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Abstract

As test-time scaling becomes a pivotal research
frontier in Large Language Models (LLMs) de-
velopment, contemporary and advanced post-
training methodologies increasingly focus on
extending the generation length of long Chain-
of-Thought (CoT) responses to enhance rea-
soning capabilities toward DeepSeek R1-like
performance. However, recent studies reveal a
persistent overthinking phenomenon in state-of-
the-art reasoning models, manifesting as exces-
sive redundancy or repetitive thinking patterns.
To address this issue, in this paper, we pro-
pose a simple yet effective two-stage reinforce-
ment learning framework for achieving concise
reasoning in LLMs, named ConciseR. Specifi-
cally, the first stage, using more training steps,
aims to incentivize the model’s reasoning capa-
bilities via Group Relative Policy Optimization
with clip-higher and dynamic sampling compo-
nents (GRPO++), and the second stage, using
fewer training steps, explicitly enforces con-
ciseness and improves efficiency via Length-
aware Group Relative Policy Optimization (L-
GRPO). Significantly, ConciseR only opti-
mizes response length once all rollouts of a
sample are correct, following the "walk before
you run'' principle. Experimental results show
that our ConciseR model, which generates
more concise CoT responses, outperforms re-
cent state-of-the-art reasoning models with zero
RL paradigm across AIME 2024, MATH-500,
AMC 2023, Minerva, and Olympiad bench-
marks. The code, training dataset, and model
checkpoints will be publicly released.

1 Introduction

Test-time scaling (Snell et al., 2024; Muennighoff
et al., 2025) has demonstrated a robust correlation
between extending the generation length of Chain-
of-Thought (CoT) (Wei et al., 2022) and improving
the reasoning capabilities of Large Language Mod-
els (LLMs). The advent of large reasoning models,
such as GPT-ol (Jaech et al., 2024) and DeepSeek-
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Figure 1: A detailed evaluation of accuracy and response
length throughout the training steps.

R1 (Guo et al., 2025), represents a significant break-
through in natural language processing, especially
in tackling complex and intricate reasoning tasks.
An interesting phenomenon observed during rein-
forcement learning post-training via Group Rel-
ative Policy Optimization (GRPO) (Shao et al.,
2024) is the emergence of an "aha moment" (Guo
et al., 2025), which refers to a pivotal inflection
point at which the model spontaneously initiates
self-correction behaviors. These emergent behav-
iors develop autonomously through the model’s ex-
ploration of the solution space rather than through
explicit programming. Prior research (Yeo et al.,
2025; Luo et al., 2025) has found a distinctive pat-
tern following this moment: the response length of
the model tends to increase significantly, accompa-
nied by improvements in overall performance. De-
spite the lack of a clear understanding of why this
occurs, this phenomenon has led many researchers
to advocate for longer responses, leveraging ad-
ditional computational resources in the hope of
further enhancing accuracy.

However, generating excessively long CoT rea-
soning responses substantially increases compu-
tational overhead in both the model training and
deployment phases. Furthermore, recent stud-
ies (Team et al., 2025; Cuadron et al., 2025) have
discovered an intrinsic overthinking phenomenon



in reasoning models, where these models persis-
tently produce verbose rationalizations. This ten-
dency manifests as the inclusion of irrelevant con-
textual information and unnecessary reflective be-
haviors. Such information and behaviors not only
inefficiently consume computational resources but
also compromise reasoning accuracy by causing
models to deviate from valid logical pathways to
incorrect conclusions.

To address these issues, recent studies (Luo et al.,
2025; Song et al., 2025; Yu et al., 2025; Liu et al.,
2025; Fatemi et al., 2025) are researching efficient
reasoning methodologies based on the GRPO algo-
rithm for training the model to produce more con-
cise CoT responses, and have discovered a trade-off
between the CoT response length and model reason-
ing capabilities in most cases, i.e., the shorter the
length, the worse the performance. It is understand-
able that achieving efficient reasoning, improving
ability via a more concise CoT, is inherently more
challenging. This is in contrast to boosting perfor-
mance by merely increasing the response length, as
the former requires significantly higher model capa-
bilities. Therefore, we highlight the critical impor-
tance of the timing for optimizing response length
when training using GRPO-based algorithms. Ad-
hering to the "walk before you run" principle, we
consider that during training, response length op-
timization is only enabled when all rollouts for a
training sample are correct.

