
ADDQ: Adaptive Distributional Double Q-Learning

Leif Döring 1 Benedikt Wille 1 Maximilian Birr 1 Mihail Bı̂rsan 2 Martin Slowik 1

Abstract
Bias problems in the estimation of Q-values are
a well-known obstacle that slows down conver-
gence of Q-learning and actor-critic methods.
One of the reasons of the success of modern RL
algorithms is partially a direct or indirect overesti-
mation reduction mechanism. We propose an easy
to implement method built on top of distributional
reinforcement learning (DRL) algorithms to deal
with the overestimation in a locally adaptive way.
Our framework is simple to implement, existing
distributional algorithms can be improved with
a few lines of code. We provide theoretical evi-
dence and use double Q-learning to show how to
include locally adaptive overestimation control in
existing algorithms. Experiments are provided for
tabular, Atari, and MuJoCo environments.

1. Introduction
A fundamental building block of many modern reinforce-
ment learning (RL) algorithms is Watkins’ Q-learning (QL)
(Watkins & Dayan, 1992). In each round the agent observes
a new reward signal and updates the currently estimated
state-action function by combining the new reward signal
with the best currently estimated action in the next step.
Unfortunately, the update rule involves a maximum and
maxima suffer both from overestimation bias and function
approximation uncertainty. Thus, estimated Q values are
initially way too large. Although convergence of Q-learning
and its variants for tabular cases can be proved rigorously,
the convergence can often be seen only after millions of
iterations. In the context of Q-learning we refer to the sem-
inal paper (Thrun & Schwartz, 1993). The overestimation
effect is harmful not only for simple QL and variants with
function approximation such as DQN (Mnih et al., 2015),
but also for critic estimation in actor-critic methods such as

1Institute of Mathematics, University of Mannheim, Ger-
many 2Department of Mathematics and Computer Science, Freie
Universität Berlin, Germany. Correspondence to: Leif Döring
<doering@uni-mannheim.de>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

soft actor-critic (SAC) of (Haarnoja et al., 2018). Motivated
by statistical approaches to the estimation of the expecta-
tion of maxima of random variables the concept of double
Q-learning (DQL) was introduced in (van Hasselt, 2010).
Instead of using one set of random variables two indepen-
dent sets are used. One is used to detect the maximal index,
the other to evaluate the random variable corresponding to
the maximal index. For Q-learning this translates to keeping
track of two copies of the Q-matrix that are alternated in
order to detect the best action and evaluate the correspond-
ing Q-value. DQL and its actor-critic variants reduce the
overestimation (see for instance Figure 2 in (Fujimoto et al.,
2018)) and sometimes even underestimate Q-values. This,
for example, can be seen in a simple chain MDP (Example
6.7 in (Sutton & Barto, 2018) and also (Lan et al., 2020) for
the underestimation effect in the same example). (Fujimoto
et al., 2018) argue that overestimation should be addressed
particularly in state-action regions with high uncertainty.
Indirectly, this is taken into account by ensemble methods
such as Maxmin QL (Lan et al., 2020). These methods use
ensembles of more than two Q-estimators. Different ensem-
ble estimators take the minimum, full ensemble averages
(Anschel et al., 2017), or random ensemble averages (Chen
et al., 2021). A related line of research uses uncertainty-
based RL, also with the goal of reducing overestimation, see
for instance (Wu et al., 2021), (Ghasemipour et al., 2022).

There is no rule whether QL, DQL, or any ensemble variant
works well for a given environment. Algorithms sometimes
perform well and sometimes fail. This article proposes a
novel approach. We propose to take QL and (at least) one
other method and try to control if the QL update should
be replaced or mixed with another underestimating method.
The control must be locally adaptive, and the need to manage
the bias depends on the local uncertainty (aleatoric and
epistemic randomness, function approximation). For an
approach similar in spirit to ours, see (Dorka et al., 2021).

• We show theoretically how distributional RL helps the
agent identify the need for overestimation control.

• As a test case, we combine QL and DQL using a local
weighting that we call ADDQ.

• Convergence of ADDQ is proved, experiments are per-
formed on tabular, Atari, and MuJoCo environments.

1

https://orcid.org/0000-0002-4569-5083
https://orcid.org/0000-0001-5373-5754

ADDQ: Adaptive Distributional Double Q-Learning

2. Q-learning and the overestimation problem
2.1. Tabular Q-learning

Let us fix a (discrete) Markov decision model (S,A,R, p),
where S is a finite state-space, A a finite space of allowed
actions, R the reward space, and p a transition kernel de-
scribing the distribution of the reward r and the new state s′

when action a is played in state s. Given a time-stationary
policy π, a Markov kernel on S × A, there is a Markov
reward process (St, At, Rt) with transitions

Pπ(Rt = r, St+1 = s′, At+1 = a′|St = s,At = a)

= π(a′ : s′)p(r, s′ : s, a).

The goal of the agent in reinforcement learning is to use roll-
outs of the MDP to find a policy that maximizes Qπ(s, a) =
Eπ[

∑∞
t=0 γ

tRt|S0 = s,A0 = a], the expected discounted
reward. The discounting factor γ ∈ (0, 1) is fixed. In
the discrete setting with S and A finite it is well-known
that optimal stationary policies exist and can be found as
greedy policy obtained by the unique solution matrix Q∗

to T ∗Q = Q. The non-linear operator (T ∗Q)(s, a) =
r(s, a) +

∑
s′∈S p(R × {s′} : s, a)γmaxa′∈A Q(s, a′) is

called Bellman’s optimality operator. Bellman’s optimality
operator is a max-norm contraction on the S × A matri-
ces. Using Banach’s fixed point theorem, the solution can
in principle be found by iteratively applying T ∗ to some
initial matrix Q0. The drawback of this approach is the
need to know the operator T ∗, thus having knowledge about
the transitions p. Using standard stochastic approximation
algorithms the fixed point Q∗ can be approximated by

Q(s, a)← (1− α)Q(s, a) + α
(
r + γmax

a′
Q(s′, a′)

)
,

called Q-learning (QL). The state-action pairs can be cho-
sen synchronously or asynchronously using rollouts. Typi-
cally, to update at (s, a) a one-step sample s′, r is obtained
from p(· : s, a) and the step-sizes α are assumed to satisfy
the Robbins-Monro conditions. The exploration (choices
of (s, a) to be updated) can be on-policy (using the Q-
estimates) or off-policy (using a behavior policy). The only
requirement is infinite visits for all state-action pairs. The
recursively defined matrix-sequence (Qt) was proved to
converge in the tabular setting, see e.g. (Tsitsiklis, 1994).

2.2. The overestimation problem

Even though QL converges to Q∗ for the number of updates
going to infinity, the convergence is very slow. One of the
known sources is the so-called overestimation problem of
QL. The algorithm does not provide unbiased estimates of
Q∗(s, a). Instead, the estimates Qt(s, a) tend to overes-
timate Q∗(s, a). A statistical explanation is based on the
simple fact that the point estimator max{X̂1, ..., X̂n} is
not an unbiased estimator of max{E[X1], ...,E[Xn]} but

the estimator is positively biased. Thus, the update targets
r + γmaxa′ Qt(s

′, a′) can be seen as overestimating the
true Bellman optimality operator at each step. The conse-
quences of overestimation are less obvious than it seems at
first sight. Shifting Q-values the same amount globally has
no effect, neither for Q-based exploration purposes nor for
best action selection. It is the local difference in overestima-
tion that must be avoided to not confuse the agent. Thus, it
is crucial to understand the root causes of overestimation to
then mitigate by taking alternative updates to QL if needed.

There is little quantitative understanding of the overestima-
tion; for some rough bounds see (van Hasselt, 2011). We
used tools from probability theory to compute estimation
bounds for a simple explanatory example. The example is

s0
r = 0r = 0

k1 N (µ1, σ
2
1)

actions

s1 s2

k2 N (µ2, σ
2
2)

actions

r = 0

Figure 1. Two-sided bandit MDP, start in s0, gray boxes terminal

intriguing, as it is simple but hard to learn - even more so if
one side is replaced by a chain of decisions. Each side gives
a reward (for simplicity 0) followed by a Gaussian reward
from one of k actions. QL and DQL can both fail badly
(each on one side) for the same parameter configuration.
If µ1 > 0 > µ2, then the optimal action in s0 is ”left”.
If σ2 (and/or k2) is large compared to σ1 (and/or k1) then
the overestimated Q-values of QL will confuse the agent
and lead him to believe that ”right” is optimal. Similarly,
underestimating can make the agent believe ”down” is op-
timal. Our approach of learning locally to use QL or DQL
(or another variant) can mitigate that problem by learning to
use QL for one side and DQL for the other. The method is
motivated by two theoretical results, a lower bound on over-
estimation (Proposition 2.1) and a computation with DRL
to connect estimated sample variances and overestimation
(Proposition 2.2). If step-sizes are chosen in the common
way as αt(s, a) =

1
Ts,a(t)

, with Ts,a(t) the number of visits
at (s, a) up to time t, then results on sums and maxima of
Gaussian random variables can be used to prove a lower
bound on the expected overestimation of the true value γµ.
Proposition 2.1. If the left side has been explored Nk1
times and the exploration was sufficiently exploratory (see
Theorem A.2), then the Q-estimate at (s0,”left”) has bias at

least γ√
π log(2)

σ1

√
log(k1)√
N

and analogously at (s0,”right”).

The lower bound quantifies the idea that uncertainty forces
overestimation and the bias only decreases slowly over time.
A proof is given in Appendix A. Since the estimate is rela-
tively tight one gets a feeling for how many reward samples

2

ADDQ: Adaptive Distributional Double Q-Learning

are needed to get sufficiently precise estimates of the Q-
values so the agent makes the right decision.

There has been considerable interest for the past years to
understand the sources of uncertainty in RL. While many
sources of uncertainty exist, they are often categorized as
either aleatoric or epistemic. Aleatoric uncertainty is model
given and cannot be improved by more data or learning. In
RL this is uncertainty implied by random variables govern-
ing rewards and transitions. Epistemic uncertainty refers to
the uncertainty that could potentially be reduced using more
data and better algorithms (including better function approx-
imation). Epistemic uncertainty in RL is induced by all
random variables to run the learning procedure (exploration,
replay buffer, etc.) and function approximation in deep
RL. Keeping in mind the different sources of uncertainty is
useful in order to identify algorithmic potential for improve-
ment but also theoretical limitations. It is also important to
realize that aleatoric and epistemic randomness strongly in-
fluence each other. If a reward has large variance (aleatoric
uncertainty) then the estimation with samples creates more
epistemic uncertainty. For estimating expectations, this is
due to the central limit theorem.

In deep RL one of the major sources of epistemic uncer-
tainty is function approximation. As in (Thrun & Schwartz,
1993) we could add to our analysis independent error-noise
modeling the function approximation. If the error noise is
assumed Gaussian then our results readily extend, by adding
additional noise-variance to our results. Since the model-
ing assumption as independent noise is rather special we
restrain from studying the effect of function approximation
on epistemic uncertainty. Instead, we will now show how
to use additional information from distributional QL to deal
with overestimation in a local way.

2.3. Tabular distributional Q-learning

To make this article as self-contained as possible we give a
minimal overview on DRL. For a concise treatment we refer
to the recent book (Bellemare et al., 2023). Given a Markov
decision model and a stationary policy π, (Rowland et al.,
2018) define the return distribution function as

ηπ(s, a)(B) := Pπ
(∞∑

t=0

γtRt ∈ B
∣∣∣S0 = s,A0 = a

)
for B ∈ B(R). The expectation over the measure ηπ

is the classical state-action value function Qπ. In con-
trast to ordinary RL, the target in DRL is to learn return
distributions instead of only return expectations. There
have been a lot of theoretical articles on DRL (Bellemare
et al., 2017; Dabney et al., 2018; Rowland et al., 2018;
Lyle et al., 2019; Bellemare et al., 2023; Rowland et al.,
2023b;a) establishing distributional Bellman operators, con-
tractivity, convergence proofs of dynamic programming,

etc. It was shown in (Bellemare et al., 2017; 2023) that
the return distribution function is the unique solution to
ηπ = Tπηπ, where Tπ : P(R)S×A → P(R)S×A is the
distributional Bellman operator defined as (Tπη)(s, a) =∑

r,s′,a′∈R×S×A br,γ#η(s′, a′)π(a′; s′)p(s′, r; s, a) with
bootstrap function br,γ(z) = r + γz and push-forward of
measures f#ν(B) := ν(f−1(B)). In essence, sample
based dynamic programming can also be carried out in a
distributional sense replacing the classical Bellman operator
by its analogue in the distributional sense. Distributional
QL proceeds similarly to classical expectation QL:

η(s, a)← (1− α)η(s, a) + α
(
br,γ#η(s′, a∗)

)
,

with a∗ = argmaxa′ Q(s′, a′), where Q(s′, a′) are the
expectations of the probability measures η(s′, a′). In or-
der to work algorithmically with DRL parametrizations
F of measures need to be used. Distributional learning
algorithms in practice then work similarly to deep learn-
ing algorithms, alternating Bellman operators and function
class projection, see Algorithm 1. There are two simple

Algorithm 1 Distributional Q-learning update step
Require: Proxy η for η∗ and pair (s, a) to be updated

Determine step-size α
Sample reward/next state (r, s′)
Compute target
a∗ ← argmaxa EZ∼η(s′,a)[Z]
η̂∗ ← br,γ#η(s′, a∗)
Project target back onto support
η̂ ← ΠF (η̂∗)
Move η(s, a) towards the target, for tabular RL e.g.
η(s, a)← (1− α)η(s, a) + αη̂

parametrization that have been used frequently. The categor-
ical parametrization (fixing number of atoms with variable
weights at fixed locations) and the quantile parametriza-
tion (fixing number of atoms with fixed weights but vari-
able locations). For the categorical parametrization a set
of m evenly spaced locations θ1 < · · · < θm needs to
be fixed, the categorical measures are then defined by
FC,m =

{∑m
i=1 piδθi

∣∣ pi ≥ 0,
∑m

i=1 pi = 1
}
. That is,

measures in FC,m are parametrized by an mdim probability
vector with weights for the m fixed atoms. In contrast, the
quantile parametrization FQ,m =

{∑m
i=1

1
mδθi : θi ∈ R

}
fixes the weights to 1

m with variable atom locations.

2.4. Overestimation mitigation using distributional RL

We follow an insight from Proposition 2.1 that large uncer-
tainty, aleatoric (large σ) as well as epistemic (small N -
additional σ if function approximation is modeled as Gaus-
sian error), implies large overestimation of Q-values. While
we skip function approximation for theoretical considera-
tions we are as precise as possible in the simplest tabular

3

ADDQ: Adaptive Distributional Double Q-Learning

settings. The estimate from Proposition 2.1 suggests to re-
place QL-updates in (s, a) if uncertainty is large (compared
to other actions). Unfortunately, in standard QL the agent
has no direct access to such information in order to adjust
the update rule at (s, a). This is where our idea comes into
play. DRL gives the agent exactly the needed information
using distribution insight into the return estimate ηt(s, a).
It is crucial to note that DRL learns random measures as
η(s, a) is a probability measure that depends on the random
samples used in the updates so it has an expectation and
a variance that are both random in terms of the random
samples. The situation becomes tricky as we are going
to take variances of the variances. To avoid confusion an
analogy to statistics is used. We speak of sample averages
M (resp. sample variances S2) of η(s, a) and expectation
E (resp. variance V) for the integrals against the random-
ness induced by the probability space behind all random
variables.

