
Loss Landscape Dependent Self-Adjusting Learning
Rates in Decentralized Stochastic Gradient Descent

Anonymous Author(s)
Affiliation
Address
email

Abstract

Distributed Deep Learning (DDL) is essential for large-scale Deep Learning (DL)1

training. Synchronous Stochastic Gradient Descent (SSGD) 1 is the de facto DDL2

optimization method. Using a sufficiently large batch size is critical to achieving3

DDL runtime speedup. In a large batch setting, the learning rate must be increased4

to compensate for the reduced number of parameter updates. However, a large5

learning rate may harm convergence in SSGD and training can easily diverge.6

Recently, Decentralized Parallel SGD (DPSGD) has been proposed to improve7

distributed training speed. In this paper, we find that DPSGD not only has a runtime8

benefit, but also a significant convergence benefit over SSGD in the large batch9

setting. Based on a detailed analysis of DPSGD learning dynamics, we find that10

DPSGD introduces additional landscape-dependent noise that automatically adjusts11

the effective learning rate to improve convergence. In addition, we theoretically12

show that this noise smooths the loss landscape, hence allowing a larger learning13

rate. This result also implies that DPSGD can greatly simplify learning rate tuning14

for tasks that require careful learning rate warmup (e.g, Attention-Based Language15

Modeling). We conduct extensive studies over 18 state-of-the-art DL models/tasks16

and demonstrate that DPSGD often converges in cases where SSGD diverges when17

training is sensitive to large learning rates. Our findings are consistent across three18

different application domains: Computer Vision (CIFAR10 and ImageNet-1K),19

Automatic Speech Recognition (SWB300 and SWB2000) and Natural Language20

Processing (Wikitext-103); three different types of neural network models: Convo-21

lutional Neural Networks, Long Short-Term Memory Recurrent Neural Networks22

and Attention-based Transformer Models; and two optimizers: SGD and Adam.23

1 Introduction24

Deep Learning (DL) has revolutionized AI across application domains: Computer Vision (CV)25

[29, 14], Natural Language Processing (NLP) [50], and Automatic Speech Recognition (ASR) [15].26

Stochastic Gradient Descent (SGD) is the fundamental optimization method used in DL training.27

Due to massive computational requirements, Distributed Deep Learning (DDL) is the preferred28

mechanism to train large scale Deep Learning (DL) tasks.29

The degree of parallelism in a DDL system is dictated by batch size: the larger the batch size, the more30

parallelism and higher speedup can be expected. However, large batches require a larger learning31

rate and overall they may negatively affect model accuracy because (1) large batch training usually32

converges to sharp minima which do not generalize well [24], and (2) large learning rates may violate33

the conditions (i.e., the learning rate should be less than the reciprocal of the smoothness parameter)34

required for convergence in nonconvex optimization theory [11]. Although training longer with large35

batches can lead to better generalization [18], doing so gives up some or all of the speedup we seek.36

1In the literature, SSGD is also called "Centralized Synchronized Stochastic Gradient Descent". In this paper,
we use these two terms interchangeably.

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

(a) VGG11-BN, Ima-
geNet, BS8192 (b) LSTM, SWB300,

BS8192 (c) GPT-2, Wikitext-
103, BS256

Figure 1: SSGD (red) does not converge when the learning rate needs to be large (e.g., large batch
setting or a short warmup period). Figure 1a shows model accuracy (higher is better), while Figure 1b
and Figure 1c show heldout loss (lower is better). Injecting Gaussian noise (blue) does not enable
SSGD to escape poor local minima. In contrast, DPSGD (green) converges using the same hyper-
parameter setup. The detailed task descriptions and training recipes are given in Sections 4.3 and 4.5.
BS denotes Batch-Size.

Through meticulous hyper-parameter design (e.g., learning rate schedules) tailored to each specific37

task, SSGD-based DDL systems have enabled large batch training and shortened training time for38

some challenging CV tasks [12, 54] and NLP tasks [55] from weeks to hours or less. However, it is39

observed that SSGD with large batch size leads to large training loss and inferior model quality for40

ASR tasks [58], as illustrated in Figure 1b (red curve). Here, we found for other types of tasks (e.g.41

CV and NLP) and DL models, large batch SSGD has the same problem (Figures 1a and 1c).42

Several SSGD variants have been proposed to address large batch training problems: (1) local43

SGD, i.e., SGD-based algorithms with periodic averaging, where learners conduct global averaging44

after multiple steps of gradient-based updates [13, 36, 64]; (2) SSGD based algorithm with second-45

order statistics, including adaptive gradient algorithms [55, 54] and algorithms for exploring the46

information from the gradient covariance matrix [51]; and (3) SSGD-based algorithms on a smoothed47

landscape [35, 9], in which specifically designed loss landscape smoothing algorithms are used. All48

of these approaches require global synchronization and/or global statistics collection, which makes49

them vulnerable to stragglers.50

Decentralized algorithms, such as Decentralized Parallel Stochastic Gradient Descent (DPSGD) [33],51

are surrogates for SSGD in machine learning. Unlike SSGD, where each learner updates its weights52

by taking a global average of all learners’ weights, DPSGD updates each learner’s weights by taking53

a partial average (i.e., across a subset of neighboring learners). In contrast to the existing variants54

of SSGD, DPSGD requires no additional calculation and no global synchronization. Traditionally55

DPSGD is a second-choice to SSGD, and is used only when the underlying computational resources56

are less homogeneous (i.e., a high latency network or computational devices running at different57

speeds). Little thought has been given to the question of whether there are any convergence benefits58

for DPSGD, especially in the large batch setting.59

In this paper, we find that DPSGD [33] greatly improves large batch training performance, as60

illustrated by the green curves in Figure 1. Since DPSGD only uses a partial average of neighboring61

learners’ weights, each learner’s weights differ from the weights of other learners. The differing62

weights between learners are an additional source of noise in DPSGD training. The key difference63

between SSGD, SSGD with Gaussian noise (denoted as "SSGD⇤" in this paper) and DPSGD is the64

source of noise during the update, and this noise directly affects performance in deep learning. This65

naturally motivates us to ask Why does decentralized training outperform synchronous training in the66

large batch setting? More specifically, we try to understand whether these performance differences67

are caused by differences in noise. We answer this question from both theoretical and empirical68

perspectives. Our contributions are:69

• We analyze the dynamics of DDL algorithms, including both SSGD and DPSGD. We show,70

both theoretically and empirically, that the intrinsic noise in DPSGD automatically adjusts71

the effective learning rate when the batch size is large to help convergence. Note that the72

intrinsic noise comes completely for free in the DPSGD algorithm, and we show that it has73

