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Abstract001

As test-time scaling becomes a pivotal research002
frontier in Large Language Models (LLMs) de-003
velopment, contemporary and advanced post-004
training methodologies increasingly focus on005
extending the generation length of long Chain-006
of-Thought (CoT) responses to enhance rea-007
soning capabilities toward DeepSeek R1-like008
performance. However, recent studies reveal a009
persistent overthinking phenomenon in state-of-010
the-art reasoning models, manifesting as exces-011
sive redundancy or repetitive thinking patterns.012
To address this issue, in this paper, we pro-013
pose a simple yet effective two-stage reinforce-014
ment learning framework for achieving concise015
reasoning in LLMs, named ConciseR. Specifi-016
cally, the first stage, using more training steps,017
aims to incentivize the model’s reasoning capa-018
bilities via Group Relative Policy Optimization019
with clip-higher and dynamic sampling compo-020
nents (GRPO++), and the second stage, using021
fewer training steps, explicitly enforces con-022
ciseness and improves efficiency via Length-023
aware Group Relative Policy Optimization (L-024
GRPO). Significantly, ConciseR only opti-025
mizes response length once all rollouts of a026
sample are correct, following the "walk before027
you run" principle. Experimental results show028
that our ConciseR model, which generates029
more concise CoT responses, outperforms re-030
cent state-of-the-art reasoning models with zero031
RL paradigm across AIME 2024, MATH-500,032
AMC 2023, Minerva, and Olympiad bench-033
marks. The code, training dataset, and model034
checkpoints will be publicly released.035

1 Introduction036

Test-time scaling (Snell et al., 2024; Muennighoff037

et al., 2025) has demonstrated a robust correlation038

between extending the generation length of Chain-039

of-Thought (CoT) (Wei et al., 2022) and improving040

the reasoning capabilities of Large Language Mod-041

els (LLMs). The advent of large reasoning models,042

such as GPT-o1 (Jaech et al., 2024) and DeepSeek-043
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Figure 1: A detailed evaluation of accuracy and response
length throughout the training steps.

R1 (Guo et al., 2025), represents a significant break- 044

through in natural language processing, especially 045

in tackling complex and intricate reasoning tasks. 046

An interesting phenomenon observed during rein- 047

forcement learning post-training via Group Rel- 048

ative Policy Optimization (GRPO) (Shao et al., 049

2024) is the emergence of an "aha moment" (Guo 050

et al., 2025), which refers to a pivotal inflection 051

point at which the model spontaneously initiates 052

self-correction behaviors. These emergent behav- 053

iors develop autonomously through the model’s ex- 054

ploration of the solution space rather than through 055

explicit programming. Prior research (Yeo et al., 056

2025; Luo et al., 2025) has found a distinctive pat- 057

tern following this moment: the response length of 058

the model tends to increase significantly, accompa- 059

nied by improvements in overall performance. De- 060

spite the lack of a clear understanding of why this 061

occurs, this phenomenon has led many researchers 062

to advocate for longer responses, leveraging ad- 063

ditional computational resources in the hope of 064

further enhancing accuracy. 065

However, generating excessively long CoT rea- 066

soning responses substantially increases compu- 067

tational overhead in both the model training and 068

deployment phases. Furthermore, recent stud- 069

ies (Team et al., 2025; Cuadron et al., 2025) have 070

discovered an intrinsic overthinking phenomenon 071
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in reasoning models, where these models persis-072