Motivated by this, we propose ConciseR, which
is a simple yet effective two-stage reinforcement
learning framework for concise reasoning. Specif-
ically, the first stage aims to enhance the model’s
reasoning capabilities through group relative policy
optimization with clip-higher and dynamic sam-
pling techniques. Meanwhile, we introduce the
entropy bonus in the first stage, which is used to
encourage exploration in policy gradient to incen-
tivize the reasoning capabilities of the model fur-
ther. The second stage enforces conciseness and
improves efficiency via length-aware group relative
policy optimization (incorporating max response
length to calculate the length reward). Experiments
demonstrate that ConciseR is compatible with RL
models that incentivize reasoning, achieving re-
ductions in response length while improving ac-
curacy across benchmarks such as AIME 2024,
AMC 2023, MATH-500, Minerva, and Olympiad
datasets. As shown in Figure 1, ConciseR grad-
ually activates the reasoning ability of the model
in the first stage, then rapidly compresses the CoT

response length in the second stage to achieve con-
cise reasoning. Notably, the reduction in response
length has immediate implications for computa-
tional efficiency, resource utilization, and response
time, making the approach practically appealing
and cost-effective.

2 Preliminary

2.1 Proximal Policy Optimization (PPO)

Proximal Policy Optimization (PPO) (Schulman
et al., 2017) is one of the policy gradient methods
that introduces a clipped surrogate objective for
policy optimization. By using clipping to constrain
policy updates within a proximal region of the pre-
vious policy, PPO stabilizes training and improves
sample efficiency. Specifically, PPO updates the
policy by maximizing the following objective:
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where 7g_, is the policy before the update, ¢ is the
clipping hyper-parameter, ¢ indicates the question
from the data distribution D, and At 1s an estimator
of the advantage function of the ¢-th token. Here,
a standard and traditional way to estimate Ay is
to compute the Generalized Advantage Estimation
(GAE) (Schulman et al., 2017) with a learned value
model. However, in the context of LLM RL scal-
ing, learning the value model is computationally
expensive, so methods that estimate A, without a
learned value model are practically preferred.

2.2 Group Relative Policy Optimization
(GRPO)

Group Relative Policy Optimization (GRPO) (Shao
et al., 2024) introduces a policy gradient framework
that eliminates the reliance on explicit value func-
tion by utilizing comparative advantage estimation
within a group of responses. This method samples
multiple candidate outputs for each input question
and computing advantages based on the relative
rewards among these candidates within their re-
spective groups. Specifically, GRPO first samples
a group of responses {01, 02, ..., 06} per question
and computes their returns r = {ry,79,...,76},
then calculates the advantage of the ¢-th response
0; as,

A r; —mean({ri,r2, -+ ,7G})
A= . 2
Std({Tl,T27~~~ 7TG}) ( )




Similar to PPO, GRPO uses a clipped objective
with KL penalty and optimizes the policy model
mp by maximizing the following objective:
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Here, mf represents the reference model and the
term Dkp (7g||7rer) indicates a KL penalty term to
limit how much the trained model 7y can deviate
from the reference model 7.

2.3 Decouple Clip and Dynamic Sampling
Policy Optimization (DAPO)

An in-depth analysis (Yu et al., 2025) reveals that
the naive GRPO baseline suffers from several sig-
nificant issues, such as entropy collapse, reward
noise, and training instability. To address this issue,
DAPO introduces four key techniques to make RL
shine in the long-CoT RL scenario, including

* Clip-Higher, which enhances the diversity of
the model and avoids entropy collapse.

* Dynamic Sampling, which improves training
efficiency and stability.

