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ABSTRACT

Ubiquitous geometric objects can be precisely and efficiently represented as poly-
hedra. The transformation of a polyhedron into a vector, known as polyhedra
representation learning, is crucial for manipulating these shapes with mathematical
and statistical tools for tasks like classification, clustering, and generation. Recent
years have witnessed significant strides in this domain, yet most efforts focus on
the vertex sequence of a polyhedron, neglecting the complex surface modeling
crucial in real-world polyhedral objects. This study proposes PolyhedronNet, a
general framework tailored for learning representations of 3D polyhedral objects.
We propose the concept of the surface-attributed graph to seamlessly model the
vertices, edges, faces, and their geometric interrelationships within a polyhedron.
To effectively learn the representation of the entire surface-attributed graph, we first
propose to break it down into local rigid representations to effectively learn each
local region’s relative positions against the remaining regions without geometric
information loss. Subsequently, we propose PolyhedronGNN to hierarchically
aggregate the local rigid representation via intra-face and inter-face geometric mes-
sage passing modules, to obtain a global representation that minimizes information
loss while maintaining rotation and translation invariance. Our experimental evalu-
ations on four distinct datasets, encompassing both classification and retrieval tasks,
substantiate PolyhedronNet’s efficacy in capturing comprehensive and informative
representations of 3D polyhedral objects.

1 INTRODUCTION

In mathematics and computational geometry, a polyhedron is defined as a three-dimensional (3D)
solid formed by flat polygon faces joined at edges and vertices. Ubiquitous geometric shapes can be
precisely and efficiently modeled as polyhedra, ranging from basic 3D shapes (e.g., cubic, pyramid,
and truncated tetrahedron) to compositions of them (e.g., shapes of buildings, furniture, and digital
objects in CAD) as exemplified Figure 1 (a). In the real world, there are many tasks surrounding
polyhedra such as classification (e.g., convex or concave); clustering polyhedra into different types
(e.g., Platonic solids and prisms ); as well as generation and optimization (e.g., use faceted facades to
break up flat surfaces) of polyhedra for design needs. However, the raw form of polyhedra cannot be
directly input into machine learning models which require structured formats such as vectors, tensors,
etc. Hence, a fundamental upstream task is to map a polyhedron into a vector representation, namely
polyhedra representation learning, which is the focus of this paper.

Recent studies on polyhedral geometries can be broadly classified into two categories. The first
category involves feature engineering on the faces of a polyhedron to generate descriptors for each
face and aggregate these features (Qi et al., 2017b; Shi & Rajkumar, 2020; Wang et al., 2019).
However, this manual selection of features is limited and biased by human knowledge, which can
result in the loss of geometric information at the initial stage and often lacks generalizability to
other tasks. The second category models the shapes of polyhedral faces directly using sequences
of coordinates, preserving the original geometric information and learning features from the data,
which can be generalized across various tasks (Mai et al., 2023; van’t Veer et al., 2019; Yan et al.,
2021). Nevertheless, these methods are constrained by the need for a specific order of input and do
not consider the relationship among faces. Directly using coordinates also fails to account for rotation
and translation invariance, thus limiting the ability to consistently interpret polygonal geometries
regardless of their spatial orientation or position. Moreover, such approaches neglect face properties,
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which contain significant semantic information, by focusing solely on the shapes of polygonal
faces. Figure 1 (b) illustrates how face attributes introduce semantic information that influences
the appearances and functionalities of geometric objects. Although they share the same underlying
polyhedral structure, the three objects are distinctly different. The first polyhedron is the Louvre
Pyramid, which is characterized by four glass faces, with a concrete ground face. The middle one is a
wireframe pyramid with empty faces, emphasizing the geometric structure and suggesting its use as a
craft or model. The last one is an Egypt pyramid, featuring yellow stone faces.

Figure 1: 3D objects modeled as polyhedra.

To address these limitations, we propose PolyhedronNet, a novel framework for polyhedra represen-
tation learning. Firstly, we propose the Surface-Attributed Graph (SAG) to concisely encapsulate
the information of a polyhedron. Beyond simple graphs, SAG utilizes face-hyperedges to model the
geometric relationships among vertices, edges, and faces and explicitly capture the face semantics,
ensuring no information is lost. Thus, learning the representation of a polyhedron is equivalent to
learning SAG representation. We solve this problem by first decomposing the SAG using the Local
Rigid Representation of SAG and then aggregating them to SAG’s global representation. In each
local rigid representation, to preserve the current local region’s geometric relation to the whole SAG,
we calculate the second-order distances around a node and angles formed by its neighbors and associ-
ated faces to form a rigid body around the node. The set of local rigid bodies encapsulates complete
geometric and semantic information in the SAG and provides rotation and translation invariance.
Thirdly, we propose PolyhedronGNN to hierarchically aggregate the local rigid representation into
a global representation that minimizes information loss while maintaining rotation and translation
invariance of global representation. Considering faces are the pivots of a polyhedron, this model
learns geometric information inside faces and across faces, based on the two-hop paths that suffice
the preservation of local rigid information. This design adeptly captures the semantic heterogeneity
of the surface-attributed graph, significantly enhancing the model’s ability to uniquely identify and
differentiate diverse input graphs. Moreover, we empirically validate our proposed method across
four datasets and demonstrate its effectiveness in both classification and retrieval tasks, significantly
outperforming state-of-the-art approaches by a substantial margin.

