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ABSTRACT

The rise of high-fidelity generative imagery has amplified the need for practi-
cal and robust visual watermarking techniques. However, existing methods of-
ten suffer from high computational cost and fail to withstand modern generative
and adversarial attacks, limiting their real-world applicability. In this work, we
present WaterFlow, a fast, lightweight, and highly robust watermarking frame-
work that embeds hidden signals with high fidelity. WaterFlow leverages pre-
trained latent diffusion models to insert watermarks directly in the latent space.
Unlike prior approaches, it learns a watermark in the Fourier domain of the latent
representation—enhancing robustness while preserving perceptual quality. This
design enables efficient and accurate watermark detection, even under challeng-
ing compound perturbations. Additionally, WaterFlow supports control over the
quality–robustness trade-off without retraining, making it adaptable to diverse use
cases. We evaluate WaterFlow on MS-COCO, DiffusionDB, and WikiArt, where
it consistently outperforms prior methods in robustness while matching the image
quality of top-performing approaches.

1 INTRODUCTION

Watermarking techniques for digital content have been studied for decades, with early efforts fo-
cusing on embedding imperceptible signals into images to assert ownership and authenticity (Cox
et al., 2002). As synthetic image generation becomes increasingly accessible and photorealistic, vi-
sual watermarking plays a critical role in preventing misuse of generative models—such as creating
misleading or unauthorized content (Franceschelli & Musolesi, 2022).

A core challenge in visual watermarking is achieving robustness without sacrificing perceptual qual-
ity. The watermark must remain invisible to the human eye and yet reliably detectable, even after
common transformations like compression, rotation, or adversarial perturbations. Classical methods
that modify texture-rich regions (Bender et al., 1996), frequency domains (Kundur & Hatzinakos,
1998), or low-order bits (Wolfgang & Delp, 1996) often struggle under modern transformations.

Recent deep learning approaches (Zhu et al., 2018; Luo et al., 2020; Zhang et al., 2019b) train end-
to-end models to embed and detect robust watermarks. While these methods improve resilience,
they are often vulnerable to attacks from modern generative models like VAEs and diffusion mod-
els (Zhao et al., 2023a; Ballé et al., 2018; Cheng et al., 2020), which can regenerate clean content
and effectively erase embedded signals.

Complementary efforts embed watermarks into the generative process itself—either via dataset poi-
soning (Zhao et al., 2023b) or by modifying sampling trajectories (Fernandez et al., 2023). Diffusion
models, in particular, offer semantically rich latent spaces that are well-suited to watermarking. For
instance, Tree-Ring (Wen et al., 2024) encodes frequency-domain signals in latents, while Stable
Signature (Fernandez et al., 2023) leverages diffusion sampling to enforce watermark persistence.

Building on these insights, ZoDiac (Zhang et al., 2024) extends watermarking to arbitrary images
by optimizing latent-space vectors in Stable Diffusion. Although it yields strong defenses against
generative attacks, its per-image optimization loop is slow and it falters under intense combination
attacks. By contrast, VINE (Lu et al., 2024) trains diffusion models end-to-end—at the cost of
massive training datasets and heavyweight encoder, decoder, and discriminator networks—making
it highly computationally intensive.
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Figure 1: We showcase visualized robustness vs. perceptual results. We average AUC and SSIM
across all three dataset. Results in the upper-right corner are preferred. We observe that WF-R has
the highest robustness with competitive quality while WF-Q is one of the best in terms of quality
and second place in overall robustness.

In this work, we propose WaterFlow (WF), a fast, robust, and lightweight visual watermarking
method that applies to both real and synthetic images. WaterFlow operates in three phases: training,
embedding, and detection. During training, we learn a compact, flow-based generator that pro-
duces watermark patterns conditioned on an image’s latent representation. To embed a watermark,
we extract latents using a pretrained diffusion model, transform them into the frequency domain,
and inject a custom watermark before image generation. Frequency-space watermarking has long
been associated with robustness (Solachidis & Pitas, 2001), and WaterFlow builds on this principle
without sacrificing visual fidelity.

We introduce two variants of WaterFlow: WaterFlow-Robust (WF-R), which prioritizes robustness,
and WaterFlow-Quality (WF-Q), which emphasizes image quality while still maintaining strong
robustness. Both variants share the same underlying model, trained once and reused at inference. A
simple adjustment to a postprocessing parameter allows users to seamlessly switch between them,
enabling real-time adaptability based on downstream requirements.

We evaluated WaterFlow across three diverse datasets—MS-COCO (Lin et al., 2014), Diffu-
sionDB (Wang et al., 2022), and WikiArt (Phillips & Mackintosh, 2011)—and benchmark against
several state-of-the-art watermarking methods under a range of adversarial attacks.

Our contributions are as follows:

• We introduce WaterFlow, a practical and efficient visual watermarking framework that
achieves state-of-the-art general robustness without compromising image quality.

• We propose a learned latent-to-frequency mapping with a new loss term that adaptively
balances invisibility and detectability across diverse image types.

• WaterFlow is the first watermarking method to withstand complex combination attacks
while maintaining top-tier resistance to generative removal.

• We enable a dynamic trade-off between image quality and robustness via a simple postpro-
cessing adjustment, allowing users to adapt the watermarking behavior without retraining.

2 RELATED WORK

2.1 IMAGE WATERMARKING

Traditional watermarking methods rely on frequency-domain decompositions (e.g., DCT, wavelets,
Fourier) for robustness to standard image transformations Bors & Pitas (1996); Xia et al. (1998);
Urvoy et al. (2014). More recently, end-to-end DNN-based approaches jointly train encoders and
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decoders to balance imperceptibility and robustness Hayes & Danezis (2017); Zhu et al. (2018);
Tancik et al. (2019), with extensions using GANs Zhang et al. (2019b;a); Huang et al. (2023);
Ma et al. (2022) and invertible networks Ma et al. (2022). While effective against conventional
distortions, these methods are vulnerable to generative attacks that regenerate images and erase
watermarks Zhao et al. (2023a).

2.2 WATERMARKING VIA DIFFUSION MODELS

Recent work has focused on diffusion-based watermarking to withstand such attacks. One line fine-
tunes diffusion models to generate watermarked synthetic content Wang et al. (2023); Cui et al.
(2023); Zhao et al. (2023b), as in Stable Signature Fernandez et al. (2023) and WaDiff Min et al.
(2024), but these approaches cannot watermark natural images. Other methods embed watermarks
into latent spaces, such as Tree-Ring Wen et al. (2024), which uses frequency-domain signals re-
trievable via DDIM inversion, and ZoDiac Zhang et al. (2024), which optimizes latent-space water-
marks for robustness but requires slow per-image optimization. Subsequent methods (e.g., VINE Lu
et al. (2024)) bridge latent embedding with encoder-decoder architectures by leveraging diffusion
models as encoders, but at significant computational cost. These approaches improve resistance to
regeneration-based attacks Zhao et al. (2023a), yet often struggle with compound perturbations and
geometric transformations.

2.3 DIFFUSION MODELS AND DDIM

We briefly summarize the fundamentals of diffusion models, particularly DDIM sampling Ho et al.
(2020); Song et al. (2020b); Dhariwal & Nichol (2021). In a forward diffusion process, a clean
image x0 is gradually transformed into noise xT over T time steps:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), (1)

where each step is Markovian, and βt ∈ (0, 1) controls the noise level. The closed-form expression
for any step xt is:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, (2)

with ᾱt =
∏t

s=1(1 − βs). In the reverse process, DDIM Song et al. (2020a) offers a deterministic
approach to reconstruct x0 from noise xT by estimating ϵθ(xt), the predicted noise at step t:

x̃t
0 =

xt −
√
1− ᾱtϵθ(xt)√

ᾱt
. (3)

Then, xt−1 is calculated as:

xt−1 =
√
ᾱt−1x̃

t
0 +

√
1− ᾱt−1ϵθ(xt). (4)

This recursive process enables generation from xT to x0:

x0 = Gθ(xT ).

