
Published as a workshop paper at DeLTa Workshop (ICLR 2025)

UNIFYING AUTOREGRESSIVE AND DIFFUSION-BASED
SEQUENCE GENERATION

Nima Fathi∗, Torsten Scholak & Pierre-André Noël
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ABSTRACT

We present significant extensions to diffusion-based sequence generation models,
blurring the line with autoregressive language models. We introduce hypersched-
ules, which assign distinct noise schedules to individual token positions, general-
izing both autoregressive models (e.g., GPT) and conventional diffusion models
(e.g., SEDD, MDLM) as special cases. Second, we propose two hybrid token-
wise noising processes that interpolate between absorbing and uniform processes,
enabling the model to fix past mistakes, and we introduce a novel inference algo-
rithm that leverages this new feature in a simplified context inspired from MDLM.
To support efficient training and inference, we design attention masks compatible
with KV-caching. Our methods achieve state-of-the-art perplexity and generate
diverse, high-quality sequences across standard benchmarks, suggesting a promis-
ing path for autoregressive diffusion-based sequence generation.

1 INTRODUCTION

Generative diffusion models, primarily recognized for their impressive image generation perfor-
mance in continuous domains (Yang et al., 2023), are rapidly gaining traction in language modeling,
a discrete domain historically dominated by autoregressive (AR) models such as the GPT family
(Radford et al., 2019; Brown et al., 2020). Contrary to the perceived visceral separation between
autoregressive and diffusion models, and despite their distinct historical development, this work
reveals a fundamental connection: autoregressive models are, in essence, a form of diffusion.

The core principle behind diffusion models involves prescribing a “noising” process that gradually
destroys information in training data samples, subsequently learning a neural network that progres-
sively generates new samples from “pure noise” with a denoising process. The noising process acts
as a form of data augmentation: together with the original training dataset, it specifies the curriculum
on which the generator (denoiser) is trained. Part of the attraction for these models arises from their
rich theoretical grounding, resulting in concrete practical techniques. In particular, a model’s train-
ing and inference environments can be decoupled, allowing for a compute-budget knob at inference
time, and guidance techniques adapting a model’s behavior to specific situations.

Despite the common use of Gaussian noise in continuous diffusion, the underlying principles can be
adapted to discrete state spaces (Austin et al., 2021; Zhou et al., 2023; Lou et al., 2024). Common
practices for sequence generation have the noising process randomly and independently substitut-
ing some original tokens by completely unrelated ones, i.e., uniformly sampled tokens or a special
“mask” absorbing state. A noise schedule determines token replacement probabilities at different
points in the curriculum. The resulting sequence at the schedule’s highest noise level retains no
mutual information with the original sequence. The generator is then trained on this curriculum to
enable the production of novel sequences.

This work unifies AR and diffusion sequence generation by introducing hyperschedules, allowing
different positions in the sequence to be affected by different noise schedules. We establish that
autoregressive models, such as GPT, can be understood as diffusion models without data augmen-
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Figure 1: Generative diffusion models prescribe (through qt|t+1) a curriculum process {Xt}, then
learn (through pθt+1|t) a reverse process {X̂t} so that the marginal distributions match at each step
t (vertical squiggly lines). Y is the training dataset and Ŷ is the generated output. This work
focuses on discrete diffusion for sequence generation: our Y, Ŷ, Xt and X̂t are all sequences of
discrete tokens, using the identity for both qT and π. We show that standard autoregressive models
(e.g., GPT) are an extreme case of this framework, a unification enabling a vast continuum of new
diffusion models, including autoregressive-like ones.

tation, utilizing a discrete noise schedule comprising only “full noise” and “no noise” levels. This
unification expands model design space and enables a variety of generalized AR-like approaches.

Recent (Sahoo et al., 2024; Ou et al., 2024; Shi et al., 2024) and concurrent (Liu et al., 2024; Kim
et al., 2025; Peng et al., 2025; Nie et al., 2025; Wang et al., 2025; Arriola et al., 2025) works
have focused on mask diffusion models (MDMs). By specializing on the “absorb” noising mecha-
nism, these MDMs enable great simplifications over a general-purpose treatment: neural networks
no longer need an explicit noise-level dependency, and a more standard loss function can be used.
However, our work shows that the same feats and simplifications can be accomplished in a gen-
eral, non-MDM case. Motivated by the same rationale that led concurrent MDMs to conceive “re-
masking” strategies, we introduce hybrid noising processes, interpolating between the “absorb” and
“uniform” processes to combine the benefits of both and achieve state-of-the-art performances, with
aspects further improved by our novel adaptive correction sampler (ACS) inference algorithm. Our
hyperschedule-equipped approach also supports KV-caching and efficient training.

In summary, our main contributions are:

• we unify AR and diffusion sequence generation by introducing hyperschedules;

• we consider hybrid noising processes, reaping benefits from both leading noising processes
and achieving state-of-the-art performances, with and without our novel ACS algorithm;

• our hyperschedule-powered hybrid processes generalize multiple concurrent developments
to non-MDM setting, including efficient training and KV-caching.

2 ABSTRACT SEQUENCE GENERATORS

In this section, we reconcile autoregressive and diffusion-based sequence generation models by
abstracting-out their respective implementation details, instead emphasizing their shared essence.
Note that we focus on unconditional generation without loss of generality; conditional generation
(e.g., prompting) may be recovered as a special case.

2.1 GENERATIVE DIFFUSION MODELS

For our present purpose, a generator is a procedure that yields an output ŷ according to a certain
probability distribution PŶ. We focus on procedures composed of T ∈ N∗ discrete steps (e.g.,
“calls” to a neural network) each updating a state x̂t to a state x̂t+1 using a conditional probability
distribution PX̂t+1|X̂t

(x̂t+1|x̂t) = pθt+1|t(x̂t+1|x̂t) with learned parameters θ. The stochastic pro-

cess {X̂t} is seeded with an initial state x̂0 that is either a constant or sampled from a provided (i.e.,
not learned) distribution PX0

(x0) = p0(x0). The output ŷ = π(x̂T ) is a deterministic function of
x̂T . Given a dataset sampled from a data distributionPY, our goal is to train the parameters θ so that
the generator’s marginal output distribution PŶ matches the data’s PY (hereafter noted Ŷ Y).
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Figure 2: We introduce τ -hyperschedules, subjecting different token positions i with different noise
levels (red high; blue low) at different generation step t. (a) Standard AR models (e.g., GPT) deter-
mine tokens one by one, “quenching” each of them to full determination in a single step – they are an
extreme case of a diffusion model. (b) Standard diffusion models (e.g., SEDD) gradually anneal all
tokens independently of their position. (c) Block-wise application of flat annealing, here for blocks
of width ω = 4. (d) Annealing with a sliding window (“smoothed” AR), here using window width
ω = 4. These last two examples share important features of both AR and diffusion models.

In general, generative diffusion models Yang et al. (2023) prescribe the evolution
PXt|Xt+1

(xt|xt+1) = qt|t+1(xt|xt+1) of a curriculum {Xt} conditional on a data sample y ac-
cording to PXT |Y(xT |y) = qT (xT |y).1 Different training strategies have been developed to align
the marginal distributions X̂t Xt at every step t. In a sense, the curriculum {Xt} breaks the goal
Ŷ Y into T simpler steps. Figure 1 provides a diagrammatic summary.

2.2 SEQUENCE GENERATORS

This work focuses on datasets of sequences y = (y0, y1, · · · , yd−1) ∈ Yd composed of d ∈ N∗

tokens from a finite set Y . Although the curriculum xt = (x0
t , · · · , xd−1

t ) ∈ X d may in general rely
on a continuous X , all our explicit examples use X = Y , qT (y|y) = 1 and π(x̂T ) = x̂T . In any
case, the output sequence ŷ ∈ Yd and states xt ∈ X d match these domains. We further focus on
curriculum-prescribing processes that factorize in terms of per-token transitions qit|t+1(x

′|x), i.e.,
qt|t+1(xt|xt+1) =

∏
i q

i
t|t+1(x

i
t|xi

t+1). We now consider two important examples.

Standard AR. Most modern language models predict tokens autoregressively: one token at a
time, each conditional on the tokens that precede it. This is an extreme case of a diffusion model
where the conditional probability qt|t+1 is actually a deterministic function that masks-out the t-
th token, ultimately resulting in x0 composed solely of MASK tokens. At generation, x̂0 starts
as all masks, and each pθt+1|t(x̂t+1|x̂t) predicts the sole entry x̂t

t+1 that differs between x̂t+1 and
x̂t. Implementations need not actually track MASK tokens because they always end the sequence.
Training on a sample y uses cross-entropy loss on PX̂i

i+1|X̂:i
i
(yi|y:i) for each position i.2

Standard diffusion. Discrete diffusion models prescribes the curriculum using qit|t+1(x
′|x) given

by the x-th column of a matrix Qt|t+1 that is independent of the position i. For example, SEDD (Lou
et al., 2024) uses Qt|t+1 = exp

(
(σ̄T−t − σ̄T−t−1)Qtok

)
, where the transition matrix Qtok is one of

QUniform or QAbsorb (see Appendix A), and σ̄0 ≤ σ̄1 ≤ · · · ≤ σ̄T are cumulative noise schedules such
that σ̄0 ≈ 0 and σ̄T ≈ ∞. In words, using QUniform gradually replaces tokens by random ones, while
QAbsorb gradually replaces them by MASK. Generation starts from x̂0 sampled from the stationary
distribution p0 (i.e., random non-mask tokens for QUniform and all-masks for QAbsorb), and pθt+1|t is
learned in terms of diffusion weighted denoising score entropy (DWDSE) (Lou et al., 2024).

Although MDMs technically correspond to the above for the case QAbsorb, the literature has con-
verged on a much simpler formulation in terms of 1 ≈ α0 ≥ α1 ≥ · · · ≥ αT ≈ 0 such that xi

t has
probability αT−t to be the original token yi and probability 1 − αT−t to be MASK. The resulting

1Note that t here goes down from T to 0 as we align our notation with generation steps. Existing diffusion
work often take the opposite perspective, tracking a “noise level” T − t.