2 RELATED WORK

2.1 3D OBJECT REPRESENTATION LEARNING

Traditional methods render a three-dimensional object into two dimensions as an image or a set of
images with different views (Qi et al., 2016; Su et al., 2015). These methods involve significant
information loss and cannot truly represent 3D objects. Some recent works (Qi et al., 2017a; Le
& Duan, 2018) utilize spatial point cloud to depict objects. PointNet (Qi et al., 2017a) introduced
a deep learning framework for directly processing point clouds, significantly advancing object
classification and segmentation tasks. This was further expanded by Le & Duan (2018) through
PointGrid, which combines point clouds with voxel grids to enhance geometric understanding. Voxel
grid representation offers a volumetric approach to 3D shape analysis. Chen et al. (2023) develop
PolyGNN to reconstruct 3D building models using polyhedral decomposition from point cloud. Wu
et al. (2015b) developed 3D ShapeNets, a method that leverages convolutional neural networks on
voxel grids to perform 3D shape recognition, providing a robust framework for capturing complex
shapes. Wang et al. (2017) introduced the Octree-based CNN, which improves efficiency by using
octree structures for adaptive resolution in 3D space. These discrete methods fail to leverage the
structural information like edges inherently by points or grids, making them less compatible with
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structured data. Mesh representation focuses on using triangles or quads to model 3D objects. Bruna
et al. (2013) proposed spectral networks to operate on meshes. Henaff et al. (2015) extended this
concept by introducing convolutional networks for structured data, enhancing the analysis of mesh
topology. Further advancements by Defferrard et al. (2016) and Monti et al. (2017) applied localized
filtering and mixture model CNNs to learn geometric features on meshes. Pang et al. (2023) proposes
a GNN-based approach to learn geodesic embeddings for polyhedral faces. While these methods have
significantly advanced the processing of 3D object, they face limitations due to their computational
intensity with high-resolution models and their struggles with irregular geometries, inherent to the
mesh format. Directly modeling objects with polyhedra is a promising method to address these issues.

2.2 POLYHEDRAL REPRESENTATION LEARNING

Recent advancements in the field of polyhedral geometry representation learning have been significant.
Traditional feature engineering approaches (Pham et al., 2010; Yan et al., 2019; He et al., 2018)
transform polygonal shapes into predefined shape descriptors. GNNs are utilized to improve handling
of spatial relationships and structural complexities (Qi et al., 2017b; Shi & Rajkumar, 2020; Wang
et al., 2019). However, these descriptors tend to oversimplify the data, failing to capture the complete
spectrum of shape information and requiring substantial domain expertise for their creation. They
struggle with the variability and complexity of polygonal shapes, which limits their generalizability.
Polygon shape encoding methods (van’t Veer et al., 2019; Mai et al., 2023; Yan et al., 2021), have
demonstrated their effectiveness in shape classification and retrieval tasks. While beneficial for certain
types of analysis, these methods do not fully meet the needs of polyhedral representation learning
that requires capturing complex topological relationships between polygonal geometries. In relation
to polyline representation learning (Jiang et al., 2021; 2022), these methods focus on processing
continuous lines and curves that delineate the boundaries and configurations of shapes in spatial
data. However, when dealing with intersecting or overlapping geometric structures, the handling
of their topological relationships can be complex and may not be sufficient to accurately capture
more intricate curves and nonlinear structures. Another category of research focuses on polyhedron
generation. Gillsjö et al. (2023) extracts polygons from images by using heterogeneous graphs and
wireframes to learn feature space. Zorzi & Fraundorfer (2023) utilizes edge-aware GNNs to enhance
polygon detection accuracy and applicability in scene parsing by considering both node and edge
features. Antonietti et al. (2024) enhance the analysis of geometric structures by maintaining mesh
quality and improving computational processes, as demonstrated in multigrid solvers and scene
parsing tasks.

3 PROBLEM FORMALIZATION

In this section we first introduce the formal definitions of polygons (Mai et al., 2023) and polyhedra
(Weisstein), and then formalize the problem of polyhedra representation learning.

Definition 3.1 (Polygon). A polygon pi is defined as an ordered sequence of vertices that form a
closed shape: pi = (vi,1, vi,2, . . . , vi,Nb,i

), where vi,j ∈ R3 denotes the 3D coordinates of the j-th
vertex, Nb,i denotes the number of vertices. The vertices of the polygon are coplanar, meaning they
all lie within a single 2D plane that is embedded in 3D space. Additionally, the polygon is assumed
to be simple, which implies that it does not have any self-intersections or holes.

Definition 3.2 (Polyhedron). A polyhedron q is a 3D solid that consists of a collection of polygonal
faces q = {pi}

Nf

i=1, where each face pi is a polygon as defined in Definition 3.1. The vertices of
each face are ordered in a counterclockwise direction when viewed from outside the polyhedron,
ensuring a consistent orientation across all faces. The normal vector associated with each face pi
can be obtained using the right-hand rule, pointing outward from the polyhedron. In addition to the
geometric properties, each face pi may have semantic face attributes, which can include material,
color or other application-specific data.

This definition provides a unified data structure for both 2D polygons and 3D polyhedra. A polygon
can be treated as a special case of a polyhedron with a single face. By defining the faces as oriented
polygons, our representation implicitly captures the orientation and enclosure properties of the
polyhedron.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Polyhedra representation learning. This paper aims to convert a polyhedron into a vector represen-
tation, denoted as q → qv , where qv ∈ Rd and d represents the dimension of the vector. As depicted
in Figure 1, face attributes collectively identify object patterns, which is fundamental to understanding
the concept of a polyhedron. The learned representation qv should capture the geometric and seman-
tic properties of the polyhedron, while being invariant to rotation and translation transformations.
Furthermore, the representation should be discriminative, enabling accurate classification, retrieval,
and other downstream tasks on 3D shapes.

4 METHODOLOGY

Figure 2: Illustration of the proposed framework.

To learn distinct representations for polyhedra by addressing the aforementioned challenges, we
propose the PolyhedronNet framework, as shown in Figure 2. In Figure 2 (a), to unify the characteri-
zation of vertices, edges, faces, and their relationships in a polyhedron, we propose a transformation
that turns a polyhedron into a surface-attributed graph (SAG), as elaborated in Section 4.1. This
process is proven to be invertible, which maintains information in the polyhedron while converting it
to a graph data format. In Figure 2 (b), to learn a representation of the SAG, we decompose SAG
into a set of local rigids for each 2-hop path within a polyhedron (Section 4.2) with our local rigid
representation. The representation is a five-tuple set that transforms absolute coordinates into vectors
while preserving the original graph information and achieving rotation and translation invariance. In
Figure 2 (c), we propose a novel graph neural network, PolyhedronGNN (Section 4.3), to aggregate
the local rigid representations into the final SAG representation.

