

∫
fdµ.

To proof Theorem D.4, we leverage Theorem E.7. As the utilities are assumed to be continuous, it suffices to show that
closeness to a Lipschitz continuous strategy translates to a small Wasserstein distance of the outcome distribution. More
specifically, we show that under Assumptions D.2 and D.3, for every βi ∈ ΣLip, p

i there exists a sequence
(
βD
i

)
D∈N with

βD
i ∈ ΣD

i such that dW
(
P ( · |βi, β−i) , P ( · |βD

i , β−i)
)
→ 0. For this, we show some intermediate results first.
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Lemma E.8. Let µ1, ν1 and µ2, ν2 be measures on Rn and Rm respectively. Define the product measures µ := µ1 ⊗ µ2,
ν := ν1 ⊗ ν2. Then the following inequality holds

dW (µ, ν) ≤ dW (µ1, ν1) + dW (µ2, ν2)

Proof. By Theorem 4.1 of (Villani, 2009, p.43), there exist optimal couplings π1, π2 for µ1, ν1 and µ2, ν2 respectively, such
that

dW (µ1, ν1) =

∫
Rn×Rn

dRn(x1, x2)dπ1(x1, x2) , dW (µ2, ν2) =

∫
Rm×Rm

dRm(y1, y2)dπ2(y1, y2).

Then π := π1 ⊗ π2 is the trivial coupling for µ and ν, which can be readily checked by∫
Rn×Rm

π(x1, x2, y1, y2)d(x1, y1) =

∫
Rn

π1(x1, x2)dx1

∫
Rm

π2(y1, y2)dy1 = ν1(x2)ν2(y2),∫
Rn×Rm

π(x1, x2, y1, y2)d(x2, y2) =

∫
Rn

π1(x1, x2)dx2

∫
Rm

π2(y1, y2)dy2 = µ1(x1)µ2(y1).

Therefore, we get

dW (µ, ν) ≤
∫
Rn+m×Rn+m

dRn+m(x1, y1, x2, y2)dπ(x1, x2, y1, y2)

≤
∫
Rn+m×Rn+m

dRn(x1, y1) + dRm(x2, y2)dπ(x1, x2, y1, y2)

=

∫
Rn×Rn

dRn(x1, y1)dπ1(x1, y1) +

∫
Rm×Rm

dRm(x2, y2)dπ2(x2, y2)

= dW (µ1, ν1) + dW (µ2, ν2)

Lemma E.9. Let βit, β′
it ∈ Σp

it, β−it ∈ Σ−it and β<t ∈ Σ<t. Under Assumption D.2, it holds that

dW (P<t+1 ( · | (βi<t, βit) , (β−i<t, β−it)) , P<t+1 ( · | (βi<t, β
′
it) , (β−i<t, β−it))) ≤ ||βit − β′

it||∞.

Proof. We start with showing the following step first

dW (Pt ( · | a<t, βit, β−it) , Pt ( · | a<t, β
′
it, β−it)) ≤ ||βit − β′

it||∞ for all a<t ∈ A<t. (34)

Let a<t ∈ A<t be arbitrary. Then note first that as βit, β′
it are pure strategies, βit( · |σit(a<t)) and β′

it( · |σit(a<t)) are
Dirac-measures. Therefore, we can use the well-known fact that the Wasserstein distance between these is simply the
distance between the points with positive measure (see Example 6.3 in (Villani, 2009, p.94)), i.e.,

dW (βit( · |σit(a<t)), β
′
it( · |σit(a<t))) = ||βit(σit(a<t))− β′

it(σit(a<t))||∞ ≤ ||βit − β′
it||∞ ,

where we abused notation and treated βit, β′
it once as mapping to Dirac-measures and once as mapping to elements in Ait.

By Theorem D.2, Pt is a product measure on Rm for some m ∈ N. Therefore, one can use Theorem E.8 and get

dW (Pt ( · | a<t, βit, β−it) , Pt ( · | a<t, β
′
it, β−it))

≤ dW (βit( · |σit(a<t)), β
′
it( · |σit(a<t))) ≤ ||βit − β′

it||∞ ,

which shows Equation 34. Consequently, we get

dW (P<t+1 ( · | (βi<t, βit) , (β−i<t, β−it)) , P<t+1 ( · | (βi<t, β
′
it) , (β−i<t, β−it)))

= sup
||f ||Lip≤1

∫
A<t

∫
A·t

f (a<t, a·t) dPt (a·t | a<t, βit, β−it)

−
∫
A·t

f (a<t, a·t) dPt (a·t | a<t, β
′
it, β−it) dP<t (a<t |β<t)
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≤
∫
A<t

dW (Pt ( · | a<t, βit, β−it) , Pt ( · | a<t, β
′
it, β−it)) dP<t (a<t |β<t)

Equ.(34)

≤
∫
A<t

||βit − β′
it||∞dP<t (a<t |β<t) = ||βit − β′

it||∞.

Lemma E.10. Let (X, dX), (Y, dY ) be metric Polish spaces, f : X × Y → R be a Kf -Lipschitz continuous function and
µ( · |x) be a measure on Y for every x ∈ X . Furthermore, the mapping x 7→ µ( · |x) is Kµ-Lipschitz continuous with
respect to the Wasserstein distance dW . Then it holds that

gf : X → R, x 7→
∫
Y

f(x, y)dµ(y|x) is (Kf +KfKµ)− Lipschitz.