2Indices a:b go from a (inclusive) to b (exclusive); omitted a or b are implicit 0 or d, respectively.
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Figure 3: Examples of our hyperschedule-powered hybrid model in action. Gold tokens are set-
tled; dark grey mask tokens are worthless; and the remaining tokens are active. Active mask (light
gray) are “known unknowns”. Here the “uniform” component of our hybrid process introduces one
error in the curriculum (red), teaching the model to fix such errors at inference. Although both hy-
perschedules generate at the limit rate of ρ = 1 token per step in the long-sequence limit, τω=4

Slide
experiences an initial overhead of ω − 1 steps.

transition matrix Qt|t+1 = 1 + (1 − αT−t

αT−t−1
)QAbsorb may be further simplified, allowing training

pθt+1|t using a weighted cross-entropy loss (Sahoo et al., 2024).

2.3 TRANSFORMERS

Like most modern language models, all sequence generators considered in this work are imple-
mented as transformers (Vaswani et al., 2017), more specifically the backbone from Peebles & Xie
(2023). We call ALIGNED the transformer configuration used in most masked language models
and diffusion models: each transformer cell predicts (output) the same token position as the one it
receives (input). Conversely, we call SHIFTED the configuration used in most autoregressive mod-
els: each cell predicts the next token in the sequence. To simplify discussions, we fully commit
to our sequence generator abstraction when indexing positions, irrespective of these input/output
configuration (see details in Appendix B).

3 AUTOREGRESSIVE SEQUENCE DIFFUSION

3.1 HYPERSCHEDULES

We generalize standard diffusion curricula by subjecting different token positions i to different noise
schedules, distinguishing the number of generation steps T from the number of noise levels T . Con-
cretely, qit|t+1(x

′|x) is given by the x-th column of a Qi
t|t+1 obtained by substituting each instance

of σT−t or αT−t in Qt|t+1 by στ i
t or ατ i

t , respectively, where the hyperschedule τ it ∈ {0, 1, · · · , T }
satisfying T = τ i0 ≥ τ i1 ≥ · · · ≥ τ iT = 0 for all positions i ∈ {0, · · · , d − 1}. In effect, the noise
schedule (σ̄ or α) unfolds differently at different positions. Figure 2 provides some examples.

We introduce two characterizations of an hyperschedule. First, we define the window width ω as the
largest (among all steps t) number of positions i for which (τ it , τ

i
t+1) is neither (0, 0) nor (T , T ).

All other things being equal, a lower ω offers more opportunities to improve inference time (see
Sec. 3.3 for examples). Standard AR models use τQuench with value 1 where i ≥ t and 0 elsewhere,
and thus have ω = 1 by construction (Fig. 2a). Standard diffusion models use τ Flat with value T − t
(often called “noise level” or “time”; not to be confused with our generation step t) for all i, using
T = T and ω = d. Two more examples are provided, both parametrized by ω: concurrent work
on block diffusion (Arriola et al., 2025) may be understood in terms of τω

Block (Fig. 2c), and we
introduce novel τω

Slide (Fig. 2d).

Second, we define the token generation rate ρ as the long-sequence limit of the ratio d/T . All
hyperschedules explicitly presented in Fig. 2 share the same ρ = 1: in the long run, they require one
model call to generate one token. However, all but τQuench may be readily adapted to “quick draft”
(i.e., ρ > 1) or “think hard” (i.e., ρ < 1) regimes.

4



Published as a workshop paper at DeLTa Workshop (ICLR 2025)

3.2 HYBRID PROCESSES

In the absorb process, each step produces the curriculum by replacing some of y’s entries by the
special MASK token. Conversely, at generation time, the only action available to the generator is
to replace some MASK tokens by non-MASK ones. Notice that, unless the generator is “perfect”,
it may become apparent late in the generation process that some early token choices were, in retro-
spect, inherently incompatible. However, there are no action available for the model to “fix” these
token choices: no backsies. Although such “hindsight” situations may occur in any domain, they
are particularly relevant to computer code generation and other reasoning-intensive tasks.3

Conversely, the uniform process can replace any (non-MASK) token by any other one, both at cur-
riculum specification and sequence generation. Thus, at no point in the generation process does the
model have any indication whether it has already altered a given token before. We hypothesize that
this may cause a “lack of commitment” on the model’s part: how much should you “trust” the value
of a token? At least with absorb, MASK tokens capture known unknowns.

These observations motivate an hybrid forward process, of which we consider two varieties. The first
one uses the SEDD framework with Qtok set to Qγ

Hybrid = (1−γ)QAbsorb+γQUniform, interpolating the
QUniform and QAbsorb extremes according to an hyperparameter 0 < γ < 1. The evolution operator
exp
((
σ̄τ i

t
− σ̄τ i

t+1

)
Qγ

Hybrid

)
can be solved analytically (because QUniform and QAbsorb commute, see

Appendix A), enabling use in practice with the standard SEDD loss.

Our second hybrid process variety is closer to the MDM framework: unless τ it = 0 (in which case
xi
t = yi), the probability distribution for xi

t is given by the yi-th column of
(
1 + ϵQUniform

)(
1 +

(1−ατ i
t )QAbsorb

)
, where 0 < ϵ < 1 is a step-independent probability that the token is substituted by

a uniform one, followed by a standard MDM process henceforth. A weighted cross-entropy loss is
used (see Appendix B.2) and, like MDMs, the neural network does not require an explicit noise-level
dependency. Which of the two variety is used can be inferred from which of γ or ϵ is specified.

3.3 ATTENTION MASK AND EFFICIENCY

In SEDD, each call to the transformer predicts each entry of x̂t+1 in view of all entries in x̂t. In
contrast, standard autoregressive models use a causal attention mask to ensure that x̂t

t+1 may only
depend on x̂:t

t . Combined with the fact that x̂:t
t = x̂:t

T at all step t, this causal maskenables inference-
time efficiency improvements such as KV-caching. MDMs such as Sahoo et al. (2024) can enable a
similar form of caching by relying on the special role of MASK tokens.

However, new opportunities for optimization come up when the hyperschedule follows a certain
autoregressive-like regular structure such as the ones seen in Fig. 2d-c. More specifically, at each
steps t the hyperschedule τ t and the state x̂t both break in three components

τ t = τ settled
t ⌢ τ active

t ⌢ τworthless
t x̂t = x̂settled

t ⌢ x̂active
t ⌢ x̂worthless

t , (1)

where: τ settled
t is composed exclusively of zeros and x̂settled

t matches the first entries of x̂T = ŷ; both
τ active
t and x̂active

t have at most ω ≪ d entries; and τworthless
t is composed exclusively of repeated T

while x̂worthless
t bears no information about ŷ. Thus, when using an autoregressive attention mask on

x̂settled
t , all the conditions are met to use KV-caching on these tokens just as in a standard autoregres-

sive model. We may completely ignore x̂worthless
t , which leaves a small number ω of positions that

densely attend to x̂settled
t ⌢ x̂active

t when generating x̂active
t+1 . See details in Appendix B.

3.4 ADAPTIVE CORRECTION SAMPLER

In addition to the theoretically-grounded inference schemes from SEDD and MDLM, we introduce
adaptive correction sampler (ACS), a novel variation on MDLM’s sampler that allows the model to
alter the value of already-unmasked tokens, and that has empirically shown to perform particularly
well for our hybrid process of the ϵ-variety. We write pitransfer the probability that MDLM’s sampler
(adapted to use our hyperschedule) would unmask the i-th token if it is masked, and proceed as usual
for the token that are so masked. However, where MDLM would leave already-unmasked tokens
as they are, ACS has probability η(1 − pitransfer) to sample a replacement token from the model’s

3As an extreme example, consider the graph coloring of a particularly nasty instance.
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Table 1: Test Perplexity for various design choices (lower is better), measured on the heldout 100k
sample from OWT dataset. All ablations use ALIGNED with d = 1024.

Mark Method Test PPL ↓ γ τ
(a) Baseline SEDD-Absorb [12] 24.10 0 τ Flat
(b) (a) + Hybrid Process 22.30 0.01 τ Flat
(c) (b) + Weighted token-embedding(= γ-Hybrid) 22.18 0.01 τ Flat
(d) (c) − Transformer time-conditioning 22.47 0.01 τ Flat

(e) (c) + τω=d
Slide 21.53 0.01 τω=d

Slide

Table 2: Test perplexities (PPL; ↓) on LM1B. Perplexity values for diffusion models are upper-
bound estimations. †Reported in He et al. (2022). ‡Reported in Sahoo et al. (2024). Best diffusion
value is bolded.

Parameters PPL (↓)

Autoregressive OmniNetT (Tay et al., 2021) 100M 21.5
Transformer (65B tokens) (Sahoo et al., 2024)‡ 110M 22.3

Diffusion
SEDD (65B tokens) (Lou et al., 2024) 110M 32.8
MDLM (65B tokens) (Sahoo et al., 2024) 110M 31.8
BD3-LMs L′ = 4 (65B tokens) (Arriola et al., 2025) 110M 28.2

Diffusion
(Ours)

γ-Hybrid [γ= 0.02, τFlat, ALIGNED] (56B tokens) 110M 27.8
γ-Hybrid [γ= 0.02, τFlat, SHIFTED] (56B tokens) 110 M 28.3

γ-Hybrid [γ= 0.02, τ
ω=d/64
Block , ALIGNED] (65B) 110M 27.1

γ-Hybrid [γ= 0.02, τ
ω=d/4
Block , ALIGNED] (65B) 110M 27.0

γ-Hybrid [γ= 0.02, τ
ω=d/64
Block , SHIFTED] (65B) 110M 27.5

γ-Hybrid [γ= 0.02, τ
ω=d/4
Block , SHIFTED] (65B) 110M 26.6

prediction. η serves as a hyperparameter modulating the intensity of this correction. Pseudocode for
the original sampler and ACS sampler can be found in Appendix D.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Our experiments are framed in terms of three main design choices: (i) one of the hyperschedules
shown in Fig. 2; (ii) one of the ALIGNED and SHIFTED configuration shown in Figs. 5ab; and (iii)
the Qtok transition matrix, chiefly our Qγ

Hybrid parameterized by α. Further nuances are detailed in
Appendix B. We term hybrid diffusion language model (HDLM) the variations based on Qγ

Hybrid
sharing our selected backbone.

