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Abstract: Reinforcement Learning (RL) has recently achieved remarkable success
in robotic control. However, most works in RL operate in simulated environments
where privileged knowledge (e.g., dynamics, surroundings, terrains) is readily avail-
able. Conversely, in real-world scenarios, robot agents usually rely solely on local
states (e.g., proprioceptive feedback of robot joints) to select actions, leading to a
significant sim-to-real gap. Existing methods address this gap by either gradually
reducing the reliance on privileged knowledge or performing a two-stage policy
imitation. However, we argue that these methods are limited in their ability to fully
leverage the available privileged knowledge, resulting in suboptimal performance.
In this paper, we formulate the sim-to-real gap as an information bottleneck prob-
lem and therefore propose a novel privileged knowledge distillation method called
the Historical Information Bottleneck (HIB). In particular, HIB learns a privileged
knowledge representation from historical trajectories by capturing the underlying
changeable dynamic information. Theoretical analysis shows that the learned
privileged knowledge representation helps reduce the value discrepancy between
the oracle and learned policies. Empirical experiments on both simulated and
real-world tasks demonstrate that HIB yields improved generalizability compared
to previous methods.
Keywords: Sim-to-Real, Information Bottleneck, Reinforcement Learning

1 Introduction
Reinforcement Learning (RL) has made significant advancements across various simulated environ-
ments (e.g., games [1], financial trading [2]), but its applications in real-world scenarios still remain a
challenge. The primary obstacle is the sim-to-real gap, an inherent mismatch between simulated and
real environments that cause policies learned in simulation to perform sub-optimally in the real world.
Previous works tackle this problem through more realistic simulation [3, 4], adversarial training
[5, 6], and domain randomization [7, 8] to minimize the mismatch. However, building high-quality
simulators is difficult, and excessive introduced assumptions can lead to an overly conservative policy.

Recently, a more effective branch of methods proposes to utilize privileged knowledge to address
the sim-to-real problem, where privileged knowledge is the information available in simulation
(e.g., dynamics, surroundings, terrains) but inaccessible in real environments. Previous methods
solve this problem via a two-stage policy distillation process [9]. Specifically, a teacher policy is
first trained in the simulator with privileged states accessible, and then a student policy relying on
local states (without privileged information) is trained by imitating the teacher policy. Nevertheless,
such a two-stage paradigm is computationally expensive and requires careful design for imitation.
An alternative approach involves gradually dropping the privileged information as the policy is
trained [10] or conditioning the critic on privileged information [11]. However, these methods lack a
theoretical understanding of the sim-to-real problem and do not fully exploit the available privileged
information during training.

†Correspondence to: Weinan Zhang (wnzhang@sjtu.edu.cn).

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

wnzhang@sjtu.edu.cn


In this paper, we present a representation-based approach, instead of policy distillation, to better
utilize the privileged knowledge from simulation with a single-stage learning paradigm. Inspired by
the Information Bottleneck (IB) method [12, 13], which learns a minimal sufficient representation
Z of a given input source X with the target source Y , we propose a novel method called Historical
Information Bottleneck (HIB). Similar to the goal of the IB method, HIB aims to find a maximally
compressed representation of the privileged knowledge while preserving sufficient information about
the current environment for real-world decision-making. In particular, HIB takes advantage of
historical information that contains previous local states and actions to learn a history representation,
which is trained by maximizing the mutual information (MI) between the representation and the
privileged knowledge. Theoretically, we show that maximizing such an MI term will minimize the
privileged knowledge modeling error, reducing the discrepancy between the optimal value function
and the learned value function. Furthermore, benefiting from the IB principle, we compress the
decision-irrelevant information from the history and obtain a more robust representation. The IB
objective is approximated by variational lower bounds to handle the high-dimensional state space.

In summary, our contributions are threefold: (i) We propose a novel policy generalization method
called HIB that follows the IB principle to distill privileged knowledge from a fixed length of history.
(ii) We provide a theoretical analysis of both the policy distillation methods and the proposed method,
which shows that minimizing the privilege modeling error is crucial in learning a near-optimal policy.
(iii) Empirically, we show that HIB learns robust representation in randomized RL environments
and achieves better generalization performance in both simulated and real-world environments than
state-of-the-art (SOTA) algorithms, including out-of-distribution test environments.