* Token-Level Policy Gradient Loss, which
plays a crucial role in reinforcement learn-
ing scenarios involving Long-CoT reasoning
responses.

* Overlong Reward Shaping, a length-aware
penalty mechanism designed to shape the re-
ward for truncated samples to reduce reward
noise and stabilize training.

Similar to GRPO, DAPO estimates the advantage
in a group-relative manner and optimizes the policy
model via the following objective,
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where €; and ¢, indicate the lower and higher clip-
ping range.

3 Methodology

Our primary goal is to let LLM generate a more
concise CoT response without sacrificing the
model’s performance. To this end, we propose
a novel two-stage reinforcement learning training
paradigm guided by the principle of "Aim for 100%
accuracy first; speed comes with mastery." Specifi-
cally, the first stage aims to incentivize the reason-
ing capabilities of the base model via group relative
policy optimization with clip-higher and dynamic
sampling, thus ensuring accuracy and robust model
reasoning. Subsequently, the second stage explic-
itly enforces conciseness and improved efficiency
via length-aware group relative policy optimization,
aligning with our objective of achieving mastery
through precision, where conciseness naturally fol-
lows from reliable and accurate reasoning.

3.1 Group Relative Policy Optimization with
Clip-Higher and Dynamic Sampling
(GRPO++)

In the first stage, the model is trained to incen-
tivize the reasoning capabilities, which aims to en-
hance the model’s problem-solving capacity, with
an expected increase in response length as GRPO
mostly encounters negative rewards and encour-
ages the trained model toward longer responses.
To this end, in this paper, we adopt GRPO with
two key components of DAPO, clip higher and dy-
namic sampling, and further introduce an entropy
bonus to encourage greater exploration capability
in the model, named GRPO++. Similar to the orig-
inal approach, GRPO++ estimates the advantage in
a group-relative manner and optimizes the policy
model using the following objective:
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where aH(7y) denotes the entropy bonus.

3.2 Length-Aware Group Relative Policy
Optimization (L-GRPO)

Recent studies (Luo et al., 2025; Song et al., 2025)
have found that the reasoning response length is
not strongly correlated with the correctness of the
answer; that is, a long CoT reasoning response does
not necessarily represent a correct result, and a
short CoT reasoning response does not necessarily



Table 1: Training Template. {question} will be replaced with the specific question during training.

A conversation between User and Assistant. The user asks a question, and the Assistant solves it.

The assistant first thinks about the reasoning process in the mind and then provides the user with the answer.

The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively,
i.e., <think> reasoning process here </think> <answer> answer here </answer>.

Please reason step by step, and put your final answer within \boxed{ }.

User:
{question}

Assistant:

represent an incorrect one. On the contrary, the
correct CoT reasoning responses are usually shorter
in length, while incorrect reasoning responses tend
to be longer.

Based on the above analysis, we reshape the re-
ward function in GRPO. When the model’s rollout
results for a question are all correct, we further opti-
mize the model’s reasoning length for that question
by using the remaining maximum response length
as a reward (under the specified context length,
the more remaining context length, the higher the
reward), as calculated below.
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Here, L; is the length of the ¢-th response and Lyax
indicates the max response length. Then, we opti-
mize the policy using the following objective:
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3.3 Rule-based Reward Model

Using a trained reward model typically introduces
the issue of reward hacking [24-29]. To mitigate
this issue, we directly adopt the final accuracy from
a verifiable task as the outcome reward, calculated
according to the following rule:

ri(0i,a) = {(1)’

where a indicates the ground-truth answer and o;
contains the predicted answer. Additionally, it is
important to note that the trained model must ad-
here strictly to the training prompt by generating

if is_equivalent(o;, a)

10
if not is_equivalent(o;, a) (10)

the chain-of-thought within the <think></think>
tags and subsequently presenting the answer within
the <answer></answer> tags with the boxed tag.