We now use the bandit MDP from above to explain why
the DRL agent has access to uncertainty estimates dur-
ing the learning process. To allow concrete computations
with distributions, we use a particularly simple QL update
mechanism (the one also used for estimates in (van Hasselt,
2011)). First explore all actions N times, then propagate
to (s0, ”left”). In fact, this is nothing but distributional QL
with cyclic exploration and target-matrix trick (Mnih et al.,
2015) as we explain in Appendix A. The obtained estimate
of η∗(s0, ”left”) will be denoted by η̂(s0, ”left”).

Proposition 2.2. The sample variance of η̂(s0,”left”),
analogously for ”right”, after Nk1 steps is σ2

1

N−1χ
2
N−1-

distributed. The expectation is σ2
1 , the variance is 2σ4

1

N−1 .

A proof is given in Appendix A. It is surprising that the
sample variance distribution can be identified explicitly as
chi-squared, unlike the sample expectations (maxima of
independent Gaussians). This is a consequence of the well-
known fact in statistics that sample variances of Gaussians
are independent of sample expectations. Thus, if return esti-
mates are Gaussian the max-operation of QL (with respect
to sample averages) is only delicate for sample expectations,
not for sample variances. We emphasize that in contrast to
QL the agent in distributional QL does have access to the
σ2χ2

N

N -distributed sample variance by computing sums of
the atoms! Hence, the agent can make use of an unbiased
estimate for the aleatoric uncertainty σ2 which is conflicted
by epistemic uncertainty that decreases with N .

Implications from of our theoeretical considerations:
We propose the following locally adaptive overestimation
mitigation method. (i) Use distributional QL. (ii) At every
update compute the sample variance of the current return
estimate ηt(s, a). (iii) If the sample variance is large replace
the QL update by another update (e.g. DQL or an ensemble

update or a mixture). Since ”large” has no absolute meaning
in RL we will compare variances among all actions in s and
reduce according to the relative sample variance.

Exploration and overestimation control with ensembles
and double Q-learning: Known algorithms that directly
try to better estimate the Q-values require to set up a par-
ticular algorithmic architecture. Most use an ensemble of
Q-copies which are then combined by taking minima (Lan
et al., 2020), averages (Peer et al., 2021), or averages with
random choices (Chen et al., 2021). Ensemble methods are
promising in theory (assuming independent ensembles) but
more problematic for deep RL as storage problems force
ensembles to be parametrized by the same neural network.
The optimal number of copies (a hyperparameter) varies for
different environments, some choices work well, others fail.

Our approach is different. We suggest to use QL when it
works well (small sample variance) and another algorithm
where QL fails (large sample variance). We could combine
QL with ensemble methods but for this article decided to
combine QL with DQL a bit in the spirit of weighted DQL
(Zhang et al., 2017) but with completely different weights -
we compare to weighted DQL in Appendix C.2. For DQL
(van Hasselt, 2010) two copies QA and QB are stored. The
update mechanism is similar to QL where the matrix to be
updated is chosen randomly in every step. The main differ-
ence is the target used, matrices QA and QB are flipped:

QA/B(s, a)

← (1− α)QA/B(s, a) + α
(
r + γQB/A(s′, z∗)

)
,

with z∗ = maxa′ QA/B(s′, a′). Here and in the follow-
ing we use QA/B to allow either the choice of QA or QB .
Double Q-learning reduces the overestimation strongly but
sometimes leads to severe underestimation.

The use of sample variance of estimated return distributions
is not new to RL. For bandits the simplest example is the
UCB exploration bonus for unknown variances that uses
this for exploration. In the context of exploration in RL
uncertainty dependent exploration has been applied using
distributional RL (see for instance (Mavrin et al., 2019),
(Moerland et al., 2018)). The use of sample variances in
distributional RL to locally mitigate the overestimation is
new to the best of our knowledge. In order to not mix up
effects we stick to the standard exploration choices.

3. ADDQ: Tabular setting
Based on the theoretical insight we will now introduce a
concrete method. We use DQL-updates as an alternative
to QL-updates when the agent expects QL-updates to be
harmful (large estimated uncertainty by means of sample
variance). The weighted DQL-approach we suggest is read-
ily implemented into existing DRL implementations.

4

ADDQ: Adaptive Distributional Double Q-Learning

3.1. Weighted DQL: From SARSA-trick to ADDQ

To derive the algorithm let us recall the SARSA convergence
proof of (Singh et al., 2000) that was also used to prove
convergence for DQL (van Hasselt, 2010) and variants such
as clipped Q-learning (Fujimoto et al., 2018) or Maxmin
(Lan et al., 2020). The idea is to add a clever 0, adding and
subtracting what is missing to the QL update, thus, writing
the algorithm as QL with a bias. If the bias can be proved to
disappear, a comparison to QL implies convergence to Q∗:

QA/B(s, a)←

Q-learning update︷ ︸︸ ︷
(1− α)QA/B(s, a) + α

(
r + γQA/B(s′, z∗)

+

=:bA/B(s,a)︷ ︸︸ ︷
α(γQB/A(s′, z∗)− γQA/B(s′, z∗)),

with z∗ = argmaxQA/B(s, a). Taking this point of
view there are plenty of possibilities to modify DQL
to achieve more or less over-/underestimation. As an
example, choosing the negative bias-terms b

A/B
clip =

αmin{γQB/A(s′, z∗)−γQA/B(s′, z∗), 0} yields so-called
clipped Q-learning introduced as part of TD3 in (Fujimoto
et al., 2018). As motivated in Section 2.4 we suggest a
locally adaptive overestimation control. The main insight
is as follows. One can locally interpolate between QL and
DQL by multiplying bias terms with local adaptive weights:

b̄A/B(s, a) := βA/B(s, a)︸ ︷︷ ︸
new

bA/B(s, a).

Replacing bias terms b by b̄ generalizes the update. The
aggressive choice β = 1 results in QL updates (overesti-
mation), β = 0 results in DQL updates (tendency of under-
estimation). Choices of β suggested in the present article
are motivated by the propositions of Sections 2.2 and 2.4.
If a lot of uncertainty is present, the algorithm uses large
β, otherwise small β. The aggressive choices are not nec-
essarily the best, in our experiments below softer choices
were more effective. Since overestimation is a priori not
problematic for the learning process (if all estimates are
equally overestimated the best action does not change, only
skewed overestimation slows down the learning) we suggest
a choice of β that takes into account the local structure,
normalizing variances over possible actions.

3.2. New algorithm: locally adaptive distributional
double Q-learning

Following the ideas above we introduce ADDQ, integrat-
ing locally adaptive overestimation mitigation in DQL. The
pseudo-code given in Algorithm 2 extends distributional
RL pseudo-code to include the double algorithm and adap-
tive weights. For the tabular target update we follow the
measure-mixture approach of (Rowland et al., 2018), Sec-
tion 8. Changes to the code for other target updates (for

instance gradient steps to minimize KL loss) are straight
forward. The algorithm is seen to be a combination of distri-

Algorithm 2 ADDQ update step
Require: Proxies ηA, ηB for η∗, pair (s, a) to be updated

Determine step-size α
Sample reward/next state (r, s′)
Randomly choose Update(A) or Update(B)
if Update(A) then

Compute target with locally adapted weight
a∗ ← argmaxa EZ∼ηA(s′,a)[Z]

Determine weight β ∈ [0, 1] based on ηAold, η
B
old

ν ← (1− β)ηB(s′, a∗) + βηA(s′, a∗)
η̂A∗ ← br,γ#ν
Project target back onto support
η̂A ← ΠF (η̂

A
∗)

Move η(s, a) towards the target, for tabular RL e.g.
ηA(s, a)← (1− α)ηA(s, a) + αη̂A

end if
if Update(B) then

Proceed analogously with A and B exchanged
end if

butional QL and distributional DQL. Keeping β constant to
1 is distributional QL, constant 0 distributional DQL. The
key is to chose β dependent on the uncertainty that drives
the skewed QL overestimation for different actions. Extend-
ing arguments from the literature, notably the convergence
proof of (Rowland et al., 2018) for categorical Q-learning
with stochastic approximation target upate and the SARSA
trick of (Singh et al., 2000), we prove convergence of Algo-
rithm 2 for categorical measure parametrizations:

Theorem 3.1. Given some initial return distribution func-
tions ηA0 , η

B
0 supported within [θ1, θm]. If

• rewards are bounded in [Rmin, Rmax] and it holds
[Rmin

1−γ , Rmax

1−γ] ⊆ [θ1, θm],

• step-sizes fulfill the Robbins-Monro conditions and ηA

or ηB are updated randomly,

• the sequences (βA
t)t∈N, (β

B
t)t∈N only depend on the

past and fulfill limt→∞ |βA
t − βB

t | = 0 almost surely,

then the induced Q-values converge almost surely towards
Q∗. If additionally the MDP has a unique optimal policy
π∗, then (ηAt), (η

B
t) converge almost surely in ℓ̄2 to some

η∗C ∈ FC,m and the greedy policy with respect to η∗C is π∗.

According to Theorem 3.1 symmetric sequences βA = βB

that can depend on past distributions ηA, ηB yield conver-
gence. A particularly simple choice compares the deviations
in ηA/B locally as a local measure for uncertainty.

5

ADDQ: Adaptive Distributional Double Q-Learning

Figure 2. Grid world. First column: Biases summed over all state-action pairs. Other columns highlight the relation of sample variance
(bottom) and the effect on Q-value (top) estimation. For more experiments and comparisons to Maxmin, EBQL, REDQ see Appendix C.

An exemplary choice of adaptive β: As motivated earlier
QL suffers from overestimation in the presence of uncer-
tainty (function approximation, aleatoric randomness, epis-
temic randomness) which is reflected in the sample variance
(or other measures of the spread of the distribution) of the
discrete (random) distributions ηA/B

t . As uniform overesti-
mation is not particularly troubling (e.g. adding a constant
to all Q-values does not harm at all) the learning process is
slowed down by differences in sample variances for allowed
actions. There are many other possibilities to choose β but
we decided to fix this example for all our experiments. For
a finite atomic measures ν =

∑n
i=1 piδai

define the sam-
ple mean M(ν) = 1

n

∑n
i=1 aipi and the sample variance

S2(ν) = 1
n−1

∑n
i=1 pi(ai −M(ν))2. Now define

S2
s,a :=

1

2

(
S2(ηAt (s, a) + S2(ηBt (s, a)

)
,

S2
s :=

1

|A|
∑
a∈A

S2
s,a, and S2

rel(s, a) :=
S2
s,a

S2
s

.

According to our computations in the two-sided bandit
model, evenly distributed relative sample variances (i.e. all
values around 1) correspond to balanced overestimation ef-
fects. Otherwise, overestimation is unbalanced. We define
locally adaptive weights for the next update at (s, a):

β :=


0.75 : S2

rel(s, a) < 0.75

0.5 : S2
rel(s, a) ∈ [0.75, 1.25]

0.25 : S2
rel(s, a) > 1.25

. (1)

For algorithmic simplicity one could also use squared devia-
tions to the median instead of the mean as the median can
be red off directly for measures in the FC,m and FQ,m. The
choice combines Q and DQ rather softly, more aggressive
choices reduce the length of the interval and increase (resp.
decrease) towards β = 1 and β = 0. In practice, (tabu-
lar, all Atari, all MuJoCo) the choice worked well without
any tuning. The thresholds in the definition of β can be
seen as hyperparameters to the algorithm. We leave the
development of adaptive thresholds for future research.

3.3. A grid world example

To show the advantages of ADDQ we present a grid world
that highlights, in a more complicated and more realistic
way, the main effects of the bandit MDP. For more details,
see Appendix C. In particular, in Appendix C.3 we compare
ADDQ to other algorithms for overestimation reduction.

Deep RL experiments presented below
F 1 2 S
4 5 6 7
8 9 10 11

12 G 14 15

Figure 3. Start
in S, goal in
G, fake goal
in F, high
stochasticity
and low reward
area in gray

use essentially deterministic environments
with uncertainty mainly from function ap-
proximations. We thus provide a grid
world with complicated stochasticity that,
depending on parameters, is hard for QL
and DQL. The high stochasticity region
with low rewards confuses the QL agent.
The agent strongly overestimates subopti-
mal Q-values that lead to the gray area,
in the gray area Q-values are overesti-
mated for actions that stay in the gray area.
Hence, all ε-greedy exploration mecha-
nisms spend much time in the gray area. On the other hand,
DQL is motivated by estimators of iid random variables
and underestimates strongly if action-values for different
actions are unevenly distributed. Thus, the DQL agent gets
confused by the local deviations caused by the fake goal
and the stochastic region. What results in overestimation for
QL, results in underestimation for DQL. In contrast, ADDQ
locally combines update-rules of QL and DQL to reduce
the estimation biases a lot. In Appendix C we show ex-
perimentally that the choice of thresholds in β is relatively
harmless, more or less aggressive updates still perform well.
In contrast, constant β and the non-distributional choice
from (Zhang et al., 2017) with c = 10 have larger biases.

Plots in the figure above show a few key insights, more in
Appendix C. First, the estimation bias of ADDQ is much
smaller than those of QL and DQL. Most importantly in
the complicated states 1, 4, 6, 7. The reason ADDQ better
estimates the Q-values is the adaptive choice to prefer QL
or DQL, depending on (relatively) large variances.

6

ADDQ: Adaptive Distributional Double Q-Learning

3.4. ADDQ adaptation for distributional DQN

Our DRL based local adaptive overestimation mitigation
can be integrated into existing code for DRL with a few
extra lines. In the following we describe the integration
into C51 (Bellemare et al., 2017). We run experiments on
Atari environments from the Arcade Learning Environment
(Bellemare et al., 2013) using the Gymnasium API (Towers
et al., 2023). Algorithms are few line modifications based on
the RL Baselines3 Zoo (Raffin, 2020) training framework,
without any further tuning of hyperparameters.

The C51 algorithm obtained its name from using a cate-
gorical representation of return distributions with m = 51
atoms. The weights of the parametrization are parametrized
via feedforward neural networks following the DQN archi-
tecture (Mnih et al., 2015). The state s serves as input and
the last layer outputs m = 51 logits for each action fol-
lowed by a softmax to return probability weights. We write
ηω(s, a) =

∑m
i=1 pi(s, a;ω)δθi , where ω comprises the on-

line networks weights. We add a bar η̄ to denote a delayed
target network which is kept constant and is overwritten
from η every e.g. 10000 steps with the parameters from
the online network. The corresponding expectation is de-
noted by Qω(s, a) =

∑m
i=1 pi(s, a;ω)θi. Given a transition

(s, a, r, s′) the projected target is

η̂ = ΠC(br,γ#ηω̄(s
′, a∗)) =:

m∑
i=1

p̂iδθi ,

where a∗ = argmaxa′ Qω̄(s
′, a′). Gradient descent on the

weights with respect to some loss (here: cross-entropy) is
used to move the distribution ηω(s, a) towards the target
distribution η̂. As for the tabular algorithm variants with
overestimation reduction intervene in the target definition.
We keep track of two independently initialized online net-
works denoted by ωA, ωB and a pair of respective target
networks ω̄A, ω̄B . For each gradient step we simulate a
vector of random variables with the same size as the batch
size with each element determining which of the two esti-
mators is being updated based on the respective transition
with the same position in the batch. Accordingly, we use
twice the batch size for these methods, so that on average
per gradient step, the same number of transitions is used
for each estimator, compared to the single-estimator case.
We can now describe how to modify the targets for a given
transition (s, a, r, s′). With the placeholder Γ in

η̄A/B = ΠC(br,γ#ΓA/B)

only the place holder is modified for different algorithms:

Double C51: Set ΓA/B = ηω̄B/A(s′, z∗) with z∗ =
argmaxa′ Qω̄A/B (s′, a′).