2 Related Work

Sim-to-Real Transfer. Transferring RL policies from simulation to reality is challenging due to the
domain mismatch. To this end, the previous study hinges on domain randomization, which trains
the policy under a wide range of environmental parameters and sensor noises [14, 15, 16, 17, 18].
However, domain randomization typically sacrifices the optimality for robustness, leading to an
over-conservative policy [19]. To address this problem, various works perform privilege distillation
by teacher-student learning [20, 21, 22, 23, 24], teacher demonstration exploration [25, 26, 27, 28]
and teacher policy progressive imitation [29, 30]. However, these methods are sample inefficient due
to the requirement of training an additional teacher policy. Aside from privileged policy, recent works
exploit the privileged information by introducing privileged critic [31, 32, 11] or privileged world
models [33, 34]. An alternative method gradually drops privileged knowledge [10]. Nevertheless,
these methods are limited to fully leveraging historical knowledge for better generalization. Different
from the above approaches, our method learns a privileged representation via informative historical
trajectories from the IB perspective, resulting in better utilization of historical information.

Information Bottleneck for RL. The IB principle [35, 13] was initially proposed to trade off the
accuracy and complexity of the representation in supervised learning. Specifically, IB maximizes the
MI between representation and targets to extract useful features, while also compressing the irrelevant
information by limiting the MI between representation and raw inputs [36, 37]. Recently, IB has been
employed in RL to acquire a compact and robust representation. For example, Fan and Li [38] takes
advantage of IB to learn task-relevant representation via a multi-view augmentation. Other methods
[39, 40, 41] maximize the MI between representation and dynamics or value function, and restrict
the information to encourage the encoder to extract only the task-relevant information. Unlike the
previous works that neither tackle the policy generalization problem nor utilize historical information,
HIB derives a novel objective based on IB, which aims to learn a robust representation of privileged
knowledge from history while simultaneously removing redundant decision-irrelevant information.

3 Preliminaries

In this section, we briefly introduce the problem definition and the corresponding notations used
throughout this paper. We give the definition of privileged knowledge in robot learning as follows.
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Definition 1 (Privileged Knowledge). Privileged knowledge is the hidden state that is inaccessible in
the real environment but can be obtained in the simulator, e.g., surrounding heights, terrain types,
morphology parameters like length of legs, and dynamic parameters like friction and damping. An
oracle (teacher) policy is defined as the optimal policy with privileged knowledge visible.

In this paper, we extend the concept of the sim-to-real gap to a general policy generalization problem
with a knowledge gap. We define the MDP as M = (Sl,Sp,A, P, r, γ), where [sl, sp] = so

represents the oracle state so that contains sl ∈ Sl (i.e., the local state space) and sp ∈ Sp (i.e.,
the privileged state space), where sp contains privileged knowledge defined in Definition 1. A
is the action space. The transition function P (sot+1|sot , at) and reward function r(so, a) follows
the ground-truth dynamics based on the oracle states. Based on the MDP, we define two policies:
π(a|sl, sp) and π̂(a|sl), for the simulation and real world, respectively. Specifically, π(a|sl, sp) is a
privileged policy that can access the privileged knowledge, which is only accessible in the simulator.
In contrast, π̂(a|sl) is a local policy without accessing the privileged knowledge throughout the
interaction process, which is common in the real world. A thorough discussion about our problem
and Partially Observable MDP (POMDP) [42, 43] is provided in Appendix A.1.

Based on the above definition, our objective is to find the optimal local policy π̂∗ based on the local
state sl that maximizes the expected return, denoted as

π̂∗ := argmax
π̂

Eat∼π̂(·|slt)
[∑∞

t=0
γtr(sot , at)

]
. (1)

4 Theoretical Analysis & Motivation
4.1 Value Discrepancy for Policy Generalization

In this section, we give a theoretical analysis of traditional oracle policy imitation algorithms [44].
Note that previous works give similar analyses but in different formulations [22, 27, 30]. Specifically,
the local policy is learned by imitating the optimal oracle policy π∗. We denote the optimal value
function of the policy π∗ learned with oracle states so = [sl, sp] as Q∗(sl, sp, a), and the value
function of policy learned with local states as Q̂π̂(sl, a). The following theorem analyzes the
relationship between the value discrepancy and the policy imitation error in a finite MDP setting.