4.2 LANGUAGE MODEL LIKELIHOOD EVALUATION

For likelihood evaluations, we conduct extensive experiments on two datasets.

OPENWEBTEXT (OWT) (Gokaslan et al., 2019): This dataset does not have a predefined split,
so, following the approach of Ou et al. (2024), we reserve the last 100K documents as a held-out test
set for reporting test perplexity (see Appendix E for further details). All our model instances use a
context length of 1024 tokens with the GPT2 tokenizer (Radford et al., 2019).

LM1B (Chelba et al., 2014): We use the bert-base-uncased tokenizer and report test per-
plexities on the test split. All models are trained with a context length of 128 tokens.

4.2.1 ABLATIONS

As a first step, we investigate the impact of the design choices that led us to our HDLM model.
In Table 1, we report the Test Perplexity – computed as described in Section C.1 – on OWT. Our
baseline configuration, denoted as (a), is SEDD-Absorb Lou et al. (2024), where we adopt the
original network architecture, graph structure, and initialization hyperparameters. Building on this
baseline, we observe an immediate improvement when replacing the conventional absorbing transi-
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Table 3: Zero-shot unconditional perplexity on seven benchmark datasets from Lou et al. (2024)
and Sahoo et al. (2024) and Arriola et al. (2025). ‡Reported in Arriola et al. (2025). All models are
trained for 524B tokens unless otherwise stated. All diffusion models are upper bounds; the best
diffusion value is bolded. See Appendix F.1 for complete results.

Method PTB WikiText LM1B Lambada AG News Pubmed Arxiv

Transformer
(Sahoo et al., 2024) 82.05 25.75 51.25 51.28 52.09 49.01 41.73

SEDD Absorb‡

(Lou et al., 2024) 96.33 35.98 68.14 48.93 67.82 45.39 40.03
MDLM‡

(Sahoo et al., 2024) 90.96 33.22 64.94 48.29 62.78 43.13 37.89
BD3-LM L′ = 4
(Arriola et al., 2025) 96.81 31.31 60.88 50.03 61.67 42.52 39.20

γ-Hybrid (444B)
[γ= 0.01, τFlat, ALIGNED] 89.94 30.02 61.01 45.38 67.51 46.57 40.62
ϵ-Hybrid (444B)
[ϵ= 0.01, τFlat, ALIGNED] 90.89 32.53 68.91 50.23 64.61 41.18 37.85
γ-Hybrid
[γ= 0.01, τ

ω=d/4
Slide , ALIGNED] 90.67 31.73 73.71 50.03 68.27 41.49 37.89

γ-Hybrid
[γ= 0.01, τ

ω=d/64
Block , SHIFTED] 95.22 32.64 63.68 44.75 62.18 42.01 37.33

tion matrix QAbsorb with our hybrid process Qγ
Hybrid; this configuration is marked as (b). Inspired

by the findings of Ou et al. (2024), we further enhance the model by incorporating a weighted token
embedding layer to scale the standard token embeddings (configuration (c); see Appendix B.5).
Following Sahoo et al. (2024), we also experiment with removing the timestep conditioning from
the transformer backbone (configuration (d)). However, this modification results in a slight degra-
dation in performance, therefore we retain the original timestep conditioning layers.4

Additionally, we examine the effect of the τω=1024
Slide curriculum, yielding a modest improvement.

This could be a “genuine” advantage of progressively settling the tokens in a left-to-right manner.
However, although the comparison is “fair” in terms of the number of times each position gets
updated, the neural of calls to the neural network is doubled.5 We note that these curricula are
provided as a proof-of-concept; their relative effectiveness depends critically on the precise values
of ρ and ω, and will be investigated further in future work.

4.2.2 LANGUAGE MODELING ANALYSIS

Now that we have established our design choices, we compare our model’s test perplexity with other
baseline diffusion and autoregressive models of similar scales. Table 2 shows that on the LM1B
dataset our model outperforms all previous baselines, achieving an improvement of approximately
19% in comparison with SEDD (Lou et al., 2024) and 3% in comparison with the best diffusion
language model in test perplexity. For a fair comparison, all models except our base HDLM are
trained for 33B tokens.

4.3 ZERO-SHOT LIKELIHOOD EVALUATION

We also assess the ability of our models to generalize to unseen data. We evaluate on the seven
benchmark datasets proposed in Lou et al. (2024) and Sahoo et al. (2024). As shown in Table 3, our
models outperform all discrete diffusion models on 6 out of the 7 benchmarks. Our best configura-
tion Moreover, our models reduce the performance gap between autoregressive and diffusion-based
language models while outperforming them on 2 out of 7 benchmarks.

4.4 SEQUENCE GENERATION TRADE-OFFS

To assess the balance between quality and diversity in our generated sequences, we analyze two
Pareto frontiers. In the left panel of Figure 4, generative perplexity is plotted against token-level
entropy. Here, lower perplexity indicates more fluent and coherent generation, while higher entropy
reflects greater diversity in the output. In the right panel, generative perplexity is plotted against

4Note that the conclusions of Sahoo et al. (2024) are conditioned on using QAbsorb.
5The statement that ρ = 1 for τω

Slide is only meaningful for ω ≪ d, whereas here ω = d = 1024.
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Figure 4: Left: Generative perplexity as a function of token-level entropy. Right: Generative per-
plexity versus MAUVE score. Our models consistently outperform baselines, achieving lower per-
plexity at comparable levels of diversity and fluency.

MAUVE Pillutla et al. (2021)—a metric that measures the similarity between model-generated and
human-written text—to further assess the quality of generated sequences. MAUVE is measured
against the held-out OWT documents. Our proposed models consistently occupy a superior region
of the Pareto frontiers, achieving lower perplexity for a given level of diversity and higher MAUVE
scores for a comparable perplexity level relative to baseline approaches. These findings suggest that
our approach successfully balances generation quality and diversity, thereby advancing the state of
the art in diffusion-based sequence generation. (see Suppl. F.3 for more details)

4.5 ADDITIONAL RESULTS

Additional qualitative conditional and unconditional generation examples from each model family
are provided in Appendix G. We observe that our models are capable of extending beyond the
nominal context length—particularly on OWT, which contains longer samples

Our extensive ablation studies, detailed in Appendices 4.2.1, F, and F.4, confirm the effectiveness
of our design choices. In particular, we show that a small α (around 0.01 to 0.1) is critical for
balancing token commitment and flexibility, as evidenced by improved test perplexity (see Table 7
and Fig. 11). We also show that the adjustment of the generation rate ρ affects both the quality and
the speed of generation (Table 8), and our proposed τω

Block models benefit from reduced inference
time, especially when combined with KV-caching (Table 10).

5 CONCLUSION

Diffusion-based language models offer some unique opportunities – including theory-supported
guidance strategies and the native ability to iteratively improve their answer – but these benefits
are no substitutes for raw language modeling performances. Staggering resources are continuously
spent in scaling up AR models, engineering tools and techniques specialized to the AR paradigm.
How could diffusion models even dream of catching up?

This work takes significant step toward a bold strategy: starting from an already-great AR language
model, we wish to convert it (e.g., fine-tuning) into an even better diffusion-based sequence gener-
ation model. This plan demands a SHIFTED configuration, an hyperschedules generalizing the AR
concept (e.g., τ Slide or τBlock), and a curriculum (such as our hybrids) teaching the model how to
generate quality sequences without painting itself into a corner.

Much of the design space opened by our innovations remain to be explored.We have merely glanced
at the realm of possible hyperschedules, and our success with ϵ-Hybrid illustrates that more involved
curricula can pay off, without the need to provide explicit noise levels to the model.

Our innovations also open the path for more fundamental work. Indeed, the limit 1 < ω ≪ d
presents opportunities for tractable approximations of the joint distribution over ω tokens. On a
different front, while our current approach employs a uniform distribution for replacing tokens, fur-
ther improvements in diversity and quality may be achieved with distributions that more accurately
reflect plausible, “honest” and/or “on policy” errors (rather than purely random token substitutions).
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A EVOLUTION OPERATORS

The two Qtok considered in SEDD may be rewritten as

QUniform =


2−|Y|
|Y|−1 · · ·

1
|Y|−1 0

...
. . .

...
...

1
|Y|−1 · · ·

2−|Y|
|Y|−1 0

0 · · · 0 0

 QAbsorb =


−1 · · · 0 0

...
. . .

...
...

0 · · · −1 0

1 · · · 1 0

 , (2)

where |Y| is the number of tokens in the set Y , including the special MASK token associated with
the last dimension of Qtok.

Although our SEDD-based curricula are a priori defined in terms of an arbitrary Qtok, actually using
a model in practice demands that we can analytically solve the evolution operator exp(∆Qtok) for
∆ ∈ R+. This section re-derives the solutions for QUniform and QAbsorb, then extends the results to
Qγ

Hybrid.

Using the definitions in Eq. (2), we can verify

(QAbsorb)
2 = −QAbsorb (3a)

(QUniform)
2 = −QUniform (3b)

QUniformQAbsorb = −QUniform (3c)
QAbsorbQUniform = −QUniform . (3d)

Notice that, for any matrix Q∗ such that (Q∗)
2 = λQ∗, we have

eϕQ∗ =

∞∑
k=0

(ϕQ∗)
k

k!
= 1+ λ−1Q∗

∞∑
k=1

(λϕ)k

k!
= 1+ λ−1Q∗

[
−1 +

∞∑
k=0

(λϕ)k

k!