tently produce verbose rationalizations. This ten-073

dency manifests as the inclusion of irrelevant con-074

textual information and unnecessary reflective be-075

haviors. Such information and behaviors not only076

inefficiently consume computational resources but077

also compromise reasoning accuracy by causing078

models to deviate from valid logical pathways to079

incorrect conclusions.080

To address these issues, recent studies (Luo et al.,081

2025; Song et al., 2025; Yu et al., 2025; Liu et al.,082

2025; Fatemi et al., 2025) are researching efficient083

reasoning methodologies based on the GRPO algo-084

rithm for training the model to produce more con-085

cise CoT responses, and have discovered a trade-off086

between the CoT response length and model reason-087

ing capabilities in most cases, i.e., the shorter the088

length, the worse the performance. It is understand-089

able that achieving efficient reasoning, improving090

ability via a more concise CoT, is inherently more091

challenging. This is in contrast to boosting perfor-092

mance by merely increasing the response length, as093

the former requires significantly higher model capa-094

bilities. Therefore, we highlight the critical impor-095

tance of the timing for optimizing response length096

when training using GRPO-based algorithms. Ad-097

hering to the "walk before you run" principle, we098

consider that during training, response length op-099

timization is only enabled when all rollouts for a100

training sample are correct.101

Motivated by this, we propose ConciseR, which102

is a simple yet effective two-stage reinforcement103

learning framework for concise reasoning. Specif-104

ically, the first stage aims to enhance the model’s105

reasoning capabilities through group relative policy106

optimization with clip-higher and dynamic sam-107

pling techniques. Meanwhile, we introduce the108

entropy bonus in the first stage, which is used to109

encourage exploration in policy gradient to incen-110

tivize the reasoning capabilities of the model fur-111

ther. The second stage enforces conciseness and112

improves efficiency via length-aware group relative113

policy optimization (incorporating max response114

length to calculate the length reward). Experiments115

demonstrate that ConciseR is compatible with RL116

models that incentivize reasoning, achieving re-117

ductions in response length while improving ac-118

curacy across benchmarks such as AIME 2024,119

AMC 2023, MATH-500, Minerva, and Olympiad120

datasets. As shown in Figure 1, ConciseR grad-121

ually activates the reasoning ability of the model122

in the first stage, then rapidly compresses the CoT123

response length in the second stage to achieve con- 124

cise reasoning. Notably, the reduction in response 125

length has immediate implications for computa- 126

tional efficiency, resource utilization, and response 127

time, making the approach practically appealing 128

and cost-effective. 129

2 Preliminary 130

2.1 Proximal Policy Optimization (PPO) 131

Proximal Policy Optimization (PPO) (Schulman 132

et al., 2017) is one of the policy gradient methods 133

that introduces a clipped surrogate objective for 134

policy optimization. By using clipping to constrain 135

policy updates within a proximal region of the pre- 136

vious policy, PPO stabilizes training and improves 137

sample efficiency. Specifically, PPO updates the 138

policy by maximizing the following objective: 139

JPPO(θ) =Eq∼D,o≤t∼πθold
(·|q)

min[
πθ(ot | q, o<t)

πθold(ot | q, o<t)
Ât,

clip(
πθ(ot | q, o<t)

πθold(ot | q, o<t)
, 1− ε, 1 + ε)Ât],

(1) 140

where πθold is the policy before the update, ε is the 141

clipping hyper-parameter, q indicates the question 142

from the data distribution D, and Ât is an estimator 143

of the advantage function of the t-th token. Here, 144

a standard and traditional way to estimate Ât is 145

to compute the Generalized Advantage Estimation 146

(GAE) (Schulman et al., 2017) with a learned value 147

model. However, in the context of LLM RL scal- 148

ing, learning the value model is computationally 149

expensive, so methods that estimate Ât without a 150

learned value model are practically preferred. 151

2.2 Group Relative Policy Optimization 152

(GRPO) 153

Group Relative Policy Optimization (GRPO) (Shao 154

et al., 2024) introduces a policy gradient framework 155

that eliminates the reliance on explicit value func- 156

tion by utilizing comparative advantage estimation 157

within a group of responses. This method samples 158

multiple candidate outputs for each input question 159

and computing advantages based on the relative 160

rewards among these candidates within their re- 161

spective groups. Specifically, GRPO first samples 162

a group of responses {o1, o2, . . . , oG} per question 163

and computes their returns r = {r1, r2, . . . , rG}, 164

then calculates the advantage of the i-th response 165

oi as, 166

Âi =
ri − mean({r1, r2, · · · , rG})

std({r1, r2, · · · , rG}) . (2) 167
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Similar to PPO, GRPO uses a clipped objective168

with KL penalty and optimizes the policy model169

πθ by maximizing the following objective:170

JGRPO(θ) =Eq∼D,{oi}G
i=1∼πθold

(·|q)

1

G

G∑
i=1

{min[τi(θ)Âi, clip(τi(θ), 1− ε, 1 + ε)Âi]

− βDKL[πθ||πref]},
(3)171

where172

τi =
πθ(oi|q)
πθold(oi|q)

,

DKL(πθ∥πref) =
πref(oi|q)
πθ(oi|q)

− log
πref(oi|q)
πθ(oi|q)

− 1.