Proof. Let x, x′ ∈ X , then

|gf (x)− gf (x
′)| =

∣∣∣∣∫
Y

f(x, y)dµ(y|x)−
∫
Y

f(x′, y)dµ(y|x′)
∣∣∣∣

≤
∣∣∣∣∫

Y

f(x, y)− f(x′, y)dµ(y|x)
∣∣∣∣+ ∣∣∣∣∫

Y

f(x′, y)dµ(y|x)−
∫
Y

f(x′, y)dµ(y|x′)
∣∣∣∣

≤
∫
Y

Kf · dX×Y

(
(x, y)

T
, (x′, y)

T
)
dµ(y|x) + sup

||g||Lip≤Kf

∣∣∣∣∫
Y

g(y)dµ(y|x)−
∫
Y

g(y)dµ(y|x′)
∣∣∣∣

(E.6)
= Kf

∫
Y

dX(x, x′)dµ(y|x) +Kf · dW (µ ( · |x) , µ ( · |x′))

= Kf (dX(x, x′) + dW (µ ( · |x) , µ ( · |x′)))
≤ Kf (dX(x, x′) + LµdX(x, x′)) = (Kf +KfKµ) dX(x, x′).

Lemma E.11. Let Assumptions D.2 and D.3 hold, and let β<t, β
′
<t ∈ Σ<t and β·t ∈ ΣLip

·t . Then, there exists K > 0 such
that

dW (P<t+1 ( · |β<t, β·t) , P<t+1 ( · |β′
<t, β·t)) ≤ K · dW (P<t ( · |β<t) , P<t ( · |β′

<t))

Proof. By Theorem D.3, there exist constants Kσit > 0 for it ∈ L, such that σit is Kσit -Lipschitz continuous in A<t. Also,
denote with K0t nature’s Lipschitz constant with respect to dW in stage t. Similarly, as β·t ∈ ΣLip

·t , there exist constants
Kβit

> 0 such that βit ( · | sit) is Kβit
-Lipschitz with respect to the Wasserstein distance. Overall, we get for it ∈ L,

a<t, a
′
<t ∈ A<t

dW (βit ( · |σit(a<t)) , βit ( · |σit(a′<t))) ≤ KβitKσit · ||a<t − a′<t|| .

Denote Kt := K0t +
∑

i∈N Kβit
Kσit

. Then we get that the mapping a<t 7→ Pt ( · | a<t, β · t) is Kt-Lipschitz continuous
with respect to dW , which can be seen by

dW (Pt ( · | a<t, β · t) , Pt ( · | a′<t, β · t))

(E.8)

≤ dW (p0t ( · | a<t) , p0t ( · | a′<t)) +
∑
i∈N

dW (βit ( · |σit(a<t)) , βit ( · |σit(a′<t)))

≤

(
K0t +

∑
i∈N

KβitKσit

)
· ||a<t − a′<t||∞ ,

for all a<t, a
′
<t ∈ A<t. Let f : A<t+1 → R be 1-Lipschitz continuous. Then, we get by Lemma E.10, that the function

gf (a<t) :=
∫
A<t

f(a<t, a · t)dPt (a · t | a<t, β · t) is (1 +Kt)-Lipschitz continuous. With this, we get

dW (P<t+1 ( · |β<t, β·t) , P<t+1 ( · |β′
<t, β·t))
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(E.6)
= sup

||f ||Lip≤1

∫
A<t+1

f(a<t+1)P<t+1 (a<t+1 |β<t, β·t)−
∫
A<t+1

f(a<t+1)P<t+1 (a<t+1 |β′
<t, β·t)

= sup
||f ||Lip≤1

∫
A<t

gf (a<t)P<t (a<t |β<t)−
∫
A<t

gf (a<t)P<t (a<t |β′
<t)

(E.10)

≤ sup
||g||Lip≤1+Kt

∫
A<t

g(a<t)P<t (a<t |β<t)−
∫
A<t

g(a<t)P<t (a<t |β′
<t)

(E.6)
= (1 +Kt) · dW (P<t ( · |β<t) , P<t ( · |β′

<t)) ,

which shows the statement.

Lemma E.12. Let Γ = (N , T, S,A, p, σ, u) be a multi-stage game, where Assumptions D.2 and D.3 hold. For strategies
β−i ∈ ΣLip

−i , βi ∈ ΣLip, p
i and ϵ > 0, there exists a δ > 0 such that for all β′

i ∈ Σp
i with ||βi − β′

i||∞ < δ, it holds that

dW (P ( · |βi, β−i) , P ( · |β′
i, β−i)) < ϵ.

Proof. Let ϵ > 0, β−i ∈ ΣLip
−i , βi ∈ ΣLip, p

i , and β′
i ∈ Σp

i . Then we get

dW (P ( · |βi, β−i) , P ( · |β′
i, β−i))

(△-inequ.)
≤

T∑
t=1

dW (P ( · | (β′
i<t, βit, βi>t) , β−i) , P ( · | (β′

i<t, β
′
it, βi>t) , β−i))

(E.11)

≤
T∑

t=1

(∏
v>t

Kv

)
· dW (P<t+1 ( · | (β′

i<t, βit) , β−i) , P<t+1 ( · | (β′
i<t, β

′
it) , β−i))

(E.9)

≤
T∑

t=1

K>t ||βit − β′
it||∞ ,

whereK>t =
∏T

v=t+1Kv withKt := K0t+
∑

i∈N Kβit
Kσit

(see proof of Theorem E.11) for all 1 ≤ t ≤ T . By choosing
δ < maxt∈T

ϵ
K>t·T , we get the statement.
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