2

a loss-landscape smoothing effect. Guided by our theoretical results, we also investigate74

training tasks where careful learning rate warmup schemes are required (e.g., Transformer75

models) [56, 42, 52] and find that DPSGD can work with a much shorter learning rate76

warmup period thus simplifying hyper-parameter tuning.77

• We conduct extensive empirical studies of 18 CV, ASR, and NLP tasks with state-of-the-art78

CNN, LSTM, and Transformer models. Our experimental results demonstrate that DPSGD79

consistently outperforms SSGD, across application domains and Neural Network (NN)80

architectures in the large batch setting, without any hyper-parameter tuning. To the best of81

our knowledge, DPSGD is the only generic algorithm that can improve SSGD large batch82

training and shorten learning rate warmup period for this many models/tasks. Furthermore,83

unlike other solutions, DPSGD does not require global synchronization.84

The remainder of this paper is organized as follows. Section 2 details the problem formulation85

and learning dynamics analysis of SSGD, SSGD⇤, and DPSGD; Section 3 and Section 4 detail the86

empirical results; Section 5 discusses related work; and Section 6 concludes the paper.87

2 Analysis of stochastic learning dynamics in SSGD and DPSGD88

We first formulate the dynamics of an SGD based learning algorithm with multiple (n > 1) learners89

indexed by j = 1, 2, 3, ...n following the same theoretical framework established for a single90

learner [3]. At time (iteration) t, each learner has its own weight vector ~wj(t), and the average91

weight vector ~wa(t) is defined as: ~wa(t) ⌘ n
�1

Pn
j=1 ~wj(t). Each learner j updates its weight vector92

according to the cross-entropy loss function L
µj(t)(~w) for minibatch µj(t) that is assigned to it at93

time t. The size of the local minibatch is B, and the overall batch size for all learners is nB. Two94

multi-learner algorithms, SSGD and DPSGD, are described below.95

(1) Synchronous Stochastic Gradient Descent (SSGD): In the synchronous algorithm, each learner96

j 2 [1, n] starts from the average weight vector ~wa and moves along the gradient of its local loss97

function L
µj(t) evaluated at the average weight ~wa:98

~wj(t+ 1) = ~wa(t)� ↵rL
µj(t)(~wa(t)), (1)

where ↵ is the learning rate.99

(2) Decentralized Parallel SGD (DPSGD): In the DPSGD algorithm [33], each learner j computes100

the gradient at its own local weight ~wj(t). The learning dynamics follows:101

~wj(t+ 1) = ~ws,j(t)� ↵rL
µj(t)(~wj(t)). (2)

where ~ws,j(t) is the starting weight set to be the average weight of a subset of “neighboring" learners102

of learner-j, which corresponds to the non-zero entries in the mixing matrix 2 defined in [33] (note103

that ~ws,j = ~wa if all learners are included as neighbors).104

By averaging over all learners, the learning dynamics for the average weight ~wa for both SSGD and105

DPSGD can be written formally the same way as:106

~wa(t+ 1) = ~wa(t)� ↵~ga, (3)
where ~ga = n

�1
Pn

j=1 ~gj is the average gradient and ~gj is the gradient from learner-j. The difference107

between SSGD and DPSGD is the weight at which ~gj is computed: ~gj ⌘ rL
µj(t)(~wa(t)) is108

computed at ~wa for SSGD; ~gj ⌘ rL
µj(t)(~wj(t)) is computed at ~wj for DPSGD. The deviation of109

the weight for learner-j from the average weight is defined as � ~wj ⌘ ~wj � ~wa. It is easy to see that110

� ~wj(t+ 1) = ~ws,j(t)� ~wa(t)� ↵[~gj(t)� ~ga(t)], which depends on gradients at different points on111

the loss landscape.112

2.1 Understanding DPSGD from the Optimization Perspective113

The main difference between DPSGD and SSGD is that the stochastic gradients are calculated at114

different weights in DPSGD, while SSGD’s stochastic gradient is calculated at the same weight.115

Intuitively, DPSGD explores more space than SSGD, which may help explain the empirical success116

of DPSGD. We formalize this intuition into the following theorem, which shows that DPSGD is117

optimizing a smoother landscape than SSGD.118

2This is also called the “gossip matrix” in the literature, e.g., [27].

3

Theorem 1. Denote Ft by the filtration generated by all the random variables until the t-th iteration.119

Suppose n is large enough that
��� 1

n

Pn
i=1 rL

µi(t)(~wi(t))� 1
n�1

Pn�1
i=1 rL

µi(t)(~wi(t))
���  ✏120

almost surely, and assume � ~wi(t)|Ft�1
i.i.d.⇠ N (0,�2

wI) with i = 1, . . . , n � 1. Then from the121

(t � 1)-th iteration to t-th iteration, SSGD and DPSGD are doing one step of stochastic gradient122

descent on two different functions L(~w) and L̃(~w) ⌘ E� ~wi(t) [L(~w + � ~wi(t)) | Ft�1], respectively.123

The DPSGD loss L̃(~w) is smoother than the SSGD loss L(~w) if L(~w) is Lipschitz continuous.124