Clipped C51: Inspired by (Fujimoto et al., 2018). Set
ΓA/B = ηω̄X (s′, z∗) with z∗ = argmaxa′ Qω̄A/B (s′, a′)

and X = argminc∈{A,B} Qω̄c(s′, z∗).1:

ADDQ (us): The ADDQ target uses

ΓA/B = βηω̄A/B (s′, z∗) + (1− β)ηω̄B/A(s′, z∗),

where z∗ = argmaxa′ Qω̄A/B (s′, a′). The locally adaptive
weights β may depend on entire state-action return distribu-
tions. For the experiments we used the choice from Equation
(1) based on the online networks ηωA , ηωB .

Results for two Atari environments and a RLiable compar-
ison (Agarwal et al., 2021) are presented in Figure 4 and
more extensively in Appendix E. The experiments show
that ADDQ is more stable than QL and DQL (it never fails
completely) and achieves higher scores in different metrics.

3.5. ADDQ adaptation for QRDQN

Modifications and results for quantile DRL (Dabney et al.,
2018) are similar to the categorical setting. The setup is
explained in Appendix D; for a quick view two experiments
and a RLiable plot for probability of improvements can be
found in Figure 4. More experimental results are provided in
Appendix E. ADDQ is more stable (it never fails completely)
and achieves higher scores in different metrics.

3.6. ADDQ adaptation for quantile SAC

Compared to Atari environments it is known that overestima-
tion in MuJoCo environments is more severe. Using the dou-
ble estimator in critic estimation is not enough, the clipping
trick of TD3 (Fujimoto et al., 2018) greatly improves perfor-
mance. Recall that, in the formulation of biased Q-learning
of Section 3.1, clipping uses bias min{QB/A −QA/B , 0}
instead of QB/A − QA/B . Thus, using our distributional
overestimation identification to combine QL and DQL does
not hint towards an algorithm competitive with SAC/TD3 or
algorithms with more refined overestimation control such as
REDQ (Chen et al., 2021) or TQC (Kuznetsov et al., 2020).
For completeness of the article we still consider the ADDQ
effect with standard single and double estimator. We used
the base implementations from Stable-Baselines3 to study
SAC with quantile regression. With a single critic estimator
(we call this QRSAC), with double estimator, clipped double
estimator (QB-SAC in the terminology of (Kuznetsov et al.,
2020)), and ADDQ estimator (ADQRSAC). Experiments
are shown in Figure 5 and more extensively in Appendix E.

As expected ADDQ improves QRSAC and double QRSAC
but is not competitive with clipping. We leave for future
work to experiment distributional RL based overestimation
identification for REDQ and TQC.

1TD3 [(Fujimoto et al., 2018)] introduced clipping in an actor-
critic setting, where the action is given by the actor. In our C51
adaptation, we select the greedy action based on the target network.

7

ADDQ: Adaptive Distributional Double Q-Learning

Figure 4. Our method ADDQ (blue) compared to distributional DQN (orange), with double estimator (green) and clipped double estimator
(red). First row with categorical, second row quantile parametrization. Learning curves are given for two environments, 8 more in
Appendix E. We used 10 seeds. RLiable probability of improvement plots are for all 10 environments, more metrics in Appendix E.

Figure 5. For completeness: Learning curves for two MuJoCo environments and RLiable probability of improvement on 5 environments.
Adapting locally (blue, us) the double critic estimator (green) and direct estimator (orange) cannot (by far) reach performance of the
clipping estimator (red). Nonetheless, ADDQ improves distributional direct and double critic estimators with almost no change to the
code. Runs are averaged on 10 seeds, more details can be found in the Appendix E.

4. Summary, limitations, and future work
Built on theoretical insight for a bandit MDP we suggest
to use sample variances in distributional RL to mitigate the
overestimation of QL. Our approach does not use a novel
estimation procedure for Q-values but instead combines
known estimators and tries to use the better one. Using
DRL, the agent in state-action pair (s, a) has access to next-
state information that predicts the overestimation of QL-
updates and accordingly prevers QL- or an alternative. The
approach can be incorporated in different estimation meth-
ods (e.g. (random) ensemble methods, truncation methods).
For the present article we decided to improve DQL, leading
to our algorithm ADDQ. The algorithm has the expected
feature that in contrast to DQ/DQL it does not fail com-
pletely on some environments. Probability of improvement
and normalized scores using the RLiable library show clear
improvement of ADDQ to underlying deep DQ/DQL.

While ADDQ improves QL and DQL in different settings
there is future work to be done. (i) It is clear that our proba-
bilistic calculations can be extended. It is quite likely that
results from Gaussian processes can be used for computa-
tions in more general settings. (ii) The exemplary choice of
β can be improved. It would be interesting to replace the hy-
perparameter thresholds by some adaptive learnable choice.
(iii) The MuJoCo simulation study was only included for
completeness, it would have been very surprising if a local
adaptation of simple and double critic estimates could im-
prove the clipped critic estimate (or even better algorithms
such as REDQ or TQC). It is interesting future research to
include local overestimation mitigation into REDQ (make
the chosen ensemble number depend locally on sample vari-
ances) or TQC (make the number of truncated atoms depend
locally on sample variances). (iv) Use sample variances to
perform updates of target networks after non-constant steps.

8

ADDQ: Adaptive Distributional Double Q-Learning

Code
The code used in our experiments can be found on GitHub:
https://github.com/BommeHD/ADDQ.git.

Acknowledgement
The authors acknowledge support by the state of Baden-
Württemberg through bwHPC and the German Research
Foundation (DFG) through grant INST 35/1597-1 FUGG.

Impact statement
This paper presents work whose goal is to advance the field
of machine learning, in particular reinforcement learning.
There are many potential societal consequences of our work,
none which we feel must be specifically highlighted here.

References
Adler, R. J. and Taylor, J. E. Random fields and geometry.

Springer Monographs in Mathematics. Springer, New
York, 2007. ISBN 978-0-387-48112-8.

Agarwal, R., Schwarzer, M., Castro, P. S., Courville, A. C.,
and Bellemare, M. Deep reinforcement learning at the
edge of the statistical precipice. In Ranzato, M., Beygelz-
imer, A., Dauphin, Y., Liang, P., and Vaughan, J. W. (eds.),
Advances in Neural Information Processing Systems,
volume 34, pp. 29304–29320. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.
cc/paper_files/paper/2021/file/
f514cec81cb148559cf475e7426eed5e-Paper.
pdf.

Anschel, O., Baram, N., and Shimkin, N. Averaged-DQN:
Variance reduction and stabilization for deep reinforce-
ment learning. In Precup, D. and Teh, Y. W. (eds.), Pro-
ceedings of the 34th International Conference on Ma-
chine Learning, volume 70 of Proceedings of Machine
Learning Research, pp. 176–185. PMLR, 06–11 Aug
2017. URL https://proceedings.mlr.press/
v70/anschel17a.html.

Badia, A., Piot, B., Kapturowski, S., Sprechmann, P., Vitvit-
skyi, A., Guo, D., and Blundell, C. Agent57: Outper-
forming the atari human benchmark, 03 2020. URL
http://arxiv.org/abs/2003.13350.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.
The arcade learning environment: an evaluation platform
for general agents. J. Artif. Int. Res., 47(1):253–279, may
2013. ISSN 1076-9757.

Bellemare, M. G., Dabney, W., and Munos, R. A distribu-
tional perspective on reinforcement learning. In Proceed-
ings of the 34th International Conference on Machine

Learning - Volume 70, ICML’17, pp. 449–458. JMLR.org,
2017.

Bellemare, M. G., Dabney, W., and Rowland, M. Dis-
tributional Reinforcement Learning. MIT Press, 2023.
http://www.distributional-rl.org.

Bertsekas, D. P. and Tsitsiklis, J. N. Neuro-dynamic pro-
gramming., volume 3 of Optimization and neural compu-
tation series. Athena Scientific, 1996. ISBN 1886529108.

Castro, P. S., Moitra, S., Gelada, C., Kumar, S., and Belle-
mare, M. G. Dopamine: A Research Framework for
Deep Reinforcement Learning. Preprint available on
arXiv:1812.06110, 2018. URL http://arxiv.org/
abs/1812.06110.

Chen, X., Wang, C., Zhou, Z., and Ross, K. Randomized
ensembled double q-learning: Learning fast without a
model. Preprint available on arXiv:2101.05982, 2021.
URL http://arxiv.org/abs/2101.05982.

Dabney, W., Rowland, M., Bellemare, M. G., and Munos,
R. Distributional reinforcement learning with quantile
regression. In Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence and Thirtieth Inno-
vative Applications of Artificial Intelligence Conference
and Eighth AAAI Symposium on Educational Advances
in Artificial Intelligence, AAAI’18/IAAI’18/EAAI’18.
AAAI Press, 2018. ISBN 978-1-57735-800-8.

Dorka, N., Welschehold, T., Boedecker, J., and Bur-
gard, W. Adaptively calibrated critic estimates for
deep reinforcement learning. IEEE Robotics and
Automation Letters, 8:624–631, 2021. URL https:
//api.semanticscholar.org/CorpusID:
244527082.

Fernique, X. Regularité des trajectoires des fonctions
aléatoires gaussiennes. In École d’Été de Probabilités de
Saint-Flour, IV-1974, volume Vol. 480 of Lecture Notes
in Math., pp. 1–96. Springer, Berlin-New York, 1975.

Fujimoto, S., van Hoof, H., and Meger, D. Address-
ing function approximation error in actor-critic methods.
Preprint available on arXiv:1802.09477, 2018. URL
http://arxiv.org/abs/1802.09477.

Ghasemipour, K., Gu, S. S., and Nachum, O. Why so pes-
simistic? estimating uncertainties for offline rl through
ensembles, and why their independence matters. In
Proceedings of the 36th International Conference on
Neural Information Processing Systems, NIPS ’22, Red
Hook, NY, USA, 2022. Curran Associates Inc. ISBN
9781713871088.

9

https://github.com/BommeHD/ADDQ.git
https://proceedings.neurips.cc/paper_files/paper/2021/file/f514cec81cb148559cf475e7426eed5e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/f514cec81cb148559cf475e7426eed5e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/f514cec81cb148559cf475e7426eed5e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/f514cec81cb148559cf475e7426eed5e-Paper.pdf
https://proceedings.mlr.press/v70/anschel17a.html
https://proceedings.mlr.press/v70/anschel17a.html
http://arxiv.org/abs/2003.13350
http://www.distributional-rl.org
http://arxiv.org/abs/1812.06110
http://arxiv.org/abs/1812.06110
http://arxiv.org/abs/2101.05982
https://api.semanticscholar.org/CorpusID:244527082
https://api.semanticscholar.org/CorpusID:244527082
https://api.semanticscholar.org/CorpusID:244527082
http://arxiv.org/abs/1802.09477

ADDQ: Adaptive Distributional Double Q-Learning

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. In International
conference on machine learning, pp. 1861–1870. PMLR,
2018.

Kuznetsov, A., Shvechikov, P., Grishin, A., and Vetrov, D.
Controlling overestimation bias with truncated mixture
of continuous distributional quantile critics. In Proceed-
ings of the 37th International Conference on Machine
Learning, ICML’20. JMLR.org, 2020.

Lan, Q., Pan, Y., Fyshe, A., and White, M. Maxmin q-
learning: Controlling the estimation bias of q-learning.
In 8th International Conference on Learning Repre-
sentations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net, 2020. URL https:
//openreview.net/forum?id=Bkg0u3Etwr.

Lyle, C., Bellemare, M. G., and Castro, P. S.
A comparative analysis of expected and distribu-
tional reinforcement learning. Proceedings of the
AAAI Conference on Artificial Intelligence, 33(01):
4504–4511, Jul. 2019. doi: 10.1609/aaai.v33i01.
33014504. URL https://ojs.aaai.org/index.
php/AAAI/article/view/4365.

Mavrin, B., Yao, H., Kong, L., Wu, K., and Yu,
Y. Distributional reinforcement learning for effi-
cient exploration. In Chaudhuri, K. and Salakhutdi-
nov, R. (eds.), ICML, volume 97 of Proceedings of
Machine Learning Research, pp. 4424–4434. PMLR,
2019. URL http://dblp.uni-trier.de/db/
conf/icml/icml2019.html#MavrinYKWY19.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Ve-
ness, J., Bellemare, M. G., Graves, A., Riedmiller, M.,
Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie,
C., Sadik, A., Antonoglou, I., King, H., Kumaran, D.,
Wierstra, D., Legg, S., and Hassabis, D. Human-level
control through deep reinforcement learning. Nature, 518
(7540):529–533, 2015. doi: 10.1038/nature14236. URL
https://doi.org/10.1038/nature14236.

Moerland, T., Broekens, J., and Jonker, C. The potential of
the return distribution for exploration in rl, 06 2018. URL
http://arxiv.org/abs/1806.04242.

Peer, O., Tessler, C., Merlis, N., and Meir, R. Ensemble
bootstrapping for q-learning. In International Con-
ference on Machine Learning, 2021. URL https:
//api.semanticscholar.org/CorpusID:
232076148.

Quan, J. and Ostrovski, G. DQN Zoo: Reference imple-
mentations of DQN-based agents, 2020. URL http:
//github.com/deepmind/dqn_zoo.

Raffin, A. Rl baselines3 zoo. https://github.com/
DLR-RM/rl-baselines3-zoo, 2020.

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus,
M., and Dormann, N. Stable-baselines3: Reliable rein-
forcement learning implementations. Journal of Machine
Learning Research, 22(268):1–8, 2021. URL http:
//jmlr.org/papers/v22/20-1364.html.

Rowland, M., Bellemare, M. G., Dabney, W., Munos,
R., and Teh, Y. W. An analysis of categorical distri-
butional reinforcement learning. In Storkey, A. and
Perez-Cruz, F. (eds.), Proceedings of the Twenty-First
International Conference on Artificial Intelligence and
Statistics, volume 84 of Proceedings of Machine Learn-
ing Research, pp. 29–37. PMLR, 09–11 Apr 2018.
URL https://proceedings.mlr.press/v84/
rowland18a.html.

Rowland, M., Munos, R., Azar, M. G., Tang, Y., Ostrovski,
G., Harutyunyan, A., Tuyls, K., Bellemare, M. G., and
Dabney, W. An analysis of quantile temporal-difference
learning. Preprint available on arXiv:2301.04462, 2023a.
URL http://arxiv.org/abs/2301.04462.

Rowland, M., Tang, Y., Lyle, C., Munos, R., Bellemare,
M. G., and Dabney, W. The statistical benefits of quan-
tile temporal-difference learning for value estimation. In
Proceedings of the 40th International Conference on Ma-
chine Learning, ICML’23. JMLR.org, 2023b.

Singh, S., Jaakkola, T., Littman, M., and Szepesvári, C. Con-
vergence results for single-step on-policy reinforcement-
learning algorithms. Machine Learning, 38(3):287–308,
2000. doi: 10.1023/A:1007678930559.

Sudakov, V. N. Gaussian random processes, and measures
of solid angles in Hilbert space. Dokl. Akad. Nauk SSSR,
197:43–45, 1971. ISSN 0002-3264.