4.1 TRANSFORMING POLYHEDRON TO SURFACE-ATTRIBUTED GRAPH

Graphs provide a natural way to capture the geometric structure of a polygonal shape by representing
vertices as nodes and edges as links between them. In recent years, graphs have been successfully
applied for polygon-related tasks (Zhou et al., 2023; Zorzi et al., 2022; Zorzi & Fraundorfer, 2023).
These studies have demonstrated the effectiveness of using graphs to capture the intricate geometric
and topological properties of polygonal shapes. Given that a polyhedron can be considered as a 3D
extension of a polygon, it is natural to extend the graph representation to the polyhedron domain. We
let each graph node represent a vertex of a polyhedron and each directed graph edge represent an
edge of a face in the polyhedron.

However, A polyhedron is characterized not only by the vertices and edges but also by the faces.
Developing a comprehensive representation of polyhedra necessitates a unified data structure capable
of encapsulating all the geometric information. While vertices and edges are naturally contained in a
graph structure, we propose the concept of a surface-attributed graph to include the face attributes,
specifically tailored for polyhedron contexts. This representation extends the traditional graph-based
approach used in polygon representation by incorporating face-hyperedges in the graph, which
encapsulate the geometric properties of a polyhedron’s faces.
Definition 4.1 (Surface-attributed graph). A surface-attributed graph G = (V,E, F, a) is a directed
graph, where V is the set of nodes, E is the set of edges, and surface F is the set of face-hyperedges.
Each node vi = (xi, yi, zi) ∈ V corresponds to a vertex of the polyhedron and is defined by its
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coordinates, xi, yi, zi are the values of coordinates. Each directed edge ei,j = (vi, vj) ∈ E represents
an edge of a face in the polyhedron. Each face-hyperedge f = (e1,2, e2,3, ..., eNb,i,1) ∈ F is a an
ordered set of edges that forms a closed shape, associated with a set of face attributes a(f). It is
important to note that, unlike traditional hyperedges in a graph, which simply connect multiple nodes,
face-hyperedges contain the connectivity order information of edges, which captures the hierarchical
topology of a polyhedron.

Constructing SAG from a polyhedron. Based on the discussion so far, we summarize the steps
for constructing the SAG from a given polyhedron q as follows: We treat the vertex set in the
original polyhedron as the node set V of SAG. Then for a face pi in the polyhedron q, consider
each pair of consecutive vertices (vj , vj+1) as the endpoints of an edge ej,j+1 = (vj , vj+1). Doing
so for j = 1, ..., Nb,i − 1, and adding an edge between the last and first vertices of pi to ensure
a closed boundary, we will have all the edges of this face. Hence a face-hyperedge is formed as:
f = (e1,2, e2,3, ..., eNb,i,1). Doing this for all faces, we have F . we build a mapping a from each f
to its attributes. Union all the edges generated from all the faces to form E.

By incorporating face-hyperedges, SAG provides a comprehensive representation of a polyhedron
that captures all its vertex-level, edge-level and face-level properties. It is important to highlight that
SAG inherently captures the adjacency information between faces. From this structural representation,
two key observations can be made: 1) If two faces fi and fj are adjacent in the polyhedron, their
adjacent edges share the same nodes but in opposite directions, such that ∃eo,r ∈ fi, er,o ∈ fj .
2) Each edge in a face must have a corresponding opposite edge, which belongs to another face.
∀eo,r ∈ fi,∃er,o ∈ fj , i ̸= j.

Lemma 4.2. Let q = {pi}
Nf

i=1 be a polyhedron and G = (V,E, F, a) be the SAG derived from q. The
transformation from q to G is invertible.

Proof. The detailed proof is in Appendix B.

4.2 LOCAL RIGID REPRESENTATION OF SAG

The geometric information in a SAG is encapsulated by the relative positions of nodes and the
specific shape of each face, which are defined by the node coordinates and connection topology. So
attaining a representation for the whole SAG requires the above local information, namely local rigid
representation, to be preserved (as elaborated in this subsection) and then be aggregated with minimal
information loss (as detailed in Section 4.3).

To achieve local rigid representation, relying solely on node coordinates is insufficient, as this does
not preserve essential symmetries such as translation and rotation invariance. Moreover, calculating
the distances to all other nodes is computationally expensive and overlook crucial topological features
such as edges and faces. Tackling this issue motivates us to seek to encode the relative position of a
node through its local rigid, including its neighbor nodes, edges, and faces. Hence, we propose a
novel five-tuple geometric representation that maintains the relative positioning of nodes within the
graph while also respecting the integrity of its edges and faces. We transform the absolute coordinates
of a node into a vector, and once all other nodes are fixed, the position of the target node is determined
by its representation.

Definition 4.3 (Two-hop Path). For a node vi in a SAG, a two-hop path πi,j,k is an ordered sequence
of three nodes (vi, vj , vk) where vj is adjacent to both vi and vk. We denote the set of all two-hop
paths converging to node vi as Πi2.

Definition 4.4 (Local Rigid Representation of SAG). The SAG can be expressed as a collection of
Local Rigid Representation tuples s(πi,j,k) as shown in Figure 2:

G = {s(πi,j,k)|πi,j,k ∈ Πi2, vi ∈ V }, (1)
s(πi,j,k) = (di,j , dj,k, θi,j,k, ϕi,j,k, ψi,j,k)

where di,j is the Euclidean distance between node vi and vj , dj,k is the distance between node vj
and vk, θi,j,k ∈ [−π, π) is the angle at vj formed by the three nodes. ϕi,j,k ∈ [−π, π) is the dihedral
angle between the two faces containing edge ei,j and ej,k respectively, ψi,j,k denotes the indices of
the face-hyperedge containing ei,j and ej,k.
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Importantly, the representation is invariant under rotation and translation transformations, ensuring
that the structural integrity of the graph is maintained regardless of its orientation or position. We
further affirm that this representation encapsulates all information of the graph. So by incorporating
the local rigid representation of each node, the network would be able to capture the global information
of the whole graph as the layer number grows. In essence, utilizing the local rigid representation of
the SAG, as detailed in Equation 1, enables us to reconstruct a graph that is equivalent to the original.
Theorem 4.5. Given the local rigid representation of a surface-attributed graph G, as articulated in
Equation 1, one can reconstruct a graph that is equivalent to G.

