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Abstract

Given the omnipresence of social media in our
society, thoughts and opinions are being shared
online in an unprecedented manner. This means
that both positive and negative emotions can be
equally and freely expressed. However, the neg-
ativity bias posits that human beings are inher-
ently drawn to and more moved by negativity
and, as a consequence, negative emotions get
more traffic. Correspondingly, when writing
about emotions this negativity bias could lead
to expressions of negative emotions that are lin-
guistically more complex. In this paper, we at-
tempt to use readability and linguistic complex-
ity metrics to better understand the manifesta-
tion of emotions on social media platforms like
Reddit based on the widely-used GoEmotions
dataset. We demonstrate that according to most
metrics, negative emotions indeed tend to gen-
erate more complex text than positive emotions.
In addition, we examine whether a higher com-
plexity hampers the automatic identification
of emotions. To answer this question, we fine-
tuned three state-of-the-art transformers (BERT,
RoBERTa, and SpanBERT) on the same emo-
tion detection dataset. We demonstrate that
these models often fail to predict emotions for
the more complex texts. More advanced LLMs
like RoBERTa and SpanBERT also fail to im-
prove by significant margins on complex sam-
ples. This calls for a more nuanced interpre-
tation of the emotion detection performance
of transformer models. We make the automat-
ically annotated data available for further re-
search at hf.co/datasets/pranaydeeps/CAMEO.

1 Introduction

The negativity bias, coined by Kanouse et
al. (1987), states that human beings are inherently
drawn to, and impacted more by negative experi-
ences, emotions, and interactions than by their pos-
itive counterparts. This cognitive bias may be more
present than ever because of the evolution of social
media which makes sharing thoughts and opinions

easier than ever before. Recent research by Rathje
et al. (2021) has shown that publishing negative
criticism or insults against political opposition is
a highly effective way to acquire engagement on
social media platforms. Similar research in the
news domain shows that headlines with negative
keywords generate more engagement and clicks
than headlines with positive keywords (Robert-
son et al., 2023). While these studies explore the
negativity bias from a consumer’s perspective, in
this work we explore the idea of a negativity bias
from the perspective of the author and more specif-
ically explore the correlations between negativity
and complex language use.

The goal of this research is thus to further in-
vestigate the negativity bias in social media texts
by exploring whether there is a link between emo-
tion and text complexity. This overarching research
goal will be broken down into two specific research
questions. (1) Are negative emotions on social
media more complex than positive emotions? (2)
Does a text’s linguistic complexity make it harder
to model certain emotions using transformers, and
do transformers that are better at understanding
more complex text – such as SpanBERT (Joshi
et al., 2019) – perform better than BERT (Devlin
et al., 2019) on linguistically complex emotional
text?

Firstly, we attempt to understand, in a strictly lin-
guistic sense, the differences in the ways negative
and positive emotions are manifested on social me-
dia. To investigate this we rely on the GoEmotions
dataset (Demszky et al., 2020), which comprises
English Reddit comments that have been manually
annotated with 28 emotion categories. We investi-
gate these texts’ linguistic complexity by relying
on diverse metrics from readability research. More
specifically we consider a text more complex ac-
cording to both lexical and syntactic complexity
metrics.

In this first stage of our research, we investigate
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possible correlations between these metrics and the
polarity of the gold-standard emotion labels. In
the second stage, we fine-tune three state-of-the-art
transformers (BERT, RoBERTa, and SpanBERT)
on the emotion dataset to perform multi-label clas-
sification.

We demonstrate that according to most metrics,
negative emotions indeed tend to generate more
complex text than positive emotions and that the
transformer models are generally worse at predict-
ing emotions for the more complex texts. We be-
lieve this calls for a more nuanced interpretation of
the emotion detection performance of transformer
models, with more detailed evaluations to have a
better understanding of performance for complex
data.

The remainder of this paper is organized as fol-
lows. Section 2 gives a brief overview of relevant
related research, whereas Section 3 describes the
data and information sources used for the experi-
ments and analyses. Section 4 elaborates on the
correlations between complexity and emotion po-
larity, whereas Section 5 discusses the machine
learning experiments carried out to evaluate the
performance of transformers on instances with var-
ious degrees of complexity. Section 6 ends this
paper with concluding remarks and indications for
future research.