]
= 1− λ−1(1− eλϕ)Q∗ . (4)

Together with Eq. (3), we re-obtain the evolution operators used in SEDD

e∆QAbsorb = 1+ (1− e−∆)QAbsorb (5a)

e∆QUniform = 1+ (1− e−∆)QUniform . (5b)

Now notice that QAbsorb and QUniform commute

[QAbsorb, QUniform] = QAbsorbQUniform −QUniformQAbsorb = 0 , (6)

which enables the analytical solution for Qγ
Hybrid

e∆Qγ
Hybrid (7a)

= e∆((1−γ)QAbsorb+γQUniform) (7b)

= e(1−γ)∆QAbsorb eγ∆QUniform (7c)

=
[
1+ (1− e−(1−γ)∆)QAbsorb

][
1+ (1− e−γ∆)QUniform

]
(7d)

= 1+ (1− e−(1−γ)∆)QAbsorb + (1− e−γ∆)QUniform + (1− e−(1−γ)∆)(1− e−γ∆)QAbsorbQUniform
(7e)

= 1+ (1− e−(1−γ)∆)QAbsorb + (1− e−γ∆)QUniform − (1− e−(1−γ)∆)(1− e−γ∆)QUniform
(7f)

= 1+ (1− e−(1−γ)∆)QAbsorb + (e−(1−γ)∆− e−∆)QUniform . (7g)

Equation (7g) is the desired analytical solution for the evolution operator.

B IMPLEMENTATION NUANCES

This section discusses several implementation details that affect both our model training and evalu-
ation procedures.
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Figure 5: Two transformer-based sequence generators for d = 4. (a) The ALIGNED configura-
tion of standard diffusion models is reminiscent of masked language models. (b) The SHIFTED
configuration is closer to autoregressive language models. Here x̂−1 represent a token solely part
of the conditioning (i.e., not generated), and may or may not be constant (e.g., BOS). Similarly,
represents that the output associated with the last token is discarded. Our position-based indexing
abstracts away these details.
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Figure 6: Example of attention mask for ALIGNED and SHIFTED configurations. Although these
naive masks are appropriate for inference, directly training on them would be inefficient; see Fig-
ures 7–10 for training-ready masks examples.

B.1 TRAINING SETUP

We now detail our experimental training procedure, structured into two distinct stages. In Stage 1,
we initially train our base models in both ALIGNED and SHIFTED configurations using the hybrid
noising process paired with the flat hyperschedule τflat. Specifically, we adopt different modeling
strategies depending on the chosen variant. For γ-variant models, we extend the existing discrete
diffusion framework from Lou et al. (2024), integrating our proposed hybrid transition operator
Qγ

Hybrid. For ϵ-variant models, we instead employ the newly proposed hybrid diffusion cross-entropy
(HDCE) loss, detailed in Equation 8. Stage 1 models are trained separately on two standard datasets:
OpenWebText and LM1B. Each configuration undergoes training for approximately 850K gradient

12



Published as a workshop paper at DeLTa Workshop (ICLR 2025)

updates with a batch size of 512, processing roughly 444B tokens for OpenWebText and 56B tokens
for LM1B.

In Stage 2, we fine-tune the Stage 1 models under alternative hyperschedules—specifically, τblock
and τslide. These experiments involve custom-designed attention masks tailored to each hypersched-
ule. Due to this customization, highly optimized attention kernels such as Flash-Attention are not
applicable, necessitating reliance on the standard PyTorch attention mechanism, which incurs higher
computational costs. Stage 2 training continues for an additional 150K gradient steps, resulting in a
cumulative training volume of 524B tokens for OpenWebText and 65B tokens for LM1B.

B.2 LOSS FUNCTION

Our training objective consists of two primary loss components: (i) a standard cross-entropy loss
computed on the settled tokens, and (ii) a diffusion-weighted loss calculated on the active tokens.
We propose the Hybrid Diffusion Cross-Entropy (HDCE) as our diffusion-weighted loss, which
blends a per-token cross-entropy loss with a specialized weighting strategy contingent upon whether
tokens are masked, shuffled, or unchanged.

Formally, the HDCE loss is defined as:

LHDCE(θ) =
1

Nd

N∑
i=1

d∑
t=1

wi,t

[
− log pθ

(
yi,t | xi,t

)]
, (8)

where N denotes the batch size, d is the sequence length, and the per-token loss corresponds to the
conventional cross-entropy formulation. The token-specific weights wi,t are defined as:

wi,t =



1

pmask(i, t)
if xi,t is masked,

λ(1− ϵ)

1− pmask(i, t)
if xi,t is unmasked and shuffled,

λϵ

1− pmask(i, t)
if xi,t is unmasked and not shuffled,

(9)

where pmask(i, t) is the masking probability for token xi,t, and λ and ϵ represent hyperparameters
controlling the relative importance of shuffled versus unshuffled tokens.

In practice, we distinguish two model variants based on the employed diffusion-weighted loss. For
γ-variant hybrid models, we adopt the diffusion-weighted denoising score entropy (DWDSE) loss
proposed by Lou et al. (2024), denoted as LDWDSE. Conversely, for our ϵ-variant hybrid models,
we use the proposed HDCE loss as defined in Equation 8.

Letting LCE represent the cross-entropy loss computed over x̂settled
t , our overall loss function is thus

expressed as:

L = β1 LCE

(
x̂settled
t

)
+

{
β2 LDWDSE

(
x̂active
t

)
, for γ-Hybrid,

β2 LHDCE

(
x̂active
t

)
, for ϵ-Hybrid,

(10)

where β1, β2 ∈ R are hyperparameters balancing these two components.

Additionally, since early positions in the sequence tend to become settled sooner, we apply a
reweighting strategy to normalize the contribution of settled tokens at different positions. Specifi-
cally, we partition the sequence of length d into blocks of width ω, assigning each token at position
i a weight:

w(i) =
⌊i/ω⌋
⌈d/ω⌉ − 1

, i = 0, 1, . . . , d− 1, (11)

with the convention that if ⌈d/ω⌉ = 1, then w(i) = 1 for all i.
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Figure 7: Example training attention mask for ALIGNED configuration for use with τω=4
Slide .

B.3 EFFICIENT TRAINING AND INFERENCE

As mentioned in Sec. 3.3, we take particular care in crafting our attention matrices to enable KV-
caching at inference time. These scheme are particularly beneficent when ω ≪ d, but naively using
an attention matrix such as Fig. 6 would train the diffusion head on only ω positions while demand-
ing to process on average d/2 context tokens. Here we present how we may train the diffusion head
on about approximately half the positions, increasing the training-time efficiency by a factor d/ω.
Note that, under these efficient schemes, the reweighing of active tokens as given in Eq. (11) is no
longer required.

Figures 7–10 provides examples of attention masks that are compatible with the KV-caching scheme
presented in Sec. 3.3, while dedicating about half the positions to the denoising task. Light red/blue
squares represent positions that are settled, whereas dark red/blue represent positions that are active.
In all cases, the top-left part of the matrix has an autoregressive structure, and the production of dark
blue positions attends densely on the corresponding dark red inputs as well as the light red inputs
that precede them. All cases presume d = 12 and ω = 4.

The ALIGNED cases are easier to understand. For τ Slide, Fig. 7 presents a situation where it was
randomly determined that the denoising will be performed on the intervals j ≤ i < min(j + ω, d)
for j ∈ {2, 5, 11}. For τBlock, these starting points j are always multiples of ω, here j ∈ {0, ω, 2ω}.
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Figure 8: Example training attention mask for ALIGNED configuration for use with τω=4
Block.

The light green blocks indicate entries that are not actually involved in the denoising and could thus
potentially be eschewed.

Figures 9 and 10 present the corresponding matrices for the SHIFTED configuration. Notice how
settled tokens (light red or the gray x̂−1) are repeated as the first input of an interval to denoise in
the second half of the matrix, and how the last output of each such interval is discarded.

B.4 INFERENCE AND KV-CACHING

At inference, both Euler and τ -leaping analytical solutions are available; however, our empirical
results suggest that τ -leaping is the de facto superior choice. As a result of the presence of x̂settled

t
tokens, we can leverage KV-caching to accelerate inference. Specifically, during each forward pass
of the transformer, only the x̂active

t tokens are updated while the cached keys and values for x̂settled
t

remain unchanged.
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Figure 9: Example training attention mask for SHIFTED configuration for use with τω=4
Slide .

B.5 WEIGHTED TOKEN-EMBEDDING

Ou et al. (2024) demonstrated that when employing the absorbing transition matrix QAbsorb, scaling
the model’s score by the analytic, time-dependent factor

exp(−σ̄(t))
1− exp(−σ̄(t))

causes the remaining score to be independent of t, eliminating the need to explicitly condition on
time within the network. However, when using the γ-Hybrid process (1 − γ)QAbsorb + γ QUniform,
this factor remains present but is insufficient for capturing all temporal dependencies. In particular,
under the hybrid process, an unmasked token is perturbed with probability e−γσ̄(t) (whereas under
QAbsorb alone, a non-mask token remains unchanged).

In other words, when the model encounters an unmasked input token xi
t subject to cumulative noise

σ̄(t), it should treat that token as if it were unperturbed with probability e−γσ̄(t), and as if it were
masked with probability 1 − e−γσ̄(t). One natural way to embed this inductive bias into the model
is to interpolate the token’s embedding accordingly. Denoting by f(xi

t) ∈ Rdmodel the standard em-
bedding of token xi

t, we replace it with

e−γσ̄(t) f(xi
t) +

(
1− e−γσ̄(t)

)
f(MASK) . (12)
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Figure 10: Example training attention mask for SHIFTED configuration for use with τω=4
Block.
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C MODEL EVALUATION METRICS

C.1 UPPER BOUND ESTIMATION OF PERPLEXITY

Evaluating perplexity for diffusion-based language models is challenging because the model’s like-
lihood involves an integration over a continuum of noise levels. In our work, we estimate the neg-
ative log-likelihood (NLL) via a Monte Carlo (MC) approximation over a discrete set of diffusion
timesteps. In particular, given a trained model pθ(y) and a diffusion process that perturbs a se-
quence y into latent states x̂t (with t ∈ [0, T ]), our goal is to estimate the per-token loss that, when
exponentiated, yields an upper bound on the true perplexity.