Proof. The foundational concept of Theorem 4.5 is that faces within a polyhedron are interconnected
via shared edges. We first prove that starting from a random node, one can recover the shape of a face
it associated with. Then one can iteratively combine the faces to reconstruct an equivalent SAG. The
detailed proof is in Appendix C.

4.3 POLYHEDRONGNN ARCHITECTURE

After obtaining the local rigid representations in the previous section, in this section, the second step
of our approach solves the problem of aggregating them to obtain a global representation. Specifically,
we propose PolyhedronGNN, which operates on the surface-attributed graph G = (V,E, F, a) and
learns to aggregate information from neighboring nodes and faces with a focus on utilizing different
models to learn the different interactions in SAG.

In each layer, we utilize the local rigid representation and face attributes to guide the node embedding
updating process. As shown in Figure 2 (c), considering a two-hop path πi,j,k, the consisting edges can
be within the same face or different faces. The flow of information from one face to another is critical
in learning the interrelation between faces, while intra-face flow enhances the understanding of shapes
of a single face. We divide possible path types into two categories: ψ(πi,j,k) ∈ {Rinner, Rcross}. To
distinguish between different paths, we propose a heterogeneous function for learning the message
based on the path type. Let Ψ(l,ψ(πi,j,k)) be a multi-layer perceptron (MLP) model for path type
ψ(πi,j,k) at layer l, the learned message m(l)(πi,j,k) from path πi,j,k can be formulated as follows:

m(l)(πi,j,k) = w(ψ(πi,j,k))Ψ(l,ψ(πi,j,k))(h
(l)
i , h

(l)
j , h

(l)
k , g

(l)), (2)

where w(ψ(πi,j,k)) is the weight for path type ψ(πi,j,k), g(l) = φ(l)(di,j∥dj,k∥θi,j,k∥ϕi,j,k∥aj,i∥ak,j)
is the guiding embedding calculated by an MLP function φ(l), where ∥ denotes the concatenation
operation, aj,i, ak,j are the face attributes of the faces containing ej,i, ek,j , respectively. We initialize
node embeddings to zeroes. For a node vi, let h(l+1)

i represent its updated embedding in the l-th layer.
The node embedding update is formulated as follows:

h
(l+1)
i =

∑
{m(l)(πi,j,k)|πi,j,k ∈ Πi2}, (3)

To maximize discriminative power, the embeddings of all nodes are summed to form a graph embed-
ding, and the graph embeddings from all layers are concatenated as the final graph representation hG
for downstream tasks:

hG =
∥∥L
l=1

(∑|V |

i=1
h
(l)
i

)
, (4)

where L is the number of GNN layers. PolyhedronGNN utilizes local rigid representation to
achieves rotation and translation invariance, while retaining the ability to distinguish different graphs.
Assuming the distance between any two nodes is bounded within a range, we demonstrate that our
method can aggregate complete graph information with arbitrary precision:
Theorem 4.6. Suppose η : S → R be a continuous set function with respect to the Hausdorff
distance dH(·, ·). Let S ∈ S be the set of all two-hop paths of a surface-attributed graph G,
S = {s(πi,j,k)|vi ∈ V }, ∀ϵ > 0,∃K ∈ Z, such that for any S ∈ S,

|η(S)− ζ(η′(S))| < ϵ, (5)
where ζ is a continuous function, and η′(S) ∈ RK is the output of our proposed method.

Proof. The detailed proof is in Appendix D. Similar to PointNet, in the worst case, our method
divides the space into small granules. With a sufficiently large output dimension, our method maps
each input into a unique granule.
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5 EXPERIMENTS

We evaluate the effectiveness of our approach through two fundamental tasks—classification and
retrieval—across four datasets. We first introduce the datasets and comparison methods then provide
the main results and analysis. For detailed information on implementation specifics, please see
Appendix E.

5.1 DATASET

We employ the following datasets for both classification and retrieval tasks, detailed as follows:
MNIST-C: This dataset contains 13,742 samples of digit polyhedra. We transform 2D polygon
shapes from the MNIST-P dataset (Jiang et al., 2019) into 3D by stretching them along the z-axis.
Each digit is color-coded (purple for the bottom face, red for the front face, green for side faces
excluding the bottom, and blue for the back face) and randomly rotated in 3D space to highlight
directional identification. Building: Comprising 5,000 polyhedra, this dataset extends 2D polygons
from the OpenStreetMap (OSM) building dataset (Yan et al., 2021) into 3D polyhedra. Each building
is categorized into one of ten standard alphabetic shapes based on its shape. Unlike MNIST-C, these
samples are not subjected to random rotations due to the original lack of alignment. ShapeNet-P:
Derived from the ShapeNetCore dataset (Chang et al., 2015), this dataset features 2,122 polyhedra
across 15 object categories. We employ a mesh merge algorithm to combine coplanar meshes with
identical properties into polyhedral objects. Files that still retain numerous mesh faces after merging
are dropped. Random rotations are applied. ModelNet-P: This dataset, based on ModelNet40 (Wu
et al., 2015a), contains 1,303 polyhedra spanning 14 object categories. The processing is the same as
ShapeNet-P, including applying random rotations.

5.2 COMPARISON METHOD

ResNet1D (Mai et al., 2023): This model adapts the 1D variant of the Residual Network (ResNet)
architecture, incorporating circular padding to effectively encode the exterior vertices of polygons.
VeerCNN van’t Veer et al. (2019): A Convolutional Neural Network (CNN) designed for 1D inputs,
VeerCNN employs zero padding and concludes with global average pooling. NUFT-DDSL (Jiang
et al., 2019): A spatial domain polygon encoder that uses NUFT features and the DDSL model.
NUFT-IFFT (Mai et al., 2023): A spatial domain polygon encoder that utilizes NUFT features and
the inverse Fast Fourier transformation (IFFT). PolygonGNN (Yu et al., 2024): A graph-based
polygon encoder that models 2D multipolygon as visibility graph.