Remark: The proof of Theorem 1 can be found in Appendix A. Here, we briefly mention its125

implications. A function f is defined as ls-smooth if krf(x)�rf(y)k  lskx� yk for any x, y,126

where ls is the smoothness parameter of f . The landscape of the function f is smoother when ls127

is smaller. Assume L(~w) is G-Lipschitz continuous, i.e., |L(~w) � L(~v)|  Gk~w � ~vk, then by128

using Lemma 2 of [39], we know that the DPSGD landscape L̃(~w) is 2G
�w

-smooth. According to the129

convergence theory of SGD and DPSGD for nonconvex functions [11, 33, 12], the largest learning130

rate one can choose to guarantee convergence is 1
ls

. For SSGD with the original loss landscape L, ls131

can be very large (even close to +1 due to the nonsmooth nature of the ReLU activation) while ls of132

the smoothed loss function L̃ for DPSGD is much smaller. This explains why we can use a larger133

learning rate in DPSGD as the landscape DPSGD sees has a smaller gradient-Lipschitz constant ls134

than that in SSGD.135

It is important to note that ls of the smoothed loss function L̃ in DPSGD depends on the standard136

deviation �w of weights from different learners. Since �w depends on the loss landscape and changes137

with time (see Fig. 2(b)), the smoothing effect in DPSGD is self-adjusting – it is strong in the138

initial stage of training when the loss landscape is rough and becomes weaker as training progresses139

when the loss landscape becomes smoother. Our theoretical result suggests that this self-adjusting140

smoothing effect is responsible for DPSGD’s convergence with a large learning rate in the large batch141

size setting. Next, we elaborate on this insight and verify it in a simple network for classification142

using the MNIST dataset.143

Note that the Theorem 1 is only a one-step analysis. People may be interested in extending the144

analysis to trajectory-based analysis. We provide a sketch here. If we consider the perturbed objective145

L̃(w) = E� [L(w + �)], where � comes from the intrinsic noise of DPSGD, then we can utilize the146

descent lemma as shown in [11] to prove that DPSGD can converge to a stationary point of L̃(w) in147

polynomial time. However, without the inherent noise of DPSGD, the landscape is rough and that is148

the reason why SSGD diverges. SSGD may not be able to converge to the stationary point of L(w)149

(since the large learning rate in large batch setting makes the descent lemma not applicable in this150

case) or L̃(w) (since there is no noise and landscape-smoothing effect in SSGD, so SSGD does not151

optimize the smoothed landscape). This is also consistent with our empirical evidence.152

2.2 DPSGD Introduces a Landscape-Dependent Self-Adjusting Learning Rate that Helps153

Convergence154

To understand the implication of the smoothing effect in DPSGD (Theorem 1) for learning dynamics,155

we define an effective learning rate ↵e ⌘ ↵~ga · ~g/||~g||2 by projecting the weight displacement vector156

�~wa ⌘ ↵~ga onto the direction of the gradient ~g ⌘ rL(~wa) of the original loss function L at ~wa.157

The learning dynamics, Eq. 3, can be rewritten as:158

~wa(t+ 1) = ~wa(t)� ↵e~g + ~⌘?, (4)

where the “noise” term ~⌘? ⌘ �↵~ga + ↵e~g describes the random weight dynamics in directions159

orthogonal to ~g. The noise term has zero mean h~⌘?iµ = 0 and the noise strength is characterized by160

its variance �(t) ⌘ ||~⌘?||2.161

The effective learning rate ↵e is related to the noise strength: ↵2
e = (↵2||~ga||2 ��)/||~g||2, which162

indicates that a higher noise strength � leads to a lower effective learning rate ↵e. The DPSGD noise163

�DP is larger than the SSGD noise �S by an additional noise term �(2)(> 0) that originates from164

the difference of local weights (~wj) from their mean (~wa): �DP = �S +�(2), see Appendix B for165

4

details. By expanding �(2) w.r.t. � ~wj , we obtain the average �(2) over minibatch ensemble {µ}:166

h�(2)iµ ⌘ ↵
2h||n�1

nX

j=1

[rL
µj (~wj)�rL

µj (~wa)]||2iµ

⇡ ↵
2
X

k,l,l0

HklHkl0Cll0 ,

(5)

where Hkl = r2
klL is the Hessian matrix of the loss function and Cll0 = n

�2
Pn

j=1 �wj,l�wj,l0 is167

the weight covariance matrix. From Eq. 5 and the dependence of ↵e on �, it is clear that the effective168

learning rate in DPSGD depends directly on the loss landscape (H) and indirectly via the weight169

variance, �2
w = Tr(C), which decreases as the loss landscape becomes smooth (see Fig. 2(b)).170

It is important to stress that the noise ~⌘? in Eq.4 is not an artificially added noise. It is intrinsic to171

the use of minibatches (random subsampling) in all SGD-based algorithms (including SSGD and172

DPSGD). The noise is increased in DPSGD due to the weight difference among different learners173

(� ~wj). The noise strength � varies in weight space via its dependence on the loss landscape, as174

explicitly shown in Eq. 5. However, besides its landscape dependence, SGD noise scales inversely175

with the minibatch size B [3]. With n synchronized learners, the noise in SSGD scales as 1/(nB),176

which is too small to be effective for a large batch size nB. A main finding of our paper is that the177

additional landscape-dependent noise �(2) in DPSGD can make up for the small SSGD noise when178

nB is large and help enhance convergence in the large batch setting.179

The landscape dependent smoothing effect in DPSGD (shown in Sec. 2.1) indicates that ↵e in DPSGD180

is reduced at the beginning of training when the landscape is rough. To demonstrate effects of the181

landscape-dependent self-adjusting learning rates, we did detailed analysis in numerical experiments182

using the MNIST dataset. In this experiment, we used n = 5 learners with each learner a fully183

connected network with two hidden layers (50 units per layer) and we used ~ws,j = ~wa for DPSGD.184

We focused on the large batch setting using nB = 2000 and a large learning rate ↵ = 1. As shown185

in Fig. 2(a), DPSGD converges to a solution with a low loss (2.1% test error), but SSGD fails to186

converge.187

0 500 1000 1500 2000

10
-1

10
1

0.5

1

0 500 1000 1500 2000
10

-2

10
1

(a) (b)

Figure 2: (a) Comparison of different multi-learner algorithms, DPSGD (green), SSGD (red), and
SSGD⇤ (blue) for a large learning rate ↵ = 1. The adaptive learning rate allows DPSGD to converge
while SSGD fails to converge. A fine-tuned SSGD⇤ also converges but to an inferior solution. (b) The
effective learning rate for DPSGD ↵e(DPSGD) is self-adaptive to the landscape – it is reduced in
the beginning of training when gradients are large and recovers to ⇠ ↵ when the gradients are small.
The weight variance �

2
w(t) has the opposite landscape-dependence as ↵e and decreases with training

time.