(4)173

Here, πref represents the reference model and the174

term DKL(πθ∥πref) indicates a KL penalty term to175

limit how much the trained model πθ can deviate176

from the reference model πref.177

2.3 Decouple Clip and Dynamic Sampling178

Policy Optimization (DAPO)179

An in-depth analysis (Yu et al., 2025) reveals that180

the naive GRPO baseline suffers from several sig-181

nificant issues, such as entropy collapse, reward182

noise, and training instability. To address this issue,183

DAPO introduces four key techniques to make RL184

shine in the long-CoT RL scenario, including185

• Clip-Higher, which enhances the diversity of186

the model and avoids entropy collapse.187

• Dynamic Sampling, which improves training188

efficiency and stability.189

• Token-Level Policy Gradient Loss, which190

plays a crucial role in reinforcement learn-191

ing scenarios involving Long-CoT reasoning192

responses.193

• Overlong Reward Shaping, a length-aware194

penalty mechanism designed to shape the re-195

ward for truncated samples to reduce reward196

noise and stabilize training.197

Similar to GRPO, DAPO estimates the advantage198

in a group-relative manner and optimizes the policy199

model via the following objective,200

JDAPO(θ) = Eq∼D,{oi}G
i=1∼πθold

(·|q)
1

G

G∑
i=1

{min[τi(θ)Âi, clip(τi(θ), 1− εl, 1 + εh)Âi]}
s.t. 0 < |{oi|is_equivalent(oi, a)}| < G,

(5)201

where εl and εh indicate the lower and higher clip-202

ping range.203

3 Methodology 204

Our primary goal is to let LLM generate a more 205

concise CoT response without sacrificing the 206

model’s performance. To this end, we propose 207

a novel two-stage reinforcement learning training 208

paradigm guided by the principle of "Aim for 100% 209

accuracy first; speed comes with mastery." Specifi- 210

cally, the first stage aims to incentivize the reason- 211

ing capabilities of the base model via group relative 212

policy optimization with clip-higher and dynamic 213

sampling, thus ensuring accuracy and robust model 214

reasoning. Subsequently, the second stage explic- 215

itly enforces conciseness and improved efficiency 216

via length-aware group relative policy optimization, 217

aligning with our objective of achieving mastery 218

through precision, where conciseness naturally fol- 219

lows from reliable and accurate reasoning. 220

3.1 Group Relative Policy Optimization with 221

Clip-Higher and Dynamic Sampling 222

(GRPO++) 223

In the first stage, the model is trained to incen- 224

tivize the reasoning capabilities, which aims to en- 225

hance the model’s problem-solving capacity, with 226

an expected increase in response length as GRPO 227

mostly encounters negative rewards and encour- 228

ages the trained model toward longer responses. 229

To this end, in this paper, we adopt GRPO with 230

two key components of DAPO, clip higher and dy- 231

namic sampling, and further introduce an entropy 232

bonus to encourage greater exploration capability 233

in the model, named GRPO++. Similar to the orig- 234

inal approach, GRPO++ estimates the advantage in 235

a group-relative manner and optimizes the policy 236

model using the following objective: 237

JGRPO++(θ) = Eq∼D,{oi}G
i=1∼πθold

(·|q)

1

G

G∑
i=1

{min[τi(θ)Âi, clip(τi(θ), 1− εl, 1 + εh)Âi]

+ αH(πθ)},
s.t. 0 < |{oi|is_equivalent(oi, a)}| < G,

(6) 238

where αH(πθ) denotes the entropy bonus. 239

3.2 Length-Aware Group Relative Policy 240

Optimization (L-GRPO) 241

Recent studies (Luo et al., 2025; Song et al., 2025) 242

have found that the reasoning response length is 243

not strongly correlated with the correctness of the 244

answer; that is, a long CoT reasoning response does 245

not necessarily represent a correct result, and a 246

short CoT reasoning response does not necessarily 247
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Table 1: Training Template. {question} will be replaced with the specific question during training.

A conversation between User and Assistant. The user asks a question, and the Assistant solves it.
The assistant first thinks about the reasoning process in the mind and then provides the user with the answer.
The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively,
i.e., <think> reasoning process here </think> <answer> answer here </answer>.
Please reason step by step, and put your final answer within \boxed{}.

User:
{question}

Assistant:

represent an incorrect one. On the contrary, the248

correct CoT reasoning responses are usually shorter249

in length, while incorrect reasoning responses tend250

to be longer.251

Based on the above analysis, we reshape the re-252

ward function in GRPO. When the model’s rollout253

results for a question are all correct, we further opti-254

mize the model’s reasoning length for that question255

by using the remaining maximum response length256

as a reward (under the specified context length,257

the more remaining context length, the higher the258

reward), as calculated below.259

Ãi =
r̂i − mean({r̂1, r̂2, · · · , r̂G})

std({r̂1, r̂2, · · · , r̂G}) , r̂i = ri+λL̂i, (7)260

261

L̂i =

{
1− Li

LMax
, if

∑G
i=1 ri = G

0, if
∑G

i=1 ri ̸= G.
(8)262

Here, Li is the length of the i-th response and LMax263

indicates the max response length. Then, we opti-264

mize the policy using the following objective:265

JL-GRPO(θ) = Eq∼D,{oi}G
i=1∼πθold

(·|q)

1

G

G∑
i=1

{min[τi(θ)Âi, clip(τi(θ), 1− εl, 1 + εh)Âi]

− βDKL[πθ||πref] + αH(πθ)},
s.t. 0 < |{oi|is_equivalent(oi, a)}|.