5.3 EFFECTIVENESS ANALYSIS FOR CLASSIFICATION TASK

Table 1 presents the performance comparison between the proposed method and competing models
across four datasets. We utilized a range of metrics to assess performance, including Accuracy
(Acc), Weighted Precision (Prec), Weighted F1 Score (F1), and Weighted ROC AUC Score (AUC).
The highest scores for each dataset are denoted in boldface. PolyhedronNet achieved the highest
scores in accuracy, precision, F1, and AUC across all datasets, enhancing the Precision score by
72% over the average of other methods in the MNIST-C dataset. Notably on the Building dataset,
PolyhedronNet achieved an AUC of 1.000. For ShapeNet-P and ModelNet-P, where the challenge lies
in handling a diverse range of complex 3D shapes and fine-grained object differences, PolyhedronNet
still achieved solid results, with an AUC of 0.936 on ShapeNet-P and 0.824 on ModelNet-P. Although
the performance on these datasets was slightly lower compared to MNIST-C and Building, the
results still demonstrate its robustness in recognizing complex polyhedra. Overall, PolyhedronNet’s
performance across these diverse datasets underscores its versatility and strength in handling complex
polyhedra, making it an effective solution for the challenging polyhedron classification task.

5.4 EFFECTIVENESS ANALYSIS FOR RETRIEVAL TASK

We repurpose the model trained on the classification task to execute the retrieval task by removing the
downstream classifier and assessing the similarity among learned representations in the test set. For
each test sample, we pre-determine the count of items within the same class and retrieve an equivalent
number of samples. We then compute the average values for the following metrics: Precision (Prec),
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Table 1: The performance of the proposed model and the comparison methods on the classification
task. The best results are in bold.

Dataset Metric NUFT-DDSL ResNet1D NUFT-IFFT VeerCNN PolygonGNN PolyhedronNet

MNIST-C

Acc ↑ 0.148 0.152 0.239 0.127 0.435 0.858
Prec↑ 0.092 0.139 0.220 0.104 0.446 0.861

F1↑ 0.102 0.083 0.202 0.084 0.427 0.856
AUC↑ 0.474 0.610 0.619 0.576 0.801 0.985

Building

Acc↑ 0.921 0.919 0.941 0.874 0.973 0.980
Prec↑ 0.921 0.921 0.942 0.876 0.974 0.980

F1↑ 0.921 0.920 0.941 0.874 0.973 0.980
AUC↑ 0.994 0.993 0.997 0.987 0.999 1.000

ShapeNet-P

Acc↑ 0.097 0.179 0.097 0.163 0.573 0.627
Prec↑ 0.103 0.142 0.082 0.158 0.589 0.640

F1↑ 0.092 0.147 0.083 0.148 0.570 0.625
AUC↑ 0.555 0.625 0.564 0.639 0.916 0.936

ModelNet-P

Acc↑ 0.153 0.321 0.164 0.206 0.430 0.435
Prec↑ 0.118 0.381 0.148 0.221 0.370 0.377

F1↑ 0.114 0.302 0.138 0.197 0.385 0.393
AUC↑ 0.575 0.784 0.629 0.726 0.821 0.824

Table 2: The performance of the proposed model and the comparison methods on the retrieval task.
The best results are in bold.

Dataset Metric NUFT-DDSL ResNet1D NUFT-IFFT VeerCNN PolygonGNN PolyhedronNet

MNIST-C

Prec ↑ 0.428 0.448 0.367 0.307 0.386 0.713
Recall↑ 0.430 0.450 0.368 0.308 0.388 0.715

F1↑ 0.429 0.449 0.368 0.307 0.387 0.714
MAP↑ 0.660 0.696 0.559 0.477 0.586 0.842

NDCG↑ 0.897 0.910 0.857 0.809 0.859 0.945

Building

Prec ↑ 0.279 0.264 0.276 0.147 0.788 0.838
Recall↑ 0.282 0.266 0.279 0.148 0.796 0.847

F1↑ 0.280 0.265 0.277 0.148 0.792 0.843
MAP↑ 0.564 0.481 0.550 0.327 0.890 0.923

NDCG↑ 0.809 0.771 0.803 0.645 0.953 0.966

ShapeNet-P

Prec ↑ 0.098 0.156 0.088 0.135 0.317 0.322
Recall↑ 0.101 0.161 0.091 0.139 0.327 0.332

F1↑ 0.100 0.158 0.089 0.137 0.322 0.327
MAP↑ 0.201 0.299 0.196 0.291 0.476 0.486

NDCG↑ 0.415 0.525 0.405 0.513 0.670 0.674

ModelNet-P

Prec ↑ 0.113 0.196 0.118 0.155 0.233 0.240
Recall↑ 0.119 0.206 0.123 0.163 0.245 0.252

F1↑ 0.116 0.201 0.120 0.159 0.239 0.246
MAP↑ 0.286 0.378 0.266 0.343 0.415 0.421

NDCG↑ 0.450 0.557 0.440 0.517 0.575 0.576

Recall, F1 Score (F1), Mean Average Precision (MAP), and Normalized Discounted Cumulative
Gain (NDCG).

Table 2 presents the performance comparison between the proposed method and competing models
across four datasets. The highest scores for each dataset are denoted in boldface. On the Building
dataset, PolyhedronNet exhibited the most significant improvement, with Recall increasing by an
average of 60% and F1 showing a substantial boost compared to other methods. It also achieved
the highest in other scores, reflecting its ability to retrieve and rank relevant architectural structures
accurately. In the MNIST-C dataset, PolyhedronNet outperformed other models, with Precision
improving by 32% over the average of other methods, showcasing its effectiveness in retrieving
polyhedral representations of handwritten digits. For the ShapeNet-P dataset, which involves distin-
guishing a wide variety of 3D shapes, PolyhedronNet delivered strong performance, achieving the
top NDCG of 0.674, indicating its ability to retrieve and rank relevant shapes effectively. Similarly, in
the ModelNet-P dataset, PolyhedronNet excelled, achieving the best NDCG of 0.576, further proving
its capacity to handle fine-grained differences in 3D object retrieval. These results demonstrate the
versatility and robustness of the representations learned by PolyhedronNet in handling polyhedra.
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5.5 ABLATION STUDY

We conducted an ablation study to assess the importance of face attributes quantitatively. This
involved masking the face attributes with zeroes and comparing the performance to that of the
original PolyhedronNet on two specific tasks using the MNIST-C and ShapeNet-P datasets. It is
important to note that the Building and ModelNet-P datasets do not possess face attributes, making
such comparisons inapplicable. The outcomes of this study are detailed in Table 3 and Table 4.
Results demonstrate a noticeable decrease in both classification and retrieval tasks, which indicates
the importance of face attributes.