3.4 Training Dataset Curation

To select and curate high-quality data for scaling
RL, we include challenging problems from Deep-
ScaleR (Luo et al., 2025), DAPO-Math-17K (Yu
et al., 2025), and MATH (Hendrycks et al., 2021)
to enhance problem difficulty and diversity in our
data mixture:

DeepScaleR!, which contains approximately
40K unique mathematics-specific problem-
answer pairs collected from AIME (1984-2023),
AMC (prior to 2023), Omni-MATH, and Still
datasets (Lewkowycz et al., 2022; Gao et al., 2024;
Min et al., 2024).

DAPO-Math-17K?, which contains approximately
17K problem-answer pairs, each paired with an in-
teger as the answer. DAPO-Math-17K was com-
piled from the Art of Problem Solving (AoPS?)
website and official competition websites using a
combination of web scraping and manual annota-
tion.

MATH* (Level 3-5), which contains approxi-
mately 8K problem-answer pairs. Each problem
has a step-by-step solution which can be used to
teach models to generate explanations.

After obtaining the above datasets, we employ
Math-Verify> to re-extract answers from the pro-
vided textual solutions, selecting only those cases
where the extracted answer matches the correspond-
ing answer in the dataset. We discard any samples
that are empty, incomplete, or duplicates. Finally,

1https://huggingface.co/datasets/agentica—org/
DeepScaleR-Preview-Dataset
2https://huggingface.co/datasets/
BytedTsinghua-SIA/DAPO-Math-17k
Shttps://artofproblemsolving.com/
*https://huggingface.co/datasets/EleutherAl/
hendrycks_math
Shttps://github.com/huggingface/Math-Verify
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Table 2: Overall performance on five competition-level reasoning benchmarks. Our models outperform prior
state-of-the-art models (7B) with zero RL paradigm. T indicate the results from (Hochlehnert et al., 2025).

Model AIME 2024 MATH-500 AMC 2023 Minerva Math Olympiad Bench Avg. Score
Qwen2.5-7B-Base (Yang et al., 2024a)' 33 64.6 30.0 25.7 29.0 30.5
Qwen2.5-Math-7B-Base (Yang et al., 2024b)t 20.7 64.3 56.2 17.3 29.0 37.5
Qwen2.5-7B-Instruct (Yang et al., 2024a)' 12.3 77.1 52.8 34.9 38.7 432
Qwen2.5-Math-7B-Instruct (Yang et al., 2024b)t 15.7 82.9 67.0 35.0 41.3 48.4
Eurus-2-7B-PRIME (Cui et al., 2025)" 17.8 80.1 63.0 375 439 48.5
Open-Reasoner-Zero-7B (Hu et al., 2025)f 19.7 83.9 59.5 31.6 47.6 48.5
SimpleRL-Zero-7B (Zeng et al., 2025)f 14.0 779 58.0 33.0 39.0 444
SimpleRL-Zero-Math-7B (Zeng et al., 2025)F 22.7 76.9 62.2 30.1 39.3 46.2
Oat-Zero-7B (Liu et al., 2025)f 28.0 79.4 66.2 34.4 43.8 50.4
ConciseR-Zero-7B-Preview 42.8 83.0 73.9 31.8 45.1 55.3
ConciseR-Zero-7B 433 83.0 76.7 31.5 46.0 56.1
AIME 2024 MATH-500 AMC 2023 Minerva Olympiad
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Figure 2: A detailed evaluation of accuracy and response length throughout the training steps.

we obtain approximately 59K reasoning problems
as the training dataset. It should be noted that in the
first stage, we use the 59K data to incentivize the
model’s reasoning ability. Still, in the second stage,
we use the MATH (Level 3-5) data as the training
set to optimize the model’s reasoning length.