(9)266

3.3 Rule-based Reward Model267

Using a trained reward model typically introduces268

the issue of reward hacking [24–29]. To mitigate269

this issue, we directly adopt the final accuracy from270

a verifiable task as the outcome reward, calculated271

according to the following rule:272

ri(oi, a) =

{
1, if is_equivalent(oi, a)
0, if not is_equivalent(oi, a)

(10)273

where a indicates the ground-truth answer and oi274

contains the predicted answer. Additionally, it is275

important to note that the trained model must ad-276

here strictly to the training prompt by generating277

the chain-of-thought within the <think></think> 278

tags and subsequently presenting the answer within 279

the <answer></answer> tags with the boxed tag. 280

3.4 Training Dataset Curation 281

To select and curate high-quality data for scaling 282

RL, we include challenging problems from Deep- 283

ScaleR (Luo et al., 2025), DAPO-Math-17K (Yu 284

et al., 2025), and MATH (Hendrycks et al., 2021) 285

to enhance problem difficulty and diversity in our 286

data mixture: 287

DeepScaleR1, which contains approximately 288

40K unique mathematics-specific problem- 289

answer pairs collected from AIME (1984-2023), 290

AMC (prior to 2023), Omni-MATH, and Still 291

datasets (Lewkowycz et al., 2022; Gao et al., 2024; 292

Min et al., 2024). 293

DAPO-Math-17K2, which contains approximately 294

17K problem-answer pairs, each paired with an in- 295

teger as the answer. DAPO-Math-17K was com- 296

piled from the Art of Problem Solving (AoPS3) 297

website and official competition websites using a 298

combination of web scraping and manual annota- 299

tion. 300

MATH4 (Level 3-5), which contains approxi- 301

mately 8K problem-answer pairs. Each problem 302

has a step-by-step solution which can be used to 303

teach models to generate explanations. 304

After obtaining the above datasets, we employ 305

Math-Verify5 to re-extract answers from the pro- 306

vided textual solutions, selecting only those cases 307

where the extracted answer matches the correspond- 308

ing answer in the dataset. We discard any samples 309

that are empty, incomplete, or duplicates. Finally, 310

1https://huggingface.co/datasets/agentica-org/
DeepScaleR-Preview-Dataset

2https://huggingface.co/datasets/
BytedTsinghua-SIA/DAPO-Math-17k

3https://artofproblemsolving.com/
4https://huggingface.co/datasets/EleutherAI/

hendrycks_math
5https://github.com/huggingface/Math-Verify
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Table 2: Overall performance on five competition-level reasoning benchmarks. Our models outperform prior
state-of-the-art models (7B) with zero RL paradigm. † indicate the results from (Hochlehnert et al., 2025).

Model AIME 2024 MATH-500 AMC 2023 Minerva Math Olympiad Bench Avg. Score

Qwen2.5-7B-Base (Yang et al., 2024a)† 3.3 64.6 30.0 25.7 29.0 30.5
Qwen2.5-Math-7B-Base (Yang et al., 2024b)† 20.7 64.3 56.2 17.3 29.0 37.5

Qwen2.5-7B-Instruct (Yang et al., 2024a)† 12.3 77.1 52.8 34.9 38.7 43.2
Qwen2.5-Math-7B-Instruct (Yang et al., 2024b)† 15.7 82.9 67.0 35.0 41.3 48.4

Eurus-2-7B-PRIME (Cui et al., 2025)† 17.8 80.1 63.0 37.5 43.9 48.5
Open-Reasoner-Zero-7B (Hu et al., 2025)† 19.7 83.9 59.5 31.6 47.6 48.5
SimpleRL-Zero-7B (Zeng et al., 2025)† 14.0 77.9 58.0 33.0 39.0 44.4
SimpleRL-Zero-Math-7B (Zeng et al., 2025)† 22.7 76.9 62.2 30.1 39.3 46.2
Oat-Zero-7B (Liu et al., 2025)† 28.0 79.4 66.2 34.4 43.8 50.4