Sudakov, V. N. Geometric problems of the theory of infinite-
dimensional probability distributions. Trudy Mat. Inst.
Steklov., 141:191, 1976. ISSN 0371-9685.

Sutton, R. S. and Barto, A. G. Reinforcement Learn-
ing: An Introduction. The MIT Press, second edition,
2018. URL http://incompleteideas.net/
book/the-book-2nd.html.

Thrun, S. and Schwartz, A. Issues in using function
approximation for reinforcement learning. In Mozer, M.,
Smolensky, P., Touretzky, D., Elman, J., and Weigend, A.
(eds.), Proceedings of the 1993 Connectionist Models
Summer School, pp. 255–263. Lawrence Erlbaum, 1993.
URL http://www.ri.cmu.edu/pub_files/
pub1/thrun_sebastian_1993_1/thrun_
sebastian_1993_1.pdf.

10

https://openreview.net/forum?id=Bkg0u3Etwr
https://openreview.net/forum?id=Bkg0u3Etwr
https://ojs.aaai.org/index.php/AAAI/article/view/4365
https://ojs.aaai.org/index.php/AAAI/article/view/4365
http://dblp.uni-trier.de/db/conf/icml/icml2019.html#MavrinYKWY19
http://dblp.uni-trier.de/db/conf/icml/icml2019.html#MavrinYKWY19
https://doi.org/10.1038/nature14236
http://arxiv.org/abs/1806.04242
https://api.semanticscholar.org/CorpusID:232076148
https://api.semanticscholar.org/CorpusID:232076148
https://api.semanticscholar.org/CorpusID:232076148
http://github.com/deepmind/dqn_zoo
http://github.com/deepmind/dqn_zoo
https://github.com/DLR-RM/rl-baselines3-zoo
https://github.com/DLR-RM/rl-baselines3-zoo
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
https://proceedings.mlr.press/v84/rowland18a.html
https://proceedings.mlr.press/v84/rowland18a.html
http://arxiv.org/abs/2301.04462
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
http://www.ri.cmu.edu/pub_files/pub1/thrun_sebastian_1993_1/thrun_sebastian_1993_1.pdf
http://www.ri.cmu.edu/pub_files/pub1/thrun_sebastian_1993_1/thrun_sebastian_1993_1.pdf
http://www.ri.cmu.edu/pub_files/pub1/thrun_sebastian_1993_1/thrun_sebastian_1993_1.pdf

ADDQ: Adaptive Distributional Double Q-Learning

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems,
pp. 5026–5033, 2012. doi: 10.1109/IROS.2012.6386109.

Towers, M., Terry, J. K., Kwiatkowski, A., Balis, J. U.,
Cola, G. d., Deleu, T., Goulão, M., Kallinteris, A., KG,
A., Krimmel, M., Perez-Vicente, R., Pierré, A., Schulhoff,
S., Tai, J. J., Shen, A. T. J., and Younis, O. G. Gymna-
sium, March 2023. URL https://zenodo.org/
record/8127025.

Tsitsiklis, J. N. Asynchronous stochastic approximation
and q-learning. Machine Learning, 16(3):185–202, 1994.
doi: 10.1023/A:1022689125041. URL https://doi.
org/10.1023/A:1022689125041.

van Handel, R. Probabiltiy in High Dimensions. Princeton
University, lecture notes, 2016.

van Hasselt, H. Double q-learning. In Lafferty, J.,
Williams, C., Shawe-Taylor, J., Zemel, R., and Culotta,
A. (eds.), Advances in Neural Information Process-
ing Systems, volume 23. Curran Associates, Inc.,
2010. URL https://proceedings.neurips.
cc/paper_files/paper/2010/file/
091d584fced301b442654dd8c23b3fc9-Paper.
pdf.

van Hasselt, H., Guez, A., and Silver, D. Deep
reinforcement learning with double q-learning.
Preprint available on arXiv:1509.06461, 2015. URL
http://arxiv.org/abs/1509.06461. cite
arxiv:1509.06461Comment: AAAI 2016.

van Hasselt, H. P. Insights in Reinforcement Learn-
ing: formal analysis and empirical evaluation
of temporal-difference learning algorithms. PhD
thesis, Universiteit Utrecht, January 2011. URL
http://homepages.cwi.nl/˜hasselt/
papers/Insights_in_Reinforcement_
Learning_Hado_van_Hasselt.pdf.

Watkins, C. J. C. H. and Dayan, P. Q-learning. Machine
Learning, 8(3):279–292, May 1992. ISSN 1573-0565.
doi: 10.1007/BF00992698. URL https://doi.org/
10.1007/BF00992698.

Wu, Y., Zhai, S., Srivastava, N., Susskind, J. M., Zhang, J.,
Salakhutdinov, R., and Goh, H. Uncertainty weighted
actor-critic for offline reinforcement learning. In Meila,
M. and Zhang, T. (eds.), Proceedings of the 38th In-
ternational Conference on Machine Learning, volume
139 of Proceedings of Machine Learning Research, pp.
11319–11328. PMLR, 18–24 Jul 2021. URL https://
proceedings.mlr.press/v139/wu21i.html.

Zhang, Z., Pan, Z., and Kochenderfer, M. J. Weighted
double q-learning. In Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence,
IJCAI-17, pp. 3455–3461, 2017. doi: 10.24963/ijcai.
2017/483. URL https://doi.org/10.24963/
ijcai.2017/483.

11

https://zenodo.org/record/8127025
https://zenodo.org/record/8127025
https://doi.org/10.1023/A:1022689125041
https://doi.org/10.1023/A:1022689125041
https://proceedings.neurips.cc/paper_files/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
http://arxiv.org/abs/1509.06461
http://homepages.cwi.nl/~hasselt/papers/Insights_in_Reinforcement_Learning_Hado_van_Hasselt.pdf
http://homepages.cwi.nl/~hasselt/papers/Insights_in_Reinforcement_Learning_Hado_van_Hasselt.pdf
http://homepages.cwi.nl/~hasselt/papers/Insights_in_Reinforcement_Learning_Hado_van_Hasselt.pdf
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698
https://proceedings.mlr.press/v139/wu21i.html
https://proceedings.mlr.press/v139/wu21i.html
https://doi.org/10.24963/ijcai.2017/483
https://doi.org/10.24963/ijcai.2017/483

ADDQ: Adaptive Distributional Double Q-Learning

A. Theoretical backup from probability theory
Theoretical backup for all known overestimation reduction algorithms is rather weak, the update rule of Q-learning makes
precise computations very difficult. As we discuss below, the stochastic approximation rule requires computations with
sums of random variables which is not well compatible with computations of maxima of random variables. Justifications for
overestimation reduction algorithms are typically based on qualitative arguments for the estimation bias of expectations
E[maxi{X1, ..., XK}] of maxima of independent random variables even though random variables appearing in Q-learning
maxima are clearly not independent. We will give explicit estimates using probabilistic insights for sums and maxima of
independent random variables.

We should make very clear that there are different factors to the overestimation problem that are captured in the algorithmic
approach of ADDQ. To provide some rigorous theoretical evidence, we focus in this section on the tabular setting without
function approximation error. We refer the reader to the seminal article (Thrun & Schwartz, 1993) for some simplified
computations on the overestimation effect caused by approximation errors.

A.1. A lower bound computation for the overestimation bias in an episodic bandit MDP (Proof of Proposition 2.1)

s0
00

k1 actions

s1 s2

k2 actions0

The two-sided bandit MDP from the main text can be analyzed side by side. Without loss of generality we thus study the
overestimation of the left-side which is essentially the bandit MDP that appeared quite a bit in the literature on overestimation
of Q-learning (see (van Hasselt, 2011), Example 6.7 of (Sutton & Barto, 2018), or (Lan et al., 2020)).

Before stating our results on the overestimation bias we state a technical lemma that is based on the Sudakov-Fernique
inequality, see (Sudakov, 1971; 1976; Fernique, 1975), which is a comparison inequality for Gaussian processes.

Lemma A.1. Let k ∈ N and suppose (Xi
j)j∈N,i∈{1,...,k} are iid N (µ, σ2). Further, let n1, . . . , nk ∈ N such that

n1 + · · ·+ nk ≤ kn and set γ := max1≤i̸=i′≤k

∣∣1/nni
+ 1/ni′ − 2/n

∣∣. Then,∣∣∣∣∣E
[
max
1≤i≤k

1

ni

ni∑
j=1

Xi
j

]
− E

[
max
1≤i≤k

1

n

n∑
j=1

Xi
j

]∣∣∣∣∣ ≤√
2γ ln k. (2)

In particular, if, additionally, 1/ni + 1/ni′ ≥ 2/n for all i, i′ ∈ {1, . . . , k} with i ̸= i′ then

E
[
max
1≤i≤k

1

n

n∑
j=1

Xi
j

]
≤ E

[
max
1≤i≤k

1

ni

ni∑
j=1

Xi
j

]
. (3)

Proof. Given n1, . . . , nk ∈ N with n1 + · · ·nk ≤ kn, set Y i := n−1
∑n

j=1 X
i
j and Zi := n−1

i

∑ni

j=1 X
i
j for any

i ∈ {1, . . . , k}. Clearly, Y = (Y 1, . . . , Y k) and Z = (Z1, . . . , Zk) are Gaussian vectors with E[Y i] = E[Zi] for all
i ∈ {1, . . . , k} and

γY
i,i′ := E

[(
Y i − Y i′

)2]
= 2/n and γZ

i,i′ := E
[(
Zi − Zi′

)2]
= 1/ni + 1/ni′

for all i, i′ ∈ {1, . . . , k} with i ̸= i′. Thus, (2) is an immediate consequence of Adler & Taylor, 2007, Theorem 2.2.5,
Eq. (2.2.11). If, in addition, 1/ni + 1/ni′ ≥ 2 for all i ̸= i′ then γY

i,i′ ≤ γZ
i,i′ and (3) follows from Adler & Taylor, 2007,

Theorem 2.2.5, Eq. (2.2.12).

We are now in a position to give a lower bound on the overestimation bias for all exploration policies under the typical
1

#visits -step-size schedule. This extends the overestimation analysis of (van Hasselt, 2011) which was based on a simple
synchronous exploration mechanism. The step-size schedule is crucial for our probabilistic analysis as it turns the analysis
in a computation with sums and maxima of independent random variables. The sum structure is a consequence of the

12

ADDQ: Adaptive Distributional Double Q-Learning

simple fact that zt := 1
t

∑t
i=1 ai−1 solves the stochastic approximation recursion zt+1 = (1− αt)zt + αtat, z0 = 0, with

αt =
1

t+1 . Here is a formal lower bound of the overestimation bias in the episodic bandit MDP. As mentioned above we
only consider exploration of the left-side of the bandit MDP.

Theorem A.2. Suppose Q0 is initialized as the zero matrix and step-sizes are chosen as αt(s, a) =
1

Ts,a(t)
, with Ts,a(t) the

number of updates of Q(s, a). If rewards are N (µ, σ2)-distributed, then every sufficient exploratory exploration rule leads
to overestimation bias at least

E[QNk(s0,”left”)]−Q∗(s0,”left”) ≥ γ√
π log(2)

σ
√
log(k)√
N

.

By sufficient exploratory we mean that 1
na(t)

+ 1
na′ (t)

≥ 2
N for all actions a, a′ with na(t) = Ts,a(t).

In simple words, the expected overestimation in n episodes of Q-learning on the left-side of the bandit MDP is at least of

the order σ
√

k log(k)√
n

. Higher variance and more actions obviously lead to stronger overestimation.

Proof. In contrast to (van Hasselt, 2011) we do not assume synchronous exploration of all actions in each episode. Instead,
we give a comparison argument that allows to reduce sufficiently exploratory exploration to simple cyclic exploration. The
approach is motivated by the target network (here: target matrix) trick from DQN (Mnih et al., 2015). With target networks
the update works as follows:

Qt+1(s, a)← (1− αt)Qt(s, a) + αt

(
r + γmax

a′
Q̄t(s

′, a′)
)
,

where Q̄ is kept constant for a fixed number of steps and then updated from the current Q-matrix. Although the target
network was introduced in DQN to reduce overfitting in function approximation, it also reduces the overestimation of
Q-values. We use the latter effect locally in this proof to construct a lower bound. The target matrix is kept constant (0
matrix) at s0 until the last update. We show that (i) this target matrix trick with cyclic exploration yields a lower bound for the
overestimation bias of standard Q-learning with sufficient exploratory exploration strategy and (ii) allows for computations
using elements of probability theory. In what follows we denote by Xa

i the reward obtained when playing chosing a for the
ith time. By assumption all (Xa

i) are iid.

Step 1: In the first step we show that using cyclic exploration (playing one action after the other) for N rounds (Nk steps in
total) followed by one update at (s0, ”left”) minimizes the overestimation of Q-learning estimators Q̂cyc,tar(s0, ”left”) that
explore each action at most N times. For the claim we compare arbitrary Q-learning with the cyclic variant. Recalling the
Q-learning update (with arbitrary exploration rule) and the step-size schedule shows that

Qt(s1, a) =
1

Ts,a(t)

Ts,a(t)∑
j=1

Xa
j ∼ N (µ, tσ2).

Since s0 is explored once per episode the step-size schedule of regular Q-learning yields

QNk(s0, ”left”) =
1

Nk

Nk∑
t=1

γmax
a

Qt(s1, a)

for the N th episode. We next show that E[QNk(s0, ”left”)] ≥ E[Q̂cyc,tar(s0, ”left”)]. Denoting nk(t) = Ts1,ak
(t) and

13

ADDQ: Adaptive Distributional Double Q-Learning

using Lemma A.1 we obtain

E[QN (s0, ”left”)] = E
[1

Nk

Nk∑
t=1

γmax
a

{
Qt(s1, a1), ..., Qt(s1, ak)

}]

=
1

Nk

Nk∑
t=1

γE
[
max

{ 1

n1(t)

n1(t)∑
j=1

Xa1
j , ...,

1

nk(t)

nk(t)∑
j=1

Xak
j

}]

≥ 1

Nk

Nk∑
t=1

γE
[
max

{ 1

N

N∑
j=1

Xa1
j , ...,

1

N

N∑
j=1

Xak
j

}]

= γE
[
max

{ 1

N

N∑
j=1

Xa1
j , ...,

1

N

N∑
j=1

Xak
j

}]
= E[Q̂cyc,tar(s0, ”left”)].

Step 2: We now analyze the overestimation bias for the Q-learing with target matrix trick after Nk episodes. To deduce the
claim we use a fact on the expectation of the maximum of independent N (µ, σ2)-distributed random variables:

µ+
1√

π log(2)
σ
√
log(k) ≤ E[max{X1, ..., Xk}] ≤ µ+

√
2σ

√
log(k)

The inequality can for instance be found in (van Handel, 2016). According to the step-size schedule the update is as follows.
If N = nk, i.e. in cyclic exploration every action is played n times, then Qcyc,tar

Nk (s1, a) =
1
N

∑N
i=1 X

a
i for independent

N (µ, σ2)-distributed reward samples. Thus, QNk(s1, a1), ..., QNk(s1, ak) are iid and N (µ, σ2

N)-distributed. The final
update after N episodes is to set

Q̂cyc,tar(s1, ”left”) = γmax{QNk(s1, a1), ..., QNk(s1, ak)}
(d)
= γmax{Z1, ..., Zk}

for Z1, ..., Zk iid N (µ, σ2

N). The claim follows from the lower bound on the expectation of maxima of independent
Gaussians.