4 Experiments

4.1 Training Details

In this paper, we train our models using the
verl® framework (Sheng et al., 2025) and lever-
age Qwen2.5-Math-7B (Yang et al., 2024b) as the
base model. During training, we utilize the Adam
[39] optimizer with a constant learning rate of
1 x 1076, We leverage a batch size of 128 with
each question generating 32 rollouts, the maximum
response length is set to 3,072 tokens, and training
is conducted using mini-batches of size 128. As
for the Clip-Higher, similar to the prior work (Yu
et al., 2025), we set the clipping parameter ¢; to
0.2 and ¢, to 0.28, which effectively balance the
trade-off between exploration and exploitation for
RL. Specifically, for GRPO++, we set the entropy
coefficient a to 0.001. For L-GRPO, we set the
KL penalty coefficient 3 to 0.01 and set the A to
0.000002.

https://github.com/volcengine/verl

4.2 Evaluation Benchmarks

Similar to the prior work (Liu et al., 2025; Song
et al., 2025), the performance of our models is
evaluated on a diverse suite of competition-level
benchmarks including AIME 20247 (comprises
30 challenge problems), AMC 2023% (contains
40 mathematical problems, covering algebra, ge-
ometry, number theory, and combinatorics), Min-
erva Math (Lewkowycz et al., 2022), MATH-
500 (Hendrycks et al., 2021) (is a challenging
benchmark comprising competition-level prob-
lems), and OlympaidBench (He et al., 2024).

4.3 Evaluation Setup

In this paper, our two-stage RL training framework
aims to enhance the reasoning performance while
reducing the response length, thereby enabling
more concise reasoning. To this end, we adopt
the Pass @k evaluation metric, reporting Pass@ 1
accuracy computed with a non-zero sampling tem-
perature. Therefore, we set the maximum response
length to 3,072 tokens. Specifically, we select a
temperature of 0.6 combined with a top-p value of
0.95 to generate multiple responses (typically 32

7https://huggingface.co/datasets/AI—MO/
aimo-validation-aime

8https://huggingface.co/datasets/AI—MO/
aimo-validation-amc
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Question
There exist real numbers $x$ and $y$, both greater than 1, such that
$\log_x\leftly"x\right)=\log_y\left(x"{4y}\right}=10$. Find $xy$.

Response (a) (1023 characters)

To solve the problem, we sfart by analyzing the given equations:

1. \(Mog_x(y"x) = 10\)
2. \(\log_y(x"{4y}) = 10\)

We can use the properties of logarithms to simplify these equations.

Recall that \(\log_a(b"c) = ¢ \log_a(b)\). Applying this property, we get:

1. \(\log_x(y"x) = x \log_x(y) = 10\)
2. \(\log_y(x"{4y}) = 4y \log_y(x) = 10\)

From the first equation, we have:
\[ x \log_x(y) = 10 \implies \log_x(y) = \frac{10}x} \]

From the second equation, we have:
[ 4y \log_y(x) = 10 \implies \log_y(x) = \frac{l0}4y} = \frac{5K2y} \]

Next, we use the change of base formula for logarithms, which states
that \(\log_a(b) = \Frac{i}\log_b(a)}\). So, \(\log_x(y) =

\frac(l){\\ag y(x))\) Substituting the expresswns we found, we get:
\[ = \fracfI} 1\

This simplifies to:
AL \Frac{1OKx} = \ch(:y}{sl \implies 10 \cdot 5 = 2y \cdot x \implies
50 = 2xy \implies xy = 25 \

Thus, the value of \(xy\) is \(\boxed{25}\).

Response (b) (2,789 characters)
To solve the problem, we start with the given equations:
\[\log_x(y"x) = 10 \quad \fext{and} \quad \log_y(x"{4y}) = 10.\]

First, we simplify each logarithmic equation. Using the properties of logarithms,
specifically that \(\log_b(a"c) = c \log_b(a)\), we can rewrife the equations as:
\[\log_x(y"x) = x \log_x(y) = 10,\]

\[\log_y(x"{4y}) = 4y \log_y(x) = 10.\]

From the first equation, we get:
\[x \log_x(y) = 10 \implies \log_x(y) = \frac{lo}x}.\]

From the second equation, we get:
\[4y \log_y(x) = 10 \implies \log,y(x) \frac{1l0H4y} = \frac{5H2y}.\]

We know that \(\log_x(y) = \frac{l}{\log_y(x)}\). So substituting the expressions we have:
\[\log_x(y) = \frac{lO}x} \quad \text{and} \quad \log_y(x) = \frac{5H2y},\]

t:
‘C’[‘ifgr:c(lo)(x) = \frac{l}{\log_y(x)} = \frac{}{\frac{s}H2y}} = \frac{2y}{5}.\]

This gives us the equation:
\[\frac{10}x} = \frac{2y}5}.\]

Cross-multiplying fo solve for \(x\) in terms of \(y\):
\[10 \cdot 5 = 2y \cdot x \implies 50 = 2xy \implies xy = 25.\]

So, we have found that \(xy = 25\).