Table 3: Ablation results in classification task

MNIST-C ShapeNet-P

Metric w/ face w/o face w/ face w/o face

Acc ↑ 0.858 0.360 0.627 0.578
Prec ↑ 0.861 0.401 0.640 0.595

F1 ↑ 0.856 0.343 0.625 0.568
AUC ↑ 0.985 0.742 0.936 0.909

Table 4: Ablation results in retrieval task

MNIST-C ShapeNet-P

Metric w/ face w/o face w/ face w/o face

Prec ↑ 0.713 0.348 0.322 0.318
Recall ↑ 0.715 0.349 0.332 0.327

F1 ↑ 0.714 0.348 0.327 0.322
MAP ↑ 0.842 0.534 0.486 0.482

NDCG ↑ 0.945 0.837 0.674 0.674

5.6 HYPERPARAMETER SENSITIVITY

Figure 3: Hyperparameter sensitivity

We delve into the sensitivity analysis of two crit-
ical hyperparameters within our proposed frame-
work: the hidden dimension and the number of
GNN layers, utilizing the MNIST-C dataset for
evaluation. The impact of the hidden dimension
on model performance is illustrated in Figure 3
(a). Generally, the model exhibits low sensitivity
to the hidden dimension size once it surpasses a
certain threshold (in this case, 256 for the MNIST-
C dataset). Nonetheless, dimensions that are too
small may constrict the model’s expressive capac-
ity, resulting in suboptimal performance. These
findings are consistent with the principles out-
lined in our Theorem 4.6. Regarding the number
of GNN layers, Figure 3 (b) shows that an optimal
performance is achieved with approximately 4 GNN layers. The flat curve indicates low sensitivity to
the number of layers. This may be attributed to the concatenation of embeddings from all layers.

5.7 CASE STUDY

Figure 4: Test cases from the MNIST-C dataset correctly predicted by PolyhedronNet, displaying
face-attributed and blank versions side by side. The blank models are rotated to show the possible am-
biguity. Predictions from comparison methods are also presented below each image for comparison.
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Figure 5: Test cases from the ShapeNet-P dataset correctly predicted by PolyhedronNet, displaying
face-attributed and blank versions side by side. Predictions from comparison methods are also
presented below each image for comparison.

We conducted an in-depth analysis of PolyhedronNet’s performance by selecting and visualizing
several representative cases from the test sets of the MNIST-C and ShapeNet-P datasets. The selected
cases demonstrate instances where PolyhedronNet’s predictions align with the actual labels, and
we also present comparative results from other methods for reference. The visualizations from
the MNIST-C dataset are depicted in Figure 4. We observed that numerous prediction errors by
comparison methods were likely due to the ambiguity caused by rotating polyhedron digits, which
can make digits such as ’6’/’9’ and ’5’/’2’ appear inverted or flipped. The face attributes within our
PolyhedronNet model play a crucial role in indicating the direction of a digit, thereby effectively
avoiding such errors. Furthermore, PolyhedronNet demonstrated its ability to accurately handle
complex cases where the orientation of digits could lead to misidentification. For instance, it correctly
identified an irregularly shaped ’7’ that resembles a ’4’ (fourth sample in the first row), a ’9’ that
appeared similar to a ’5’ (third sample in the second row), and a ’4’ that resembles a ’5’ (last sample
in the second row). These successes can be partially attributed to the directional guidance provided
by face attributes and also to the strong capabilities of our model.

Further visualizations from the ShapeNet-P dataset are shown in Figure 5. In the first case, all
comparison methods mistakenly classified the "cabinet" as a "loudspeaker," a common error due
to their similar cubic shapes and appearances. However, PolyhedronNet distinguishes the cabinet
effectively by recognizing the different colors on its surface, which indicate the presence of drawers,
thus negating the possibility of it being a loudspeaker. By adeptly leveraging both the face attributes
and the geometric properties of objects, PolyhedronNet enhances prediction accuracy. The ability to
discern different parts of objects through attributes like color is particularly effective in complex cases
involving multi-part objects such as loudspeakers, knives, lamps, and benches, facilitating accurate
feature assembly.

6 CONCLUSION

This work advances polyhedra representation learning by introducing a novel framework named
PolyhedronNet. Central to this framework is the surface-attributed graph, a unified data structure
for modeling polyhedra, coupled with the development of a local rigid representation and a custom-
designed graph neural network, PolyhedronGNN. By directly modeling a polyhedron with SAG,
we open the door for a variety of applications that require processing 3D polyhedral objects. The
effectiveness of PolyhedronNet has been rigorously validated through extensive experiments on four
datasets in classification and retrieval tasks.
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A LIST OF SAMBOLS

The main mathematical symbols used throughout the paper are summarized in Table5, organized
with their formal descriptions.

Symbol Description
q A polyhedron (3D solid formed by flat polygon faces)
pi A polygon face in a polyhedron
vi,j The j-th vertex of the i-th face, with 3D coordinates
Nb,i Number of vertices in the i-th face
Nf Number of faces in a polyhedron
qv Vector representation of a polyhedron
G Surface-attributed graph (SAG) comprising (V,E, F, a)
V Set of nodes in the SAG
E Set of edges in the SAG
F Set of face-hyperedges in the SAG
f Face-hyperedge, an ordered set of edges forming a closed shape
a Face attributes mapping function
ei,j Directed edge from vertex vi to vj
πi,j,k Two-hop path vi ← vj ← vk
Πi2 Set of all two-hop paths converging to node vi
di,j Euclidean distance between nodes vi and vj
θi,j,k Angle at vj formed by vectors −−→vjvi and −−→vjvk
ϕi,j,k Dihedral angle between faces containing edges ei,j and ej,k
ψi,j,k Indices of face-hyperedge containing edges ei,j and ej,k
Ψ(l,ψ(πi,j,k)) Multi-layer perceptron model for path type ψ(πi,j,k) at layer l
ψ(πi,j,k) Path type indicator (Rinner or Rcross)
w(ψ(πi,j,k)) Weight for path type ψ(πi,j,k)
aj,i Face attributes of the face containing edge ej,i
g(l) Guiding embedding at layer l
φ(l) MLP function for calculating the guiding embedding at layer l
h
(l)
i Node embedding of node vi at layer l
m(l)(πi,j,k) Learned message from path πi,j,k at layer l
hG Final graph representation