Let
log pθ(y) = Et∼q(t)

[
log pθ

(
y | x̂t

)]
−DKL

(
qt(xt | y) ∥ p(xt)

)
.

In practice, we approximate the expectation with M Monte Carlo samples:

L̂(y) =
1

M

M∑
i=1

log pθ
(
y | x̂ti

)
, ti ∼ Uniform(0, 1).

Since our loss function returns the total NLL over a sequence of length d (i.e., it produces a tensor of
per-token losses whose sum over tokens yields the total loss for a sequence), we define the average
per-token loss as

ℓ =
L̂(y)

d
.

The estimated perplexity is then given by

PPL = exp(ℓ).

Because the MC approximation truncates the integration to M samples, the resulting perplexity is
an upper bound on the true perplexity. In our experiments, we typically set M = 1000, and we
observe that increasing M further reduces the variance of the estimate.

For generators with semi-autoregressive or autoregressive configurations (with a fixed window width
ω), we calculate the NLL only over the τ active

t tokens (i.e., those tokens that are actively being
updated during generation). This ensures that the perplexity computation is fair and reflects the
model’s performance on the tokens whose values are uncertain, rather than being diluted by tokens
that are already settled.

We summarize the estimation procedure in Algorithm 1.

Algorithm 1 Monte Carlo Upper Bound Estimation of Perplexity

Require: Model parameters θ, loss function L, evaluation dataset D, number of MC samples M ,
sequence length d

1: Initialize total loss Ltotal ← 0 and token count Ntotal ← 0
2: for each batch y ∈ D do
3: Initialize batch loss Lbatch ← 0
4: for i = 1 to M do
5: Sample ti ∼ Uniform(0, 1)
6: Compute per-token loss ℓi ← L(θ,y, ti) ∈ RB×d

7: Lbatch ← Lbatch + ℓi
8: end for
9: Lbatch ← 1

M Lbatch ▷ Average over MC samples
10: Ltotal ← Ltotal +

∑
Lbatch

11: Ntotal ← Ntotal +B × d
12: end for
13: Compute average per-token loss: ℓ = Ltotal/Ntotal
14: Compute perplexity: PPL← exp(ℓ) return PPL
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Remarks 1. In our setting, the loss function L(θ,y, t) returns a tensor of shape [B, d]. If the
generator is semi-autoregressive with a fixed active window of width ω, then the loss is computed
only on the τ active

t tokens. The expectation over t is approximated by averaging over M independent
samples. Since the integral is truncated, the computed perplexity serves as an upper bound on the
true value. Finally, dividing the total loss by Ntotal gives the average per-token loss, so that the
perplexity is computed as exp(avg loss per token).

C.2 GENERATIVE PERPLEXITY EVALUATION

In addition to the intrinsic perplexity estimation described in Section C.1, we also assess our genera-
tor via generative perplexity. In this approach, a pretrained autoregressive language model — in our
case, GPT2-Large Radford et al. (2019) — serves as an external judge of the generated sequences.
This method has been used in prior work Keskar et al. (2019); Holtzman et al. (2020) as a proxy for
fluency and coherence when direct likelihood evaluation is intractable.

Concretely, our procedure is as follows: We first sample sequences from our diffusion generator
using the analytical solution Lou et al. (2024). Since our generator and GPT2-Large may employ
different tokenization schemes, the generated samples are retokenized using the GPT2 tokenizer.
The retokenized sequences are then fed into the GPT2-Large model, which computes the negative
log-likelihood (NLL) for each token; this value quantifies the surprise of the judge regarding the
generated text. Finally, by averaging the NLL over all tokens and exponentiating the result, we
obtain the generative perplexity:

PPLgen = exp

(
1

N

N∑
i=1

− log pGPT2(xi)

)
,

where N is the total number of tokens in the generated text and pGPT2(xi) denotes the probability
assigned by GPT2-Large to token xi.

In the case of semi-autoregressive or autoregressive models with a fixed active window of width ω,
we compute the NLL only over the tokens corresponding to the active portion τ active

t . This ensures
that the perplexity is estimated fairly by focusing on those positions where the model is actually
making nontrivial predictions.

The full procedure is summarized in Algorithm 2.

Algorithm 2 Generative Perplexity Estimation via External Judge

Require: Generator G with parameters θ, pretrained judge model J (GPT2-Large), number of sam-
ples S

1: Generate a set of samples {y(s)}Ss=1 using the analytical solution of G
2: Retokenize each generated sample using the GPT2 tokenizer:

ỹ(s) ← TokenizeGPT2

(
y(s)

)
3: for each retokenized sample ỹ(s) do
4: Compute per-token negative log-likelihood ℓ(s) ← − log pJ

(
ỹ(s)

)
5: end for
6: Compute the overall average per-token loss:

ℓ̄ =
1

N

S∑
s=1

ℓ(s)

7: Compute generative perplexity:
PPLgen = exp

(
ℓ̄
)

return PPLgen
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D ADAPTIVE CORRECTION SAMPLER (ACS) PSEUDO CODE

For completeness, we present pseudo code for both the original sampling procedure and our pro-
posed Adaptive Correction Sampler (ACS).

Algorithm 3 Original Sampler

1: Input: model, context length L, total steps S, temperature T .
2: Initialize x← a tensor of shape [B,L] filled with mask tokens.
3: Compute timesteps {ti}Si=0 linearly spaced between 1 and 0).
4: for i = 0, . . . , S − 1 do
5: Set t← ti and s← ti+1

6: Compute transfer probability ptransfer ← 1− s
t

7: for each token in x do
8: if token is masked and a random draw is below ptransfer then
9: Add Gumbel noise to the token’s logits and update it via argmax.

10: end if
11: end for
12: Update x accordingly.
13: end for
14: return x

Algorithm 4 Adaptive Correction Sampler (ACS)

1: Input: model, context length L, total steps S, temperature T , correction parameter η.
2: Initialize x← a tensor of shape [B,L] filled with mask tokens.
3: Compute timesteps {ti}Si=0 linearly spaced between 1 and 0.
4: for i = 0, . . . , S − 1 do
5: Set t← ti and s← ti+1

6: Compute transfer probability ptransfer ← 1− s
t

7: for each token in x do
8: if token is masked and a random draw is below ptransfer then
9: Update the token using the standard denoising update (with Gumbel noise).

10: else if token is unmasked and a random draw is below η (1− ptransfer) then
11: Update the token via a uniform correction mechanism.
12: end if
13: end for
14: Update x accordingly.
15: end for
16: return x

E EXPERIMENTAL SETUP

In our experiments, we adopt a training and evaluation protocol similar to that of Sahoo et al. Sahoo
et al. (2024). We conduct experiments on two datasets: the One Billion Word Benchmark (LM1B;
Chelba et al. (2014)) and OpenWebText (OWT; Gokaslan et al. (2019)). For models trained on
LM1B, we employ the bert-base-uncased tokenizer with a context length of d = 128 tokens,
and report perplexities on the test split of LM1B. In contrast, models trained on OWT use the GPT2
tokenizer Radford et al. (2019) with a context length of d = 1024 tokens.

Since the LM1B corpus predominantly consists of single-sentence examples, a straightforward
padding scheme for reaching a fixed context length may not be optimal. Accordingly, following
Sahoo et al. Sahoo et al. (2024), we concatenate and wrap sequences to fit a context window of 128
tokens. Similarly, for OWT we concatenate and wrap sequences to 1024 tokens, rather than simply
truncating or padding, thereby ensuring that our evaluation is performed on coherent text segments.
In the case of OWT, which lacks a designated validation split, we reserve the final 100K documents
for validation purposes.
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Method PTB WikiText LM1B Lambada AG News Pubmed Arxiv

GPT-2
(WebText)∗

138.43 41.60 75.20 45.04 – – –
Transformer
(Sahoo et al., 2024) 82.05 25.75 51.25 51.28 52.09 49.01 41.73

D3PM†

(Austin et al., 2021) 200.82 75.16 138.92 93.47 – – –
Plaid†

(Gulrajani & Hashimoto, 2024) 142.60 50.86 91.12 57.28 – – –
MD4
(Shi et al., 2024) 102.26 35.90 68.10 48.43 – – –
SEDD Absorb‡

(Lou et al., 2024) 96.33 35.98 68.14 48.93 67.82 45.39 40.03
MDLM‡

(Sahoo et al., 2024) 90.96 33.22 64.94 48.29 62.78 43.13 37.89
BD3-LM L′ = 4
(Arriola et al., 2025) 96.81 31.31 60.88 50.03 61.67 42.52 39.20
RADD-λ-DCE
(Ou et al., 2024) 107.85 37.98 72.99 51.70 – – –

γ-Hybrid (444B)
[γ= 0.01, τ Flat, ALIGNED] 89.94 30.02 61.01 45.38 67.51 46.57 40.62

ϵ-Hybrid (444B)
[ϵ= 0.01, τ Flat, ALIGNED] 90.89 32.53 68.91 50.23 64.61 41.18 37.85

γ-Hybrid (444B)
[γ= 0.01, τ Flat, SHIFTED] 100.88 37.48 71.51 56.57 70.69 43.06 38.83

γ-Hybrid
[γ= 0.01, τ

ω=d/4
Slide , ALIGNED]

90.67 31.73 73.71 50.03 68.27 41.49 37.89

γ-Hybrid
[γ= 0.01, τ

ω=d/4
Block , ALIGNED]

95.32 38.94 70.49 48.18 67.32 44.23 42.78

γ-Hybrid
[γ= 0.01, τ

ω=d/64
Block , ALIGNED]

90.74 35.24 62.64 51.21 69.62 41.46 37.13

γ-Hybrid
[γ= 0.01, τ

ω=d/64
Block , SHIFTED]

95.22 32.64 63.68 44.75 62.18 42.01 37.33

Table 4: Zero-shot unconditional perplexity on seven benchmark datasets from Lou et al. (2024)
and Sahoo et al. (2024) and Arriola et al. (2025). †Reported in He et al. (2022). ‡Reported in
Arriola et al. (2025). ∗The GPT-2 numbers are reported for the checkpoint pretrained on WebText
and are not a direct comparison. All models are trained for 524B tokens unless otherwise stated.
All diffusion models are upper bounds; the best diffusion value is bolded, the second best values is
underscored.