Moreover, the inverse process—starting from a real image x0—can recover the initial latent xT

using:

xt+1 =
√
ᾱt+1x̃

t
0 +

√
1− ᾱt+1ϵθ(xt). (5)

This inversion, denoted xT = G′(x0), maps the image to its latent representation ZT , enabling
watermarking directly in the latent space.
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(a) Generation Phase of WATERFLOW

Watermark	Decoding
DDIM	Inversion	𝒢′ +	H	+	FFT

Statistical	Test	using	Non-
central	𝜒! Distribution

∥∥ −
(b) Detection Phase of WATERFLOW

Figure 2: Overview of WATERFLOW. (a) shows the generation phase, while (b) illustrates the
detection phase.

3 APPROACH

WaterFlow is a zero-shot watermarking framework that leverages invertible transformations and pre-
trained diffusion models to enable robust, fast, and high-fidelity watermarking. We implant learned
watermarks in the Fourier-transformed latent space of images, enabling reliable detection via latent-
space recovery. Figure 2 provides an overview.

3.1 WATERMARKING PROCEDURE

Algorithm 1 outlines the full watermarking procedure. Given an image x0, we first apply DDIM
inversion to obtain the latent representation ZT = G′(x0). We then implant an initial Tree-Ring
watermark (Wen et al., 2023) into the Fourier domain of ZT using a circular binary mask M :

F(Z ′
T ) = F(ZT )⊙ (1−M) +M ⊙WTree (6)

WTree consists of concentric rings sampled from the Fourier transform of the original latent.

Next, we generate an input-specific watermark W ∗ using two neural networks, Hreal and Himag,
which operate on the real and imaginary components of F(Z ′

T ), respectively:

W ∗ = Hreal(ℜ(F(Z ′
T ))) + j ·Himag(ℑ(F(Z ′

T ))) (7)

We implant W ∗ into the last channel of the latent:

M(x, y) =

{
1 if

√
x2 + y2 ≤ r

0 otherwise
(8)

F(ZW∗) = F(Z ′
T )[−1, :, :]⊙ (1−M) +M ⊙W ∗ (9)

We then apply the inverse Fourier transform and decode ZW∗ using G to obtain the watermarked
image x̂0. Note that we do not guarantee Hermitian symmetry anymore, meaning we take the real
portion from the IFT. To ensure fidelity, we adopt ZoDiac’s adaptive enhancement (Zhang et al.,
2024), introducing a blending factor γ to enforce an SSIM threshold s∗:

x̄0 = γx0 + (1− γ)x̂0 (10)

We search for the minimal γ such that SSIM(x̄0, x0) ≥ s∗. This parameter is what will allow us to
effectively serve different versions of WaterFlow without retraining.
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Algorithm 1 WaterFlow Watermarking
Require: Image x0, binary mask M , pretrained LDM G and inversion G′, trained mappings Hreal,

Himag, Tree-Ring watermark WTree, SSIM threshold s∗

1: ZT = G′(x0)
2: F(Z ′

T ) = F(ZT )⊙ (1−M) +M ⊙WTree
3: W ∗ = Hreal(ℜ(F(Z ′

T ))) + j ·Himag(ℑ(F(Z ′
T )))

4: F(ZW∗) = F(Z ′
T )[−1, :, :]⊙ (1−M) +M ⊙W ∗

5: x̂0 = G(ZW∗)
6: Search γ ∈ [0, 1] s.t. SSIM(x̄0, x0) ≥ s∗

7: x̄0 = γx0 + (1− γ)x̂0

8: Output - x̄0

3.2 TRAINABLE WATERMARK

In contrast to prior works that use fixed or latent-optimized watermarks (Wen et al., 2024; Zhang
et al., 2024), we propose a trainable watermark that adapts per-image while modifying only a small
latent region. We use lightweight Residual Flow networks (Chen et al., 2019) for Hreal and Himag to
map real and imaginary components of the latent’s Fourier space.

Our training loss is:

L = λ2L2(x0, x̂0) + λsLs(x0, x̂0) + λpLp(x0, x̂0) + λnLn(ZT ,W
∗,M) (11)

Here, L2 is MSE loss, Ls is SSIM loss (Zhao et al., 2017), Lp is VGG perceptual loss (Johnson
et al., 2016), and Ln encourages separability between the original latent and learned watermark:

Ln = − 1

wh

∑
i,j

([F(ZT )⊙M ]i,j − [W ∗ ⊙M ]i,j)
2 (12)

3.3 WATERMARK DETECTION

To detect a watermark in a given image x0, we project it to latent space and extract the last channel:
y = F(G′(x0))[−1, :, :]. Under the null hypothesis H0, we assume y ∼ N (0, σ2IC). We estimate
σ2 from the masked region:

σ2 =
1∑
M

∑
(M ⊙ y)2

We then compute a detection score:

η =
1

σ2

∑
(M ⊙W ∗ −M ⊙ y)2 (13)

η follows a non-central chi-squared distribution (PATNAIK, 1949) with degrees of freedom q =∑
M and non-centrality λ = 1

σ2

∑
(M ⊙W ∗)2.

The p-value for detection is:
p = Pr(χ2

q,λ ≤ η | H0)

We define the detection probability as 1− p, where low p indicates strong watermark presence.

4 EXPERIMENTS

In this section, we detail the datasets, settings used by our approach, the baselines used for compar-
ison, robustness, and runtime performance.

4.1 SET UP

We evaluate our approach on three distinct datasets that span a comprehensive set of images.

MS-COCO (Lin et al., 2014) provides real-world images randomly sampled from a large-scale
benchmark commonly used for image recognition and segmentation. The dataset features a wide
range of everyday scenes, including natural landscapes, people, animals, food, vehicles, and objects.

5
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Table 1: AUC between the non-watermarked and the watermarked image evaluated under a series of
attacks. We group results by dataset and bold the top three average AUCs per dataset (best in gold,
second in silver, third in bronze).

Post-Attack

All w/o Overall
Dataset Method Brightness Contrast JPEG Rotation G-Noise G-Blur BM3D Bmshj18 Cheng20 Zhao23 All Rotation Avg.

MS-COCO

DwtDct 0.498 0.505 0.498 0.564 0.501 0.505 0.904 0.816 0.535 0.417 0.503 0.494 0.562
DwtDctSvd 0.491 0.492 0.991 0.682 1.000 1.000 0.955 0.799 0.796 0.811 0.489 0.507 0.751

RivaGan 1.000 1.000 1.000 0.455 1.000 1.000 0.999 0.718 0.716 0.831 0.494 0.529 0.812
SSL 1.000 1.000 0.994 1.000 0.984 1.000 0.919 0.744 0.758 0.922 0.507 0.502 0.861

Trustmark 0.997 0.995 0.987 0.501 0.992 1.000 0.998 0.920 0.829 0.488 0.511 0.501 0.810
VINE 1.000 1.000 1.000 0.508 1.000 1.000 1.000 1.000 1.000 1.000 0.492 0.907 0.909

Tree-Ring 0.930 0.928 0.872 0.662 0.873 0.922 0.898 0.854 0.860 0.859 0.575 0.706 0.828
ZoDiac 0.996 0.996 0.989 0.771 0.987 0.996 0.994 0.980 0.979 0.978 0.618 0.809 0.924

WF-R (Ours) 0.997 0.997 0.996 0.857 0.995 0.998 0.998 0.996 0.997 0.994 0.863 0.977 0.972
WF-Q (Ours) 0.986 0.987 0.985 0.842 0.986 0.990 0.986 0.982 0.985 0.978 0.800 0.935 0.954

DiffusionDB

DwtDct 0.509 0.511 0.551 0.433 0.878 0.790 0.536 0.509 0.513 0.511 0.504 0.504 0.563
DwtDctSvd 0.431 0.433 0.979 0.725 0.989 1.000 0.960 0.813 0.812 0.742 0.493 0.504 0.740

RivaGan 0.996 0.997 0.993 0.499 0.999 1.000 0.991 0.697 0.672 0.721 0.496 0.538 0.800
SSL 1.000 0.999 0.970 0.999 0.963 1.000 0.882 0.716 0.717 0.824 0.514 0.527 0.843

Trustmark 1.000 0.998 0.989 0.498 0.995 1.000 0.999 0.945 0.860 0.504 0.495 0.504 0.816
VINE 1.000 1.000 1.000 0.495 1.000 1.000 1.000 1.000 1.000 1.000 0.496 0.882 0.906