Table 5: Key symbols and their descriptions

B PROOF FOR LEMMA 4.2

Proof. The nodes in graph G have a one-to-one correspondence with the vertices of the polyhedron q.
Each polygon face pi is defined by an ordered set of points. To reconstruct q from G, we first group
the nodes of the graph into their corresponding faces using the face-hyperedge. Since nodes along
the boundaries of faces are arranged in a counterclockwise direction when viewed from outside the
polyhedron, we can reconstruct the boundary of each face by initiating traversal from any node and
following the edges until the starting node is reached. This allows for straightforward identification of
face boundaries through basic geometric computations. The normal vector associated with each face
can be computed using the cross product of two edges on the face boundary. Consequently, every
face is reconstituted with its correct shape and orientation. Hence, from graph G, we can uniquely
reconstruct the original polyhedron q, ensuring that no information about the polyhedron’s structure
is lost.

C PROOF FOR THEOREM 4.5

We first proof that starting from a random node, one can recover the shape of a face it associated with.
Lemma C.1. Given the position of a starting node vi, which is connected to vj , and local rigid
representations of SAG, we can determine the face shape whose starting edge is ei,j (i.e., f = (ei,j ...))
in a 2D plane.
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Proof. We establish a local 2D Cartesian coordinate system with node vj as the origin and the ray−−→vivj as the positive x-axis. The coordinate of node vi now is (−di,j , 0). Define the angle θi,j,k
as the clockwise rotation from the ray −−→vjvi to the ray −−→vjvk. A positive value of θi,j,k indicates a
clockwise rotation, while a negative value indicates a counterclockwise rotation. Given this setup, the
coordinates of node vk relative to vj can be calculated using trigonometric relations:{

xk = −dj,k cos(θi,j,k),
yk = dj,k sin(θi,j,k)

Therefore, by applying these trigonometric relations, we can uniquely determine the coordinates
of vk in the local coordinate system. Then iteratively we can determine the coordinate of the next
node following vk until we reach the starting node vi to form a closed shape. Since ψi,j,k indicates
whether two consecutive edges belong to the same face, this helps prevent deviations to different
faces. Hence, the shape of the face is determined and the lemma is thereby proven.

Then we prove that we can combine faces to reconstruct an equavalent SAG.

Proof. An equivalent SAG is one that represents the same polyhedron, under any translation or
rotation transformations. Without loss of generality, we start from a random node as delineated in
Lemma C.1, then the first face shape can be determined. Given that the faces within a polyhedron are
interconnected through shared edges, we can iteratively apply this process to determine the shapes of
all faces in the graph. Since ϕi,j,k records the angles between two associated faces, we can connect two
faces by first using ψi,j,k to identify the adjacent faces, then querying their shared edges, and setting
the faces to form an angle equal to ϕi,j,k at the shared edges. By repeating this process iteratively, the
position of all faces are determined. It’s noteworthy that different initializations, which might lead
to varying orientations or positions of the graph due to rotation or translation transformations, still
correspond to the same multipolygon. Consequently, despite these transformations, the reconstructed
graph retains its equivalence to the original heterogeneous visibility graph. Hence, the theorem is
proven.

D PROOF FOR THEOREM 4.6

Proof. Since η : S → R is a continuous set function with respect to Hausdorff distance, ∀ϵ1 >
0,∃δ1 > 0 such that for any S, S′ ∈ S with dH(S, S′) < δ1, we have |η(S)− η(S′)| < ϵ1. Assume,
without loss of generality, that S is a one-dimensional finite set contained within an interval[a, b].
Denote this interval as Ξ = [a, b], we can divide Ξ into K = ⌈ b−aδ ⌉ + 1 equal subintervals
[a + (k − 1)∆, a + k∆], k = 1, 2, . . . ,K, where ∆ = b−a

K . Define a function r : R → R as
r(x) = a+ ⌊x−a∆ ⌋∆, which maps each x ∈ S to the lower bound of its respective subinterval. Let
S′ = {r(x) : x ∈ S}. By this construction, dH(S, S′) ≤ b−a

K < δ1, hence |η(S)− η(S′)| < ϵ1.

Next, define σk : R → [0,+∞) as the Hausdorff distance from any point x to the complement of
the k-th subinterval in Ξ. Specifically, σk(x) = dH(x,Ξ\[a+ (k − 1)∆, a+ k∆]). Let symmetric
function vk(S) =

∑
x∈S σk(x), indicating whether points of S fall within the k-th subinterval.

With these definitions, we construct a mapping function τ : [0,+∞)K → S as τ(v) = {a+(k−1)∆ :
vk > 0}, which maps the vector v = [v1, . . . , vK ] to a set consisting of the lower bounds of the
subintervals occupied by S, which exactly equals the set S′ constructed above, i.e., τ(v(S)) = S′.

Let ζ : RK → R be a continuous function so that ζ(v) = η(τ(v)). Denote σ = [σ1, . . . , σK ]. Then
we have

|η(S)− ζ(
∑
{σ(x) : x ∈ S})|

=|η(S)− η(τ(
∑
{σ(x) : x ∈ S}))|

=|η(S)− η(τ(v(S)))|
=|η(S)− η(S′)| < ϵ1

The continuous function σ can be approximated by a multilayer perceptron, according to the universal
approximation theorem. Therefore, We have |η(S) − ζ(

∑
{m(x) : x ∈ S})| < ϵ, where m is the
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MLP function. Considering the method described in Section 4.3, we can set L = 1, making our
proposed function η′ a sum of the messages from an MLP function. The sum operator is a special
case of our method when L = 1 and the message function is the MLP used above. Thus, we arrive at
the conclusion that |η(S)− ζ(η′(S))| < ϵ. Hence, the theorem is proven.

E EXPERIMENTAL DETAILS

E.1 IMPLEMENTATION DETAILS

Each dataset is randomly split into 60%, 20%, and 20% for training, validation, and testing respec-
tively.