To verify, we substitute \(xy = 25\) back into the original logarithmic equations fo ensure
consistency. From \(xy = 25\), we get \(x = ). \(x = \frac{25}{y}\)
into \(\log_x(y) = \ch{w}(x)\)

\[\log_{! = \frac{loH\frac{25Hy}} = \f Hes} = feyHsi\l

Using the change of base formula \(\log_{\frac{25Hy}}(y) =
\frac{\log(y)H{\log\left(\Frac{25}y}\right)} = \frac{\log(y)}\log(25) - \log(y)} =
\frac{\log(y){2\log(5) - \log(y)}\), we set it equal to \(\frac{2yH5}\):
\[\frac{\log(y)H2\log(s) - \log(y)} = \frac{2y}{5}\]

Cross-multiplying gives:
\[5 \log(y) = 2y (2\log(5) - \log(y)) \implies 5 \log(y) = 4y \log(5) - 2y \log(y).\]

Rearranging terms:
\[S \log(y) + 2y \log(y) = 4y \log(5) \implies \log(y)(5 + 2y) = 4y \log(5).\]

This equation must hold true for some \(y > 1\). Similarly, we check the second equation
\(\log_y(x) = \frac{sH2y}\):

Substitute \(x = \frac{25Hy}\):
\[\log_y\left(\frac{25Ky}\right) = \frac{s}{2y}.\]

Using the change of base formula again:
\[\log_y\left(\frac{25}yright) = \Iog y(25) - \log_y(y) = \log_y(25) - 1 = 2\log_y(5) - 1.\]

Setting it equal to \(\frac{SK2y}\):
\[2\log_y(5) - 1 = \frac{sK2y}.\]

Letting \(\log_y(5) = 2\), 50 \(y"z = 5\) and thus \(z = \log_y(S)\):
\[2z - 1 = \frac{5H2y}.\]

since \(y = 5™{\frac{1}{z}}\), substituting \(y\) we get:
\[2z - 1 = \frac{5H2 \cdot 5°{\frac{l}{z}}}.\]

This equation needs to be consistent with the conditions given. Given the symmetry and the
algebraic manipulations, it verifies that our solution \(xy = 25\) is correct.
Thus, the value of \(xy\) is:\[\boxed{25}.\>

Figure 3: Comparison of responses of ConciseR-Zero-7B-Preview to the same question.

samples) for each query. The used training tem-

plate is shown in Figure 1.

4.4 Baselines

We conduct comprehensive evaluations against
several baselines with zero RL paradigm,
cluding Qwen2.5 (Yang et al., 2024a), Qwen2.5-
Math (Yang et al., 2024b), SimpleRL-Zero (Zeng
et al., 2025), Open-Reasoner-Zero-7B (Hu et al.,
2025), Eurus-2-7B-PRIME (Cui et al., 2025), and
Oat-Zero-7B (Liu et al., 2025).

4.5 Main Results

The experimental results reported in Table 2 clearly
demonstrate that our proposed model, ConciseR,
significantly outperforms existing baselines with
zero RL paradigm on five widely recognized
Specifically, ConciseR
achieves an average accuracy improvement of
55.2% compared to the base model, Qwen2.5-
Math-7B. Meanwhile, our method, GRPO++, also
consistently surpasses all baselines, showing supe-
rior overall performance averaged across the five

reasoning benchmarks.