Tree-Ring 0.953 0.947 0.923 0.669 0.924 0.954 0.940 0.889 0.914 0.886 0.584 0.758 0.862
ZoDiac 0.990 0.989 0.980 0.773 0.982 0.992 0.990 0.972 0.973 0.959 0.618 0.838 0.921

WF-R (Ours) 0.994 0.996 0.996 0.996 0.997 0.996 0.997 0.999 0.693 0.997 0.713 0.978 0.946
WF-Q (Ours) 0.991 0.990 0.991 0.680 0.991 0.996 0.994 0.989 0.990 0.980 0.661 0.945 0.933

WikiArt

DwtDct 0.503 0.506 0.547 0.423 0.896 0.809 0.547 0.499 0.501 0.488 0.515 0.497 0.561
DwtDctSvd 0.505 0.509 0.985 0.721 1.000 1.000 0.967 0.819 0.828 0.753 0.510 0.495 0.758

RivaGan 0.997 0.997 0.995 0.466 0.996 0.997 0.992 0.735 0.701 0.819 0.500 0.527 0.810
SSL 1.000 1.000 0.988 1.000 0.982 1.000 0.897 0.737 0.750 0.883 0.538 0.515 0.857

Trustmark 0.995 0.992 0.980 0.504 0.995 0.999 0.997 0.920 0.816 0.504 0.499 0.502 0.809
VINE 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.503 1.000 0.515 0.854 0.906

Tree-Ring 0.953 0.952 0.909 0.692 0.913 0.936 0.915 0.879 0.886 0.895 0.605 0.752 0.857
ZoDiac 0.992 0.992 0.981 0.732 0.983 0.992 0.987 0.964 0.962 0.959 0.628 0.801 0.915

WF-R (Ours) 0.998 1.000 0.999 0.925 0.999 1.000 0.999 0.998 0.999 0.999 0.909 0.990 0.985
WF-Q (Ours) 0.995 0.996 0.994 0.901 0.995 0.997 0.995 0.993 0.991 0.990 0.851 0.961 0.971

DiffusionDB (Wang et al., 2022) contains images generated by users interacting with Stable Dif-
fusion models. These samples cover a wide semantic and aesthetic range—such as photorealistic
scenes, fantasy imagery, cartoons, anime, space-style, surrealism, and stylized portraits—resulting
from diverse prompts and generation parameters.

WikiArt (Phillips & Mackintosh, 2011) contributes 500 images from a curated collection of art-
works across artistic styles and historical periods. The dataset includes oil paintings, sketches,
impressionist pieces, abstract art, and other stylized compositions. These images are typically non-
photorealistic and feature unique visual traits such as brush textures, symbolic structures, and un-
conventional color palettes.

For baseline comparisons, we evaluated against 8 key methods: ZoDiac (Zhang et al., 2024), Tree-
Ring (Wen et al., 2023), DwtDct (Cox et al., 2007), and DwtDctSvd (Navas et al., 2008), Riva-
Gan (Zhang et al., 2019c), SSL (Fernandez et al., 2023), VINE (Lu et al., 2024), and Trustmark (Bui
et al., 2023) on the same set of images.

4.2 WATERMARKING ATTACKS

To benchmark the robustness of our watermarking method, we evaluate its performance under com-
mon data augmentations and perturbations. We utilize the following attacks in our assessment:
Brightness and Contrast: with a factor of 0.5, JPEG: compression with a quality setting of 50,
Rotation: by 90 degrees, G-Noise: Addition of Gaussian noise with std of 0.05, G-Blur: Gaus-
sian blur with kernel size 5 and std 1, BM3D: Denoising algorithm with a std of 0.1, Bmshj18
and Cheng20: Two Variational AutoEncoder (VAE) based image compression models, both with
compression factors of 3 (Ballé et al., 2018; Cheng et al., 2020), Zhao23: Stable diffusion-based
image regeneration model, with 60 denoising steps (Zhao et al., 2023a), All: Combination of all the
attacks, and All w/o Rotation: Combination of all the attacks without rotation. These attacks cover
a holistic set of the current literature. In the Appendix, we include some additional attacks found in
WAVES (An et al., 2024).
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Image Quality: We calculate the Peak Signal-to-Noise Ratio (PSNR) between the watermarked
image, Structural Similarity Index (SSIM) (Wang et al., 2004), and Learned Perceptual Image Patch
Similarity (LPIPS) metric (Zhang et al., 2018).

Robustness: For measuring the watermark robustness, we report average Watermark Detection
Rate (WDR). Given the returned p-value of an image, we consider an image watermarked if the
detection probability is greater than some threshold p∗. In our experiments we use p∗ = 0.9 for
WaterFlow, Tree-Ring, and ZoDiac. We change the threshold for the rest of the baselines as detailed
in Appendix. We also report the Area under the curve (AUC) along with the TPR@1%FPR or the
true positive rate given we want 1% false positive rate.

Time Efficiency: We measure the average time needed to watermark a single image.

Table 2: Image quality experiments showing detection probability, SSIM, LPIPS, and PSNR . We
highlight Det. Prob. above 0.95, SSIM above 0.95, LPIPS below 0.1, and PSNR above 30 as
examples of excellent quality. We also include the number of trainable parameters.

Method # Trainable
Params MS-COCO DiffusionDB WikiArt

Det. Prob ↑ SSIM ↑ LPIPS ↓ PSNR ↑ Det. Prob ↑ SSIM ↑ LPIPS ↓ PSNR ↑ Det. Prob ↑ SSIM ↑ LPIPS ↓ PSNR ↑
DwtDct 0 0.87 0.98 0.02 39.96 0.84 0.97 0.02 38.21 0.83 0.97 0.02 39.04

DwtDctSvd 0 1.00 0.99 0.02 39.88 1.00 0.98 0.02 38.22 1.00 0.98 0.02 38.98
RivaGAN 105 1.00 0.98 0.04 40.49 0.98 0.98 0.04 40.52 0.99 0.98 0.05 40.41

SSL 107 1.00 0.98 0.07 41.79 1.00 0.98 0.06 41.85 1.00 0.98 0.07 41.78
TrustMark 107 1.00 0.99 0.01 41.96 1.00 0.99 0.01 42.08 1.00 1.00 0.01 42.27

VINE 109 1.00 1.00 0.01 39.62 1.00 0.99 0.01 39.47 1.00 1.00 0.01 45.36

Tree-Ring 0 0.93 0.92 0.11 25.63 0.95 0.92 0.09 25.70 0.94 0.92 0.13 26.51
ZoDiac 104 1.00 0.92 0.09 28.48 0.99 0.92 0.07 28.29 0.99 0.92 0.10 29.60

WF-R (Ours) 104 1.00 0.97 0.06 29.78 0.99 0.97 0.06 30.19 1.00 0.97 0.06 29.38
WF-Q (Ours) 104 0.99 0.99 0.01 35.51 0.98 0.99 0.03 35.85 0.99 0.99 0.03 34.62

4.3 ROBUSTNESS RESULTS AND DISCUSSION

Robustness results across AUC, TPR@1%FPR, and WDR are summarized in Table 1 and further
in the Appendix. Across all datasets and attacks, WF-R achieves the strongest general performance
on all metrics, consistently outperforming both classical and recent SOTA baselines. Despite priori-
tizing image quality, WF-Q ranks second on all robustness metrics, confirming that high perceptual
fidelity can coexist with robustness.

Under standard perturbations (e.g., brightness, contrast, Gaussian noise, blur), both variants main-
tain near-perfect detection rates. Geometric attacks, particularly rotation, remain a challenge due to
spatial misalignment (Dong et al., 2005). Although not trained with any rotation-specific augmen-
tations, WF-R still achieves >0.85 AUC under rotation—second only to SSL, which was explicitly
trained for it—demonstrating strong generalization. Compared to the next best method, WF-R is
more than 10% better on AUC and TPR for DiffusionDB and WikiArt.