To understand the convergence in DPSGD, we computed the effective learning rate (↵e) and the188

weight variance (�2
w) during training. As shown in Fig. 2(b) (upper panel), the effective learning rate189

↵e is reduced in DPSGD during early training (0  t  700). This reduction of ↵e is caused by the190

stronger noise �(2) in DPSGD (see Fig. 4 in Appendix B), which is essential for convergence when191

gradients are large in the beginning of the training process. In the later stage of the training process192

when gradients are smaller, the landscape-dependent DPSGD noise decreases and ↵e automatically193

increases back to be ⇡ ↵ to allow fast convergence. From Eq. 5, the landscape-dependent noise in194

5

AlexNet VGG VGG-BN
bs=256 Baseline 56.31/79.05 69.02/88.66 70.65/89.92
lr=1x lr=0.01 lr=0.1
bs=2048 SSGD 54.29/77.43 67.67/87.91 70.36/89.58
lr=8x DPSGD 53.71/76.91 67.28/87.58 69.76/89.31
bs=4096 SSGD 0.10/0.50 0.10/0.50 65.39/86.51
lr=16x DPSGD 52.53/76.01 66.44/87.20 68.86/88.82
bs=8192 SSGD 0.10/0.50 0.10/0.50 0.10/0.50
lr=32x DPSGD 49.01/73.00 65.00/86.11 63.55/85.43

Table 1: ImageNet-1K Top-1/Top-5 model accuracy (%) comparison for batch size 2048, 4096 and
8192. All experiments are conducted on 16 GPUs (learners), with batch size per GPU 128, 256 and
512 respectively. Bold text represents the best model accuracy achieved given the specific batch size
and learning rate. The batch size 256 baseline is presented for reference. bs stands for batch-size, lr
stands for learning rate. Baseline lr is set to 0.01 for AlexNet and VGG11, 0.1 for the other models.
In the large batch setting, we use learning rate warmup and linear scaling as prescribed in [12].
For rough loss landscape like AlexNet and VGG, SSGD diverges when batch size is large whereas
DPSGD converges.

DPSGD depends on the weight variance. As shown in Fig. 2(b) (lower panel), the weight variance195

�
2
w has a time-dependent trend that is opposite to ↵e: �2

w is large in the beginning of training when196

the landscape is rough and decreases as training progresses and the landscape becomes smoother.197

To show the importance of the landscape-dependent weight variance, we used SSGD⇤, which injects198

a Gaussian noise with a constant variance to weights in SSGD, i.e., by setting � ~wj
i.i.d.⇠ N (0,�2

0I)199

with a constant �2
0 . We found that SSGD⇤ fails to converge for most choices of noise strength �

2
0 .200

Only by fine tuning �
2
0 can SSGD⇤ converge, but to an inferior solution with much higher loss and201

test error (5.7%) as shown in Fig. 2(a).202

Finally, in addition to helping convergence, we found that the landscape-dependent noise in DPSGD203

can also help find flat minima with better generalization in the large batch setting (see Appendix C204

for details).205

3 Experimental Methodology206

We implemented SSGD and DPSGD using PyTorch, OpenMPI, and NVidia NCCL. We ran exper-207

iments on a cluster of two 8-V100-GPU x86 servers. For CV tasks, we evaluated on CIFAR-10208

(50,000 training samples, 178MB) and ImageNet-1K (1.2 million training samples, 140GB). For209

ASR tasks, we evaluated on SWB-300 (300 hours training data, 4,000,000 samples, 30GB) and210

SWB-2000 (2000 hours training data, 30,000,000 samples, 216GB). For the NLP task, we evaluated211

on Wikitext-103(103 million tokens, 180MB). In all, we evaluate 18 state-of-the-art NN models: 15212

CNN models, 2 6-layer bi-directional LSTM models, and 1 16-layer GPT-2 transformer model. We213

summarize the model sizes and training times in Table 6 of Appendix D. Also refer to Appendix D for214

hardware configuration, software implementation, dataset and Neural Network (NN) model details.215

4 Experimental Results216

All the large batch experiments are conducted on 16 GPUs (learners). Batches are evenly distributed217

among learners, e.g., with sixteen learners, each learner uses a local batch size that is one sixteenth218

the overall batch size. A learner randomly picks a neighbor with which to exchange weights in each219

DPSGD iteration [59].220

4.1 SSGD and DPSGD Comparison on CV Tasks (CIFAR-10 and ImageNet-1K)221

On ImageNet-1K we test 6 CNN models – AlexNet, VGG11, VGG11-BN, ResNet-50, ResNext-50222

and DenseNet-161. Among them, AlexNet and VGG have rougher loss landscapes and can only223

work with smaller learning rates, while VGG11-BN, ResNet-50, ResNext-50, and DenseNet-161224

have smoother loss landscapes thanks to the use of BatchNorm or Residual Connections, and thus225

can work with larger learning rates. We use the same baseline training recipe prescribed in [4]:226

6

SWB-300
bs2048 bs4096 bs8192

SSGD 1.58 10.37 10.37
DPSGD 1.59 1.60 1.66

SWB-2000
bs2048 bs4096 bs8192

SSGD 1.46 1.46 10.37
DPSGD 1.45 1.47 1.47

Table 2: Heldout loss comparison for SSGD and
DPSGD, evaluated on SWB-300 and SWB-2000.
There are 32000 classes in this task, a held-out
loss 10.37 (i.e. ln32000) indicates a complete diver-
gence. bs stands for batch size.