ConciseR-Zero-7B-Preview 42.8 83.0 73.9 31.8 45.1 55.3
ConciseR-Zero-7B 43.3 83.0 76.7 31.5 46.0 56.1
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Figure 2: A detailed evaluation of accuracy and response length throughout the training steps.

we obtain approximately 59K reasoning problems311

as the training dataset. It should be noted that in the312

first stage, we use the 59K data to incentivize the313

model’s reasoning ability. Still, in the second stage,314

we use the MATH (Level 3-5) data as the training315

set to optimize the model’s reasoning length.316

4 Experiments317

4.1 Training Details318

In this paper, we train our models using the319

verl6 framework (Sheng et al., 2025) and lever-320

age Qwen2.5-Math-7B (Yang et al., 2024b) as the321

base model. During training, we utilize the Adam322

[39] optimizer with a constant learning rate of323

1 × 10−6. We leverage a batch size of 128 with324

each question generating 32 rollouts, the maximum325

response length is set to 3,072 tokens, and training326

is conducted using mini-batches of size 128. As327

for the Clip-Higher, similar to the prior work (Yu328

et al., 2025), we set the clipping parameter εl to329

0.2 and εh to 0.28, which effectively balance the330

trade-off between exploration and exploitation for331

RL. Specifically, for GRPO++, we set the entropy332

coefficient α to 0.001. For L-GRPO, we set the333

KL penalty coefficient β to 0.01 and set the λ to334

0.000002.335

6https://github.com/volcengine/verl

4.2 Evaluation Benchmarks 336

Similar to the prior work (Liu et al., 2025; Song 337

et al., 2025), the performance of our models is 338

evaluated on a diverse suite of competition-level 339

benchmarks including AIME 20247 (comprises 340

30 challenge problems), AMC 20238 (contains 341

40 mathematical problems, covering algebra, ge- 342

ometry, number theory, and combinatorics), Min- 343

erva Math (Lewkowycz et al., 2022), MATH- 344

500 (Hendrycks et al., 2021) (is a challenging 345

benchmark comprising competition-level prob- 346

lems), and OlympaidBench (He et al., 2024). 347

4.3 Evaluation Setup 348

In this paper, our two-stage RL training framework 349

aims to enhance the reasoning performance while 350

reducing the response length, thereby enabling 351

more concise reasoning. To this end, we adopt 352

the Pass@k evaluation metric, reporting Pass@1 353

accuracy computed with a non-zero sampling tem- 354

perature. Therefore, we set the maximum response 355

length to 3,072 tokens. Specifically, we select a 356

temperature of 0.6 combined with a top-p value of 357

0.95 to generate multiple responses (typically 32 358

7https://huggingface.co/datasets/AI-MO/
aimo-validation-aime

8https://huggingface.co/datasets/AI-MO/
aimo-validation-amc
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Question
There exist real numbers $x$ and $y$, both greater than 1, such that 
$\log_x\left(y^x\right)=\log_y\left(x^{4y}\right)=10$. Find $xy$.

Response (a) (1023 characters)
To solve the problem, we start by analyzing the given equations:

1. \(\log_x(y^x) = 10\)
2. \(\log_y(x^{4y}) = 10\)

We can use the properties of logarithms to simplify these equations. 
Recall that \(\log_a(b^c) = c \log_a(b)\). Applying this property, we get:

1. \(\log_x(y^x) = x \log_x(y) = 10\)
2. \(\log_y(x^{4y}) = 4y \log_y(x) = 10\)

From the first equation, we have:
\[ x \log_x(y) = 10 \implies \log_x(y) = \frac{10}{x} \]

From the second equation, we have:
\[ 4y \log_y(x) = 10 \implies \log_y(x) = \frac{10}{4y} = \frac{5}{2y} \]

Next, we use the change of base formula for logarithms, which states 
that \(\log_a(b) = \frac{1}{\log_b(a)}\). So, \(\log_x(y) = 
\frac{1}{\log_y(x)}\). Substituting the expressions we found, we get:
\[ \frac{10}{x} = \frac{1}{\frac{5}{2y}} = \frac{2y}{5} \]

This simplifies to:
\[ \frac{10}{x} = \frac{2y}{5} \implies 10 \cdot 5 = 2y \cdot x \implies 
50 = 2xy \implies xy = 25 \]

Thus, the value of \(xy\) is \(\boxed{25}\).