2 Related Research

2.1 Negativity Bias and Complexity

The negativity bias or negativity effect is a cog-
nitive bias that is described as the greater impact
that negative stimuli have on humans compared to
positive stimuli (Kanouse and Hanson Jr, 1987).
This greater impact is not only reflected in obser-
vations that humans are more drawn to negative
stimuli – which, for example, shows itself in more
engagement with negative posts on social media
(Rathje et al., 2021) or in higher consumption of
negative news (Robertson et al., 2023) – but also
in the fact that negative stimuli are associated with
a higher cognitive load and more complex cogni-
tive representations (Peeters and Czapinski, 1990).
One could therefore ask whether this complexity is
also reflected in language use.

Some researchers have indeed investigated the
negativity bias in the context of language. An early
but important observation is that there are more
words for referring to negative emotional states
than there are for referring to positive emotions

(Averill, 1980). On a similar note, Jing-Schmidt
et al. (2007) observed that there is a large number
of emotive intensifiers that are based on negative
emotion words, even to express positive messages
(e.g., "He is insanely good at his job." or "This was
terribly sweet of you.").

Besides focusing on the prevalence of negative
vocabulary, few studies have dealt with examin-
ing the relationship between language complexity
and negative emotions. Some studies have exam-
ined the language used in personal narratives about
positive and negative experiences, but findings re-
garding complexity are inconclusive: in the work
of Bohanek et al. (2005) on narratives of female un-
dergraduates, it was found that positive narratives
were more coherent and complex, although nega-
tive narratives were longer. However, in a study
by Fivush et al. (2003), in which children were
asked to narrate highly negative and highly positive
events, it was found that narratives about negative
events were more coherent. Moreover, these sto-
ries exhibited more emotion-related and cognition-
related words, while the narrations about positive
events focused more on descriptions of objects and
people and were less coherent. These findings are
more in line with the work of Guillory et al. (2011),
in which emotion contagion in online groups was
studied and it was found that negative emotions are
correlated with more complex language. However,
seeing these mixed findings, a thorough study us-
ing well-designed complexity metrics is desired to
reliably examine the relationship between negative
emotions and linguistic complexity.

2.2 Text Complexity

Text complexity can be studied from different an-
gles. The first strand of experimental research in-
vestigates complexity by measuring processing ef-
fort when reading sentences. Effort can then be
captured by cognitive proxies, such as for instance
eye-tracking metrics (King and Just, 1991).

A second strand of research, more related to the
work proposed here, is research on measuring text
readability. Pioneering work in this respect has
been performed by pedagogical researchers who
designed traditional readability formulas, such as
Flesch (1948) or Dale and Chall (1948). These
formulas calculate text readability based on shal-
low surface text characteristics, such as the average
word or sentence length or frequencies according
to a predefined list. Thanks to advances in both



NLP and machine learning, we are currently able
to derive more intricate text characteristics and con-
sequently the research evolved towards readabil-
ity prediction using both feature-based (Collins-
Thompson, 2014; De Clercq and Hoste, 2016) and
deep learning approaches, though the latter mostly
rely on a combination with explicitly derived lin-
guistic features (Meng et al., 2020; Lee et al., 2021).
Interestingly, among the text characteristics that
have been identified as most predictive when it
comes to assessing a text’s readability, the super-
ficial ones – as employed in the traditional formu-
las – are often retained (François and Miltsakaki,
2012; De Clercq and Hoste, 2016). Additionally,
syntactic features derived from parse tree infor-
mation have also proven important indicators of
a text’s complexity as first revealed in the work
by Schwarm and Ostendorf (2005) relying on a
constituency parser and later also corroborated us-
ing dependency parsing information (De Clercq
and Hoste, 2016). Considering the latter, many
efforts have been devoted towards universal de-
pendencies (De Marneffe et al., 2021), which was
employed in recent research to operationalize how
cognitive effort can be increased by complex syn-
tax during translation through a variety of syntactic
complexity metrics (Zou et al., 2022).

2.3 Emotion Detection

Given the abundance of opinionated data on the
web, there is significant interest in methods to auto-
matically analyze the emotional information within
this data, e.g. in the context of market analysis
and customer satisfaction for business intelligence
(Song et al., 2021) or reputation management (Mo-
hammad et al., 2015).

While initially, the aim was to identify the se-
mantic polarity (positive, negative, or neutral) of
a given instance, the field evolved towards a more
fine-grained paradigm where the goal is to identify
specific emotions instead of mere polarity orienta-
tions.