Figure 3: SSGD diverges when the learning rate
warmup period is 75 iterations while DPSGD con-
verges with a warmup period as short as 25 itera-
tions. (Wikitext103, GPT-2)

batch size 256, initial learning rate 0.01 for AlexNet and VGG-11 and 0.1 for the other 4 models,227

learning rate anneals by 0.1 every 30 epochs, 100 epochs in total. To study the model performance228

in the large batch setting, we follow the large batch size learning rate schedule prescribed in [12]:229

learning rate warmup for the first 5 epochs and then learning rate linear scaling w.r.t batch size.230

For example, in the AlexNet batch-size 8192 experiment, the learning rate is gradually warmed-up231

from 0.01 to 0.32 in the first 5 epochs, annealed to 0.032 from epoch 31 to epoch 60, annealed to232

0.0032 from epoch 61 to epoch 90, and annealed to 0.00032 from epoch 91 to epoch 100. SSGD and233

DPSGD achieve comparable model accuracy in the large batch setting (see Table 10 in Appendix E.6).234

Most noticeably, when batch-size increases to 8192, SSGD diverges with AlexNet, VGG11, and235

VGG11-BN whereas DPSGD converges as shown in Table 1. Figure 9 in Appendix E.6 details the236

model accuracy progression versus epochs in each setting. Please see our detailed analysis of DPSGD237

vs SSGD on CIFAR-10 tasks throughout Appendix E.1 to Appendix E.5 where we document the238

DPSGD and SSGD comparison and loss landscape visualization (contour 2D projection and Hessian239

2D projection), which show that DPSGD usually leads to much flatter optima than SSGD, and thus240

better generalization in the large batch setting.241

Summary For rough loss landscapes like AlexNet and VGG, DPSGD converges whereas SSGD242

diverges in the large batch setting.243

4.2 SSGD and DPSGD Comparison on ASR tasks244

Unlike CV tasks where CNNs and their residual connection variants are the dominant models, ASR245

tasks overwhelmingly adopt RNN/LSTM models that capture sequence features. Furthermore, Batch-246

Norm is known not to work well in RNN/LSTM tasks [31]. Finally, there are over 32,000 different247

classes with wildy uneven distribution in our ASR tasks due to the Zipfian characteristics of natural248

language. All in all, ASR tasks present a much more challenging loss landscape than CV tasks to249

optimize over.250

For the SWB-300 and SWB-2000 tasks, we follow the same learning rate schedule proposed in [57]:251

we use learning rate 0.1 for baseline batch size 256, and linearly warmup the learning rate w.r.t the252

baseline batch size for the first 10 epochs before annealing the learning rate by 1p
2

for the remaining253

10 epochs. For example, when using a batch size 2048, we linearly warmup the learning rate to 0.8254

by the end of the 10th epoch before annealing. Table 2 illustrates heldout loss for SWB-300 and255

SWB-2000. In the SWB-300 task, SSGD diverges beyond batch size 2048 and DPSGD converges256

well until batch size 8192. In the SWB-2000 task, SSGD diverges beyond batch size 4096 and257

DPSGD converges well until batch size 8192. Figure 10 in Appendix E.7 details the heldout loss258

progression versus epochs.259

Summary For ASR tasks, SSGD diverges whereas DPSGD converges to baseline model accuracy in260

the large batch setting.261

4.3 Noise-injection and Learning Rate Tuning262

In 6 out of 17 studied CV and ASR tasks, a large batch setting leads to a complete divergence in263

SSGD: EfficientNet-B0, AlexNet, VGG11, VGG11-BN, SWB-300 and SWB-2000. As discussed in264

7

AlexNet VGG11 VGG11-BN

lr⇤=32x SSGD 0.10/0.50 0.10/0.50 0.10/0.50
DPSGD 49.010/73.00 65.004/86.11 63.546/85.43

lr=16x SSGD 0.10/0.50 0.10/0.50 70.11/89.47
DPSGD 49.26/73.14 62.046/83.98 69.108/89.07

lr=8x SSGD 46.40/70.25 45.32/70.61 69.54/89.22
DPSGD 47.78/71.89 56.52/79.92 68.98/88.78

lr=4x SSGD 41.77/66.44 50.20/74.83 68.61/88.57
DPSGD 42.18/66.96 48.52/73.33 67.98/88.22

Table 3: ImageNet-1K learning rate tuning for AlexNet VGG11, VGG11-BN with batch-size 8192.
Bold text in each column indicates the best top-1/top-5 accuracy achieved across different learning
rate and optimization method configurations for the corresponding batch size. DPSGD consistently
delivers the most accurate models. *The learning rate 1x used here corresponds to batch size 256
baseline learning rate, and we still adopt the same learning rate warmup, scaling and annealing
schedule. Thus 32x refers to linear learning rate scaling when batch size is 8192. By reducing learning
rate to 16x, 8x and 4x, SSGD can escape early traps but still lags behind compared to DPSGD in
most cases.

SWB-300 SWB-300 SWB-2000
(bs4096) (bs8192) (bs 8192)

lr⇤=1.6/3.2 SSGD 10.37 10.37 10.37
DPSGD 1.60 1.66 1.47

lr=0.8/1.6 SSGD 10.37 10.37 10.37
DPSGD 1.65 1.73 1.48

lr=0.4/0.8 SSGD 1.76 10.37 1.51
DPSGD 1.77 1.80 1.52

lr=0.2/0.4 SSGD 1.92 2.05 1.58
DPSGD 1.94 2.00 1.59

Table 4: Decreasing learning rate for SWB-300 and SWB-2000 (bs stands for batch-size). Bold text in
each column indicates the best held-out loss achieved across different learning rate and optimization
method configurations for the corresponding batch size. DPSGD consistently delivers the most
accurate models. *learning rate 1.6 is used for bs4096 and learning rate 3.2 is used for bs8192. We
still adopt the same learning rate warmup, scaling and annealing schedule (baseline learning rate is
0.1 for batch size 256).