Response (b) (2,789 characters)
To solve the problem, we start with the given equations:
\[\log_x(y^x) = 10 \quad \text{and} \quad \log_y(x^{4y}) = 10.\]

First, we simplify each logarithmic equation. Using the properties of logarithms, 
specifically that \(\log_b(a^c) = c \log_b(a)\), we can rewrite the equations as:
\[\log_x(y^x) = x \log_x(y) = 10,\]
\[\log_y(x^{4y}) = 4y \log_y(x) = 10.\]

From the first equation, we get:
\[x \log_x(y) = 10 \implies \log_x(y) = \frac{10}{x}.\]

From the second equation, we get:
\[4y \log_y(x) = 10 \implies \log_y(x) = \frac{10}{4y} = \frac{5}{2y}.\]

We know that \(\log_x(y) = \frac{1}{\log_y(x)}\). So substituting the expressions we have:
\[\log_x(y) = \frac{10}{x} \quad \text{and} \quad \log_y(x) = \frac{5}{2y},\]
we get:
\[\frac{10}{x} = \frac{1}{\log_y(x)} = \frac{1}{\frac{5}{2y}} = \frac{2y}{5}.\]

This gives us the equation:
\[\frac{10}{x} = \frac{2y}{5}.\]

Cross-multiplying to solve for \(x\) in terms of \(y\):
\[10 \cdot 5 = 2y \cdot x \implies 50 = 2xy \implies xy = 25.\]

So, we have found that \(xy = 25\).

To verify, we substitute \(xy = 25\) back into the original logarithmic equations to ensure 
consistency. From \(xy = 25\), we get \(x = \frac{25}{y}\). Substituting \(x = \frac{25}{y}\) 
into \(\log_x(y) = \frac{10}{x}\):
\[\log_{\frac{25}{y}}(y) = \frac{10}{\frac{25}{y}} = \frac{10y}{25} = \frac{2y}{5}.\]

Using the change of base formula \(\log_{\frac{25}{y}}(y) = 
\frac{\log(y)}{\log\left(\frac{25}{y}\right)} = \frac{\log(y)}{\log(25) - \log(y)} = 
\frac{\log(y)}{2\log(5) - \log(y)}\), we set it equal to \(\frac{2y}{5}\):
\[\frac{\log(y)}{2\log(5) - \log(y)} = \frac{2y}{5}.\]

Cross-multiplying gives:
\[5 \log(y) = 2y (2\log(5) - \log(y)) \implies 5 \log(y) = 4y \log(5) - 2y \log(y).\]

Rearranging terms:
\[5 \log(y) + 2y \log(y) = 4y \log(5) \implies \log(y)(5 + 2y) = 4y \log(5).\]

This equation must hold true for some \(y > 1\). Similarly, we check the second equation 
\(\log_y(x) = \frac{5}{2y}\):

Substitute \(x = \frac{25}{y}\):
\[\log_y\left(\frac{25}{y}\right) = \frac{5}{2y}.\]

Using the change of base formula again:
\[\log_y\left(\frac{25}{y}\right) = \log_y(25) - \log_y(y) = \log_y(25) - 1 = 2\log_y(5) - 1.\]

Setting it equal to \(\frac{5}{2y}\):
\[2\log_y(5) - 1 = \frac{5}{2y}.\]

Letting \(\log_y(5) = z\), so \(y^z = 5\) and thus \(z = \log_y(5)\):
\[2z - 1 = \frac{5}{2y}.\]

Since \(y = 5^{\frac{1}{z}}\), substituting \(y\) we get:
\[2z - 1 = \frac{5}{2 \cdot 5^{\frac{1}{z}}}.\]

This equation needs to be consistent with the conditions given. Given the symmetry and the 
algebraic manipulations, it verifies that our solution \(xy = 25\) is correct.
Thus, the value of \(xy\) is:\[\boxed{25}.\>

Figure 3: Comparison of responses of ConciseR-Zero-7B-Preview to the same question.