On generative-model-based attacks (Bmshj18, Cheng20, Zhao23), legacy methods like DwtDct,
RivaGAN, and SSL degrade significantly. In contrast, WaterFlow’s variants maintain strong near-
perfect detection, on par with Tree-Ring, ZoDiac, and VINE. We attribute this to DDIM inversion
aligning watermark perturbations with latent structure, a property shared by Tree-Ring and ZoDiac.
In the most difficult composite scenarios—All and All w/o Rotation—WF-R is miles ahead of the
closest baseline achieving improvements up to nearly 700% on TPR@1% FPR and 44% on
AUC compared to the closest baseline. We note that all other methods have near zero-detection
capability. WaterFlow-Q trails closely, still outperforming all baselines. These results establish
WaterFlow as the first watermarking method to withstand aggressive, multi-step perturbations.

This robustness is due to Ln (Eq. 12), which maximizes the separation between the learned water-
mark F(x0)⊙M and its target W ∗⊙M . Unlike Tree-Ring’s fixed zero-patch approach (Wen et al.,
2023), our formulation learns per-latent patches that balance fidelity and resilience.

4.4 WATERMARKING SPEED RESULTS AND DISCUSSION

We report the time required to watermark a single image using diffusion-based latent watermarking
approaches with the same backbone model for an apt comparison. As shown in Figure 3, WaterFlow
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completes watermarking in 6.15 seconds on average—comparable to Tree-Ring (5.77s), and nearly
90 times faster than ZoDiac (517.68s).

This significant speed advantage comes from WaterFlow’s architecture: instead of performing iter-
ative latent optimization per image like ZoDiac, our method uses a universal forward pass through
a lightweight model which addds minimal overhead in terms of time. While Tree-Ring is slightly
faster, it is relatively the same as WaterFlow. On the other hand, WaterFlow balances speed, robust-
ness, and quality, making it far more practical for real-world use.

While some older methods embed watermarks more quickly, we believe WaterFlow has significant
potential for speed improvements. Recent models like SDXL-Turbo (Sauer et al., 2024) achieve ex-
tremely fast inference by reducing the number of latent diffusion steps—a strategy fully compatible
with our framework. Incorporating such models presents a natural path to substantially accelerating
WaterFlow for real-world deployment.

4.5 IMAGE QUALITY RESULTS AND DISCUSSION

Figure 3: We evaluate the average time it
takes to watermark a single image. We eval-
uate against two methods that share the same
architectural backbone. Our results show that
against existing strong baselines like ZoDiac,
WF is significantly faster.

Table 2 summarizes our perceptual fidelity results
(visual examples in Appendix). Both WF-R and
WF-Q surpass Tree-Ring and ZoDiac on all three
metrics—PSNR, SSIM, and LPIPS. In particular,
WF-Q posts among the highest SSIM and LPIPS
scores, with PSNR only marginally below the prior
state of the art, while WF-R delivers markedly bet-
ter overall fidelity than either baseline. We also
emphasize that SSIM and LPIPS provide more re-
liable assessments of perceptual quality, since they
remain stable under small, imperceptible pixel vari-
ations that disproportionately impact PSNR.

The adaptive enhancement procedure further boosts
image quality with minimal impact on detectability,
effectively treating enhancement as a benign pertur-
bation. Unlike methods like VINE and TrustMark
that rely on fine-tuning large models with many
trainable parameters on a lot of data, WaterFlow
achieves competitive or better quality using a much
lighter weight model, with many fewer parameters, significantly less data, and much less compute.

In the Appendix, we explore the quality–robustness trade-off more deeply. An ablation study shows
that adjusting the SSIM threshold during enhancement can improve perceptual quality with only
minor losses in robustness. This flexibility—enabled by a single trained model—highlights Water-
Flow’s practical value in diverse deployment scenarios.

5 ABLATION STUDIES

We perform four key ablations in the main paper, with additional ablations detailed in the Appendix.

5.1 EFFECT OF LOSS WEIGHT λn

To explore the trade-off between image fidelity and watermark detectability, we vary the robustness
loss weight λn from 10−2 to 10−6. As illustrated in Figure 4 (see Appendix for full curves), in-
creasing λn boosts detection performance at the expense of perceptual quality. This confirms that
stronger emphasis on watermark separation enhances detectability but introduces greater distortion.

5.2 CHOICE OF MAPPING ARCHITECTURE

We evaluate several architectures, including UNet, MLP, and our proposed FlowNets (Figure 6;
detailed in Appendix). While all achieve comparable image quality, UNet and MLP exhibit signifi-
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Figure 4: Comparison of loss weights λn ∈
{10−2, 10−3, 10−4, 10−5, 10−6} across PSNR,
LPIPS, and robustness under rotation and com-
bined attacks. PSNR and LPIPS are normalized.

Figure 5: Effect of watermark radius (5, 10,
15, 20) on AUC across multiple attacks. Larger
radii is shown to improve robustness across all
classes of attacks.

cantly weaker robustness. UNet produces overly weak watermarks that are easily removed by most
attacks, whereas MLP withstands basic perturbations but fails against complex attack combinations.

We favor Residual Flows for several reasons. First, their inherent invertibility enables learning more
expressive and diverse watermarks without collapse. In contrast, the dimensionality reduction in
UNet and MLP can trap the model in poor localizations. Second, residual connections allow the
model to default to the already strong Tree-Ring baseline when necessary. Finally, FlowNets are
suited to transforming Gaussian latents rather than image pixels, making them a principled choice.

5.3 WATERMARK RADIUS

Figure 6: Graph of different model architectures
used to parameterize Hreal and Himag as well as
their robustness.

We study the impact of the watermark’s spatial
radius by sweeping values from 5 to 20 pix-
els (see Appendix for more details). Figure ??
shows that larger radii increase coverage and
robustness—e.g., PSNR decreases from 25.49
at radius 5 to 25.10 at radius 20—reflecting the
expected fidelity–coverage trade-off.

5.4 CROSS-DOMAIN GENERALIZATION

Finally, we train a single WaterFlow-General
model jointly on MS-COCO, DiffusionDB, and
WikiArt (100 images each). As shown in
Table 14 and detailed further in Appendix,
this unified model offers slight improvements
in perceptual metrics and achieves robust-
ness comparable to ZoDiac, though it remains
marginally less robust than our domain-specific
variants. These results highlight the strong

cross-domain generalization of WaterFlow-General, while also suggesting that multiple lightweight,
domain-specialized models can deliver optimal robustness.

6 CONCLUSION

WaterFlow is a fast, diffusion-based watermarking framework that combines strong robustness with
high visual fidelity. It embeds adaptive watermarks in the latent space of a pretrained diffusion
model and supports two modes: WaterFlow-Robust, which sets a new benchmark on DiffusionDB,
MS-COCO, and WikiArt while withstanding complex attacks in under one second, and WaterFlow-
Quality, which matches or exceeds top baselines in visual quality while maintaining higher detection
rates under adversarial attacks.

9
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Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin Hwang, and Nick Johnston. Variational
image compression with a scale hyperprior. arXiv preprint arXiv:1802.01436, 2018.

Walter Bender, Daniel Gruhl, Norishige Morimoto, and Anthony Lu. Techniques for data hiding.
IBM systems journal, 35(3.4):313–336, 1996.

A.G. Bors and I. Pitas. Image watermarking using dct domain constraints. In Proceedings of 3rd
IEEE International Conference on Image Processing, volume 3, pp. 231–234 vol.3, 1996.

Tu Bui, Shruti Agarwal, and John Collomosse. Trustmark: Universal watermarking for arbitrary
resolution images. arXiv preprint arXiv:2311.18297, 2023.

Ricky TQ Chen, Jens Behrmann, David K Duvenaud, and Jörn-Henrik Jacobsen. Residual flows for
invertible generative modeling. Advances in Neural Information Processing Systems, 32, 2019.

Zhengxue Cheng, Heming Sun, Masaru Takeuchi, and Jiro Katto. Learned image compression with
discretized gaussian mixture likelihoods and attention modules. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 7939–7948, 2020.

Ingemar Cox, Matthew Miller, Jeffrey Bloom, and Chris Honsinger. Digital watermarking. Journal
of Electronic Imaging, 11(3):414–414, 2002.

Ingemar Cox, Matthew Miller, Jeffrey Bloom, Jessica Fridrich, and Ton Kalker. Digital Watermark-
ing and Steganography. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2 edition,
2007. ISBN 9780080555805.