Section 2, the intrinsic landscape-dependent noise in DPSGD effectively helps escape early traps (e.g.,265

saddle points) and improves training by automatically adjusting the learning rate. In this section, we266

demonstrate these facts by systematically adding Gaussian noise (the same as the SSGD
⇤ algorithm267

in Section 2) and decreasing the learning rate. We find that SSGD might escape early traps but still268

results in a much inferior model compared to DPSGD.269

Noise-injection In Figure 1, we systematically explore Gaussian noise injection with mean 0 and270

standard deviation (std) ranging from 10 to 0.00001 via binary search (i.e. roughly 20 configurations271

for each task). We found in the vast majority of the setups, noise-injection cannot escape early272

traps. In EfficientNet-B0, only when std is set to 0.04, does the model start to converge, but to a273

very low accuracy (test accuracy 22.15% in SSGD vs 91.13% in DPSGD). In the SWB-300 case,274

when std is 0.01, SSGD shows an early sign of converging for the first 3 epochs before it starts to275

diverge. In the AlexNet, VGG11, VGG11-BN, and SWB-2000 cases, we didn’t find any configuration276

that can escape early traps. Figure 1 characterizes our best-effort Gaussian noise tuning and its277

comparison against SSGD and DPSGD. A plausible explanation is that Gaussian noise injection278

escapes saddle points very slowly, since Gaussian noise is isotropic and the complexity for finding279

local minima is dimension-dependent [10]. Deep Neural Networks are usually over-parameterized280

(i.e., high-dimensional), so it may take a long time to escape local traps. In contrast, the heightened281

landscape-dependent noise in DPSGD is anisotropic [3, 8] and can drive the system to escape in the282

right directions.283

Learning Rate Tuning To make otherwise-divergent SSGD training converge in the large batch284

setting, we systematically tune down the learning rates. Table 3 and Table 4 compare the model quality285

trained by SSGD and DPSGD using smaller learning rates in the large batch setting, for ImageNet and286

8

ASR tasks. Table 9 in Appendix E.3 illustrates the similar learning rate tuning effort for CIFAR-10287

tasks. As we can see, by using a smaller learning rate, SSGD can escape early traps and converge,288

however it consistently lags behind DPSGD in the large batch setting. Morever, DPSGD does not289

depend on such an exhaustive learning rate tuning to achieve convergence. DPSGD can simply follow290

the learning rate warm-up and linear scaling rules [12] whereas SSGD requires much more stringent291

learning rate tuning. This implies DPSGD practitioners enjoy a much larger degree of freedom when292

it comes to hyper-parameter tuning in the large batch setting than the SSGD practitioners.293

Summary By systematically introducing landscape-independent noise and reducing the learning rate,294

SSGD could escape early traps (e.g., saddle points), but results in much inferior models compared to295

DPSGD in the large batch setting.296

4.4 DPSGD and SSGD Runtime Comparison297

In Appendix F, we detail runtime comparison between DPSGD and SSGD and demonstrate DPSGD298

consistently runs faster than SSGD. We also compare DPSGD with LAMB[55], a state-of-the-art299

optimizer specifically designed for synchronous large-batch training, demonstrating that DPSGD can300

avoid straggler problems in distributed training.301

4.5 SSGD and DPSGD Comparison on NLP tasks (Wikitext-103)302

For NLP tasks such as Masked Language Modeling (MLM) [6, 50], a careful learning rate warmup303

scheme needs to be designed so that learning rate grows from 0 to a desired learning rate gradually.304

Too short a warmup period often leads to divergence and practitioners need to restart training, which305

wastes huge computational resources[42, 52, 56]. We test our theory by finding the shortest viable306

learning rate warmup period for SSGD and DPSGD. We use the hyper-parameter settings prescribed307

in [52], warmup learning rate 0 to 2.5 ⇥ 10�4 in the first 64000 samples (i.e., 250 iterations of308

batch size 256) and then cosine-annealing to zero on top of an Adam optimizer. We then shorten the309

learning rate warmup period and check convergence. Figure 3 and Table 5 show that SSGD diverges310

when the learning rate warmup period is shorter than 100 iterations, while DPSGD converges with a311

warmup period as short as 25 iterations. Figure 1c shows that injecting independent random noise into312

SSGD (in the same fashion as Section 4.3) does not help SSGD escape early training traps. These313

experiments corroborate our theory that DPSGD can leverage loss landscape noise to self-adjust the314

learning rate.315

Warmup(iters) 250 100 75 50 25 15
SYNC 3.09 3.07 7.26 7.26 7.26 7.26
DPSGD 3.08 3.053 3.06 3.08 3.09 7.26

Table 5: Validation loss comparison when shortening the learning rate warmup period. DPSGD
can converge with a much shorter warmup. All experiments are conducted on 16 GPUs (learners).
Wikitext-103, GPT-2 model, 200 epochs training in total.

5 Related Works316

Please see Appendix G317

6 Conclusion318

In this paper, we find that in the large-batch and large-learning-rate setting, DPSGD yields comparable319

model accuracy when SSGD converges; moreover, DPSGD converges when SSGD diverges. We then320

investigate why DPSGD outperforms SSGD for large batch training. Through detailed analysis on321

small-scale tasks and an extensive empirical study of a diverse set of modern DL tasks, we conclude322

that the landscape-dependent noise, which is strengthened in the DPSGD system, self-adjusts the323

effective learning rate according to the loss landscape, helping convergence. This self-adjusting324

learning rate effect is a mere by-product of the inherent loss-landscape-dependent-noise of the325

DPSGD training algorithm and requires no additional computation, no additional communication326

and no additional hyper-parameter tuning. The theory was originally developed to understand why327

DPSGD outperforms SSGD in the large batch setting for CV and ASR tasks. The same theory can be328

also verified in NLP tasks where when a carefully designed learning rate warmup scheme is required.329

9

References330

[1] Carlo Baldassi, Christian Borgs, Jennifer T. Chayes, Alessandro Ingrosso, Carlo Lucibello,331

Luca Saglietti, and Riccardo Zecchina. Unreasonable effectiveness of learning neural networks:332

From accessible states and robust ensembles to basic algorithmic schemes. Proceedings of the333

National Academy of Sciences, 113(48):E7655–E7662, 2016.334

[2] Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi, Christian335

Borgs, Jennifer Chayes, Levent Sagun, and Riccardo Zecchina. Entropy-sgd: Biasing gradient336

descent into wide valleys, 2016.337

[3] Pratik Chaudhari and Stefano Soatto. Stochastic gradient descent performs variational inference,338

converges to limit cycles for deep networks. 2018 Information Theory and Applications339