In line with this interest in fine-grained emotion
detection, datasets labeled with a wide range of
emotion categories have been developed. One of
the largest and most fine-grained emotion datasets
is GoEmotions (Demszky et al., 2020), which con-
sists of English Reddit comments that were manu-
ally labeled with 28 emotion categories. As stated
by the authors, it is “the largest human-annotated
[emotion] dataset, with multiple annotations per

example for quality assurance”. The applied emo-
tion taxonomy includes 12 positive, 11 negative,
4 ambiguous emotion categories, and 1 “neutral”
category.

Demszky et al. (2020) employed a BERT-based
model and achieved an average F1-score of .46 on
the fine-grained emotion classification task. The
best performance was obtained for the positive emo-
tions gratitude (.86), amusement (.80), and love
(.78), while the model performed worst on grief
(0), relief (.15) and realization (.21). Indeed, over-
all the performance was better on positive emotions
(average F1-score of 0.52) compared to negative
emotions (average F1-score of 0.41). The authors
explain this by the presence of overt lexical mark-
ers for the best-predicted emotions, but also by
frequency: overall, there are more instances with a
positive emotion label than a negative label in the
dataset. In this paper, we will therefore investigate
whether complexity, besides frequency, could be
an explaining factor in emotion detection perfor-
mance.

3 Extracting Complexity Metrics

To investigate the link between emotions and com-
plexity, we extracted a set of linguistic text charac-
teristics that have shown to be good predictors for
complexity in readability research (see Section 2.2).
In the remainder of this paper, we will refer to these
features as complexity metrics. In this section, we
will first describe the datasets used for the correla-
tion analysis and emotion detection experiments,
and subsequently present an overview of all metrics
that were extracted to measure complexity.

3.1 Datasets

In order to investigate the link between emotions
and complexity on social media posts, we deliber-
ately chose to work with a high-quality benchmark
dataset for emotion detection that has been manu-
ally annotated.

The GoEmotions dataset1 consists of English
Reddit comments that were manually labeled with
28 emotion categories (including 12 positive, 11
negative, 4 ambiguous emotion categories, and 1
“neutral” category, allowing one to distinguish be-
tween subtle emotion expressions). The dataset
consists of 58,009 instances. To create the Reddit
corpus, first NLTK’s word tokenizer was applied

1https://ai.googleblog.com/2021/10/goemotions-dataset-
for-fine-grained.html



and only comments consisting of 3 to 30 tokens
were selected. Subsequently, downsampling was
performed to create a relatively balanced distribu-
tion of comments with varying lengths. We ran-
domly selected a subset of 50,000 instances from a
total of 58,009 instances in the simplified version
of the dataset for automatic annotation of complex-
ity information. In this evaluation set, the negative
and positive polarities are fairly evenly distributed
with 11,935 negative samples and 14,190 positive
samples, while there are 23,875 neutral samples.
In the fine-tuning experiments for Section 5, we
use the entire dataset of 58,009 instances with an
80:10:10 split for training, validation, and testing
respectively.

3.2 Complexity Metrics

To measure text complexity, we extracted a set
of linguistic features that range from well-known
superficial word shapes and lexical features to
more complex syntactic features.

First, a set of word shape and lexical diversity
and frequency features were extracted based
on the readability research of De Clercq and
Hoste (2016). We refer to this set as the lexical
metrics. It comprises two more traditional
readability features, namely average word length
and percentage of polysyllable words, which have
proven successful in readability work (François
and Miltsakaki, 2012). Next, lexical complexity
was modeled by measuring the type-token ratio
and the percentage of words that can be found
in the 1995 Dale and Chall list (Chall and Dale,
1995) for English. In addition, two-term weighting
features were implemented that are often used to
distinguish specialized terms in the text, namely
Term Frequency-Inverse Document Frequency,
aka tf-idf (Salton and Buckley, 1988) and the
Log-Likelihood ratio (Rayson and Garside, 2000).
For both of these features, the average values for
all words in the text were calculated. Because
connectives serve as an important indication of
textual cohesion in a text (Graesser et al., 2004),
we also counted the average number of connec-
tives within the text. Finally, as named entity
information provides us with a good estimation of
the amount of world knowledge required to read
and understand a particular text (De Clercq and
Hoste, 2016), the number of unique entities was
calculated as well.

Second, the following syntactic metrics were
calculated based on the work of Zou et al. (2022),
these metrics can be viewed as proxies to measure
the impact of syntactic complexity on cognitive
effort:

• IDT – Incomplete Dependency Theory:
For a given token ti, the IDT metric counts the
number of incomplete dependencies between
ti and ti+1.