Our model architecture builds upon the diffusion transformer framework Peebles & Xie (2023),
augmented with rotary positional embeddings Su et al. (2024). We instantiate our autoregressive
baselines — SEDD, MDLM — with a transformer backbone as described in Sahoo et al. (2024): 12
layers, a hidden dimension of 768, and 128 attention heads.

F ADDITIONAL RESULTS

This section presents additional results and ablation studies on our family of models.

F.1 ZEROSHOT PERPLEXITY

In Table 4 we report the full list of results for the family of our models against all the reported models
available online. This is an extensive and more complete version of Table 3.

F.2 GENERATIVE PERPLEXITY USING A JUDGE LLM

In this subsection, we report the generative perplexity (see Section C.2) of our model. Zheng et al.
(2024) were the first to demonstrate that the generative perplexity evaluations of baseline masked dif-

21



Published as a workshop paper at DeLTa Workshop (ICLR 2025)

fusion language models are flawed due to imprecise categorical sampling. They show that employ-
ing 32-bit floating point precision in categorical sampling via the Gumbel trick induces an artificial
temperature-lowering effect, which results in a lower (i.e., seemingly better) generative perplexity
at the expense of reduced entropy—a key indicator of generation diversity. Their proposed remedy
is to cast the values to 64-bit floating point precision.

To ensure a fair comparison of generative perplexity across baselines, we report both the flawed
(32-bit) and the corrected (64-bit) perplexity values in Table 5. All the entries were resampled using
full precision. Our results indicate that, irrespective of the artificial temperature effect, our models
consistently outperform all diffusion-based counterparts.

Method FP32-PPL ↓ FP64-PPL ↓
SEDD-Absorb [12] 43.41 105.91
MDLM [19] 43.88 108.88
γ-Hybrid [γ= 0.05, τ Flat, ALIGNED] (444B tokens) 39.53 89.05
γ-Hybrid [γ= 0.01, τ Flat, SHIFTED] (444B tokens) 48.08 110.60
γ-Hybrid [γ= 0.01, τ

ω=d/4
Block , ALIGNED] 40.48 85.01

γ-Hybrid [γ= 0.01, τ
ω=d/4
Slide , ALIGNED] 61.05 131.45

γ-Hybrid [γ= 0.01, τ
ω=d/64
Block , ALIGNED] 76.12 121.99

γ-Hybrid [γ= 0.01, τ
ω=d/4
Block , SHIFTED] 53.89 111.73

Table 5: Generative perplexities (PPL; lower is better) on OWT. All models were trained for 524B
tokens unless otherwise indicated. “FP32” denotes the flawed 32-bit sampling, whereas “FP64”
corresponds to the corrected 64-bit precision values. All available models were resampled using
their published weights.

F.3 INFERENCE PARETO FRONTIER RESULTS

In Table. 6 we report the results we utilized to report the Pareto frontier plots in the main paper.

Higher ρ values (ρ = 8, 4)

Method MAUVE (↑) Gen PPL. (↓) Entropy (↑)
ρ = 8 ρ = 4 ρ = 8 ρ = 4 ρ = 8 ρ = 4

SEDD 0.410 0.491 139.2 130.1 5.72 5.63
MDLM 0.921 0.959 128.5 116.4 5.63 5.58
γ-Hybrid [γ = 0.05, τFlat, ALIGNED] 0.809 0.817 85.9 89.5 5.37 5.38
γ-Hybrid [γ = 0.01, τFlat, SHIFTED] 0.666 0.700 99.2 93.9 5.46 5.45
γ-Hybrid [γ = 0.01, τ

ωd/4
Slide , ALIGNED] 0.775 0.788 107.3 106.0 5.53 5.53

ϵ-Hybrid [ϵ = 0.01, τFlat, ALIGNED] 0.848 0.928 84.2 69.8 5.36 5.33
ϵ-Hybrid [ϵ = 0.01, τ

ωd/4
Block , ALIGNED] 0.964 0.811 104.2 76.9 5.42 5.25

Lower ρ values (ρ = 2, 1)

Method MAUVE (↑) Gen PPL. (↓) Entropy (↑)
ρ = 2 ρ = 1 ρ = 2 ρ = 1 ρ = 2 ρ = 1

SEDD 0.512 0.457 127.2 126.8 5.60 5.58
MDLM 0.947 0.897 115.8 108.8 5.61 5.60
γ-Hybrid [γ = 0.05, τFlat, ALIGNED] 0.877 0.895 97.9 96.8 5.40 5.41
γ-Hybrid [γ = 0.01, τFlat, SHIFTED] 0.728 0.744 96.4 93.9 5.45 5.47
γ-Hybrid [γ = 0.01, τ

ωd/4
Slide , ALIGNED] 0.553 0.819 105.5 100.2 5.46 5.41

ϵ-Hybrid [ϵ = 0.01, τFlat, ALIGNED] 0.957 0.947 61.3 43.9 5.28 5.18
ϵ-Hybrid [ϵ = 0.01, τ

ωd/4
Block , ALIGNED] 0.813 0.916 71.7 59.1 5.38 5.25

Table 6: Sample quality of absorbing state discrete diffusion models. Upper block: higher ρ values
(ρ = 8, 4); Lower block: lower ρ values (ρ = 2, 1).
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Figure 11: Ablation study illustrating the effect of varying the γ (for γ-Hybrid variants) parameter
on perplexity evaluated on the OWT test split at the 26B-token observation point. Lower perplexity
values reflect improved model performance. Consistent with our previous observations, γ between
0.01 and 0.1 yields optimal performance.

F.4 EFFECT OF VARYING γ

In this section, we examine the influence of the hyperparameter α, which modulates the contribution
of Quniform in the hybrid process and thereby allows the model to reexamine its predictions after
unmasking a token. As shown in Table 7, while the corrective influence of Quniform is essential, the
value of α must remain relatively small. If α is set too high, the model tends to simply reshuffle the
tokens and the MASK token, effectively undermining the intended unmasking process.

Another perspective is that increasing α reduces the penalty associated with errors in the unmasking
operation, thereby devaluing its corrective impact. Moreover, during the denoising process, each
token is influenced not only by its own prediction but also by the context provided by neighboring
tokens. Consequently, if a token (e.g., token A) is mispredicted, the resulting change in the overall
structure may leave little opportunity for subsequent correction.
Remarks 2. The analyses presented above are mainly intuitive. Further empirical investigation is
necessary to confirm.

Configuration FP64-PPL ↓

γ= 0.01 84.32

γ= 0.05 82.27

γ= 0.1 85.15

γ= 0.4 91.48

γ= 0.8 90.99

Table 7: Generative perplexities (PPL; lower is better) on OWT. All the models are trained under
ALIGNED configuration with τω=256

Block for 524B tokens. We use the double precision, denoted as
“FP64-PPL”.

To further examine the effect of α, we evaluate our trained models’ test perplexity (on OWT held
out set) after processing 26B tokens under various configurations. As shown in Fig. 11, small α
values—approximately 0.01 and 0.1—yield the best performance.
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F.5 EFFECT OF VARYING ρ

In this section, we examine the impact of varying ρ in our γ-Hybrid models using the τω=256
Block

hyperschedule. Recall that the parameter ρ is modified during the generation process and directly
only influences the quality of the generated sequence. Consequently, we adopt generative perplexity
as our evaluation metric. For completeness—and to facilitate comparison with prior baselines—we
report the generative perplexity computed under both double precision (FP64) and full precision
(FP32), as illustrated in Table 8. As ρ decreases, the generation process becomes slower, thereby
entering the “think hard” regime; in this regime, the model tends to produce higher-quality outputs
at the cost of increased computational time.

Remarks 3. This trade-off is a key characteristic of diffusion models, which inherently possess a
flexible inductive bias that allows for varying degrees of commitment in generation. In contrast,
autoregressive models are restricted to generating one token at a time.
Moreover, under the flawed 32-bit sampling scheme, increasing the number of sampling steps ef-
fectively reduces the artificial temperature, thereby reducing the tokenwise entropy. In contrast, the
tokenwise entropy remains mostly unaffected when the Gumbel trick is executed in double precision.

Configuration FP32-PPL ↓ FP64-PPL ↓

ρ = 16 (T = 64) 75.57 100.11

ρ = 8 (T = 128) 64.90 95.38

ρ = 4 (T = 256) 53.02 81.37

ρ = 2 (T = 512) 44.15 79.3

ρ = 1 (T = 1024) 40.48 85.01

ρ = 1
2
(T = 2048) 33.09 87.31

ρ = 1
4
(T = 4096) 25.39 88.75

ρ = 1
8
(T = 8192) 24.05 83.21

Table 8: Generative perplexities (PPL; lower is better) on OWT. The same very model (γ-Hybrid
[γ= 0.01, τ

ω=d/4
Block , ALIGNED]) has been used under different generation regimes. ρ value as well as

equivalent T “diffusion steps” are used in the table. “FP32” denotes the flawed 32-bit sampling,
whereas “FP64” corresponds to the corrected 64-bit precision values.

F.6 EFFECT OF VARYING η IN ADAPTIVE CORRECTION SAMPLER

In this section, we investigate the effect of the hyperparameter η in our proposed Adaptive Correction
Sampler. Table 9 illustrates results for our ϵ-variety family of models. As we increase the number
of sampling steps (corresponding to a decrease in ρ), our model tends to overcorrect when η is too
large, which ultimately harms generation diversity. To mitigate this issue, we find that using smaller
η values is beneficial. We further suggest that the optimal choice of η is related to the ϵ value used
during training: the more inherently corrective the model is, the smaller the optimal η should be.