Yingqian Cui, Jie Ren, Han Xu, Pengfei He, Hui Liu, Lichao Sun, and Jiliang Tang. Diffusion-
shield: A watermark for copyright protection against generative diffusion models. arXiv preprint
arXiv:2306.04642, 2023.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Ping Dong, J.G. Brankov, N.P. Galatsanos, Yongyi Yang, and F. Davoine. Digital watermarking
robust to geometric distortions. IEEE Transactions on Image Processing, 14(12):2140–2150,
2005. doi: 10.1109/TIP.2005.857263.
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A APPENDIX

B EXPERIMENT DETAILS

B.1 DATASET

Our training set for our main experiment consists of 1000 samples. All of our datasets are pulled
from publically available huggingface APIs and evaluate on 500 test images. For our ablations we
use 300 samples per dataset and evaluate on 100 images for practicality.

B.2 HARDWARE

All of our training is done on a single NVIDIA A6000 and A5000 GPUs and Intel(R) Xeon(R) Gold
6342 CPU @ 2.80GHz. Our training was completed in around a couple of hours on a singular GPU.

B.3 HYPERPARAMETERS

We train for a maximum of 5 epochs, Adam optimizer with β1 = 0.9 and β2 = 0.999, and learning
rate 0.001. All our experiments use a batch size of 2. We use 50 denoising steps for our diffusion
model. We also use a SSIM threshold of 0.97 for adaptive enhancement for WF-R and 0.99 for
WF-Q.

For the loss function, we use λn = 10−2, λ2 = 10.0, λs = 0.1, λp = 1.0.

B.4 CHECKPOINT SELECTION

We take the checkpoint that has a good tradeoff of perceptual quality and L2 loss. We find that an
L2 in the hundreds is required for good robustness.

B.5 BASELINES

For ZoDiac, we adhere to the parameter settings specified in the original manuscript, including an
SSIM threshold of 0.92 and 100 epochs. For Tree-Ring, we adapt the original method—designed
for watermarking only diffusion-generated images—to support watermarking arbitrary images. This
adaptation involves performing DDIM inversion on an input image, embedding the Tree-Ring wa-
termark into the latent space, and then regenerating the image. We also use adaptive enhancement
with Tree-Rings. For DwtDct, DwtDctSvd, SSL, and RivaGAN, we embed a 32-bit message and set
a watermark detection threshold of 24/32 correctly predicted bits. Each of these methods is executed
using its default parameters as provided in their respective implementations. For TrustMark, we use
a detection threshold of 41/61 and 64/100 for VINE.

C ADDITIONAL RESULTS

C.1 MAIN EXPERIMENT

We present Table 4 for comprehensive results. We show the TPR 1%FPR along with the AUC. This
new metric gives us a sense about how well our detector is given a specially chosen false positive
threshold.

C.2 LOSS WEIGHT ABLATION

We present full results in Table 6, Table 5, Table 7, and Table 8. We use the hyperparameters listed
in Appendix A.3 except that we use a SSIM threshold of 0.92.

Our results indicate a general trade-off between perceptual quality and detectability/robustness with
the loss weight. That is higher loss weights have lower perceptual quality (PSNR, LPIPS) but are
better in robustness metrics (for AUC, TPR1%FPR, WDR).
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Table 3: We report the Watermark Detection Rate (WDR) following various perturbations applied
to watermarked images. The attacks are grouped as follows: traditional perturbations (Brightness
through BM3D), regenerative attacks (Bmshj18 through Zhao23), and combination attacks (All, All
w/o Rotation). We bold the highest averaged WDR per dataset.

Post-Attack

All w/o Overall
Dataset Method Brightness Contrast JPEG Rotation G-Noise G-Blur BM3D Bmshj18 Cheng20 Zhao23 All Rotation Avg.

DwtDct 0.000 0.000 0.004 0.000 0.626 0.306 0.000 0.000 0.000 0.000 0.000 0.000 0.078
DwtDctSvd 0.106 0.104 0.782 0.000 0.998 1.000 0.474 0.026 0.020 0.130 0.000 0.000 0.303

RivaGAN 0.996 0.998 0.984 0.000 1.000 0.998 0.972 0.014 0.008 0.098 0.000 0.000 0.506
MS-COCO SSL 1.000 1.000 0.740 0.998 0.628 1.000 0.168 0.012 0.034 0.160 0.002 0.000 0.479

TrustMark 0.994 0.990 0.974 0.020 0.984 1.000 0.996 0.846 0.668 0.004 0.034 0.030 0.628
VINE 1.000 1.000 1.000 0.078 1.000 1.000 1.000 1.000 1.000 1.000 0.074 0.716 0.822

Tree-Ring 0.736 0.746 0.610 0.260 0.580 0.718 0.630 0.536 0.530 0.000 0.138 0.260 0.581
ZoDiac 0.982 0.986 0.960 0.434 0.954 0.986 0.980 0.920 0.920 0.904 0.180 0.434 0.803

WF-R (Ours) 0.974 0.976 0.978 0.988 0.990 0.986 0.974 0.992 0.524 0.982 0.542 0.916 0.902
WF-Q (Ours) 0.953 0.955 0.950 0.476 0.943 0.964 0.953 0.945 0.936 0.911 0.379 0.784 0.846

DwtDct 0.000 0.000 0.002 0.002 0.526 0.304 0.002 0.000 0.000 0.000 0.000 0.000 0.070
DwtDctSvd 0.094 0.090 0.824 0.000 0.974 1.000 0.606 0.038 0.042 0.110 0.000 0.000 0.315

RivaGAN 0.948 0.944 0.898 0.000 0.958 0.970 0.878 0.004 0.004 0.120 0.002 0.002 0.477
DIFFDB SSL 0.986 0.994 0.588 0.978 0.564 0.996 0.138 0.020 0.030 0.102 0.000 0.000 0.450

TrustMark 1.000 0.996 0.978 0.028 0.990 1.000 0.998 0.892 0.732 0.020 0.020 0.036 0.641
VINE 1.000 1.000 1.000 0.066 1.000 1.000 1.000 1.000 1.000 1.000 0.062 0.688 0.818

Tree-Ring 0.808 0.812 0.742 0.262 0.720 0.814 0.766 0.648 0.620 0.000 0.128 0.300 0.682
ZoDiac 0.964 0.968 0.938 0.440 0.932 0.972 0.960 0.880 0.898 0.844 0.178 0.504 0.775

WF-R (Ours) 0.986 0.986 0.982 0.136 0.986 0.990 0.990 0.978 0.980 0.960 0.080 0.916 0.831
WF-Q (Ours) 0.922 0.930 0.926 0.108 0.928 0.950 0.942 0.912 0.906 0.852 0.042 0.688 0.759

DwtDct 0.000 0.000 0.002 0.000 0.586 0.274 0.000 0.000 0.000 0.000 0.000 0.000 0.072
DwtDctSvd 0.080 0.080 0.804 0.000 1.000 1.000 0.636 0.046 0.080 0.150 0.000 0.000 0.323

RivaGAN 0.980 0.980 0.976 0.000 0.984 0.986 0.972 0.014 0.008 0.140 0.000 0.000 0.503
WIKIART SSL 1.000 1.000 0.764 0.996 0.696 1.000 0.176 0.024 0.034 0.112 0.000 0.000 0.484

TrustMark 0.990 0.984 0.962 0.028 0.990 0.998 0.994 0.846 0.646 0.030 0.028 0.032 0.627
VINE 1.000 1.000 1.000 0.074 1.000 1.000 1.000 1.000 1.000 1.000 0.058 0.598 0.811

Tree-Ring 0.822 0.832 0.710 0.264 0.682 0.762 0.688 0.602 0.590 0.000 0.148 0.288 0.668
ZoDiac 0.962 0.960 0.906 0.350 0.918 0.960 0.944 0.830 0.838 0.798 0.170 0.418 0.755

WF-R (Ours) 0.994 0.998 0.988 0.668 0.994 0.996 0.990 0.984 0.986 0.982 0.550 0.950 0.923
WF-Q (Ours) 0.956 0.964 0.964 0.600 0.972 0.970 0.968 0.954 0.956 0.934 0.356 0.836 0.869

Table 4: TPR@1%FPR after the watermarked images undergo a series of perturbations or attacks
across MS-COCO, DiffusionDB, and WikiArt. We bold the highest average TPR per dataset.