• DLT – Dependency Locality Theory:
For a head token ti, the DLT metric counts the
number of discourse referents (proper nouns,
nouns, and verbs) starting from ti ending to
its longest leftmost dependent. The boundary-
ending words should also be counted if they
are discourse referents. For a non-head token,
DLT is defined as zero.

• NND – Nested Noun Distance:
The distance between two tokens ti and tj is
their absolute positional distance, |j − i|. A
noun ti is nested in another noun tj if tj is
the ancestor of ti in the dependency tree. In
any tree structure, a node that is connected to
some lower-level nodes is called an ancestor.
NND is the aggregation (i.e., sum, max or
average) of nested noun distances. Following
the research of Zou et al. (2022) we used sum
as the aggregating metric.

• LE – Left-Embeddedness:
The LE metric counts the number of tokens
on the left-hand side of the main verb which
are not verbs.

We have made the 50k subset of the GoEmo-
tions dataset, automatically annotated with all 12
complexity metrics, available2.

4 Correlation between Linguistic
Complexity and Negative Emotions

In this section, we investigate whether there is a
positive correlation between linguistic complex-
ity and the presence of negative emotions. As
explained in Section 3, we rely on syntactic and
lexical readability metrics to measure complexity,
while dividing the 28 emotion labels into 3 sets:
positive (12 labels), negative (11 labels), and neu-
tral and ambiguous (5 labels). As a preliminary

2https://huggingface.co/datasets/pranaydeeps/CAMEO



Figure 1: Factor loading matrix showing the importance of the considered readability metrics for three Factors.

attempt to study these correlations, we first perform
an Exploratory Factor Analysis (EFA) to justify the
use and selection of the complexity metrics before
proceeding to investigate links between complexity
and emotions. Moreover, by classifying the metrics
into factors, we can further analyze the difficulties
of transformers in modelling certain types of com-
plexity.

First, we perform Barlett’s Test of Spheric-
ity (Armstrong and Soelberg, 1968) to confirm the
validity of the factor analysis. The p-value was
found to be 0.0 which means the observed cor-
relation matrix is not an identity matrix and the
test is statistically significant. We also perform a
Keyser-Meyer-Olkin (KMO) Test which measures
the proportion of variance among all the observed
variables. The KMO for our data was found to be
0.659. A value higher than 0.6 is usually consid-
ered adequate for factor analysis.

To determine the adequate number of factors for
decomposition, we set up a Scree plot, which is
shown in Figure 2. Since 3 factors seem to have an
eigenvalue higher than 1.0, we perform the factor
analysis with 3 components. Figure 1 visualizes the
factor loading matrix, demonstrating that Factor 1
largely combines syntactic metrics, while Factor 2
focuses on frequency-based metrics like TF-IDF,
Log-Likelihood, and Type Token Ratio and Factor
3 solely focuses on basic lexical metrics like word
length and polysyllable occurrences. The factor

Figure 2: Scree plot showing the Eigenvalue in corre-
spondence to the number of Factors.

variance reveals a cumulative value of 0.413, which
means that a cumulative variance of 41.3% of the
data is explained by the 3 factors. In Section 5 we
further use the distinction between the factors to
analyze the difficulties of transformer models in
modeling certain types of linguistic complexity.

Since the metrics used seem to adequately rep-
resent linguistic complexity as statistically proven
by the EFA, we can use these metrics to further
understand the relationship between complexity
and emotion polarities. To this end, we divide
the complexity-enriched GoEmotions dataset into



(a) IDT (b) DLT (c) Left-Embededness (d) Nested Noun Distance

(e) Average Word Length (f) % Pollysyllable Words (g) DALE Word Frequency (h) Type Token Ratio %

(i) Avg. Connectives (j) Num. Unique Entities (k) Avg. TF-IDF (l) Avg. Log-Likelihood

Figure 3: Average value of each complexity metric for the broader emotion categories of positive, negative, and
neutral for the GoEmotions evaluation set.

three polarities and calculate the average value for
each metric for the three polarities individually.
Figure 3 displays the averages for all 12 metrics
for the three polarities. According to the figure, 9
out of the 12 metrics indeed have a higher aver-
age score for negative polarity. For some metrics,
like Left-Embededness, Nested Noun Distance, or
DALE Word Frequency, the difference between
positive polarity averages is strikingly lower than
the negative and neutral polarity averages. While
Avg. TF-IDF, Avg. Log-Likelihood and Type To-
ken Ratio % are anomalies, all three of these met-
rics convey correlated information represented by
Factor 2 in the EFA (as illustrated in Figure 1).