Workshop (ITA), Feb 2018.340

[4] Soumith Chintala. PyTorch ImageNet Examples, 2020. Available at https://github.com/pytorch/341

examples/tree/master/imagenet.342

[5] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical343

image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages344

248–255, 2009.345

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of346

deep bidirectional transformers for language understanding. In Proceedings of the 2019 Confer-347

ence of the North American Chapter of the Association for Computational Linguistics: Human348

Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis,349

Minnesota, June 2019. Association for Computational Linguistics.350

[7] Gintare Karolina Dziugaite and Daniel M Roy. Computing nonvacuous generalization bounds351

for deep (stochastic) neural networks with many more parameters than training data. arXiv352

preprint arXiv:1703.11008, 2017.353

[8] Yu Feng and Yuhai Tu. The inverse variance–flatness relation in stochastic gradient descent is354

critical for finding flat minima. Proceedings of the National Academy of Sciences, 118(9), 2021.355

[9] Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware mini-356

mization for efficiently improving generalization. ICLR, 2021.357

[10] Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle points—online358

stochastic gradient for tensor decomposition. In Conference on Learning Theory, pages 797–359

842, 2015.360

[11] Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex361

stochastic programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.362

[12] Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo363

Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD:364

training imagenet in 1 hour. CoRR, abs/1706.02677, 2017.365

[13] Vipul Gupta, Santiago Akle Serrano, and Dennis DeCoste. Stochastic weight averaging in366

parallel: Large-batch training that generalizes well. ICLR, 2020.367

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image368

recognition. CVPR, 2015.369

[15] Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel rahman Mohamed, Navdeep Jaitly,370

Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara Sainath, and Brian Kingsbury. Deep371

neural networks for acoustic modeling in speech recognition. Signal Processing Magazine,372

2012.373

[16] Geoffrey E. Hinton and Drew van Camp. Keeping the neural networks simple by minimizing374

the description length of the weights. In Proceedings of the Sixth Annual Conference on375

Computational Learning Theory, COLT ’93, pages 5–13, New York, NY, USA, 1993. ACM.376

[17] Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural Computation, 9(1):1–42, 1997.377

[18] Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: closing the378

generalization gap in large batch training of neural networks. In Advances in Neural Information379

Processing Systems, pages 1731–1741, 2017.380

10

[19] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias381

Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural382

networks for mobile vision applications. CoRR, abs/1704.04861, 2017.383

[20] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely connected convolutional384

networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),385

pages 2261–2269, 2017.386

[21] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training387

by reducing internal covariate shift. ICML, 2015.388

[22] Stanisław Jastrzębski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua389

Bengio, and Amos Storkey. Three factors influencing minima in sgd. arXiv preprint390

arXiv:1711.04623, 2017.391

[23] Stanislaw Jastrzebski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua392

Bengio, and Amos J Storkey. Finding flatter minima with sgd. In ICLR (Workshop), 2018.393

[24] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping394

Tak Peter Tang. On large-batch training for deep learning: Generalization gap and sharp minima.395

arXiv preprint arXiv:1609.04836, 2016.396

[25] D. P. Kingma and J. L. Ba. ADAM: a method for stochastic optimization. In International397

Conference on Learning Representations (ICLR), 2015.398

[26] Robert Kleinberg, Yuanzhi Li, and Yang Yuan. An alternative view: When does sgd escape399

local minima? arXiv preprint arXiv:1802.06175, 2018.400

[27] Anastasia Koloskova, Sebastian Stich, and Martin Jaggi. Decentralized stochastic optimization401

and gossip algorithms with compressed communication. In International Conference on402

Machine Learning, pages 3478–3487. PMLR, 2019.403

[28] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.404

Computer Science Department, University of Toronto, Tech. Rep, 1(4):7, 2009.405

[29] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep406

convolutional neural networks. In Advances in neural information processing systems, pages407

1097–1105, 2012.408

[30] Sameer Kumar, Victor Bitorff, Dehao Chen, Chiachen Chou, Blake Hechtman, HyoukJoong409

Lee, Naveen Kumar, Peter Mattson, Shibo Wang, Tao Wang, Yuanzhong Xu, and Zongwei Zhou.410

Scale MLPerf-0.6 models on Google TPU-v3 Pods. arXiv e-prints, page arXiv:1909.09756,411

September 2019.412

[31] César Laurent, Gabriel Pereyra, Philémon Brakel, Ying Zhang, and Yoshua Bengio. Batch413

normalized recurrent neural networks, 2016.414

[32] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss415

landscape of neural nets. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-416

Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems 31, pages417

6389–6399. Curran Associates, Inc., 2018.418

[33] Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decentralized419

algorithms outperform centralized algorithms? a case study for decentralized parallel stochastic420

gradient descent. In Advances in Neural Information Processing Systems, pages 5330–5340,421

2017.422

[34] Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. Asynchronous decentralized parallel stochastic423

gradient descent. In ICML, 2018.424

[35] Tao Lin, Lingjing Kong, Sebastian Stich, and Martin Jaggi. Extrapolation for large-batch425

training in deep learning. In Hal Daumé III and Aarti Singh, editors, Proceedings of the426

37th International Conference on Machine Learning, volume 119 of Proceedings of Machine427

Learning Research, pages 6094–6104. PMLR, 13–18 Jul 2020.428

[36] Tao Lin, Sebastian U. Stich, and Martin Jaggi. Don’t use large mini-batches, use local SGD.429

ICLR, 2020.430

[37] Kang Liu. Train CIFAR10 with PyTorch, 2020. Available at https://github.com/kuangliu/pytorch-431

cifar.432

11

[38] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture433

models. ICLR, 2017.434

[39] Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions.435

Foundations of Computational Mathematics, 17(2):527–566, 2017.436

[40] Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring437

generalization in deep learning. In Advances in Neural Information Processing Systems, pages438

5947–5956, 2017.439

[41] Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A pac-bayesian approach to440

spectrally-normalized margin bounds for neural networks. arXiv preprint arXiv:1707.09564,441