The computations give a number of quantitative insights. First, it becomes very clear why explicit computations for
Q-learning are complicated. The stochastic approximation update is closely related to sums (exactly equal to sums for 1

#visits
step-sizes, while the update target involves a maximum. Unfortunately, sums and maxima of random variables do not get
along well. We thus performed computations for Gaussian reward distributions for which sums are Gaussian again. Maxima
of Gaussian random variables (processes) are a well-studied field in Mathematics and estimates can be derived.

Finally, the computations show how variances influence the overestimation problem. Stochastic rewards with high variance
are more problematic than rewards with small variance. In the next section we study distribution RL in the same simple
problem.

A.2. On the use of variance in local overestimation control via distributional RL (Proof of Proposition 2.2)

Our computations for the bandit MDP above suggest uncertainty at next states (aleatoric uncertainty of rewards, epistemic
uncertainty through small N) lead to larger overestimation. Thus, algorithms mitigating the overestimation problem
locally at (s, a) must somehow use uncertainty at next states s′. In the following proposition we analyze the distributional
Q-learning update scheme (compare Section 8 of (Rowland et al., 2018))

η(s, a)← (1− α)η(s, a) + α
(
br,γ#η(s′, a∗)

)
,

with a∗ = argmaxa′ Q(s′, a′), where Q(s′, a′) are the (random) sample means of the estimated return distributions η(s′, a′).
The bootstrap function is br,γ(z) = r + γz and f#ν(B) := ν(f−1(B)) denotes the push-forward of measures. Recall
from the main text that distributional QL learns random measures, η(s, a) itself is a probability measure that depends on
the random samples used in the updates. As a probability measure η(s, a) has an expectation and a variance that are both
random in terms of the random samples. The situation becomes a bit tricky as we are going to take variances of the variances.

14

ADDQ: Adaptive Distributional Double Q-Learning

To avoid confusion we use an analogy to statistics and speak of (random) sample averages M (resp. sample variances S2) of
η(s, a) and expectation E (resp. variance V) for the integrals against the true randomness induced by the probability space
behind all appearing random variables.

Motivated by the previous section we only study cyclic exploration with ”target measure”, i.e. all actions in s1 are explored
N times before bootstrapping the estimates to s0. Using the standard 1

#visits -step-size schedule allows us to carry out fairly
explicit computations using tools from probability theory. Most importantly, we can derive the exact distribution for the
sample variance of η(s0, ”left”), the state-action pair at risk for overestimation. The insight obtained from the computation
motivates our ADDQ algorithm.

Proposition A.3. Consider the bandit MDP introduced above with N (µ, σ2) reward distributions and k actions. Denote
by η̂cyc,tar(s0,”left”) the return distribution of distributional Q-learning with cyclic exploration, step-size schedule
αt(s, a) =

1
Ts,a(t)

, and ”target distribution”. More precisely, all arms are N times explored before the first and only update
at (s1,”left”). It then follows that

S2(η̂cyc,tar(s0,”left”)) ∼ σ2

N − 1
χ2
N−1,

where χ2
n denotes the chi-squared distribution with n degrees of freedom.

It is interesting to note that while there is a simple distributional expression for the sample variance there is no simple
expression for the distribution of the sample mean max{ 1

N

∑N
i=1 X

a1
i , ..., 1

N

∑N
i=1 X

ak
i } which is the maximum of

independent Gaussians.

Proof. For the proof we need to spell-out the distributional Q-learning update and then use basic results from statistic for
sample-mean/sample-variances.

Let us first understand the distributional update at the last step. Similar to scalar stochastic approximation schemes, the
1

n+1 -step-size schedule also gives the distributional estimator

η̂cyc,tar(s1, a) =
1

N

N∑
i=1

δXa
i

(4)

for the pre-terminal state s1 after N explorations of action a. To see why write ηn := 1
n

∑n
i=1 δXa

i
to get

ηn+1 =
1

n+ 1

n+1∑
i=1

δXa
i
=

(
1− 1

n+ 1

) 1

n

n∑
i=1

δXa
i
+

1

n+ 1
δXa

n+1
= (1− αn)ηn + αnδXa

n+1

and recall that there is no max-term in the update for pre-terminal states. Note that the equal weights 1
N are a consequence

of the step-size schedule. To compute the return distribution at s0 for action ”left” we need to identify a∗. For that sake we
must identify the sample means of η̂cyc,tar(s1, a):

Q̂cyc,tar(s1, a) =
1

N

N∑
i=1

Xa
i ∼ N (µ, σ2/N)

Now we chose a∗ = argmaxa Q̂
cyc,tar(s1, a) and set

η̂cyc,tar(s0, ”left”) = b0,γ#η̂cyc,tar(s1, a
∗) =: γX.

While we do not know much about X (it is the empirical distribution of the set of Gaussians Xa
1 , ..., X

a
N with maximal sum)

we know the exact distribution of the sample variance for the following reason. The sample variance of every ηcyc,tar(s1, a)

is nothing what is called sample variance of the iid observation Xa
1 , ..., X

a
k in statistics. If Ma := 1

N

∑N
i=1 X

a
i is the sample

mean and S2
a := 1

N−1

∑N
i=1(X

a
i −Ma)2 the sample variance then it is well-known that

• E[S2
a] = σ2,

15

ADDQ: Adaptive Distributional Double Q-Learning

• S2
a is σ2

N−1χ
2
N−1-distributed,

• Ma and S2
a are independent.

The third property implies that if S2
a1
, ..., S2

ak
are independent sample variances and a∗ is chosen to maximize the sample

means, then also S2
a∗ ∼ σ2

N−1χ
2
N−1 while Ma∗ ≁ Ma.

As a consequence, even though we cannot compute the distribution of the sample mean of η̂cyc,tar(s0, ”left”) we can
compute the distribution of its sample variance as σ2

N−1χ
2
N−1. The expectation is E[S2

a] = σ2 while the variance is

V(S2
a) =

2σ4

N−1 . Note that one might be tempted to believe the sample variance is independent of the number k of actions.
This is not the case, as the number of explorations Nk needed for N explorations depends on k. Alternatively, one might
denote the number of total episodes by n and replace N by ⌊nk ⌋.

We now come back to the motivation of our ADDQ algorithm, in particular the choice of β. Let us consider the two-sided
bandit MDP with N (µ1, σ

2
1) (resp. N (µ2, σ

2
2)) distributed rewards. Suppose µ1 > µ2 are small but σ2

1 ≪ σ2
2 and/or

k1 ≪ k2. The MDP is delicate as the following can happen using QL (overestimation) and DQL (global overestimation
reduction). In QL the agent will believe for a long time that ”right” is the optimal action in s0. In DQL the agent will believe
for a long time that ”down” is the optimal action as both non-trivial Q-values can be underestimated to be negative. It is thus
more reasonable to mitigate overestimation locally instead of globally. This is what ADDQ achieves through the choice of β.

To use our explicit computations above, the agent explores both sides with cyclic exploration and target-matrix update.
Now assume both sides have been explored with a total number of n episodes each. The agent knows the estimates
η̂(s0, ”left”) (resp. η̂(s0, ”right”)) and the corresponding Q-values (sample means of return distributions) Q̂(s0, ”left”)
(resp. Q̂(s0, ”right”)). From the overestimation study of the previous section, the agent unwittingly overestimated the true

Q-values in the order of σ1

√
k1 log(k1)√

n
(resp. σ2

√
k2 log(k2)√

n
) and will believe ”right” is the correct action. Now the smart

agent also knows he/she should take into account the sample variances that is known to the agent and we know are of
the order σ2

1 (resp. σ2
2) with concentration depending on k1 (resp. k2). The local overestimation control of β (based on

relative sample variances) from (1) thus compares σ2
1 to σ2

2 and suggests to mitigate overestimation of Q̂(s0, ”right”). In our
algorithm we use double Q-learning to mitigate, the same idea can of course be integrated into other algorithms (such as
changing number of truncation atoms in truncated quantile critics algorithms (Kuznetsov et al., 2020)).

16

ADDQ: Adaptive Distributional Double Q-Learning

B. Experimental confirmation of theoretical results for two-sided bandit MDP
We provide an experimental analysis of the two-sided bandit MDP for which we proved theoretical results on the overesti-
mation. For reimplementation purposes we collect here all required information on the environment and the training for all
plots.

Environment:

• γ = 0.9

• µ1 = −0.1, µ2 = 0.1, k2 = 5, σ2 = 1; the correct decision is thus moving to the right in the Start State.

Distributional properties for ADDQ:

• categorical parametrization, 51 atoms equally spaced on [−3, 3]

• initialization as δ0

Algorithmic choices:

• β is chosen according to (1)

• step-size schedules αt(s, a) =
1

Ts,a(t)
, with Ts,a(t) the number of visits in (s, a) up to time t, i.e. 1

n state-action wise
counted

• exploration: either ϵ-greedy with ϵ linearly decreasing from 1 to 0.1 in 10000 steps, then constant (E) or uniform
random (U)

Policy evaluation: evaluation of 3 steps with a frequency of every 500 steps using current greedy policy, correct action rates
refer to if the exploration was greedy

In order to demonstrate the proven proportionality of the overestimation of Q-values by QL in the number of arms and the
variance to the left, we keep one of the values fixed and compare different values in the other one.

• First experiment: σ1 = 5 fixed, iterating over k1 = 5, 10, 15, 20, denoted as K in the legend

• Second experiment: k1 = 10 fixed, iterating over σ1 = 2, 4, 6, 8, denoted as S in the legend

The plots also demonstrate that

• ADDQ is much better in terms of bias, leveraging local information given by the (relative) variances

• the variances and relative variances at state 0 capture the real variances given by the MDP

• although our theorems assumed a sufficiently exploratory policy, the results seem to generalize to the much more
commonly used ϵ-greedy setting

17

ADDQ: Adaptive Distributional Double Q-Learning

Figure 6. Comparing ADDQ and QL on two-sided bandit MDP with different number of arms on the left side and different exploration
settings.

18

ADDQ: Adaptive Distributional Double Q-Learning

Figure 7. Comparing ADDQ and QL on two-sided bandit MDP with different variances on the left side and different exploration settings.

19

ADDQ: Adaptive Distributional Double Q-Learning

C. Grid world details
C.1. Experiment from the main text

For reimplementation purposes we collect here all required information on the environment and the training for all plots.

Environment:

• γ = 0.9

• white low stochastic high average reward region: rewards −0.05, +0.05 with equal probabilities

• gray high stochastic low average reward region: rewards −2.1, +2 with equal probabilities

• goal: deterministic reward of 1, fake goal: deterministic reward of 0.65

Distributional properties for CategoricalQ, CategoricalDouble, and ADDQ:

• categorical parametrization, 51 atoms equally spaced on [−3, 3]

• initialization as δ0

Algorithmic choices:

• β is chosen according to (1)

• step-size schedule αt(s, a) =
1

Ts,a(t)
, with Ts,a(t) the number of visits in (s, a) up to time t, i.e. 1

n state-action wise
counted,

• exploration: ε-greedy with ε linearly decreasing from 1 to 0.1 in 10000 steps, then constant

Policy evaluation: evaluation of 6 steps with a frequency of every 500 steps, correct action rates refer to if the exploration
was greedy

Figure 8. additional plots

For completeness we give plots pairing learning curves for Q-values with the corresponding sample variance. We give
all state-action combinations for the interesting states 1 and 4 next to the fake goal, 6 and 7 next to the region with high
stochasticity, and 10 and 14 before leaving the region with high stochasticity.

20

ADDQ: Adaptive Distributional Double Q-Learning

21

ADDQ: Adaptive Distributional Double Q-Learning

Finally, the following plot demonstrates that, in this GridWorld example, the relative variances are also strongly determined
by the variances of the next state.

22

ADDQ: Adaptive Distributional Double Q-Learning

C.2. Ablation study

In the following, on the same environment as before, we experiment with different choices for β and compare with weighted
DQL (Zhang et al., 2017) with c = 10 (WDQ), the standard choice from that paper. The choice of beta’s names are
comprised as follows:

• (Optional) First two letters: Left-tilted (lt), Right-tilted (rt)

• First/Third letter: Neutral (n), Aggressive (a), Conservative (c)

• Final digit: Refers to the number of intervals in the definition of Beta (3 or 5)

The choices of Aggressive, Conservative, and Neutral refer to the trade-off of no interpolation (just choosing which
Algorithm’s update to take) and softening the interpolation, with neutral being in between the two choices and corresponding
to the choice presented in the main body. Left- and Right-tilted refers to shifting the intervals for the relative Variance to fall
into while choosing the interpolation coefficient. Left-tilted favors the Q update, Right-tilted the DQ update.
The concrete choices are:

n3: β :=


0.75 : S2

rel(s, a) < 0.75

0.5 : S2
rel(s, a) ∈ [0.75, 1.25]

0.25 : S2
rel(s, a) > 1.25

, a3: β :=


1 : S2

rel(s, a) < 0.99

0.5 : S2
rel(s, a) ∈ [0.99, 1.01]

0 : S2
rel(s, a) > 1.01

ltn3: β :=


0.75 : S2

rel(s, a) < 1.25

0.5 : S2
rel(s, a) ∈ [1.25, 1.75]

0.25 : S2
rel(s, a) > 1.75

, lta3: β :=


1 : S2

rel(s, a) < 1.49

0.5 : S2
rel(s, a) ∈ [1.49, 1.51]

0 : S2
rel(s, a) > 1.51

rtn3: β :=


0.75 : S2

rel(s, a) < 0.25

0.5 : S2
rel(s, a) ∈ [0.25, 0.75]

0.25 : S2
rel(s, a) > 0.75

, rta3: β :=


1 : S2

rel(s, a) < 0.49

0.5 : S2
rel(s, a) ∈ [0.49, 0.51]

0 : S2
rel(s, a) > 0.51

c3: β :=


0.6 : S2

rel(s, a) < 0.6

0.5 : S2
rel(s, a) ∈ [0.6, 1.4]

0.4 : S2
rel(s, a) > 1.4

, n5: β :=



1 : S2
rel(s, a) ≤ 0.25

0.75 : S2
rel(s, a) ∈ (0.25, 0.75)

0.5 : S2
rel(s, a) ∈ [0.75, 1.25]

0.25 : S2
rel(s, a) ∈ (1.25, 1.75)

0 : S2
rel(s, a) ≥ 1.75

ltc3: β :=


0.6 : S2

rel(s, a) < 1.1

0.5 : S2
rel(s, a) ∈ [1.1, 1.9]

0.4 : S2
rel(s, a) > 1.9

, ltn5: β :=



1 : S2
rel(s, a) ≤ 0.75

0.75 : S2
rel(s, a) ∈ (0.75, 1.25)

0.5 : S2
rel(s, a) ∈ [1.25, 1.75]

0.25 : S2
rel(s, a) ∈ (1.75, 2.25)

0 : S2
rel(s, a) ≥ 2.25

rtc3: β :=


0.6 : S2

rel(s, a) < 0.1

0.5 : S2
rel(s, a) ∈ [0.1, 0.9]

0.4 : S2
rel(s, a) > 0.9

, rtn5: β :=



1 : S2
rel(s, a) ≤ −0.25

0.75 : S2
rel(s, a) ∈ (−0.25, 0.25)

0.5 : S2
rel(s, a) ∈ [0.25, 0.75]

0.25 : S2
rel(s, a) ∈ (0.75, 1.25)