5 Emotion Detection Evaluation

In this section, we attempt to understand how dif-
ferent state-of-the-art transformers are affected by
complexity when classifying emotions using the
GoEmotions datasets, which constitutes with its 28

emotion categories a very fine-grained classifica-
tion task. For these experiments, we investigate
3 major transformers, BERT (Devlin et al., 2019),
SpanBERT (Joshi et al., 2019), and RoBERTa (Liu
et al., 2019). We fine-tune each of these models
for multi-label classification for 20 epochs, with
an initial learning rate of 2e − 5 and a weight de-
cay of 0.1, on a train set of 46,407 samples (80%)
from the raw version of the GoEmotions dataset.
We then use the best-performing checkpoint on a
validation set of about 5,800 samples (10%). As an
evaluation set, we use the remaining 5,802 samples
(10%). All scores reported are averaged over 3 runs
with different seeds.

To evaluate the output of the three fine-tuned
transformer models, we again incorporate the
metrics described in Section 3.2. We divide
metrics using the EFA described in Section 4 into
the 3 Factors, each representing a different aspect
of linguistic complexity, i.e., syntactic complexity



Factor 1 Factor 2 Factor 3
Sim. Med. Comp. Sim. Med. Comp. Sim. Med. Comp.

Negative 275 889 214 29 1280 69 196 929 253
Neutral 656 1733 381 46 2480 244 420 1825 525
Positive 432 1023 199 34 1526 94 210 1138 236

Table 1: Distribution of Complex, Medium and Simple samples in the evaluation set considering the three main
factors resulting from the Exploratory Factor Analysis (Section 4).

Factor 1 Factor 2 Factor 3
Sim. Med. Comp. Sim. Med. Comp. Sim. Med. Comp.

Negative 0.2195 0.2068 0.2660 0.1034 0.2202 0.2480 0.2486 0.2053 0.2484
BERT Neutral 0.4875 0.4331 0.3874 0.3544 0.4283 0.5741 0.4656 0.4262 0.4661

Positive 0.4850 0.4151 0.3665 0.3157 0.4312 0.4100 0.4733 0.4110 0.4540
Negative 0.1148 0.1164 0.0732 0.0444 0.1097 0.1272 0.1346 0.1020 0.1173

SpanBERT Neutral 0.5176 0.4209 0.3793 0.2769 0.4278 0.5751 0.4574 0.4243 0.4736
Positive 0.4494 0.3848 0.3324 0.3235 0.3996 0.3516 0.4319 0.3802 0.4252
Negative 0.3053 0.2508 0.2564 0.3157 0.2610 0.2647 0.3077 0.2500 0.2738

RoBERTa Neutral 0.4642 0.4275 0.3921 0.3000 0.4211 0.5658 0.4423 0.4199 0.4632
Positive 0.5027 0.4142 0.3644 0.3846 0.4352 0.3814 0.4774 0.4212 0.4248

Table 2: Performance (micro-F1) of the three transformer models fine-tuned for emotion detection with respect to
the three main factors resulting from the EFA.

(Factor 1), metrics based on frequencies in a
background corpus (Factor 2), and simple lexical
complexity (Factor 3). For each set, if more than
half of the metrics are in the top 20 percentile, we
label the sample as a complex one (Comp.). If
more than half of the metrics are in the bottom 20
percentile, we label the sample as a non-complex
one (Sim.). The rest of the samples are labeled
as medium complex (Med.). An overview of the
distribution of the evaluation set according to this
complexity labeling scheme is presented in Table 1.

The detailed emotion classification results,
which are summarized in Table 2, provide some
interesting findings. First and foremost, it is im-
portant to draw attention to the performance of the
negative subclass of emotions which is consistently
worse than the neutral or positive instances. This is
proven by a two-tailed sample T-test, which proves
the findings are statistically significant at p < 0.05.
This is also apparent in Figure 4 where the per-
formance for negative subsets for each factor is
consistently poorer than for the positive subsets.
The difference can be quite staggering: the Fac-
tor 1 Simple Positive set, for instance, has a micro
F1-score of 0.4850 for the BERT model, while the
Factor 1 Simple Negative set obtains a micro F1-
score of 0.2195. This is in line with experimental

findings in psychology research that Negative Emo-
tion Differentiation (ED) is harder than Positive ED
for certain individuals (Starr et al., 2020), or other-
wise put, that it is more difficult to distinguish be-
tween various fine-grained negative emotions than
between different positive emotions, for humans
and automatic systems alike.