Theorem 1 (Policy imitation discrepancy). The value discrepancy between the optimal value function
with privileged knowledge and the value function with the local state is bounded as

sup
sl,sp,a

∣∣Q∗(sl, sp, a)− Q̂π̂(sl, a)
∣∣ ≤ 2γrmax

(1− γ)2
ϵπ̂, (2)

where ϵπ̂ = sup
sl,sp

DTV

(
π∗(·|sl, sp)∥π̂(·|sl)

)
(3)

is the policy divergence between π∗ and π̂, and rmax is the maximum reward in each step.

The proof is given in Appendix A.2. Theorem 1 shows that minimizing the total variation (TV)
distance between π∗(·|sl, sp) and π̂(·|sl) reduces the value discrepancy. However, minimizing ϵπ̂
can be more difficult than ordinary imitation learning where π∗ and π̂ have the same state space.
Specifically, if π∗ and π̂ have the same inputs,DTV(π

∗(·|s)∥π̂(·|s)) will approach zero with sufficient
model capacity and large iteration steps, at least in theory. In contrast, due to the lack of privileged
knowledge in our problem, the policy error term in Eq. (3) can still be large after optimization as
π∗(·|sl, sp) and π̂(·|sl) have different inputs.

Previous works [21, 20] try to use historical trajectory

ht = {slt, at−1, s
l
t−1, . . . , at−k, s

l
t−k} (4)

with a fixed length to help infer the oracle policy, and the policy imitation error becomes
DTV(π

∗(·|sl, sp)∥π̂(·|sl, h)). However, without appropriately using the historical information, im-
itating a well-trained oracle policy can still be difficult for an agent with limited capacity, which
results in suboptimal performance. Meanwhile, such two-stage policy imitation methods are also
sample-inefficient.
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4.2 Privilege Modeling Discrepancy

To address the above challenges, we raise an alternative theoretical motivation to relax the requirement
of the oracle policy. Specifically, we quantify the discrepancy between the optimal value function
and the learned value function based on the error bound in reconstructing the privileged state spt via
historical information ht, which eliminates the reliance on the oracle policy and makes our method a
single-stage distillation algorithm. Specifically, we define a density model P̂ (spt |ht) to predict the
privileged state based on history ht in Eq. (4). Then the predicted privileged state can be sampled as
ŝpt ∼ P̂ (·|ht). In policy learning, we concatenate the local state sl and the predicted ŝp as input. The
following theorem gives the value discrepancy of Q∗ and the value function Q̂ with the predicted ŝp.
Theorem 2 (Privilege modeling discrepancy). Let the divergence between the distribution of privi-
leged state model P̂ (spt+1|ht+1) and the true distribution of privileged state P (spt+1|ht+1) be bounded
as

ϵP̂ = sup
t≥t0

sup
ht+1

DTV

(
P (· | ht+1) ∥ P̂ (· | ht+1)

)
. (5)

Then the performance discrepancy bound between the optimal value function with P and the value
function with P̂ holds, as

sup
t≥t0

sup
sl,sp,a

|Q∗(slt, s
p
t , at)− Q̂t(slt, ŝ

p
t , at)| ≤

∆E

(1− γ)
+

2γrmax

(1− γ)2
ϵP̂ , (6)

where ∆E = supt≥t0
∥∥Q∗ − Espt∼P (·|ht)[Q

∗]
∥∥
∞ +

∥∥Q̂− Eŝpt∼P̂ (·|ht)
[Q̂]

∥∥
∞ is the difference in the

same value function with sampled spt and the expectation of spt conditioned on ht.