0 : S2
rel(s, a) ≥ 1.25

23

ADDQ: Adaptive Distributional Double Q-Learning

a5: β :=



1 : S2
rel(s, a) ≤ 0.99

0.75 : S2
rel(s, a) ∈ (0.99, 0.995)

0.5 : S2
rel(s, a) ∈ [0.995, 1.005]

0.25 : S2
rel(s, a) ∈ (1.005, 1.01)

0 : S2
rel(s, a) ≥ 1.01

, c5: β :=



0.7 : S2
rel(s, a) ≤ 0.1

0.6 : S2
rel(s, a) ∈ (0.1, 0.7)

0.5 : S2
rel(s, a) ∈ [0.7, 1.3]

0.4 : S2
rel(s, a) ∈ (1.3, 1.9)

0.3 : S2
rel(s, a) ≥ 1.9

lta5: β :=



1 : S2
rel(s, a) ≤ 1.49

0.75 : S2
rel(s, a) ∈ (1.49, 1.495)

0.5 : S2
rel(s, a) ∈ [1.495, 1.505]

0.25 : S2
rel(s, a) ∈ (1.505, 1.51)

0 : S2
rel(s, a) ≥ 1.51

, ltc5: β :=



0.7 : S2
rel(s, a) ≤ 0.6

0.6 : S2
rel(s, a) ∈ (0.6, 1.2)

0.5 : S2
rel(s, a) ∈ [1.2, 1.8]

0.4 : S2
rel(s, a) ∈ (1.8, 2.4)

0.3 : S2
rel(s, a) ≥ 2.4

rta5: β :=



1 : S2
rel(s, a) ≤ 0.49

0.75 : S2
rel(s, a) ∈ (0.49, 0.495)

0.5 : S2
rel(s, a) ∈ [0.495, 0.505]

0.25 : S2
rel(s, a) ∈ (0.505, 0.51)

0 : S2
rel(s, a) ≥ 0.51

, rtc5: β :=



0.7 : S2
rel(s, a) ≤ −0.4

0.6 : S2
rel(s, a) ∈ (−0.4, 0.2)

0.5 : S2
rel(s, a) ∈ [0.2, 0.8]

0.4 : S2
rel(s, a) ∈ (0.8, 1.4)

0.3 : S2
rel(s, a) ≥ 1.4

24

ADDQ: Adaptive Distributional Double Q-Learning

Figure 9. Ablation study plots regarding bias improvement. State 1 is adjacent to the fake goal, state 6 adjacent to the stochastic region.

25

ADDQ: Adaptive Distributional Double Q-Learning

It turns out that

• the choice of thresholds in β (hyperparameter to the algorithm) is harmless, results do not vary a lot,

• conservative choices seem to work especially well.

• weighted double Q-learning, an algorithm that is similar to ADDQ with non-distributional choice of β is improved by
our locally adaptive distributional RL based choice of β.

C.3. Comparison to other algorithms

We compared ADDQ with other bias reduction methods using different hyperparameters used in the respective papers on
the same GridWorld environment.

• Maxmin with 2, 4, 6, and 8 ensembles (Lan et al., 2020)

• Ensemble Bootstrapped QL (EBQL) with 3, 7, 10, and 15 ensembles (Peer et al., 2021)

• Randomized Ensemble DQL (REDQ) with 3 and 5 ensembles and size 1 and 2 of random update subset sizes (Chen
et al., 2021)

It turns out that ADDQ decreases the estimation bias stronger than those algorithms while only using two ensembles.

26

ADDQ: Adaptive Distributional Double Q-Learning

Figure 10. Comparison to MaxMin.

27

ADDQ: Adaptive Distributional Double Q-Learning

Figure 11. Comparison to EBQL

28

ADDQ: Adaptive Distributional Double Q-Learning

Figure 12. Comparison to REDQ.

29

ADDQ: Adaptive Distributional Double Q-Learning

D. ADDQ adaptation for QRDQN - setup
To not double too much in the main text we moved the adaptation of ADDQ to the quantile setup (Dabney et al., 2018) to
the appendix. In this section we explain how to adapt the ADDQ idea into QRDQN, experimental results are provided in the
next section.

The categorical approach has multiple disadvantages, most notably rewards and the fixed atom positions must be compatible.
The categorical algorithm was included in the main text to keep notation simple. For quantile distributional RL the return
distributions are parametrized by

FQ,m =
{ m∑

i=1

1

m
δθi : θi ∈ R

}
.

In contrast to the categorical setting the positions of the atoms are not fixed, but the weights of all atoms are set equal. The
computation of the target is equal to the categorical version (except using the projection on FQ,m instead of FC,m). The
update step is a gradient step in computing the Wasserstein-projection on FQ,m of the target distribution η̂, that is a gradient
step in the quantile Huber-loss minimization:

min
θ̂A
1 (s,a),...,θ̂A

m(s,a)

m∑
i=1

EZ∼η̂[ρ
κ
τi(Z − θ̂Ai (s, a))],

with quantile mid-points τi = 2i−1
2m and

ρκτ (u) =

{
|τ − 1u<0| 12u

2 : |u| ≤ κ

|τ − 1u<0|κ(|u| − 1
2κ) : |u| > κ

.

The quantile Q-learning modification of classical DQN (Mnih et al., 2015) is called QRDQN. Using the same network
architecture as C51, QRDQN approximates return distributions using the quantile representation. Therefore the last layer
outputs the m quantile locations for each action. In the quantile setup we write ηω(s, a) =

1
m

∑m
i=1 δθi(s,a;ω) with induced

mean values Qω(s, a) =
1
m

∑m
i=1 θi(s, a;ω). Given a sample transition (s, a, r, s′), the network parameters are updated via

gradient descent with respect to the loss function

L(ω) = 1

m

m∑
i,j=1

ρ1τi(r + γθj(s
′, z∗; ω̄)− θi(s, a;ω)), z∗ = argmaxa′ Qω̄(s

′, a′), (5)

and the quantile mid-points τi = 2−1
2m .

In what follows we turn three known double variants of DQN with overestimation reduction into QRDQN variants and
compare them on several Arcade environments to our algorithms. We use double DQN (van Hasselt et al., 2015), a
Q-learning adaptation of the clipping trick included in TD3 (Fujimoto et al., 2018), a quantile version of our ADDQ
algorithm, and an additional variant of ADDQ. Using the Stable-Baselines3 framework [(Raffin et al., 2021)] there is very
little that must be modified. Return distributions ηA and ηB are parametrized with two independently initialized neural
networks denoted by ωA and ωB . As in DQN we use delayed target networks, one for A, one for B, that are indicated with
an additional bar. For each gradient step we simulate a vector of random variables with the same size as the batch size with
each element determining which of the two estimators is being updated based on the respective transition with the same
position in the batch. Accordingly, we use twice the batch size for these methods, so that on average per gradient step,
the same number of transitions is used for each estimator, compared to the single-estimator case. The only difference in
different algorithms is the target used to update the neural networks.

Similar to modifying C51 implementations we only modify the target return distributions br,γ#ηω̄(s
′, z∗) for an appropriate

action z∗. In the quantile setup those are given by the locations of their atoms:

Γ = {r + γθj(s
′, z∗;ω) : j = 1, . . . ,m}

We again use the compact A/B notation to indicate how the update applies for ΓA and ΓB .

Double QRDQN: ΓA/B = ηω̄B/A(s′, z∗), where z∗ = argmaxa′ Qω̄A/B (s′, a′).

30

ADDQ: Adaptive Distributional Double Q-Learning

Clipped QRDQN: ΓA/B = ηω̄X (s′, z∗), where z∗ = argmaxa′ Qω̄A/B (s′, a′) and X = argminc∈{A,B} Qω̄c(s′, z∗).

ADDQ (us): ΓA/B = βηω̄A/B (s′, z∗) + (1 − β)ηω̄B/A(s′, z∗), where z∗ = argmaxa′ Qω̄A/B (s′, a′). The weights β =
β(s, a;ω) are essentially arbitrary and can depend on the current estimated return distributions ηA and ηB . For the
experiments we take the same choice from 1 as used for the tabular and the categorical settings.

Experimental results are presented in the next section.

31

ADDQ: Adaptive Distributional Double Q-Learning

E. Deep reinforcement learning experiments
To ensure fair comparison we modified the algorithms C51 [(Bellemare et al., 2017)] and QRDQN [(Dabney et al., 2018)]
within the Stable-Baselines3 framework [(Raffin et al., 2021)]. The C51 implementation has been added to this framework
by adapting from the Dopamine framework [(Castro et al., 2018)] and the DQN Zoo [(Quan & Ostrovski, 2020)]. We run
Atari environments from the Arcade Learning Environment [(Bellemare et al., 2013)] and MuJoCo [(Todorov et al., 2012)]
environments both using the Gymnasium API [(Towers et al., 2023)]. We run the experiments via the RL Baselines3 Zoo
[(Raffin, 2020)] training framework.

The experiments were executed on a HPC cluster with NVIDIA Tesla V100 and NVIDIA A100 GPUs. The replay buffer on
Atari environments takes around 57GB of memory and less than 7 GB of memory for MuJoCo environments.

For the experiments the training has been interrupted every 50000 steps and 10 evaluation episodes on 10 evaluation
environments without exploration have been performed. The plots below show the mean total reward (sum of all rewards)
averaged over 10 seeds with standard errors of seeds as the shaded regions. To improve visibility a rolling window of size
4 is applied. Atari runs took less than 48 hours for 20 million train steps and periodic evaluations and MuJoCo runs less
than 36 for 10 million train steps (Humanoid) and periodic evaluations. Note that one timestep in the Atari environments
corresponds to 4 frames, which are stacked together. This corresponds to repeating every action 4 times in the actual game.
Therefore 20 million timesteps correspond to 80 million frames. Additionally, a small ablation study comprising of 10 seeds
on one evaluation environment with some of the choices of beta detailed in Appendix C.2 has been conducted.

32

ADDQ: Adaptive Distributional Double Q-Learning

E.1. Full experimental results for the categorical parametrization

As in (Bellemare et al., 2017) we use 51 atoms for all C51 variants.

Figure 13. Learning curves on 10 Atari environments, averaged over 10 seeds

33

ADDQ: Adaptive Distributional Double Q-Learning

We additionally provide plots using the RLiable library (Agarwal et al., 2021).

Figure 14. RLiable probability of improvement plot

Figure 15. RLiable human normalized scores plot (based on (Badia et al., 2020))

34

ADDQ: Adaptive Distributional Double Q-Learning

E.2. Full experimental results for the quantile parametrization

Figure 16. Learning curves on 10 Atari environments, averaged over 10 seeds

35

ADDQ: Adaptive Distributional Double Q-Learning

Figure 17. RLiable probability of improvement plot

Figure 18. RLiable human normalized scores plot (based on (Badia et al., 2020))

36

ADDQ: Adaptive Distributional Double Q-Learning

E.3. Full experimental results for the actor critic setting

Figure 19. Learning curves on 5 MuJoCo environments, averaged over 10 seeds

Figure 20. RLiable probability of improvement plot

37

ADDQ: Adaptive Distributional Double Q-Learning

Figure 21. RLiable normalized scores plot, based on highest and lowest performance on each environment

38

ADDQ: Adaptive Distributional Double Q-Learning

F. Convergence proof in the tabular categorical setup
In this section we give a convergence proof for the adaptive distributional double-Q algorithm in the simplest setting, the
categorical setting. The proof is based on known arguments from the literature and requires some modifications to work in
our generality. Since many papers only sketched proofs we decided to spell out all details.
Remark F.1 (Notation and short recap). The Cramer distance ℓ2 for probability distributions ν, ν′ ∈ P(R) is given by

ℓ2(ν, ν
′) =

(∫
R
|Fν(z)− Fν′(z)|2 dz

)1/2

.

Following (Rowland et al., 2018; Bellemare et al., 2023) the supremum extension of a probability metric d between two
return distribution functions η, η′ ∈ PS×A is denoted as

d̄(η, η′) = sup
s,a∈S×A

d(η(s, a), η′(s, a).

The iterates ηk+1 = ΠCT πηk converge to the unique fixed point in FS×A
C,m with respect to ℓ̄2 based on Banach’s fixed point

Theorem. This follows from the contraction property

ℓ̄2(ΠCT πη,ΠCT πη′) ≤ √γℓ̄2(η, η′), (6)

[compare (Rowland et al., 2018; Bellemare et al., 2023)].

Theorem F.2 (Convergence of adaptive distributional Q-learning in the categorical setting). Given some initial return
distribution functions ηA0 , η

B
0 supported within [θ1, θm], the induced Q-values, i.e. the expected values of the return

distributions (ηAt), (η
B
t), recursively defined by Algorithm 1 converge almost surely towards Q∗ if the following conditions

are satisfied:

1. the step sizes αt(s, a) almost surely fulfill the Robbins-Monro conditions
∑∞

t=0 αt(s, a) =∞ and
∑∞

t=0 α
2
t (s, a) <∞.

2. rewards are bounded in [Rmin, Rmax] and [Rmin

1−γ , Rmax

1−γ] ⊆ [θ1, θm],

3. the choice of updating ηA or ηB is random and independent of all previous random variables

4. the sequences (βA
t)t∈N, (β

B
t)t∈N only depend on the past and fulfill limt→∞ |βA

t − βB
t | = 0 almost surely.

If additionally the MDP has a unique optimal policy π∗, then (ηAt), (η
B
t) converge almost surely in ℓ̄2 to some limit

η∗C ∈ FC,m and the greedy policy with respect to η∗C is the optimal policy.

Note that the algorithm and proof uses βA/B
t+1 (s, a) with index t+ 1 when updating η

A/B
t . This is to show that in general the

parameter is allowed to depend on St+1 and the respective greedy action, i.e. it must only be Ft+1 measurable. To portray
this generality in the following we will only write β

A/B
t+1 without referencing a state-action pair.

The simplest way to guarantee the assumptions on the adaptive parameters βA, βB to be satisfied is to chose them equal.

As in (van Hasselt, 2010), the proof is based on the following stochastic approximation result, see also (Bertsekas &
Tsitsiklis, 1996), Proposition 4.5.

Lemma F.3 ((Singh et al., 2000), Lemma 1). Suppose (Ω,A,P, (Fn)) is a filtered probability space on which all appearing
random variables are defined. Suppose that

1. a stochastic process (Fn)n∈N ⊂ Rd with the coordinates Fi,n for i = 1, . . . , d such that Fn is Fn+1-measurable and
for all i = 1, . . . , d

∥E[Fn|Fn]∥∞ ≤ κ∥Xn∥∞ + cn and V[Fi,n|Fn] ≤ K(1 + κ∥Xn∥∞)2 n ≥ 1,

where κ ∈ [0, 1), an adapted, stochastic process (cn)n∈N ⊂ R+ that converges to 0 almost surely and some constant
K > 0.

39

ADDQ: Adaptive Distributional Double Q-Learning

2. the non-negative stochastic process (αn)n∈N ⊂ Rd, with the coordinates αi,n ∈ [0, 1] for i = 1, . . . , d is adapted with
∞∑

n=1

αi,n =∞ and
∞∑

n=1

α2
i,n <∞ a.s..

Then, for any F0-measurable initial condition X0 the stochastic process (Xn)n∈N ⊂ Rd with coordinates Xi,n for
i = 1, . . . , d that is recursively defined by

Xi,n+1 = (1− αi,n)Xi,n + αi,nFi,n, n ∈ N,

converges almost surely to zero.