A second noteworthy observation is that the Fac-
tor 1 Simple subsets tend to frequently outperform
the Factor 1 Complex and Medium subsets, as il-
lustrated by Figure 4(a). This is again verified by
a two-tailed sample T-test, which proves statisti-
cally significant at p < 0.05. This is in accordance
with the presumption that complex text samples
require a higher degree of Natural Language Un-
derstanding (NLU), which the current generation
of transformers is not (yet) capable of. This obser-
vation seems contrasted by the better performance
on most Factor 2 Complex subsets, which often
even surpasses the results obtained on the Factor
2 Simple subsets. This, however, might be linked
to the fact that lexical complexity also comes with
lexical richness, i.e., the presence of distinguish-
ing keywords seldom used, which was one of the
complexity metrics (type-token ratio) we used to
categorize the evaluation set according to complex-
ity, and therefore potentially a key factor in the
decision-making for ED. Whereas, for Factor 3,



(a) Factor 1

(b) Factor 2

(c) Factor 3

Figure 4: Classification performance of BERT, Span-
BERT and RoBERTa (in micro-F1) for Complex vs.
Simple subsets for the three Factors (Figure (a), (b), (c))
for Negative and Positive emotions.

the difference in Simple vs. Complex subsets is
inconclusive. This suggests that modeling lexically
complex samples is not a pertinent issue of these
sets of transformers.

The final, rather disappointing, observation is
that SpanBERT, which is designed to better repre-
sent and predict spans of text, and thus assumed
to better model more complex syntax, does not
obtain better classification scores than BERT or
RoBERTa on the complex subsets. In fact, Span-
BERT only outperforms BERT and RoBERTa for
some emotionally neutral subsets, which might

point to the pre-training data lacking emotional
richness. SpanBERT was trained on the same
datasets as BERT, but the data was restricted to
samples exceeding 512 sub-tokens only from Book-
Corpus and Wikipedia, potentially inhibiting the
ability of the model to understand non-standard
short-form social media communication.

6 Conclusion

In this work, we attempted to answer two research
questions on the relationship between linguistic
complexity and emotion detection. For this pur-
pose, we relied on the GoEmotions dataset, which
is a high-quality benchmark dataset for emotion
detection that has been manually annotated with 28
emotion categories.

In the first part of this research, we investigated
whether negative emotions are more linguistically
complex than positive ones. With the help of twelve
complexity metrics sub-divided into three factors,
we discovered that negative emotions indeed have
a higher average degree of complexity than posi-
tive or neutral emotions. Secondly, we attempted
to dive deeper into the evaluation of fine-tuned
transformers for emotion detection, by dividing our
evaluation set from the GoEmotions dataset into
complex, medium, and simple samples. Through
this nuanced evaluation of three state-of-the-art
transformers (BERT, SpanBERT and RoBERTa),
we find that syntactically complex samples are of-
ten misclassified. We also notice that irrespective
of difficulty, all models tend to perform poorly on
negative emotions. Finally, we also discover that
even though SpanBERT encodes a higher degree of
complexity, this does not extend to emotion detec-
tion of complex text, as it either performs worse or
is comparable to transformers trained with standard
masking (BERT and RoBERTa).

To conclude, we aim to encourage a more de-
tailed evaluation of current emotion detection sys-
tems, by extending the evaluation setup to better
understand the performance for more linguistically
complex instances, rather than the reporting of
aggregated scores which may only paint a half-
formed picture. In future work, we would like to
demonstrate the validity of the results on datasets
from other domains and annotation strategies, as
well as languages other than English. Further, since
linguistic complexity does have an impact on emo-
tion detection performance, we would like to in-
vestigate more intricate approaches to model more



complex samples.

Limitations

As a first and primary limitation, we want to point
out that the present study has only been validated
on an English dataset, whereas emotions are global.
Thus, more work needs to be done before the con-
clusions can be extended to other languages and
domains. The study was also conducted using the
GoEmotions dataset. Even though it can be consid-
ered the largest human-annotated emotion dataset
in English, the results should be validated on more
datasets and source domains. Lastly, the inferences
in this work assume that the selected metrics are
exhaustive and adequately represent the complexity
of a text sample, however, assessing linguistic com-
plexity is a complex and ongoing multidisciplinary
area of research, and the selected metrics may be
missing some information to properly distinguish
complexity.
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