We defer the detailed proof in Appendix A.3. In ∆E, we consider using a sufficiently long (i.e.,
by using history t greater than some t0) and informative (i.e., by extracting useful features) history
to make ∆E small in practice. We remark that ∆E captures the inherent difficulty of learning
without privileged information. The error is small if privileged information is near deterministic
given the history, or if the privileged information is not useful given the history. ϵP̂ measures the
model discrepancy in the worst case with an informative history. In the next section, we provide an
instantiation method inspired by Theorem 2.

5 Methodology
In this section, we propose a practical algorithm named HIB to perform privilege distillation via a
historical representation. HIB only acquires the oracle state without an oracle policy in training. In
evaluation, HIB relies on the local state and the learned historical representation to choose actions.

5.1 Reducing the Discrepancy via MI

Theorem 2 indicates that minimizing ϵP̂ yields a tighter performance discrepancy bound. We then
start by analyzing the privilege modeling discrepancy ϵP̂ in Eq. (5). We denote the parameter of P̂ϕ
by ϕ, then the optimal solution ϕ∗ can be obtained by minimizing the TV divergence for ∀t, as

ϕ∗ = argminϕDTV

(
P (·|ht)

∥∥P̂ϕ(·|ht)) = argminϕDKL

(
P (·|ht)

∥∥P̂ϕ(·|ht)) (7)

= argmaxϕ Ep(spt ,ht)

[
log P̂ϕ(s

p
t |ht)

]
≜ argmaxϕ Ipred, (8)

where the true distribution P (·|ht) is irrelevant to ϕ, and we convert the TV distance to the KL
distance in Eq. (7) by following Pinsker’s inequality. Since ht is usually high-dimensional, which is
of linear complexity with respect to time, it is necessary to project ht in a representation space and
then predict spt . Thus, we split the parameter of P̂ϕ as ϕ = [ϕ1, ϕ2], where ϕ1 aims to learn a historical
representation z = fϕ1

(ht) first, and ϕ2 aims to predict the distribution P̂ϕ2
(z) of privileged state

(e.g., a Gaussian). In the following, we show that maximizing Ipred is closely related to maximizing
the MI between the historical representation and the privileged state. In particular, we have

Ipred = Ep(spt ,ht)

[
log P̂ϕ2

(
spt |fϕ1(ht)

)]
= Ep(spt ,ht)

[
logP

(
spt |fϕ1

(ht)
)]
−DKL[P∥P̂ ] = −H

(
Spt |fϕ1

(Ht)
)
−DKL[P∥P̂ ]

= I
(
Spt ; fϕ1

(Ht)
)
−H(Spt )−DKL[P∥P̂ ] ≤ I

(
Spt ; fϕ1

(Ht)
)
,

(9)
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RL objective
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𝑝
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Trajectory history ℎ𝑡
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Target  projector 𝑔𝜃−

Latent variable 𝑧𝑡

𝑦𝑡

𝑦𝑡

𝐻𝐼𝐵 𝐿𝑜𝑠𝑠

𝐾𝐿 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒

Momentum 

update 
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projection

AutoEncoder 𝑓𝜔
sg

Figure 1: Overall training framework. HIB adopts the IB principle to recover privileged knowledge from a fixed
length of local history information. The RL objective also provides gradients to the history encoder fψ , implying
that the learned representation can be combined with any RL algorithm effectively.

where we denote the random variables for spt and ht by Spt and Ht, respectively. In Eq. (9), the upper
bound is obtained by the non-negativity of the Shannon entropy and KL divergence. The bound
is tight since the entropy of the privileged stateH(Spt ) is usually constant, and DKL(P∥P̂ ) can be
small when we use a variational P̂ϕ with an expressive network.

According to Eq. (9), maximizing the predictive objective Ipred is closely related to maximizing the
MI between Spt and fϕ1

(Ht). In HIB, to address the difficulty of reconstructing the raw privileged
state that can be noisy and high-dimensional in Ipred objective, we adopt contrastive learning [45] as
an alternative variational approximator [46] to approximate MI in representation space. Moreover,
HIB restricts the capacity of representation to remove decision-irrelevant information from the history,
which resembles the IB principle [35] in information theory.