Furthermore, we follow (Rowland et al., 2018) by first showing the convergence of the mean-values to Q∗ and afterwards
showing convergence of the return distribution functions, under the assumption of a unique optimal policy, by coupling it
with policy evaluation. The convergence of the latter is easier to prove and we will do so at the end.
Lemma F.4 (Adaptive Double Categorical Temporal Difference for Policy Evaluation). Given some initial return distribution
functions ηA0 , η

B
0 supported within [θ1, θm] and a stationary policy π ∈ ΠS , the return distribution functions (ηAt), (η

B
t)

recursively defined by Algorithm 1, but with a∗ ∼ π(·;St+1) instead, converge almost surely towards the unique fixed point
ηC ∈ P(R)S×A of the operator ΠCT π with respect to ℓ̄2, if the following conditions are satisfied:

1. the step sizes αt(s, a) fulfill the Robbins-Monro conditions:

•
∑∞

t=0 αt(s, a) =∞
•
∑∞

t=0 α
2
t (s, a) <∞,

2. rewards are bounded in [Rmin, Rmax] and [Rmin

1−γ , Rmax

1−γ] ⊆ [θ1, θm],

3. the choice of updating ηA or ηB is random and independent of all other previous random variables

The above result is only relevant for the proof of Theorem F.2, as policy evaluation with a double estimator is not of interest.
Note that convergence of categorical temporal difference for policy evaluation (in the single estimator case) has been proven
in [(Rowland et al., 2018) Theorem 2 mimicking (Tsitsiklis, 1994) Theorem 2] and [(Bellemare et al., 2023) Theorem 6.12
applying (Tsitsiklis, 1994) Theorem 3 or (Bertsekas & Tsitsiklis, 1996) Proposition 4.5].
Lemma F.5. Let (αt)t∈N0

be a sequence fulfilling the Robbins-Monro conditions and (Yt)t∈N an iid sequence of
Bernoulli(0.5) random variables, i.e. P(Yt = 1) = P(Yt = 0) = 0.5 for all t ∈ N0. Then (αtYt)t∈N0 also fulfills
the Robbins-Monro condition.

Proof. The almost sure convergence of the summed squares is obviously fulfilled due to
∞∑
t=0

(αtYt)
2 ≤

∞∑
t=0

α2
t <∞ almost surely.

Due to independence of each Yt with {Yn|n ∈ N0, n ̸= t} as well as with α = (αt)
∞
t=0 we will consider a two stage

experiment, where we first draw the sequence α = (αt)
∞
t=0 and then independently of this realization sample the iid

sequence Y = (Yt)
∞
t=0. Due to the independence the joint measure of α and Y is the product measure. Consider the product

space (Ω,F ,P) = (Ωα × ΩY ,Fα ⊗FY ,P⊗N
α ⊗ P⊗N

Y) where Ωα,ΩY = [0, 1]N, Fα,FY = B([0, 1])⊗N . Then, using that∑∞
t=0 αt =∞ Pα-almost surely, we have

P
(∞∑

t=0

αtYt =∞
)
=

∫
Ωα

PY

(∞∑
t=0

αtYt =∞
)
dPα(α)

=

∫
{(αt)∞t=0∈Ωα:

∑∞
t=0 αt=∞}

PY

(∞∑
t=0

αtYt =∞
)
dPα(α)

(a)
=

∫
{(αt)∞t=0∈Ωα:

∑∞
t=0 αt=∞}

1 dPα(α)

=1,

40

ADDQ: Adaptive Distributional Double Q-Learning

where (a) can be seen as follows. Consider any deterministic sequence (bt) ⊆ [0, 1] fulfilling
∑∞

t=0 bt =∞. Then

∞ =

∞∑
t=0

bt =

∞∑
t=0

btYt +

∞∑
t=0

bt1Yt=0.

Now notice that A =
∑∞

t=0 btYt and B =
∑∞

t=0 bt1Yt=0 are identically distributed and since the sum of A and B is always
infinity, almost surely either one of them is infinite. Given the identical distribution, we infer

PY (

∞∑
t=0

btYt =∞) > 0.

But since (btYt) is an independent sequence of random variables and the event that the infinite sum diverges is in the tail
sigma algebra, the Kolmogorov 0-1 law yields:

PY (

∞∑
t=0

btYt =∞) = 1.

Remark F.6. As outlined in (Rowland et al., 2018), proof of Proposition 1, denoting byM(R) the space of all finite signed
measures on (R,B(R)), the subspace

M0(R) := {ν ∈M(R)|ν(R) = 0,

∫
R
Fν(x)

2dx <∞},

”where Fν(x) = ν([−∞, x)) for x ∈ R, is isometrically isomorphic to a subspace of the Hilbert space L2(R) with inner
product given by

⟨ν1, ν2⟩ℓ2 =

∫
R
Fν1

(x)Fν2
(x)dx.”

Then the affine translation δ0 +M0 is also Hilbert space endowed with the same inner product. It contains probability
measures ν ∈ P(R) satisfying ∫ 0

−∞
Fν(x)

2 dx <∞ and
∫ ∞

0

(1− Fν(x))
2 dx <∞.

To see this, consider µ = ν − δ0 fulfills Fµ(x) = Fν(x) for x < 0 and Fµ(x) = Fν(x)− 1 for x ≥ 1. Hence, µ ∈ M0.
The two conditions assure that the tails decay fast enough.
Note that the inner product induces a norm through ∥ν∥2ℓ2 = ⟨ν, ν⟩. And we have ℓ2(ν1, ν2) = ∥ν1−ν2∥ℓ2 . In the following
proof, we will make use of the relationship

ℓ22(ν1 + ν2, ν
′
1 + ν′2) = ∥ν1 − ν′1∥2ℓ2 + ∥ν2 − ν′2∥2ℓ2 + 2⟨ν1 − ν′1, ν2 − ν′2⟩

holding by bilinearity of the inner product.

Proof of Thoerem F.2. Step 1: Convergence of mean values to Q∗

The proof mainly follows (Rowland et al., 2018) and (van Hasselt, 2010). Let the filtration be given by Ft =
σ(ηA0 , η

B
0 , s0, a0, α0, R0, S1, Y1, β

A
1 , β

B
1 . . . , st, at, αt), where (Yn)n∈N is an iid sequence of Bernoulli(0.5) random vari-

ables, independent of all other appearing random variables, such that A is updated when Yn+1 = 1. Denote the expected
values of the return-distributions by QA

t (s, a) = ER∼ηA
t (s,a)[R] and overloading notation, let us further write E[ν] for the

expected value ER∼ν [R] of a probability distribution ν ∈ P(R). We will first consider how the expected values evolve.
Due to the symmetry of the updates it is sufficient to show convergence of QA

t to Q∗. It is implied that α(s, a) = 0 for
(s, a) ̸= (st, at). Further, define

Xt(st, at) := QA
t (st, at)−Q∗(st, at)

Ft(st, at) := 1Yt+1=1

(
Rt + γ(βA

t+1Q
A
t (St+1, a

∗) + (1− βA
t+1)Q

B
t (St+1, a

∗))−Q∗(st, at)
)

+ 1Yt+1=0Xt(st, at)

Ft(s, a) := 0 whenever (s, a) ̸= (st, at)

41

ADDQ: Adaptive Distributional Double Q-Learning

with a∗ = argmaxa′∈ASt+1
QA(St+1, a

′). According to [(Lyle et al., 2019) Proposition 1] projection ΠC is mean-
preserving, i.e E[ΠCν] = E[ν] for when ν is a distribution supported within [θ1, θm]. This is the case for every η̂∗ as in
Algorithm 1, which can be seen as following. Assume ηAt (st, at), η

B
t (st, at) ∈ FC,m. Then also

ν = βA
t+1η

A
t (St+1, a

∗) + (1− βA
t+1)η

B
t (St+1, a

∗)) ∈ FC,m,

and suppose ν =
∑m

i=1 piδθi for some pi. Then

η̂∗ := bRt,γ#ν =

m∑
i=1

piδRt+γθi .

But now
θ1 ≤

Rmin

1− γ
≤ Rmin

1− γ
≤ θm

(Assumption (ii)) guarantees that
θ1 ≤ Rt + γθi ≤ θm ∀ i ∈ {1, . . . ,m}

and η̂∗ is supported within [θ1, θm]. Similarly for a realized transition with (Rt, St+1) = (rt, st+1), we have for the
expected value of the distribution

E
[
brt,γ#

(
βA
t+1η

A
t (st+1, a

∗ + (1− βA
t+1)η

B
t (st+1, a

∗))
)]

=rt + γ(βA
t+1Q

A
t (st+1, a

∗) + (1− βA
t+1)Q

B
t (st+1, a

∗)).

Hence, the expected values of the return distributions ηAt subtracted by Q∗ indeed evolve as

Xt+1(s, a) = (1− αt(s, a))Xt(s, a) + αt(s, a)Ft(s, a).

We now proceed similarly as in (van Hasselt, 2010) to show that the conditions of Lemma F.3 are satisfied.
We first show that V[Ft(s, a)|Ft] is bounded for all (s, a) ∈ S×A and therefore satisfies V[Ft(s, a)|Ft] ≤ K(1+κ∥Xt∥∞)
as required. Since the rewards were assumed to be bounded there is an R̄ > 0 such that |r|, |θ1|, |θm| ≤ R̄ ∀r ∈ R. Hence,
we have

|Ft(st, at)| ≤|Rt + γ(βA
t+1Q

A
t (St+1, a

∗) + (1− βA
t+1)Q

B
t (St+1, a

∗))−Q∗(st, at)|
+|Xt(st, at)|

≤R̄+ 3R̄+ 2
R̄

1− γ
.

Next, we need to show that ∥E[Ft | Ft]∥∞ ≤ κ∥Xt∥∞ + cn. Let us therefore decompose

Ft(st, at) =1Yt+1=1

(
FQ
t (st, at) + γ(1− βt+1)(Q

B
t (St+1, a

∗)−QA
t (St+1, a

∗))
)

+1Yt+1=0αt(st, at)Xt(st, at)

with FQ
t (st, at) := Rt + γQA

t (St+1, a
∗)−Q∗(st, at). This yields

|E[1Yt+1=1F
Q
t (st, at) + 1Yt+1=0αt(st, at)Xt(st, at)|Ft]|

= |1
2
E[Rt + γQA

t (St+1, a
∗)]−Q∗(st, at) +

1

2
Xt(st, at)|

≤ |T ∗QA(st, at)− T ∗Q∗(st, at)|+ |
1

2
Xt(st, at)|

≤ γ∥QA
t −Q∗∥∞ +

1

2
∥Xt∥∞

= (
1

2
γ +

1

2
)︸ ︷︷ ︸

<1

∥Xt∥∞,

42

ADDQ: Adaptive Distributional Double Q-Learning

since the Bellman optimality operator is a γ-contraction. Subsequently, it only remains to show that

ct := |E[1Yt+1=1γ(1− βA
t+1)(Q

B
t (St+1, a

∗)−QA
t (St+1, a

∗)|Ft]|

goes to zero almost surely. This is immediate if we verify that

XBA
t (s, a) := QB

t (s, a)−QA
t (s, a)

goes to zero almost surely for all (s, a) ∈ S ×A which will be achieved by another application of Lemma F.3. We infer that

XBA
n+1(sn, an)

=XBA
n (sn, an) + αn(sn, an)

(
1Yn+1=0

(
Rn + γ

(
βB
n+1Q

B
n (Sn+1, b

∗) + (1− βB
n+1)Q

A
n (Sn+1, b

∗)
)
−QB

n (sn, an)
)

−1Yn+1=1

(
Rn + γ

(
βA
n+1Q

A
n (Sn+1, a

∗) + (1− βA
n+1)Q

B
n (Sn+1, a

∗)
)
−QA

n (sn, an)
)

)
=(1− αn(sn, an))X

BA
n (sn, an) + αn(sn, an)

(
1Yn+1=0

(
Rn + γ

(
βB
n+1Q

B
n (Sn+1, b

∗) + (1− βB
n+1)Q

A
n (Sn+1, b

∗)
))

−1Yn+1=1

(
Rn + γ

(
βA
n+1Q

A
n (Sn+1, a

∗) + (1− βA
n+1)Q

B
n (Sn+1, a

∗)
))

+1Yn+1=1Q
B
n (sn, an)− 1Yn+1=0Q

A
n (sn, an)

)
=(1− αn(sn, an))X

BA
n (sn, an) + αn(sn, an)F̃n(sn, an),

with

F̃n(sn, an) =

(
1Yn+1=0

(
Rn + γ

(
βB
n+1Q

B
n (Sn+1, b

∗) + (1− βB
n+1)Q

A
n (Sn+1, b

∗)
))

−1Yn+1=1

(
Rn + γ

(
βA
n+1Q

A
n (Sn+1, a

∗) + (1− βA
n+1)Q

B
n (Sn+1, a

∗)
))

+1Yn+1=1Q
B
n (sn, an)− 1Yn+1=0Q

A
n (sn, an)

)
.

Now, using that QB
n (sn, an), Q

A
n (sn, an), X

BA
n (sn, an), αn(sn, an) are Fn-measurable and Yn+1 is independent of Fn,

the conditional expectation satisfies

|E[F̃n(sn, an) | Fn]| =
1

2
γ|E[βB

n+1Q
B
n (Sn+1, b

∗) + (1− βB
n+1)Q

A
n (Sn+1, b

∗)

−βA
n+1Q

A
n (Sn+1, a

∗)− (1− βA
n+1)Q

B
n (Sn+1, a

∗)|Fn]|

+
1

2
|QB

n (sn, an)−QA
n (sn, an)|

≤1

2
γ
(∣∣E[βB

n+1(Q
B
n (Sn+1, b

∗)−QA
n (Sn+1, a

∗))|Fn]
∣∣

+
∣∣E[(1− βB

n+1)(Q
A
n (Sn+1, b

∗)−QB
n (Sn+1, a

∗))|Fn]
∣∣

+
∣∣E[(βB

n+1 − βA
n+1)Q

A
n (Sn+1, a

∗)|Fn]
∣∣

+
∣∣E[((1− βB

n+1)− (1− βA
n+1))Q

B
n (Sn+1, a

∗)|Fn]
∣∣)

+
1

2
∥Xn∥∞

43

ADDQ: Adaptive Distributional Double Q-Learning

Now if it holds E[QB
n (Sn+1, b

∗)|Fn] ≥ E[QA
n (Sn+1, a

∗)|Fn], by definition of a∗ we have QA
n (Sn+1, a

∗) =
maxa∈ASn+1

QA
n (Sn+1, a) ≥ QA

n (Sn+1, b
∗) and therefore∣∣E[QB

n (Sn+1, b
∗)−QA

n (Sn+1, a
∗)|Fn]

∣∣ = E[QB
n (Sn+1, b

∗)−QA
n (Sn+1, a

∗)|Fn]

≤ E[QB
n (Sn+1, b

∗)−QA
n (Sn+1, b

∗)|Fn] ≤ ∥XBA
n ∥∞.

Analogously, if E[QB
n (Sn+1, b

∗)|Fn] < E[QA
n (Sn+1, a

∗)|Fn], then we have by definition of b∗∣∣E[QB
n (Sn+1, b

∗)−QA
n (Sn+1, a

∗)|Fn]
∣∣ = E[QA

n (Sn+1, a
∗)−QB

n (Sn+1, b
∗)|Fn]

≤ E[QA
n (Sn+1, a

∗)−QB
n (Sn+1, a

∗)|Fn] ≤ ∥XBA
n ∥∞.