2017.442

[42] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language443

understanding by generative pre-training. 2018.444

[43] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language445

models are unsupervised multitask learners. 2019.446

[44] Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In447

International Conference on Learning Representations, 2018.448

[45] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.449

Inverted residuals and linear bottlenecks: Mobile networks for classification, detection and450

segmentation. CVPR, abs/1801.04381, 2018.451

[46] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image452

recognition. International Conference on Learning Representations, 2015.453

[47] Samuel L Smith and Quoc V Le. A bayesian perspective on generalization and stochastic454

gradient descent. arXiv preprint arXiv:1710.06451, 2017.455

[48] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir Anguelov,456

Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions.457

CoRR, abs/1409.4842, 2014.458

[49] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolutional neural459

networks. ICML, abs/1905.11946, 2019.460

[50] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,461

Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg,462

S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural463

Information Processing Systems 30, pages 5998–6008. Curran Associates, Inc., 2017.464

[51] Yeming Wen, Kevin Luk, Maxime Gazeau, Guodong Zhang, Harris Chan, and Jimmy Ba. An465

empirical study of stochastic gradient descent with structured covariance noise. In Silvia Chiappa466

and Roberto Calandra, editors, Proceedings of the Twenty Third International Conference on467

Artificial Intelligence and Statistics, volume 108 of Proceedings of Machine Learning Research,468

pages 3621–3631. PMLR, 26–28 Aug 2020.469

[52] Thomas Wolf. Transfer Learning in Natural Language Processing, 2019. Available at https:470

//github.com/huggingface/naacl_transfer_learning_tutorial.471

[53] Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual472

transformations for deep neural networks. CVPR, abs/1611.05431, 2017.473

[54] Yang You, Igor Gitman, and Boris Ginsburg. Scaling SGD batch size to 32k for imagenet474

training. CoRR, abs/1708.03888, 2017.475

[55] Yang You, Jing Li, Jonathan Hseu, Xiaodan Song, James Demmel, and Cho-Jui Hsieh. Reducing476

BERT pre-training time from 3 days to 76 minutes. CoRR, abs/1904.00962, 2019.477

[56] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen,478

Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam479

Shleifer, Kurt Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke480

Zettlemoyer. Opt: Open pre-trained transformer language models, 2022.481

[57] Wei Zhang, Xiaodong Cui, Ulrich Finkler, Brian Kingsbury, George Saon, David Kung, and482

Michael Picheny. Distributed deep learning strategies for automatic speech recognition. In483

ICASSP’2019, May 2019.484

12

[58] Wei Zhang, Xiaodong Cui, Ulrich Finkler, George Saon, Abdullah Kayi, Alper Buyuktosunoglu,485

Brian Kingsbury, David Kung, and Michael Picheny. A highly efficient distributed deep learning486

system for automatic speech recognition. In INTERSPEECH’2019, Sept 2019.487

[59] Wei Zhang, Xiaodong Cui, Abdullah Kayi, Mingrui Liu, Ulrich Finkler, Brian Kingsbury,488

George Saon, Youssef Mroueh, Alper Buyuktosunoglu, Payel Das, David Kung, and Michael489

Picheny. Improving efficiency in large-scale decentralized distributed training. In ICASSP’2020,490

May 2020.491

[60] Wei Zhang, Suyog Gupta, Xiangru Lian, and Ji Liu. Staleness-aware async-sgd for distributed492

deep learning. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial493

Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016, pages 2350–2356, 2016.494

[61] Wei Zhang, Suyog Gupta, and Fei Wang. Model accuracy and runtime tradeoff in distributed495

deep learning: A systematic study. In IEEE International Conference on Data Mining, 2016.496

[62] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient497

convolutional neural network for mobile devices. CVPR, abs/1707.01083, 2018.498

[63] Yao Zhang, Andrew M. Saxe, Madhu S. Advani, and Alpha A. Lee. Energy–entropy competition499

and the effectiveness of stochastic gradient descent in machine learning. Molecular Physics,500

116(21-22):3214–3223, Jun 2018.501

[64] Fan Zhou and Guojing Cong. On the convergence properties of a k-step averaging stochastic502

gradient descent algorithm for nonconvex optimization. In IJCAI-18, pages 3219–3227, 7 2018.503

Checklist504

1. For all authors...505

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s506

contributions and scope? [Yes]507

(b) Did you describe the limitations of your work? [Yes]508

(c) Did you discuss any potential negative societal impacts of your work? [N/A]509

(d) Have you read the ethics review guidelines and ensured that your paper conforms to510

them? [Yes]511

2. If you are including theoretical results...512

(a) Did you state the full set of assumptions of all theoretical results? [Yes]513

(b) Did you include complete proofs of all theoretical results? [Yes]514

3. If you ran experiments...515

(a) Did you include the code, data, and instructions needed to reproduce the main ex-516

perimental results (either in the supplemental material or as a URL)? [Yes] Not517

code(proprietary), but enough instructions to reproduce the results.518

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they519

were chosen)? [Yes]520

(c) Did you report error bars (e.g., with respect to the random seed after running experi-521

ments multiple times)? [No]522

(d) Did you include the total amount of compute and the type of resources used (e.g., type523

of GPUs, internal cluster, or cloud provider)? [Yes]524

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...525

(a) If your work uses existing assets, did you cite the creators? [Yes]526

(b) Did you mention the license of the assets? [N/A]527

(c) Did you include any new assets either in the supplemental material or as a URL? [No]528

(d) Did you discuss whether and how consent was obtained from people whose data you’re529

using/curating? [N/A]530

(e) Did you discuss whether the data you are using/curating contains personally identifiable531

information or offensive content? [N/A]532

5. If you used crowdsourcing or conducted research with human subjects...533

(a) Did you include the full text of instructions given to participants and screenshots, if534

applicable? [N/A]535

13

(b) Did you describe any potential participant risks, with links to Institutional Review536

Board (IRB) approvals, if applicable? [N/A]537

(c) Did you include the estimated hourly wage paid to participants and the total amount538

spent on participant compensation? [N/A]539

14