Post-Attack

All w/o Overall
Dataset Method Brightness Contrast JPEG Rotation G-Noise G-Blur BM3D Bmshj18 Cheng20 Zhao23 All Rotation Avg.

DwtDct 0.012 0.000 0.000 0.014 0.000 0.000 0.740 0.400 0.004 0.006 0.012 0.000 0.096
DwtDctSvd 0.172 0.176 0.922 0.000 0.998 1.000 0.630 0.104 0.102 0.248 0.006 0.012 0.364

RivaGan 0.996 0.998 0.994 0.004 1.000 1.000 0.992 0.072 0.080 0.272 0.014 0.010 0.536
MS-COCO SSL 1.000 1.000 0.852 1.000 0.828 1.000 0.276 0.086 0.062 0.398 0.004 0.016 0.543

Trustmark 0.994 0.990 0.974 0.008 0.984 1.000 0.996 0.846 0.668 0.002 0.022 0.016 0.625
VINE 1.000 1.000 1.000 0.004 1.000 1.000 1.000 1.000 1.000 1.000 0.008 0.428 0.787

Tree-Ring 0.464 0.454 0.326 0.110 0.422 0.454 0.432 0.332 0.316 0.298 0.046 0.104 0.350
ZoDiac 0.958 0.954 0.918 0.224 0.888 0.964 0.926 0.856 0.860 0.700 0.090 0.270 0.717

WF-R (Ours) 0.944 0.954 0.942 0.970 0.964 0.970 0.958 0.972 0.384 0.956 0.412 0.868 0.858
WF-Q (Ours) 0.932 0.934 0.923 0.347 0.923 0.934 0.902 0.889 0.911 0.855 0.209 0.712 0.789

DwtDct 0.008 0.008 0.020 0.004 0.600 0.436 0.028 0.004 0.012 0.014 0.004 0.008 0.096
DwtDctSvd 0.126 0.128 0.868 0.000 0.982 1.000 0.668 0.140 0.134 0.194 0.004 0.006 0.354

RivaGan 0.966 0.972 0.932 0.012 0.986 0.990 0.914 0.050 0.034 0.106 0.008 0.010 0.498
DIFFUSIONDB SSL 0.992 0.994 0.760 0.986 0.674 0.996 0.228 0.092 0.030 0.244 0.006 0.014 0.501

Trustmark 1.000 0.996 0.978 0.000 0.990 1.000 0.998 0.892 0.732 0.020 0.012 0.006 0.635
VINE 1.000 1.000 1.000 0.006 1.000 1.000 1.000 1.000 1.000 1.000 0.008 0.408 0.785

pu Tree-Ring 0.682 0.654 0.546 0.134 0.534 0.668 0.610 0.460 0.498 0.308 0.048 0.162 0.474
ZoDiac 0.936 0.930 0.874 0.252 0.844 0.936 0.922 0.818 0.794 0.698 0.088 0.310 0.702

WF-R (Ours) 0.984 0.980 0.976 0.230 0.976 0.990 0.990 0.976 0.978 0.958 0.134 0.900 0.839
WF-Q (Ours) 0.950 0.944 0.936 0.200 0.940 0.966 0.964 0.934 0.940 0.868 0.080 0.746 0.789

DwtDct 0.002 0.002 0.018 0.004 0.670 0.410 0.004 0.000 0.014 0.008 0.002 0.000 0.095
DwtDctSvd 0.170 0.166 0.914 0.000 1.000 1.000 0.760 0.224 0.190 0.198 0.000 0.014 0.386

RivaGan 0.984 0.982 0.982 0.002 0.988 0.990 0.980 0.074 0.054 0.182 0.002 0.004 0.519
WIKIART SSL 1.000 1.000 0.888 0.996 0.802 1.000 0.380 0.044 0.122 0.320 0.010 0.006 0.547

Trustmark 0.990 0.984 0.962 0.012 0.990 0.998 0.994 0.846 0.646 0.026 0.010 0.002 0.622
VINE 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.012 1.000 0.018 0.404 0.822

Tree-Ring 0.610 0.644 0.470 0.130 0.492 0.630 0.514 0.398 0.398 0.404 0.054 0.146 0.435
ZoDiac 0.906 0.898 0.852 0.214 0.834 0.920 0.828 0.616 0.678 0.704 0.084 0.302 0.653

WF-R (Ours) 0.994 0.990 0.978 0.558 0.988 0.992 0.986 0.980 0.974 0.970 0.550 0.914 0.906
WF-Q (Ours) 0.956 0.952 0.944 0.468 0.942 0.958 0.960 0.936 0.952 0.912 0.320 0.744 0.837
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Table 5: Perceptual metrics for loss weight ablation on the DiffusionDB dataset. We highlight the
best value for each metric.

Loss Weight PSNR ↑ SSIM ↑ LPIPS ↓
10−2 25.13 0.92 0.121
10−3 25.41 0.92 0.121
10−4 25.58 0.92 0.118
10−5 25.74 0.92 0.112
10−6 25.74 0.92 0.112

Table 6: WDR robustness metrics for loss weight ablation on the DiffusionDB dataset. We highlight
the best value for each metric.

Loss Weight Pre-Attack ↑ Brightness ↑ Contrast ↑ JPEG ↑ Rotation ↑ G-Noise ↑ G-Blur ↑ BM3D ↑ Bmshj18 ↑ Cheng20 ↑ Zhao 23 ↑ All ↑ All + No Rotation ↑
10−2 0.991 0.940 0.950 0.930 0.580 0.950 0.980 0.980 0.910 0.920 0.900 0.380 0.710
10−3 0.970 0.850 0.870 0.810 0.140 0.830 0.860 0.830 0.760 0.780 0.720 0.090 0.510
10−4 0.957 0.810 0.810 0.760 0.110 0.770 0.840 0.750 0.710 0.710 0.620 0.030 0.350
10−5 0.949 0.780 0.770 0.700 0.240 0.680 0.760 0.740 0.650 0.610 0.600 0.140 0.320
10−6 0.940 0.780 0.770 0.720 0.230 0.710 0.770 0.740 0.630 0.610 0.600 0.110 0.320

Table 7: AUC results for loss weight ablation across different perturbations using DiffusionDB. We
highlight the best value for each metric.

Method AUC (Post-Attack)

Brightness Contrast JPEG Rotation G-Noise G-Blur BM3D Bmshj18 Cheng20 Zhao23 All All w/o Rot.

10−2 0.991 0.997 0.993 0.881 0.994 0.997 0.996 0.994 0.985 0.987 0.806 0.947
10−3 0.984 0.989 0.980 0.731 0.982 0.986 0.987 0.977 0.953 0.961 0.636 0.904
10−4 0.975 0.980 0.976 0.714 0.966 0.979 0.976 0.956 0.938 0.944 0.576 0.831
10−5 0.951 0.944 0.923 0.687 0.902 0.940 0.916 0.898 0.875 0.874 0.559 0.705
10−6 0.951 0.944 0.928 0.685 0.890 0.940 0.918 0.898 0.875 0.874 0.564 0.717

Table 8: TPR@1%FPR results for loss weight ablation across different perturbations using Diffu-
sionDB. We highlight the best value for each metric.

Method TPR@1%FPR (Post-Attack)

Brightness Contrast JPEG Rotation G-Noise G-Blur BM3D Bmshj18 Cheng20 Zhao23 All All w/o Rot.

10−2 0.950 0.950 0.920 0.470 0.920 0.940 0.910 0.910 0.830 0.830 0.220 0.800
10−3 0.920 0.890 0.860 0.210 0.860 0.860 0.790 0.810 0.730 0.730 0.090 0.590
10−4 0.890 0.880 0.790 0.170 0.720 0.800 0.740 0.780 0.670 0.640 0.030 0.310
10−5 0.740 0.680 0.510 0.150 0.520 0.540 0.500 0.570 0.420 0.500 0.050 0.220
10−6 0.740 0.670 0.500 0.150 0.500 0.560 0.510 0.550 0.400 0.500 0.050 0.160

C.3 WATERMARK RADIUS ABLATION

In this ablation we modify the radius of our learned watermark and observe the corresponding re-
sults. We present our results in Table 9, 10, 11.