Model Family Sampler MAUVE (↑) Gen PPL. (↓) Entropy (↑)
ρ=8 ρ=4 ρ=2 ρ=1 ρ=8 ρ=4 ρ=2 ρ=1 ρ=8 ρ=4 ρ=2 ρ=1

ϵ-Hybrid
[ϵ= 0.01, τFlat, ALIGNED]

Original Sampler 0.950 0.944 0.848 0.779 130.78 124.75 121.90 129.52 5.51 5.47 5.49 5.50
ACS (η = 0.25) 0.955 0.821 0.859 0.928 79.64 65.06 55.05 49.09 5.35 5.28 5.24 5.19
ACS (η = 0.05) 0.846 0.99 0.865 0.936 105.94 93.91 83.83 77.16 5.46 5.48 5.31 5.29
ACS (η = 0.01) 0.848 0.928 0.957 0.947 84.28 69.84 61.35 43.98 5.36 5.33 5.28 5.18
ACS (η = 0.001) 0.871 0.949 0.919 0.998 80.37 64.42 55.48 45.80 5.35 5.31 5.25 5.15

ϵ-Hybrid
[ϵ= 0.01, τ

ω=d/4
Block , ALIGNED]

Original Sampler 0.916 0.976 0.778 0.847 148.45 130.16 139.64 142.13 5.39 5.35 5.43 5.46
ACS (η = 0.25) 0.962 0.948 0.652 0.653 112.87 64.01 54.67 43.32 5.34 5.13 5.01 4.78
ACS (η = 0.05) 0.964 0.811 0.813 0.916 104.26 76.98 71.77 59.15 5.42 5.25 5.38 5.25
ACS (η = 0.01) 0.568 0.746 0.767 0.974 144.71 107.06 101.30 75.91 5.53 5.30 5.38 5.35
ACS (η = 0.001) 0.979 0.847 0.977 0.906 150.41 150.32 139.66 114.12 5.48 5.54 5.55 5.48

Table 9: Sample quality of ϵ-variant models using different samplers.
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F.7 INFERENCE SPEED UP WITH CACHING

In Table 10, we report the wallclock time required to generate eight samples for various models on a
single NVIDIA A100 80 GB GPU. Owing to our custom attention masks, we were unable to leverage
fast transformer kernels such as Flash-Attention, which in turn results in slower sampling speeds.
We note that future work may design specialized kernels that are compatible with our attention
masks to accelerate inference.

Our τω
Block models are intrinsically faster since, during sampling, only the tokens corresponding

to the τsettled and τactive components are fed into the transformer (e.g., ω, 2ω, . . ., up to d tokens).
Moreover, incorporating KV-caching would further boost the sampling speed.

Time(↓)
SEDD 68

MDLM 59

+ caching 36

γ-Hybrid [τFlat, ALIGNED] 131

γ-Hybrid [τω=d/4
Block , ALIGNED] 79

+ KV-caching 38

Table 10: Wall clock time reported in seconds to generate 8 samples on a single NVIDIA A100
80 GB GPU. The same number of diffusion steps were utilized for all the models.
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G SAMPLES

The following is a random selection of a few samples from our 3 diffusion language model families.

G.1 UNDONDITONAL SAMPLE

Twenty-something host will soon have a new spot at a main commercial-run drugmakers’ clinic in his home state of New Mexico.

Chris Brewster is convinced that it could lead to the world market for Type II’s genetically modified metallomics drugs from certain
not-too-famous contenders elsewhere in the medical marijuana industry who have partnered up with the cannabis company Little Troy
Farms to roll out FDA approval for the widely used CRISPR-free Jacoby-Glynda hybrid product.

At least three manufacturers have been selected for the enterprising position, which also includes Schluge Therapeutics, Porsale,
Mosaic, Marin and IE Pharma. ’The total number of drug prices in America in 2013 had the highest in any single year.’

Prasepalan, Dr. Dave Rouzeau’s permission to begin selling medicine has long been a crusader for medical marijuana and these days,
Dr. Brewster and Dr. Rimelter are taking their criminal flair to the next level.

Rouxau and his fellow New Mexico drug regulatory experts will be making their cases in October, which would complete a 90-page
interface presenting the medical world, checks and balances and system reviews for each company’s patented drugs involved in overall
delivery by patient care providers and regulators.

“We have seen this is a breakthrough that patents have exploded,” said Johnson, who represents Prasepalan’s chiropractor, Adderall,
and his partner, Rick Kelbyck, who specializes in pharmaceutical treatment and drug treatment products at Wellesley and Kroll
Laboratories, among other giants, in Austin.

“We do have a case to make,” and an additional 12 to 25 miles away from Prasepalan, Dr. Hansen will charge a direct fee to Symantec
to make the prescription of Nathur Shemogood’s Marin-REX Therapeutics-Lucenti, a New Mexico-based machine that has shipped a
billion dollars worth of medicine to every business in the United States and Canada.¡—endoftext—¿No man on the verge of retirement
must fear the official automated deportation system, fair trade prosecutor Rafaela Gonzalez thinks.

D.C.—a remote northern island nation governed by rigid immigration rules with 90 million illegal immigrants, 85 million people
without adequate food, and 1 million illegal, unauthorized immigrants—that will soon surge around the United States?

Gonzalez got the idea from a journalist at a Caution Center paper to mark the anniversary of the United Nation’s signing of the massive
Comprehensive Economic and Policy Agreement (COP21) in 1995. Typically it’s a minor-level agreement that provides an objective,
stable key equation wherein every country, every country can control both the economy and country’s external affairs by changing its
immigration and customs policy. Democracy and separation of the people and law enforcement.

In March of this year, Gonzalez released a new chapter in her career-spanning memoir Magic of Arrows: The Filibuster of Gang
Targets and Promise of Perfection. Modeled after a projection of long-term economic effects from government handouts to its leaflet,
her book is dated May 21–24: Four days before America secedes from formally abolishing the six-nation customs union, America’s
ex-military leaders vow to force America to break off the military response to escalating pro-secularism.

The first chapter is rated as one of the first lists of the U.S. Category A countries for its purposes, code for “unfair advantage,” with
a stylized listing of 22 whose influence has been ascendant since the dawn of capitalism. As Gonzalez points out, the list displays
the position of bodies such as United States Samoa and Croatia, whose remotes are sprinkled with their own market share and have
expressed renewed interest in reaching out to countries like the BRICS, a 33-nation grouping that then can take tougher measures
against those competitors.

“There are tremendous opportunities,” Gonzalez writes. “From a Washington perspective, it’s easy to see players–the world’s poorest,
country’s most vulnerable–already feeling the need for a more calculated and conscientious policy in regard to smuggling drugs and
other illegal trade into our midst.”

D.C. is not alone: The Pan American Conference of Scholars announced that more than 3,000 countries sent almost 1,000 requests
for tickets, and more than 17,000 applications for tickets have been denied since March of this year. Last May, the Selena–Ranich
Trade Union Confederation—the country’s only market, for which agribusiness corporations receive billions of dollars of grants
annually—received a “delusion team response” of 6,000 applicants in 81 international training centres.

Robert Dellinger, deputy director for the International Union of Red Cross Office for Latin American Mission who awaits a decision

in the file

Figure 12: Unconditional samples generated by γ-Hybrid [γ= 0.01, τ Flat, ALIGNED] trained on
OWT dataset.

26



Published as a workshop paper at DeLTa Workshop (ICLR 2025)

SALT LAKE CITY — The Utah Legislature committee chairwoman says it is a problem to persuade the state to legalize drug behavior.
Wroeff Bugler reports for the Salt Lake Tribune Jan. 7, 2014 The bill’s sponsor, Rep. Mike Tate, chairman of the Utah Business
Improvement Association, says they would legalize the use of drugs ”in a variety of policy areas.” A Republican lawmaker called
them to say a ban on the use of marijuana is the best way to tackle the problems of drug rights. (Photo: Cmdr. Roger Sultanousi)
According to a lawmakers 16-30 majority, the bill has the support of animal rights groups and equal representation. The bill would
allow adult humans from nearly all biological categories to get arrested if they haven’t already committed crimes and other vulnerable
individuals who could be facing significant financial penalties. Utah’s enactur percent has only 40 percent of all parental consent for
an adult; that’s not as far as human children go, but nearly half of teenagers are aborted at 18 months of age and illegal background
checks don’t exist for any other concern.
”Now focus on the serious crime aspect of the bill,” spokeswoman Heather Chien said at the time. ”Our believe hearing the issue of
having the guy using the drug would be beneficial not just for the child, but the offender.”
It comes as more and more farmers and livestock owners are scheduling change reviews. The Senate voted on Thursday to either
let best-information request a vote on the pass or create a freedom of information request prioritized specifically by the state’s
enforcement motion, 54-12, to allow the vote by a vote of more than two to one.
NEWSLETTERS Get the AZ Memo newsletter delivered to your inbox We’re sorry, but something went wrong Get the pulse of
Arizona — Local news, in-depth state coverage and what it all means for you Please try again soon, or contact Customer Service at
1-800-332-6733. Delivery: Mon-Fri Invalid email address Thank you! You’re almost signed up for AZ Memo Keep an eye out for an
email to confirm your newsletter registration. More newsletters
In answer to a question posed by friend, lobbyist, and political activist Ed Priderout, this bill ultimately failed.
Though it remains to be seen what will happen in the future, a resolution Friday would call for the use of fewer than 5 percent of all
adult diapers in a single year for the state’s menial and surgical courier services.
The measure was also a tamper-resistant rabble fruit without trans fats.
”Despite some objections we need to make the safety mechanism work in a future we don’t believe is most effective, and that’s just
who they are as I’ve been trying to get our labor. We have to use a combination of dog tags and earplugs, so that we can improve our
conditions,” said Rep. David Cale-Dero.
Copyright 2015 The Salt Lake Tribune.¡—endoftext—¿CALGARY — It was the two-day drive north through the republic – Ontario
and the provinces – over the past three months that signs giving freemen extraordinary tourism in the province appear to have slipped
away, leaving many of the seasonal magnetes at a bottom.
Really?
Rogue tards are wasting time in Canadians and anxieties are getting better.
Conspiracists have become “emerged,” as experts characterize them, in a new sense, either as congenial naı̈vetés – quasi-religious
adventurous sluts – rather than numb, territorial isolates like northern Canadians who are already born in the same spot, or simply as
less flexible and maneuvering players that can deliver on their hard economic-mindedly defined tenets. Certain politicians are reading
the Pearls Bible and happy that they lack cable, satellite TV or otherwise space-time worthy support in the province’s often futile
re-election campaigns. Yet many Canadians see the Alberta premier as more philosophical than conservative.
Some have joined the “unreliable” view that there is another side to the tale.
Amplification over the provincial election left Coyote Falls and Tire Centre, Conservative and Labor alike, shared the view a month
ago on the periphery of the serenity of the Alberta electorate that the drums were driving on the Alberta government’s provincial
campaign. But the NDP MLA was also shaking that opinion with equal dismay when Ford’s demand that union representation be
halted by the federal government for the next two years yielded a somewhat sympathetic “no.”
Article Continued Below
And say many of the former leaders want more safeguards in the build-up of unions. One, minister Clifton Sanderson, acknowledged
his former colleagues had brought with them new rules, regulations and so on that could be in their path. But, it remains a matter of
interpretation.