5 Discussions

5.1 Analysis of Reasoning Patterns

Inspired by prior work that observes the model’s

in-

reflective behavior by constructing a keyword pool,
we have built a carefully selected keyword pool
to observe changes in the thinking patterns of
the responses during training. In our experiment,
the keyword pool is limited to: check, rethink,
reassess, evaluate, re-evaluate, evaluation, exam-
ine, however, reconsider, analyze, double-check,
check again,

recheck, verify, and wait. Then, we

present the occurrences of various keywords in the

benchmarks. Figure 2 illustrates changes in accu-

racy and response length during the training pro-
cess of L-GRPO across the five benchmarks. As
indicated, the average accuracy on each benchmark
remains stable throughout training, without exhibit-
ing any noticeable degradation. Interestingly, the
average response length on each benchmark con-
sistently decreases, with reductions of 21%, 22%,
20%, 22%, and 23% observed on AIME 2024,
MATH-500, AMC 2023, Minerva, and Olympiad
benchmarks, respectively. This demonstrates that
our training approach successfully maintains model
accuracy while generating more concise and effi-

cient responses.

responses generated by different training stages
and steps in Figure 4 and Figure 5. Interestingly,
when comparing the first and second stages, the
frequency with which the model uses code to ver-
ify results has significantly increased (as reflected
in the frequency of the keyword "python"). The
model may have discovered that verifying results
by writing code is more efficient. Meanwhile, key-
words like "re-check” have decreased relatively,
and other keywords have remained unchanged.

5.2 Case Study

An interesting observation is that python code is
used for verification during mathematical problem
solving, e.g.,
Specifically, for Question (a), the model utilizes
program code to calculate the answer. For Question
(b), the model first presents the solution process
through mathematical reasoning and then sponta-
neously writes program code to verify the correct-
ness of the approach. Such cases illustrate how
models employ procedural reasoning to self-correct

Questions (a) and (b) in Figure 6.

and engage in subsequent attempts.
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Figure 4: Count of keyword occurrences out of 14,022 responses (1558 questions x 11 test times).
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Figure 5: Count of keyword occurrences out of 15,580 responses (1558 questions x 11 test times).

5.3 Failure Experience

In this section, we discuss our failure experiences
in reward shaping. These experiments could also be
regarded as an ablation study in L-GRPO. During
the initial design of L-GRPO, we consider directly
comparing the generation length of samples within
a group, assigning higher rewards to samples with
relatively shorter CoT reasoning responses. We
then combine the length score with the accuracy
reward to encourage the trained model to obtain
correct answers through shorter CoT reasoning re-
sponses.

However, we find that this direct rewarding eas-
ily causes the model to skip the reasoning process
and immediately start guessing answers, manifest-
ing as an empty reasoning response within the
<think></think> tags while directly outputting the
final answer within the <answer></answer> tags.

On the contrary, indirectly using the maximum con-
text length to design the reward function can, to
some extent, avoid the issues mentioned above.

6 Related Work

Recent advances in reinforcement learning have
significantly enhanced the reasoning capabilities
of large language models. A pivotal development
in this domain is OpenAI’s ol (Jaech et al., 2024),
which leverages large-scale RL training to promote
CoT reasoning. This approach has resulted in no-
table improvements in complex mathematics and
coding benchmarks.

DeepSeek-R1 (Guo et al., 2025) demonstrates
that pure RL post-training via GRPO, without the
need for supervised warm-up, can directly induce
robust reasoning abilities. Remarkably, this kind of
method not only achieves performance competitive



Question (a)

An integer, whose decimal representation reads the same left to right and
right to left, is called symmetrical. For example, the number 513151315 is
symmetrical, while 513152315 is not. How many nine-digit symmetrical
numbers exist such that adding the number 11000 to them leaves them
symmetrical?

Question (b)

For positive integers $a, b, a \uparrow \uparrow b$ is defined as follows:
$a \uparrow \uparrow l=a$, and $a \uparrow \uparrow b=a"{a \uparrow
\uparrow(b-1)}$ if $b>1$. Find the smallest positive integer $n$ for which
there exists a positive integer $a$ such that $a \uparrow \uparrow 6 \not
\equiv a \uparrow \uparrow 7$ $\bmod n$.