We observe that increasing the watermark radius leads to a more robust watermark. This makes
sense as the watermark assumes more ”area”. However, what is slightly surprising is that the LPIPS
seems to become better with a larger watermark radius. So while PSNR suffers, we can understand
this as our model creating more realistic images that differ from the original image. A potential
reason for this is that a larger watermark means that we have more control over the latent.

C.4 MODEL ARCHITECTURE ABLATION

In this ablation we try various generative model architectures for parameterizing our learned water-
mark. We present our results in Table 12 and 13. We use the hyperparameters listed in Appendix B.
We note that for these experiments we use a SSIM threshold of 0.92.

We observe that the Residual Flow architecture yields the best results in terms of robustness al-
though UNet and MLP do slightly better on perceptual metrics. The biggest problem with the UNet
architecture is that the learned watermark is simply too weak. That is, the watermarked images are
not statistically separable from the non-watermarked images. This can be observed by the 50% AUC
and 0 WDR. While MLP is slightly better, it still falls short of the Residual Flow Architecture.
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Table 9: Perceptual and WDR metric for watermark radius ablation. We use the DiffusionDB dataset
for this experiment. We highlight the best value for each metric.

Metric 5 10 15 20

PSNR ↑ 25.69 25.13 25.22 25.06
SSIM ↑ 0.92 0.92 0.92 0.92
LPIPS ↓ 0.121 0.121 0.117 0.095

Pre-Attack ↑ 0.958 0.991 0.998 0.999
Brightness ↑ 0.770 0.940 0.990 0.990
Contrast ↑ 0.810 0.950 0.980 0.990

JPEG ↑ 0.740 0.930 0.990 1.000
Rotation ↑ 0.290 0.580 0.340 0.770
G-Noise ↑ 0.810 0.950 0.980 0.990
G-Blur ↑ 0.850 0.980 1.000 0.990
BM3D ↑ 0.820 0.980 1.000 1.000

Bmshj18 ↑ 0.710 0.910 0.970 0.990
Cheng20 ↑ 0.760 0.920 0.990 0.990
Zhao23 ↑ 0.720 0.900 0.920 0.990

All ↑ 0.140 0.380 0.220 0.540
All + No Rotation ↑ 0.480 0.710 0.810 0.890

Table 10: AUC results for watermark radius ablation across different perturbations using Diffu-
sionDB. We highlight the best value for each metric.

Radius Brightness Contrast JPEG Rotation G-Noise G-Blur BM3D Bmshj18 Cheng20 Zhao23 All All w/o Rot.
5 0.977 0.980 0.970 0.798 0.975 0.974 0.980 0.957 0.964 0.949 0.712 0.885
10 0.991 0.997 0.993 0.881 0.994 0.997 0.996 0.994 0.985 0.987 0.806 0.947
15 1.000 1.000 0.999 0.850 0.998 1.000 1.000 1.000 0.999 0.994 0.806 0.969
20 0.999 1.000 1.000 0.960 0.996 1.000 1.000 0.999 0.999 0.996 0.874 0.963

Table 11: TPR@1%FPR results for watermark radius ablation across different perturbations using
DiffusionDB. We highlight the best value for each metric.

Radius Brightness Contrast JPEG Rotation G-Noise G-Blur BM3D Bmshj18 Cheng20 Zhao23 All All w/o Rot.
5 0.680 0.770 0.640 0.280 0.670 0.780 0.810 0.690 0.490 0.570 0.220 0.370
10 0.950 0.950 0.920 0.470 0.920 0.940 0.910 0.910 0.830 0.830 0.220 0.800
15 1.000 1.000 0.990 0.500 0.980 1.000 1.000 0.990 0.990 0.970 0.300 0.850
20 0.990 0.990 0.990 0.360 0.990 1.000 1.000 0.990 0.990 0.990 0.450 0.850

C.5 A NOTE ON INITIALIZING PATCH TO TREE-RING

We found in earlier iterations of our work that not initializing with a tree-ring patch produced signif-
icantly worse results. Furthermore, adding the tree-ring patch to the learned patch was also worse.
This is founded on the hypothesis that the latent with the tree-ring watermark is already a strong
starting point and our mapping simply adjusts it as needed to trade off robustness and quality.

C.6 VARYING SSIM THRESHOLD

Our results are shown in Figure 7. We present an additional ablation which involves varying the
SSIM threshold used for adaptive enhancement. We obviously expect the image quality metrics to
get better as we increase the SSIM threshold (note both the PSNR and LPIPS metric). The perhaps
more surprising story is the little drop-off in robustness. Between an SSIM of 0.92 and 0.95, there is
little to no drop in robustness quality. The difference starts to become slightly more noticeable when
we go up to 0.99 but is still relatively good compare to our baselines. We hypothesize that because
adaptive enhancement is similar to an adversarial attack (though beneficial for us in this case), it
does not deter WaterFlow which is by nature incredibly robust.
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Figure 7: Results showing image quality and robustness as a function of various SSIM thresholds
used for adaptive enhancement. In this figure, all robustness metrics are in AUC and the thresholds
we test are 0.92, 0.95, 0.99.
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Table 12: Perceptual and WDR metrics for model architecture ablation (DiffusionDB). Rows are
metrics, columns are model architectures. We highlight the best value for each metric.

Metric MLP Residual Flow UNet
PSNR ↑ 25.91 25.13 26.00
SSIM ↑ 0.92 0.92 0.92
LPIPS ↓ 0.111 0.121 0.107
Pre-Attack ↑ 0.908 0.991 0.501
Brightness ↑ 0.630 0.940 0
Contrast ↑ 0.600 0.950 0
JPEG ↑ 0.410 0.930 0
Rotation ↑ 0.080 0.580 0
G-Noise ↑ 0.520 0.950 0
G-Blur ↑ 0.630 0.980 0
BM3D ↑ 0.540 0.980 0
Bmshj18 ↑ 0.460 0.910 0
Cheng20 ↑ 0.420 0.920 0
Zhao23 ↑ 0.430 0.900 0
All ↑ 0.000 0.380 0
All + No Rotation ↑ 0.090 0.710 0

Table 13: Results for model architecture ablation. We show AUC and TPR@1%FPR across a wide
variety of different attacks and perturbations. The dataset used is DiffusionDB. We highlight the
best value for each metric.

Method Post-Attack
Brightness Contrast JPEG Rotation G-Noise G-Blur BM3D Bmshj18 Cheng20 Zhao23 All All w/o Rot.

MLP 0.922/0.554 0.910/0.485 0.863/0.386 0.540/0.030 0.880/0.505 0.919/0.495 0.900/0.465 0.841/0.505 0.827/0.396 0.854/0.327 0.485/0.000 0.663/0.069
Residual Flow 0.991/0.950 0.997/0.950 0.993/0.920 0.881/0.470 0.994/0.920 0.997/0.940 0.996/0.910 0.994/0.910 0.985/0.830 0.987/0.830 0.806/0.220 0.947/0.800

UNet 0.553/0.030 0.538/0.050 0.541/0.000 0.499/0.020 0.539/0.020 0.562/0.010 0.518/0.000 0.493/0.000 0.514/0.000 0.550/0.000 0.494/0.010 0.536/0.000

Table 14: Perceptual similarity (PSNR ↑, LPIPS ↓) and watermark detection under all attacks AUC
(Full Avg. ↑) for WaterFlow-General. Best values per metric are bold.