samples) for each query. The used training tem-359

plate is shown in Figure 1.360

4.4 Baselines361

We conduct comprehensive evaluations against362

several baselines with zero RL paradigm, in-363

cluding Qwen2.5 (Yang et al., 2024a), Qwen2.5-364

Math (Yang et al., 2024b), SimpleRL-Zero (Zeng365

et al., 2025), Open-Reasoner-Zero-7B (Hu et al.,366

2025), Eurus-2-7B-PRIME (Cui et al., 2025), and367

Oat-Zero-7B (Liu et al., 2025).368

4.5 Main Results369

The experimental results reported in Table 2 clearly370

demonstrate that our proposed model, ConciseR,371

significantly outperforms existing baselines with372

zero RL paradigm on five widely recognized373

reasoning benchmarks. Specifically, ConciseR374

achieves an average accuracy improvement of375

55.2% compared to the base model, Qwen2.5-376

Math-7B. Meanwhile, our method, GRPO++, also377

consistently surpasses all baselines, showing supe-378

rior overall performance averaged across the five379

benchmarks. Figure 2 illustrates changes in accu-380

racy and response length during the training pro-381

cess of L-GRPO across the five benchmarks. As382

indicated, the average accuracy on each benchmark383

remains stable throughout training, without exhibit-384

ing any noticeable degradation. Interestingly, the385

average response length on each benchmark con-386

sistently decreases, with reductions of 21%, 22%,387

20%, 22%, and 23% observed on AIME 2024,388

MATH-500, AMC 2023, Minerva, and Olympiad389

benchmarks, respectively. This demonstrates that390

our training approach successfully maintains model391

accuracy while generating more concise and effi-392

cient responses.393

5 Discussions 394

5.1 Analysis of Reasoning Patterns 395

Inspired by prior work that observes the model’s 396

reflective behavior by constructing a keyword pool, 397

we have built a carefully selected keyword pool 398

to observe changes in the thinking patterns of 399

the responses during training. In our experiment, 400

the keyword pool is limited to: check, rethink, 401

reassess, evaluate, re-evaluate, evaluation, exam- 402

ine, however, reconsider, analyze, double-check, 403

check again, recheck, verify, and wait. Then, we 404

present the occurrences of various keywords in the 405

responses generated by different training stages 406

and steps in Figure 4 and Figure 5. Interestingly, 407

when comparing the first and second stages, the 408

frequency with which the model uses code to ver- 409

ify results has significantly increased (as reflected 410

in the frequency of the keyword "python"). The 411

model may have discovered that verifying results 412

by writing code is more efficient. Meanwhile, key- 413

words like "re-check" have decreased relatively, 414

and other keywords have remained unchanged. 415

5.2 Case Study 416

An interesting observation is that python code is 417

used for verification during mathematical problem 418

solving, e.g., Questions (a) and (b) in Figure 6. 419

Specifically, for Question (a), the model utilizes 420

program code to calculate the answer. For Question 421

(b), the model first presents the solution process 422

through mathematical reasoning and then sponta- 423

neously writes program code to verify the correct- 424

ness of the approach. Such cases illustrate how 425

models employ procedural reasoning to self-correct 426

and engage in subsequent attempts. 427
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Figure 4: Count of keyword occurrences out of 14,022 responses (1558 questions × 11 test times).
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Figure 5: Count of keyword occurrences out of 15,580 responses (1558 questions × 11 test times).

5.3 Failure Experience428

In this section, we discuss our failure experiences429

in reward shaping. These experiments could also be430

regarded as an ablation study in L-GRPO. During431

the initial design of L-GRPO, we consider directly432

comparing the generation length of samples within433

a group, assigning higher rewards to samples with434

relatively shorter CoT reasoning responses. We435

then combine the length score with the accuracy436

reward to encourage the trained model to obtain437

correct answers through shorter CoT reasoning re-438

sponses.439

However, we find that this direct rewarding eas-440

ily causes the model to skip the reasoning process441

and immediately start guessing answers, manifest-442

ing as an empty reasoning response within the443

<think></think> tags while directly outputting the444

final answer within the <answer></answer> tags.445

On the contrary, indirectly using the maximum con- 446

text length to design the reward function can, to 447

some extent, avoid the issues mentioned above. 448

6 Related Work 449

Recent advances in reinforcement learning have 450

significantly enhanced the reasoning capabilities 451

of large language models. A pivotal development 452

in this domain is OpenAI’s o1 (Jaech et al., 2024), 453

which leverages large-scale RL training to promote 454

CoT reasoning. This approach has resulted in no- 455

table improvements in complex mathematics and 456

coding benchmarks. 457

DeepSeek-R1 (Guo et al., 2025) demonstrates 458

that pure RL post-training via GRPO, without the 459

need for supervised warm-up, can directly induce 460

robust reasoning abilities. Remarkably, this kind of 461

method not only achieves performance competitive 462
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Question (a)
An integer, whose decimal representation reads the same left to right and 
right to left, is called symmetrical. For example, the number 513151315 is 
symmetrical, while 513152315 is not. How many nine-digit symmetrical 
numbers exist such that adding the number 11000 to them leaves them 
symmetrical?
Response
…
Let's write a Python code to iterate through all possible nine-digit 
symmetrical numbers and check if adding 11000 results in another 
symmetrical number.
```python
count = 0
for a1 in range(1, 10):  # a1 ranges from 1 to 9
    for a2 in range(10):  # a2 ranges from 0 to 9
        for a3 in range(10):  # a3 ranges from 0 to 9
            for a4 in range(10):  # a4 ranges from 0 to 9
                for a0 in range(10):  # a0 ranges from 0 to 9
                    N = int(f"{a1}{a2}{a3}{a4}{a3}{a2}{a1}{a0}{a0}")
                    M = N + 11000
                    M_str = str(M)
                    if M_str == M_str[::-1]:
                        count += 1
print(count)
```
```output
8100
```
…