Response

Let's write a Python code to iterate through all possible nine-digit
symmetrical numbers and check if adding 11000 results in another
symmetrical number.
“python
count = 0
for al in range(l, 10): # al ranges from 1 to 9
for a2 in range(10): # a2 ranges from O to 9
for a3 in range(10): # a3 ranges from O to 9
for a4 in range(10): # a4 ranges from O to 9
for a0 in range(10): # a0 ranges from O to 9

N = int(f"{al}{a2}{a3}{a4}{a3}a2}{al}{a0}{a0}")

M =N + 11000

M_str = str(M)

if M_str == M_str[:-1]:

count +=1

print(count)

“output
8100

Question (c)
Given that the sequence starts with 2 and alternates by adding 2 between
consecutive terms, find the 30th term of this arithmetic sequence.

Response
<think>a30 = 2 + 29%2 = 60</think>

<answer>\boxed{60}</answer>

Response
### Step-by-Step Check

#### Continue this process programmatically for efficiency:
We write a Python script to automate the checking for the smallest \( n \):

“python
import sympy as sp

def tetration_mod(a, b, n):
if b==1
return a % n
else:
exp = tetration_mod(a, b-1, n)
return pow(a, exp, n)

def find_smallest_n():
for n in range(2, 100):
for a in range(l, n):
if tetration_mod(a, 6, n) != tetration_mod(a, 7, n):
return n
return None

smallest_n = find_smallest_n()
print(smallest_n)

“output
2

Figure 6: Illustration of cases.

with o1 but also exhibits emergent behaviors such
as self-verification and multi-step planning. This
paradigm shift significantly reduces memory and
computational overhead compared to earlier GRPO
implementations (Hu et al., 2025; Zeng et al., 2025;
Face, 2025), all while maintaining competitive per-
formance levels.

Recent algorithmic variants have focused on
enhancing training efficiency (Luo et al., 2025;
Team et al., 2025; Song et al., 2025; Yu et al.,
2025; Liu et al., 2025; Fatemi et al., 2025; Zeng
et al., 2025; Wen et al., 2025), yet they preserve
GRPO’s core methodology of parallel CoT sam-
pling across groups. These advancements collec-
tively contribute to more efficient and robust train-
ing methodologies for LLMs, thereby enhancing
their reasoning capabilities and performance on
complex tasks.

7 Conclusion

In this paper, we propose ConciseR, which intro-
duces a simple yet effective two-stage reinforce-
ment learning framework. First, it incentivizes
the model’s reasoning capabilities via GRPO++,
and then it reduces the model’s response length
to improve the quality of the CoT response im-
plicitly via L-GRPO. Importantly, we innovatively

propose that during training, response length op-
timization is only triggered when all rollouts for a
given training sample are correct. This embodies
the "walk before you run" principle. Experiments
demonstrate that ConciseR consistently achieves
the best efficiency-accuracy synergistic improve-
ment, significantly outperforming existing efficient
reasoning methods across five benchmarks.

8 Limitations

Due to limited resources, this paper verifies the
effectiveness of the proposed method, ConciseR,
only on a 7B language model. Generally, validat-
ing its effectiveness on models of varying sizes is a
worthwhile direction for future research. Further-
more, in this paper, we investigate the influence of
using complexity-aware training data by employing
the simplest separation method to validate the effi-
cacy of separating the training data by complexity,
and achieves significant results. If more sophisti-
cated separation methods were adopted, achieving
even more promising results might be possible.
Training over multiple stages, rather than in a
single training stage, involves more than changes
in parameters like context length; it also fundamen-
tally alters the reference policy. In a multi-stage
training strategy, the KL penalty imposed by the



reference policy on the model is gradually relaxed,
which allows the trained model to explore a broader
range of solutions. Delving into dynamic control
of context lengths or implementing a dynamic KL
penalty may be valuable directions.
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