Dataset Method PSNR ↑ LPIPS ↓ AUC ↑
WaterFlow-General 27.82 0.07 0.945

COCO ZoDiac 28.61 0.13 0.937
WaterFlow 27.74 0.12 0.984
WaterFlow-General 27.69 0.07 0.946

DiffDB ZoDiac 28.65 0.11 0.937
WaterFlow 27.39 0.09 0.985
WaterFlow-General 28.04 0.09 0.945

WikiArt ZoDiac 28.93 0.10 0.923
WaterFlow 26.94 0.10 0.982

C.7 GENERALIZED WATERFLOW

We conduct an experiment where WaterFlow is trained jointly on all three datasets, using 100 sam-
ples from each. Our results are shown in Table 15 and Table 16. We then separately evaluate
performance on each dataset. Our results show that WaterFlow-General achieves higher percep-
tual quality than the original WaterFlow and performs comparably to ZoDiac. Additionally, while
WaterFlow-General surpasses ZoDiac in robustness, it remains slightly less robust than the original
WaterFlow. This shows that even in the case where we must deploy a single mode to be used on
a wide variety of images, WaterFlow remains a strong method. We note that given the expansive
nature of our datasets as well as how lightweight our models are, it may make sense to actually train
multiple models to learn domain-specific watermarks which promise much higher robustness.
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Table 15: Perceptual similarity metrics (SSIM ↑, PSNR ↑, LPIPS ↓) across three datasets for gener-
alizability experiments. We bold the best values in each dataset.

Dataset Method SSIM ↑ PSNR ↑ LPIPS ↓
WaterFlow-General 0.95 27.82 0.07

COCO ZoDiac 0.92 28.61 0.13
WaterFlow 0.95 27.74 0.12

WaterFlow-General 0.95 27.69 0.07
DiffDB ZoDiac 0.92 28.65 0.11

WaterFlow 0.95 27.39 0.09

WaterFlow-General 0.95 28.04 0.09
WikiArt ZoDiac 0.92 28.93 0.10

WaterFlow 0.95 26.94 0.10

Table 16: AUC of watermark detection after various image perturbations generalizability experi-
ment. We bold the best full average AUC per dataset.

Dataset Method Brightness Contrast JPEG Rotation G-Noise G-Blur BM3D Bmshj18 Cheng20 Zhao23 All w/o Rot. Full Avg.
ZoDiac 0.994 0.994 0.989 0.800 0.989 0.996 0.991 0.988 0.984 0.960 0.622 0.836 0.937

COCO WaterFlow 1.000 1.000 1.000 0.913 0.999 1.000 0.999 0.999 0.999 0.998 0.879 0.967 0.984
WaterFlow-General 0.988 0.988 0.987 0.852 0.980 0.983 0.974 0.966 0.971 0.972 0.778 0.905 0.945

ZoDiac 0.994 0.994 0.989 0.800 0.989 0.996 0.991 0.988 0.984 0.960 0.622 0.836 0.937
DiffDB WaterFlow 1.000 1.000 1.000 0.903 0.999 1.000 1.000 1.000 0.999 0.999 0.879 0.967 0.985

WaterFlow-General 0.988 0.993 0.985 0.851 0.983 0.993 0.993 0.980 0.982 0.981 0.787 0.920 0.946

ZoDiac 0.991 0.991 0.981 0.732 0.988 0.993 0.984 0.964 0.960 0.956 0.572 0.812 0.923
WikiArt WaterFlow 0.997 0.998 0.999 0.937 1.000 0.999 0.999 0.996 0.996 0.995 0.896 0.986 0.982

WaterFlow-General 0.992 0.992 0.990 0.868 0.985 0.988 0.983 0.973 0.977 0.978 0.796 0.941 0.945

C.8 ADVERSARIAL EMBEDDING ATTACKS

We present results in Table 17. While the WAVES paper introduces a broad set of attacks, our evalu-
ation covers a similarly diverse range, including additional combination attacks that merge multiple
perturbation types. One category we did not initially include is adversarial embedding attacks, which
specifically target the model’s embedding space. Although these attacks are theoretically promising,
we observe that even traditionally weak watermarking methods perform unexpectedly well against
them, casting doubt on their practical effectiveness. Thus, we observe that most methods achieve
very high AUC. We believe that this is because they are ill-suited as an attack when the image quality
is sufficiently good. Nonetheless, we include comparative results for completeness.

D LIMITATIONS

Our method builds on pre-trained Stable Diffusion models, which, while powerful across many
domains, may not generalize well to domain-specific imagery such as medical scans or satellite data.
Since our approach assumes access to a known latent space and invertible generative process, it may
not be directly applicable to other state-of-the-art models that are non-invertible or autoregressive in
nature. Furthermore, we focus on a single open-source model, and the transferability of our method
to closed-source or fine-tuned proprietary diffusion models remains uncertain. Finally, we observe
that in some cases, the watermark introduces slight visual artifacts. However, this trade-off can be
controlled via loss balancing and adaptive enhancement techniques.

E BROADER IMPACT

As generative models continue to be adopted for content creation, the need for robust watermark-
ing mechanisms becomes increasingly urgent—both to ensure accountability and to mitigate the
spread of synthetic misinformation. Our method, WaterFlow, offers a promising step toward reli-
able, high-fidelity watermarking of AI-generated images. It is lightweight, robust to a wide range of
perturbations, and fast enough for practical deployment.
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Table 17: AUC for different adversarial embedding attacks. Values greater than 0.95 are highlighted
in bold to represent strong resistance against the attack.

Method AdvEmbG-KLVAE8 AdvEmbB-CLIP ResNet18 AdvEmbB-SdxlVAE
DwtDct 0.948 0.952 0.948 0.944
DwtDctSvd 0.991 0.961 0.980 0.994
RivaGAN 1.000 1.000 0.997 1.000
SSL 0.947 0.972 0.963 0.875
TrustMark 0.966 0.860 0.867 0.990
VINE 1.000 1.000 1.000 1.000
ZoDiac 0.677 0.962 0.958 0.954
WF-R 0.970 0.995 0.993 0.995
WF-Q 0.929 0.978 0.979 0.984
DwtDct 0.912 0.922 0.918 0.903
DwtDctSvd 0.978 0.945 0.960 0.981
RivaGAN 0.999 0.999 0.999 1.000
SSL 0.895 0.957 0.927 0.828
TrustMark 0.973 0.868 0.883 0.993
VINE 1.000 1.000 1.000 1.000
ZoDiac 0.741 0.963 0.960 0.958
WF-R 0.978 0.996 0.992 0.994
WF-Q 0.949 0.985 0.985 0.987
DwtDct 0.919 0.924 0.920 0.916
DwtDctSvd 0.967 0.981 0.986 0.997
RivaGAN 0.997 0.996 0.998 0.998
SSL 0.907 0.973 0.963 0.875
TrustMark 0.963 0.867 0.920 0.994
VINE 1.000 1.000 1.000 1.000
ZoDiac 0.618 0.970 0.956 0.963
WF-R 0.971 0.999 0.998 0.998
WF-Q 0.925 0.991 0.990 0.989

However, any watermarking system also introduces ethical considerations. Malicious actors may
adapt these techniques to embed imperceptible information in ways that violate user privacy or evade
detection. Conversely, watermark removal techniques may evolve in tandem, creating an ongoing
arms race. It is crucial that watermarking research is accompanied by transparent reporting, open
benchmarking, and active dialogue between academia, industry, and policymakers. We hope this
work contributes positively to the development of ethical and trustworthy generative AI systems.

F LLM USAGE

LLMs were used to help with manuscript writing.

G REPRODUCIBILITY

We include a list of hyperparameters, hardware, and other training configurations in the appendix.
Furthermore, we include the source code as part of the supplementary material.

H FUTURE WORK

Future directions include expanding evaluation to a wider range of datasets and real-world attack
scenarios to better understand resilience under adversarial or noisy conditions. While our current
design assumes the generative model’s latent space is fixed, future research could explore fine-tuning
diffusion backbones jointly with the watermarking objective. We are also interested in adapting
WaterFlow to other generative paradigms, including autoregressive or transformer-based models,
and in developing defenses against emerging watermark-removal attacks. Finally, we plan to explore
learnable post-processing steps that further improve fidelity while preserving robustness.
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MS-COCO
Left: Watermarked

Right: Clean

DiffusionDB
Left: Watermarked

Right: Clean

WikiArt
Left: Watermarked

Right: Clean

Figure 8: Example images from MS-COCO, DiffusionDB, and WikiArt datasets. Each pair shows
a watermarked (left) and clean (right) image.
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Brightness Contrast JPEG

Rotation Gaussian Noise Gaussian Blur

BM3D Bmshj18 Cheng2020

Zhao23 All All w/o Rotation

Figure 9: Examples of attacks on watermarked image from MS-COCO dataset.
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