Similarly, by distinguishing cases, one shows that∣∣E[QA
n (Sn+1, b

∗)−QB
n (Sn+1, a

∗)|Fn]
∣∣ ≤ ∥XBA

n ∥∞ +
1

2
∥XBA

n ∥.

Combining the above yields∣∣∣E[F̃n(sn, an) | Fn]
∣∣∣ ≤ 1

2
γ(βB

n+1 + (1− βB
n+1))∥XBA

n ∥∞

+
∣∣∣γE[(βB

n+1 − βA
n+1)Q

A
n (Sn+1, a

∗)︸ ︷︷ ︸
<R̄<∞

|Fn]
∣∣∣+ ∣∣∣γE[((1− βB

n+1)− (1− βA
n+1))Q

B
n (Sn+1, a

∗)︸ ︷︷ ︸
<R̄<∞

|Fn]
∣∣∣

︸ ︷︷ ︸
:=c̃n→0, since |βA

n −βB
n | converges to 0 for n→∞ due to (iv)

.

Hence, we invoke Lemma F.3 to obtain convergence of XBA
t and thus with another application of Lemma F.3, Xt(s, a)

converges to zero which finally implies QA
t (s, a) (and also QB(s, a)) converges to Q∗(s, a) almost surely for every

(s, a) ∈ S ×A.

Since S,A are finite, for every ε > 0, there exists a random variable N > 0 such that for all t > N , we
have

max
z∈{A,B}

∥Qz
t −Q∗∥∞ < ε almost surely.

Step 2: Convergence of return distributions
Suppose the MDP has a unique optimal policy π∗. Now following (Rowland et al., 2018), we take ε to be half the minimum
action gap for the optimal action-value function Q∗ = Qπ∗

, i.e.

ε =
1

2
min
s∈S

(Qπ∗
(s, π∗(s)−max

a ̸=
Qπ∗

(s, a))

which is greater than zero by assumption (v). Hence, denoting the action of the deterministic optimal policy in a certain
state s by π∗(s), we get

max
a

QA
t (s, a) = max

a
QB

t (s, a) = π∗(s)

for all t > N. For some initial condition η̃0 ∈ FS
C,m, let now η̃k be the iterates created by a double categorical policy

evaluation algorithm for the optimal policy π∗, i.e.

η̃Ak+1(sk, ak) =(1− 1Yk+1=1αk(sk, ak))η̃k(sk, ak)

+1Yk+1=1αk(sk, ak)ΠC

(
bRk,γ#

(
βA
k+1η̃

A
k (Sk+1, π

∗(Sk+1))

+(1− βA
k+1)η̃

B
k (Sk+1, π

∗(Sk+1))
))

η̃Ak+1(s, a) =η̃Ak (s, a) for (s, a) ̸= (sk, ak).

and analogously for η̃B . Note that the appearing Yk, αk, β
A
k , β

B
k are chosen to be the same as in the control case above.

Then η̃A, η̃B converges almost surely to the unique fixed point η∗C of the projected operator ΠCT π∗
with respect to ℓ̄2 by

44

ADDQ: Adaptive Distributional Double Q-Learning

Lemma F.4. Similarly to (Rowland et al., 2018), we now proceed by a coupling argument. Denote by πA
k , π

B
k any greedy

selection rule with respect to ηAk and ηBk and Ak = {πA
k = πB

k = π∗ for all n ≥ k}. Then Ak ⊆ Ak+1 and by the above
explanation we have P(Ak)↗ 1. Additionally, let B be the event of probability 1 for which the (double) policy evaluation
algorithm converges. Now on the event B ∪Ak, we have

ℓ̄22(η̃
A
n , η

∗
C)→ 0 and ℓ̄22(η̃

B
n , η∗C)→ 0.

Then by the triangle inequality it suffices to show ℓ̄2(η
A
n , η̃

A
n)→ 0 and ℓ̄2(η

B
n , η̃Bn)→ 0 on this event too, since then the

Theorem follows by P(B ∪Ak)↗ 1.
To prove this we will again apply Lemma F.3. This time with d = 2 · |S||A|, where we identify

Xn :=

[
ℓ22(η

A
n , η̃

A
n)

ℓ22(η
B
n , η̃Bn)

]
∈ R2|S||A|.

Additionally, we expand the filtration by F̃n = σ(Fn, Yn+1) and define α̃A
n (s, a) = αn(s, a)1Yn+1=1 and α̃B

n (s, a) =
αn(s, a)1Yn+1=0. By Lemma F.5 these steps-size sequences still fulfill the Robbins-Monro conditions.
Then, writing

νA =βA
n+1η

A
n (Sn+1, π

∗(Sn+1)) + (1− βA
n+1)η

B
n (Sn+1, π

∗(Sn+1))

ν̃A =βA
n+1η̃

A
n (Sn+1, π

∗(Sn+1)) + (1− βA
n+1)η̃

B
n (Sn+1, π

∗(Sn+1))

for short, for n ≥ k, on Ak we have

ℓ22(η
A
n+1(sn, an), η̃

A
n+1(sn, an))

=(1− α̃A
n (sn, an))

2∥ηAn (sn, an)− η̃An (sn, an)∥2ℓ2
+α̃A

n (sn, an)
2∥ΠC(bRn,γ#νA)−ΠC(bRn,γ#ν̃A)∥2ℓ2

+(1− α̃A
n (sn, an))α̃

A
n (sn, an)2⟨ηAn (sn, an)− η̃An (sn, an),ΠC(bRn,γ#νA)−ΠC(bRn,γ#ν̃A)⟩ℓ2 .

This can be rewritten in terms of Lemma F.3 as

XA
n+1(sn, an) = (1− ζAn (sn, an))X

A
n (sn, an) + ζAn (sn, an)F

A
n (sn, an)

with ζAn (sn, an) = 2α̃A
n (sn, an)− α̃A

n (sn, an)
2 and

FA
n (sn, an) =

1

ζAn (sn, an)
(α̃A

n (sn, an)
2∥ΠC(bRn,γ#νA)−ΠC(bRn,γ#ν̃A)∥2ℓ2

+(1− α̃A
n (sn, an))α̃

A
n (sn, an)2⟨ηAn (sn, an)− η̃An (sn, an),

ΠC(bRn,γ#νA)−ΠC(bRn,γ#ν̃A)⟩ℓ2)

and FA
n (s, a) = 0 if (s, a) ̸= (sn, an). It is mentioned that ζAn (sn, an) > 0. Notice that,

∞∑
n=1

ζAn (sn, an) =

∞∑
n=1

(2α̃A
n (sn, an)− α̃A

n (sn, an)
2) =∞ a.s.

∞∑
n=1

ζAn (sn, an)
2 =

∞∑
n=1

4α̃A
n (sn, an)

2 − 4α̃A
n (sn, an)

3 + α̃A
n (sn, an)

2 <∞ a.s.

(7)

45

ADDQ: Adaptive Distributional Double Q-Learning

Finally we have

|FA
n (sn, an)| ≤

1

ζAn (sn, an)
(α̃A

n (sn, an)
2γℓ̄22(β

A
n+1η

A
n + (1− βA

n+1)η
B
n , βA

n+1η̃
A
n + (1− βA

n+1)η̃
B
n)

+(1− α̃A
n (sn, an))α̃

A
n (sn, an)2

√
γ|⟨ηAn − η̃An ,

βA
n η

A
n + (1− βA

n)η
B
n − βA

n η̃
A
n − (1− βA

n)η̃
B
n ⟩ℓ̄2 |)

≤ 1

ζAn (sn, an)
(α̃A

n (sn, an)
2γ max

z∈{A,B}
ℓ̄22(η

z
n, η̃

z
n)

+(1− α̃A
n (sn, an))α̃

A
n (sn, an)2

√
γ max

z∈{A,B}
ℓ̄22(η

z
n, η̃

z
n))

=
α̃A
n (sn, an)

2γ + (1− α̃A
n (sn, an))α̃

A
n (sn, an)2

√
γ

2α̃A
n (sn, an)− α̃A

n (sn, an)
2

max
z∈{A,B}

ℓ̄22(η
z
n, η̃

z
n)

≤
(2α̃A

n (sn, an)− α̃A
n (sn, an)

2)
√
γ

2α̃A
n (sn, an)− α̃A

n (sn, an)
2

max
z∈{A,B}

ℓ̄22(η
z
n, η̃

z
n)

≤√γ max
z∈{A,B}

ℓ̄22(η
z
n, η̃

z
n) =

√
γ∥Xn∥∞

where we used regularity and 1/2-homogeneity of the ℓ2 metric as described in [(Bellemare et al., 2023) Section 4.6] as well
as that ΠC is a non-expansion in ℓ2 and

|⟨u, βu+ (1− β)v⟩| = β⟨u, u⟩+ (1− β)|⟨u, v⟩| ≤ βmax(∥u∥2, ∥v∥2) + (1− β)∥u∥∥v∥
≤max(∥u∥2, ∥v∥2)

by the Cauchy-Schwarz inequality. Further, by the above the Variance also fulfills

V[FA
n (sn, an)|F̃n] = E[FA

n (sn, an)
2|Fn]− E[FA

n (sn, an)|F̃n]
2

≤ 2(
√
γ max

z∈{A,B}
ℓ̄22(η

z
n, η̃

z
n))

2

≤ 2γ sup
η,η∈FS

C,m

ℓ̄42(η, η
′) <∞.

Therefore, by Lemma F.3 we obtain convergence ℓ̄2(ηAn , η̃
A
n)→ 0 and ℓ̄2(η

B
n , η̃Bn)→ 0 on Ak. As already described above,

this results in
ℓ̄2(η

A
n , η

∗
C)→ 0 and ℓ̄2(η

B
n , η∗C)→ 0 almost surely.

Proof of Lemma F.4. Let the filtration be given by Ft = σ(ηA0 , η
B
0 , s0, a0, α0, R0, S1, Y1, β

A
1 , β

B
1 . . . , st, at, αt, Yt+1),

where (Yn)n∈N is an iid sequence of Bernoulli(0.5) random variables, independent of all other appearing random variables,
such that A is updated when Yn+1 = 1. To clarify, abbreviating

νA = βA
t+1η

A
t (St+1, At+1) + (1− βA

t+1)η
B
t (St+1, At+1)

νB = βB
t+1η

B
t (St+1, At+1) + (1− βB

t+1)η
A
t (St+1, At+1) where

At+1 ∼ π(·;St+1),

we are confronted with the updates

ηAt+1(s, a) = ηAt (s, a) + αt(s, a)1Yt+1=1(ΠC(bRt,γ#νA)− ηAt (s, a))

ηBt+1(s, a) = ηBt (s, a) + αt(s, a)1Yt+1=0(ΠC(bRt,γ#νB)− ηBt (s, a)).

As in the proof above, define α̃A
n (s, a) = αn(s, a)1Yn+1=1 and α̃B

n (s, a) = αn(s, a)1Yn+1=0. By Lemma F.5 these steps-
size sequences still fulfill the Robbins-Monro conditions. Also note that as in step 2 of the proof of Theorem F.2, Yt+1 is

46

ADDQ: Adaptive Distributional Double Q-Learning

Ft-measurable and hence so is α̃A/B
t . In order to align this with Lemma F.3, we rewrite

XA
t+1(s, a) = ℓ22(η

A
t+1(s, a), ηC(s, a))

=(1− α̃A
t (s, a))

2∥ηAt (s, a)− ηC(s, a)∥2ℓ2
+α̃A

t (s, a)
2∥ΠC(bRt,γ#νA)− ηC(s, a)∥2ℓ2

+(1− α̃A
t (s, a))α̃

A
t (s, a)2⟨ηAt (s, a)− ηC(s, a),ΠC(bRt,γ#νA)− ηC(s, a)⟩ℓ2

=(1− ζAt (s, a))XA
t (s, a) + ζAt (s, a)FA

t (s, a)

with ζAt (s, a) = 2α̃A
t (s, a)− α̃A

t (s, a)
2,

Xt :=

[
ℓ22(η

A
t , ηC)

ℓ22(η
B
t , ηC)

]
∈ R2|S||A|

and

FA
t (s, a) =

1

ζAt (s, a)
1α̃A

t (s,a)>0(α̃
A
t (s, a)

2ℓ22(ΠC(bRt,γ#νA), ηC(s, a))

+(1− α̃A
t (s, a))α̃

A
t (s, a)2⟨ηAt (s, a)− ηC(s, a),ΠC(bRt,γ#νA)− ηC(s, a)⟩ℓ2).

As in Equation (7), the sequence ζAt (s, a) fulfills the Robbins-Monro condition. Additionally, note that there exists K > 0,
such that ℓ22(ΠC(bRt,γ#νA), ηC(s, a)) < K independent of s, a, t. Further, observe that

ct := max
z∈{A,B}

1

ζzt (s, a)
1α̃z

t (s,a)>0α̃
z
t (s, a)

2K → 0 for t→∞ almost surely.

We use that ΠC is mean-preserving [(Lyle et al., 2019) Proposition 1] for discrete distributions supported within [θ1, θm],
which is satisfied by bRt,γ#νA, due to Assumption (ii) and νA ∈ Fm. Together with the fact that ΠCT π is a

√
γ-contraction

with respect to ℓ̄2 and the Cauchy-Schwarz inequality, we have

|E[⟨ηAt (s, a)− ηC(s, a),ΠC(bRt,γ#νA)− ηC(s, a)⟩ℓ2 |Ft]|
=|⟨ηAt (s, a)− ηC(s, a),E[ΠC(bRt,γ#νA)|Ft]− ηC(s, a)⟩ℓ2 |
=|⟨ηAt (s, a)− ηC(s, a),E[bRt,γ#νA)|Ft]− ηC(s, a)⟩ℓ2 |
=|⟨ηAt (s, a)− ηC(s, a),ΠCT π(βA

t+1η
A
t + (1− βA

t+1)η
B
t)(s, a)− (ΠCT πηC)(s, a)⟩ℓ2 |

≤√γ|⟨ηAt − ηC , (β
A
t+1η

A
t + (1− βA

t+1)η
B
t)− ηC⟩ℓ̄2 |

≤√γ(βA
t+1ℓ̄

2
2(η

A
t , ηC) + (1− βA

t+1)|⟨ηAt − ηC , η
B
t − ηC⟩ℓ̄2 |)

≤√γ(βA
t+1 max

z∈{A,B}
ℓ̄22(η

z
t , ηC) + (1− βA

t+1)∥ηAt − ηC∥ℓ̄2∥η
B
t − ηC∥ℓ̄2 |)

≤√γ max
z∈{A,B}

ℓ̄22(η
z
t , ηC)

=
√
γ∥Xt∥∞.

In total, this yields

|E[FA
t (s, a)|Ft]|

≤ 1

ζAt (s, a)
1α̃A

t (s,a)>0α̃
A
t (s, a)

2K +
1

ζAt (s, a)
1α̃A

t (s,a)>0(1− α̃A
t (s, a))α̃

A
t (s, a)2

√
γ∥Xt∥∞.

≤ ct +
√
γ∥Xt∥∞.

Since ℓ̄2(η, η
′) < K for every η, η′ ∈ FS×A

C,m some K > 0, the conditional variance V[FA
t |Ft] can be bounded uniformly

in t.
Therefore, the requirements of Lemma F.3 are fulfilled, and its application yields XA

t (s, a) = ℓ22(η
A
t (s, a), ηC(s, a))→ 0

and XB
t (s, a) = ℓ22(η

B
t (s, a), ηC(s, a))→ 0. Hence, also ηAt , η

B
t converge to ηC with respect to ℓ̄2.

47