“We welcome that a promise of transparency and clarity – that

Figure 13: Unconditional samples generated by γ-Hybrid [γ= 0.01, τ
ω=d/4
Slide , ALIGNED] trained on

OWT dataset.
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White House chief of staff Reince Priebus traveled to Washington, D.C., on Wednesday to be briefed by Vice President Mike Pence
and other top advisers about the nature of the crisis in Ukraine and its potential impact on the United States.
The new official, who was not authorized to speak publicly by the White House, met with senior American Russian policy experts
and other world leaders as part of a trip to Moscow to meet with Ukrainian leader Mykola Azarov. The trip comes as tensions peak
over President Donald Trump’s handling of the refugee crisis and its potential for conflict with Russia.
Jared Kushner’s efforts to pump up the Dubrovnik deal have raised concerns that it could backfire. Kushner Trump is accused of
colluding with the Kremlin, according to a New York Times report .
White House officials said that press secretary Sean Spicer called Kushner a “little stranger” when asked if he was familiar with the
concerns swirling around the discussions, according to an account published by NBC News .
“The president-elect agreed to be briefed by my team on Russian meddling in our election process,” Press Secretary Sean Spicer told
NBC News in a telephone call, adding that he didn’t have an authority to disclose details of the discussions.
Versions of the meeting have drawn criticism from U.S. politicians, military officials and human rights advocates.
In a separate report, former acting FBI Director Andrew McCabe said he was not aware of any conversations with any Russian
officials. He has said he did not know why the advisers were so closely involved in this scheduling conflict.
“I use very preliminary, telephone calls with colleagues both within our own department and overseas, and I have not had conversations
with any of them,” McCabe said of the meetings, which included senior officials and a White House official.
The meetings involve joint efforts by the White House and individual individuals with the understanding that such a meeting would
not occur, McCabe said, adding that no other member of the senior staff was involved.
“Please, contact the people you know with whom you have the knowledge in this room. Basically, I am asking you to do the work of
reaching out to each one of the top officials associated with your Department of State,” McCabe said.
“Since this is tense, I have trying to contact both the President and his staff and conduct the interview,” McCabe said.
Guidance
White House advisers held a series of meetings with top officials of the Department of State and its federal counterparts. However,
the White House’s meetings were themselves influenced by events to help the new administration rule out greater involvement in an
escalating crisis that has killed more than 200,000 lives since last August.
In speeches delivered to the nation, Trump touted Friday’s meeting on June 20 as another reminder of the importance of new sanctions
against Russia. Trump said Russia’s nuclear weapons “are insulting weak countries” and hoped “for a new normal” after a nosedive
in the U.S. elections.
“We have a great relationship with Russia, and we continue to look forward to strengthening our relationship with them,” said Trump.
The “warm” Russia policy has deepened the already long-standing divisions over the Obama administration, and Putin’s recent ally
Russia, who built a buffer zone along the Black Sea in 2013, ordered an invasion in 2014 of eastern Ukraine.
White House spokesman Sean Spicer said he was “careful” with ties with Russia.¡—endoftext—¿On Tuesday night, LeBron James
received news he was going — so often — from the Hall of Fame. Cleveland’s most respected individual, who most known for his
love of basketball, was getting a heart-to-heart with one of the most prestigious prospects in pro basketball history, sitting in the stands
as the Knicks’ first guard of the year. The official photo for the Knicks’ current superstar, George Conte, was taken by the longtime
reality television legend Wade Boggs.
We demand James get a heart. Exactly what he deserves is hard to guess. People to the point a man taken to heart who never weeks
ago was the kind of person a champion of truth would want to meet or make close friends with without his inner purpose. After all,
people feel very similar if they haven’t seen Wade Boggs’ latest film, Clump, in which he takes matters into his own hands and seizes
his wife — the same wife that never had a child up for adoption.

This event has the potential to be a sour revenge for the Kevin Durant coronation that began a week ago – a winner’s assuredly

standard season that had little impact on James’ looming future. But that’s not the case here, either; the only one he is saying is that

the uninspiring

Figure 14: Unconditional samples generated by γ-Hybrid [γ= 0.01, τ
ω=d/64
Block , SHIFTED] trained on

OWT dataset.
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be violent might be protected for one of the reasons he challenged.
Tsherberg is talking about former Republican Rep. Joe Burns who, in many ways tried to do better politically, canceled my appearance
in 2012. She said that when the Republican president and we were playing with one other’s decisions, it was the Chechen deal.
“Every time I think, there’s nothing in the issue,” she said. “There comes a time when I faced with reality in a very difficult way. It’s
not something I want to put the side of the my team past me.”
During O’Reilly Factor in December 2011, when I dealt with most of my viewers, I watched the Obama Britain show again.
“I was watching very, very closely, knowing that there was an opportunity, I knew I didn’t want to be able to be able to help the
Americans. I couldn’t help that,” I said.
Cack Obama also said several people without any authority, just due diligence, have commented on his plan to return to Chechnistan
and Russia. T. Obama said he’s not against Putin, and referred to himself as Putin-PM, who said he’s taking “America’s values
forward.”
“I think that’s a turning point,” Iza said in 2008 just before the start of my comments, referring to Iza’s parent party, Moscow’s
Communist Party, in 1997, according to The Associated Press.
Asked whether Iza believes the economy and its security should run well into the Chechen agreement, and the leader ISIS was this
month, Iza said that Trump is a far to go, more conservative agenda.
“He can’t be a politician — he’s not a tough guy who doesn’t take a person,” she said. “My people have respect too. My children are
not civil andRoll but they do not [acc believe me].”
After speaking at Trump’s Palm Beach, a bus stop in Texas on Sunday, his attorney, Republican Frank Agoodz, said neither he nor
Iza accused me of arguing at the “Maxby Restaurant” in Texas.
“Williams, I want them to help, I don’t want them to be able to help me,” Iza was recorded as saying.
“He said, ‘You have an opportunity in doing this and then you have to do this, you can do this; it’s starting, that’s getting the right
people to do it, and he said, ‘They’re going and did, yeah,,’” she tells The Associated Press on Friday evening. Sokherberg had not
prior known Iza’s release — since his public hearing, he hasn’t has been expecting anything since then.
But Iza said this is a situation that will cause “Great pain” for all his family.
“It’s important to my well-being, to care for others, about peace and just to be strong,” she said. “As long as I don’t, I won’t. I think
if I won’t, I will have no apologies.”
Their representatives before they gather on Saturday.
“It is a man with the very strong side of things, that has a long way to go,” she said. “He’s been singled out by the President. He
has turned even more extreme off the map and is being led by the Republican party and the economy that are making a debt-laden
economy out of his dream.
“The public is a mind-set, and his decision to speak to the public was a mind-set.”
In a CNN video excerpt that includes her closing remarks, the then-U.S. Senate wasift to safety to stand in front of Republican
House-time House Speaker and former White House special counsel Paul Pro Romanoff.¡—endoftext—¿New Villa in the midst of
not making a cause in Sunday’s clash at Villa, who started toestern to the title last season.
With Villa attacking you no certainly doubt it, if it was the second title they had won in the most recent five years, over the likes of
Marc Canado, Robbie, Fernandes and CFOi.
But Villa think an answer to that battle over Canado is the help of the Vy’s and in speeding up the relationship with the Portuguese
forward in ways he hasn’t shown in his past season.
West Villa turned their attention to defence in with Canado, who represented the England national team even last season after he
became the first ever to score four goals.
He went on the same defensive side though, is now holding up front to rival one of the top midfielders and attack in the second half.
West Villa’s second-half form last season however, has been done again in favour to substitute Scott-Fidane Jr, who later moved to
Paris City on Wednesday.

John Gomez and João Aguero have moved to

Figure 15: Unconditional samples generated by ϵ-Hybrid [ϵ= 0.01, τ Flat, ALIGNED] trained on
OWT dataset.

G.2 CONDITIONAL SAMPLES

The cat sat on the mat and looked up, staring at the ceiling as if something interesting were up there. It made no sound, but
occasionally flicked its tail back and forth.
“Is he always like this?” I asked.
She smiled and nodded. “Pretty much. Sometimes he stares out the window too.”
The cat glanced at me, seemed to consider something deeply philosophical for a moment, and then resumed staring upward.
“Do you think he sees things we don’t?” I asked, half-joking.
“Probably,” she replied, laughing softly. “Cats always seem to have a foot in another world, don’t they?”
I chuckled, taking a sip from my coffee. “Maybe we should take notes.”
“Maybe we should,” she said, still smiling. “We might learn something.”

The cat yawned lazily, stretched, and settled even more comfortably onto the mat, clearly deciding that whatever secrets the universe

held could wait a little longer.

Figure 16: Conditional (conditioned on first 6 tokens) samples generated by ϵ-Hybrid
[ϵ= 0.01, τ Flat, ALIGNED] trained on OWT dataset.
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