We use CrossEntropyLoss as the loss function for all classification tasks. Adam optimizer and
ReduceLROnPlateau scheduler are used to optimize the model. The learning rate is set to 0.001
across all tasks and models. The training batch and testing batch are set to 32 for the MNIST-C and
Building datasets and 8 for the ShapeNet-P and ModelNet-P datasets. The downstream task model is
a four-layer MLP function with batchnorm enabled for the classification task. All models are trained
for a maximum of 500 epochs using an early stop scheme.

For the comparison method ResNet1D, VeerCNN, NUFT-DDSL, and NUFT-IFFT, we follow the
original settings provided by the authors.

For the message encoding function Ψ, we use a four-layer MLP function with batchnorm enabled
across all tasks. For the guiding embedding function φ, we leverage a one-layer MLP function with
batchnorm enabled across all tasks. The downstream task classifier is a four-layer MLP function.

The hyperparameters we tuned include hidden dimensions in 64,128,256,512,1024, and the number
of GNN layers in 1,2,3,4,8. We found the best hyperparameters for different datasets are: MNIST-C:
[256,4]; Building: [512,4]; ShapeNet-P: [256,2]; ModelNet-P: [128,2].

F PERFORMANCE OF MORE COMPARISON METHODS AND ABLATED MODELS

We conduct additional experiments to evaluate our method against more comparison methods and ab-
lated models. First, we compare different aggregation strategies, including mean and max aggregators,
where results show that max aggregation generally achieves superior performance on MNIST-C and
ShapeNet-P datasets, while mean aggregation performs better on Building and ModelNet-P datasets.
To validate the effectiveness of our proposed heterogeneous geometric message passing mechanism,
we conduct an ablation study (our w/o hetero) where we remove the heterogeneous message-passing
modules. The significant performance drop demonstrates the importance of these components in
capturing complex geometric relationships. We also compare our method with established graph
learning methods, including HGT and HAN. The results show that our approach substantially outper-
forms these methods across all datasets, indicating the advantage of our design. Furthermore, we
benchmark against recent state-of-the-art point cloud methods, including LocoTrans and RISurConv.
The experimental results demonstrate that our method achieves superior performance on most datasets,
particularly showing significant improvements on MNIST-C and Building datasets. This suggests that
our approach better captures the inherent geometric structure of 3D shapes compared to point-based
methods.

G VISUALIZATION OF RETRIEVED OBJECTS FROM SHAPENET-P
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Table 6: The performance of additional ablated models and comparison methods on the classification
task.

Dataset Metric our agg_mean our agg_max our w/o hetero HGT HAN LocoTrans RISurConv

MNIST-C

Acc↑ 0.858 0.885 0.754 0.113 0.221 0.344 0.567
Prec↑ 0.868 0.890 0.784 0.103 0.157 0.403 0.590
F1↑ 0.859 0.885 0.742 0.093 0.159 0.350 0.617

AUC↑ 0.984 0.990 0.956 0.528 0.597 0.714 0.833

Building

Acc↑ 0.981 0.973 0.797 0.897 0.900 0.949 0.949
Prec↑ 0.981 0.973 0.821 0.899 0.902 0.950 0.929
F1↑ 0.981 0.973 0.768 0.896 0.899 0.949 0.937

AUC↑ 1.000 0.999 0.922 0.991 0.987 0.996 0.991

ShapeNet-P

Acc↑ 0.587 0.620 0.486 0.201 0.137 0.540 0.265
Prec↑ 0.596 0.648 0.506 0.161 0.130 0.591 0.261
F1↑ 0.571 0.618 0.463 0.155 0.113 0.542 0.274

AUC↑ 0.919 0.921 0.900 0.651 0.622 0.886 0.730

ModelNet-P

Acc↑ 0.576 0.508 0.374 0.359 0.374 0.561 0.347
Prec↑ 0.581 0.508 0.327 0.360 0.371 0.546 0.343
F1↑ 0.564 0.500 0.333 0.300 0.333 0.539 0.332

AUC↑ 0.895 0.891 0.796 0.799 0.796 0.892 0.793

Table 7: The performance of additional ablated models and comparison methods on the retrieval task.

Dataset Metric our agg_mean our agg_max our w/o hetero HGT HAN LocoTrans RISurConv

MNIST-C

Prec↑ 0.690 0.717 0.579 0.284 0.389 0.417 0.533
Recall↑ 0.692 0.720 0.581 0.285 0.390 0.419 0.535

F1↑ 0.691 0.718 0.580 0.285 0.389 0.418 0.533
MAP↑ 0.828 0.847 0.751 0.455 0.592 0.594 0.710

NDCG↑ 0.940 0.945 0.915 0.799 0.865 0.860 0.927

Building

Prec↑ 0.819 0.806 0.602 0.291 0.265 0.823 0.403
Recall↑ 0.828 0.814 0.608 0.294 0.268 0.831 0.405

F1↑ 0.824 0.810 0.605 0.293 0.266 0.828 0.405
MAP↑ 0.910 0.908 0.756 0.549 0.509 0.912 0.665

NDCG↑ 0.964 0.960 0.904 0.803 0.776 0.965 0.827

ShapeNet-P

Prec↑ 0.262 0.323 0.238 0.269 0.272 0.322 0.170
Recall↑ 0.271 0.333 0.246 0.278 0.281 0.332 0.182

F1↑ 0.267 0.328 0.242 0.273 0.277 0.326 0.173
MAP↑ 0.462 0.499 0.406 0.483 0.492 0.497 0.387

NDCG↑ 0.664 0.690 0.614 0.688 0.693 0.686 0.602

ModelNet-P

Prec↑ 0.334 0.334 0.234 0.318 0.326 0.378 0.201
Recall↑ 0.351 0.351 0.246 0.334 0.342 0.396 0.199

F1↑ 0.342 0.342 0.240 0.326 0.334 0.386 0.204
MAP↑ 0.528 0.517 0.406 0.514 0.521 0.554 0.366

NDCG↑ 0.680 0.670 0.568 0.673 0.678 0.683 0.539
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Figure 6: Retrieved samples from ShapeNet-P dataset by PolyhedronNet, the first column shows the
query object.
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