Question (b)
For positive integers $a, b, a \uparrow \uparrow b$ is defined as follows: 
$a \uparrow \uparrow 1=a$, and $a \uparrow \uparrow b=a^{a \uparrow 
\uparrow(b-1)}$ if $b>1$. Find the smallest positive integer $n$ for which 
there exists a positive integer $a$ such that $a \uparrow \uparrow 6 \not 
\equiv a \uparrow \uparrow 7$ $\bmod n$.
Response
…
### Step-by-Step Check
…
#### Continue this process programmatically for efficiency:
We write a Python script to automate the checking for the smallest \( n \):

```python
import sympy as sp

def tetration_mod(a, b, n):
    if b == 1:
        return a % n
    else:
        exp = tetration_mod(a, b-1, n)
        return pow(a, exp, n)

def find_smallest_n():
    for n in range(2, 100):
        for a in range(1, n):
            if tetration_mod(a, 6, n) != tetration_mod(a, 7, n):
                return n
    return None

smallest_n = find_smallest_n()
print(smallest_n)
```
```output
2
```
…

Question (c)
Given that the sequence starts with 2 and alternates by adding 2 between 
consecutive terms, find the 30th term of this arithmetic sequence.
Response
<think>a30 = 2 + 29*2 = 60</think>
<answer>\boxed{60}</answer>

Figure 6: Illustration of cases.

with o1 but also exhibits emergent behaviors such463

as self-verification and multi-step planning. This464

paradigm shift significantly reduces memory and465

computational overhead compared to earlier GRPO466

implementations (Hu et al., 2025; Zeng et al., 2025;467

Face, 2025), all while maintaining competitive per-468

formance levels.469

Recent algorithmic variants have focused on470

enhancing training efficiency (Luo et al., 2025;471

Team et al., 2025; Song et al., 2025; Yu et al.,472

2025; Liu et al., 2025; Fatemi et al., 2025; Zeng473

et al., 2025; Wen et al., 2025), yet they preserve474

GRPO’s core methodology of parallel CoT sam-475

pling across groups. These advancements collec-476

tively contribute to more efficient and robust train-477

ing methodologies for LLMs, thereby enhancing478

their reasoning capabilities and performance on479

complex tasks.480

7 Conclusion481

In this paper, we propose ConciseR, which intro-482

duces a simple yet effective two-stage reinforce-483

ment learning framework. First, it incentivizes484

the model’s reasoning capabilities via GRPO++,485

and then it reduces the model’s response length486

to improve the quality of the CoT response im-487

plicitly via L-GRPO. Importantly, we innovatively488

propose that during training, response length op- 489

timization is only triggered when all rollouts for a 490

given training sample are correct. This embodies 491

the "walk before you run" principle. Experiments 492

demonstrate that ConciseR consistently achieves 493

the best efficiency-accuracy synergistic improve- 494

ment, significantly outperforming existing efficient 495

reasoning methods across five benchmarks. 496

8 Limitations 497

Due to limited resources, this paper verifies the 498

effectiveness of the proposed method, ConciseR, 499

only on a 7B language model. Generally, validat- 500

ing its effectiveness on models of varying sizes is a 501

worthwhile direction for future research. Further- 502

more, in this paper, we investigate the influence of 503

using complexity-aware training data by employing 504

the simplest separation method to validate the effi- 505

cacy of separating the training data by complexity, 506

and achieves significant results. If more sophisti- 507

cated separation methods were adopted, achieving 508

even more promising results might be possible. 509

Training over multiple stages, rather than in a 510

single training stage, involves more than changes 511

in parameters like context length; it also fundamen- 512

tally alters the reference policy. In a multi-stage 513

training strategy, the KL penalty imposed by the 514
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reference policy on the model is gradually relaxed,515

which allows the trained model to explore a broader516

range of solutions. Delving into dynamic control517

of context lengths or implementing a dynamic KL518

penalty may be valuable directions.519
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