5.2 Historical Information Bottleneck

To optimize the MI in Eq. (9) via a contrastive objective [47], we introduce a historical representation
zt ∼ fψ(ht) to extract useful features that contain privileged information from a long historical vector
ht, where fψ is a temporal convolution network (TCN) [48] that captures long-term information
along the time dimension. We use another notation ψ to distinguish it from the predictive encoder ϕ1
in Eq. (9), since the contrastive objective and predictive objective Ipred learn distinct representations
by optimizing different variational bounds. In our IB objective, the input variable is Ht, and the
corresponding target variable is Spt . Our objective is to maximize the MI term I(Zt;Spt ) while
minimizing the MI term I(Ht;Zt) with Zt = fψ(Ht), which takes the form of

min−I(Zt;Spt ) + αI(Ht;Zt), (10)

where α is a Lagrange multiplier. The I(Zt;S
p
t ) term quantifies the amount of information about

the privileged knowledge preserved in Zt, and the I(Ht;Zt) term is a regularizer that controls the
complexity of representation learning. With a well-tuned α, we do not discard useful information
that is relevant to the privileged knowledge.

We minimize the MI term I(Ht;Zt) in Eq. (10) by minimizing the following tractable upper bound:

I(Ht;Zt) = Ep(zt,ht)

[
log

p(zt|ht)
p(zt)

]
= Ep(zt,ht)

[
log

p(zt|ht)
q(zt)

]
−DKL[p(zt)∥q(zt)]

≤ DKL[p(zt|ht)∥q(zt)],
(11)

where the inequality follows the non-negativity of the KL divergence, and q(zt) is an approximation
of the marginal distribution of Zt. We follow Alemi et al. [36] and use a spherical Gaussian
q(zt) = N (0, I) as an approximation.

One can maximize the MI term I(Zt;S
p
t ) in Eq. (10) based on the contrastive objective [47]. Specif-

ically, for a given spt , the positive sample zt ∼ fψ(ht) is the feature of corresponding history in
timestep t, and the negative sample z− can be extracted from randomly sampled historical vectors.
However, considering unresolved trade-offs involved in negative sampling [49, 50], we simplify the
contrastive objective by removing negative sampling. In HIB, the contrastive loss becomes a cosine
similarity with only positive pairs, and we empirically find that the performance does not decrease.
Such a simplification was also adopted by recent contrastive methods for RL [51, 52].
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We adopt a two-stream architecture to learn zt, including an online and a target network. Each
network contains an encoder and a projector, as shown in Fig. 1. The online network is trained to
use history to predict the corresponding privilege representation. Given a pair of a history sequence
and privileged state (ht, s

p
t ), we obtain ẽt = fω(s

p
t ) with an encoder fω to get the representation

of spt . Here, fω is used to project spt into the same dimensional space as zt, so fω can be a simple
AutoEncoder [53] trained by a reconstruction loss Lrec = ∥spt −Dω′(fω(s

p
t ))∥2, where Dω′ is an

additional trained decoder (see Appendix C.1 for details of implementation). Then we use TCN as
the history encoder fψ to learn the latent representation zt ∼ fψ(·|ht). As ẽt and zt have the same
dimensions, the projectors share the same architecture. The online projector gθ outputs yt = gθ(zt)
and the target projector gθ− outputs ỹt = gθ−(ẽt). We use the following cosine similarity loss
between yt and ỹt, and use stop gradient (sg[·]) for the target value ỹ, as

Lsim = −
∑
yt,ŷt

(
yt
∥yt∥2

)⊤ (
sg[ỹt]

∥sg[ỹt]∥2

)
. (12)

To prevent collapsed solutions in the two-stream architecture, we follow previous architectures [54]
by using a momentum update for the target network to avoid collapsed solutions. Specifically, the
parameter of the target network θ− takes an exponential moving average of the online parameters θ
with a factor τ ∈ [0, 1], as θ− ← τθ− + (1− τ)θ.

At each training step, we perform a stochastic optimization step to minimize Lsim with respect to θ
and ψ. Meanwhile, we learn an RL policy π(a|slt, zt) based on the historical representation zt, and
the RL objective is also used to train the TCN encoder fψ . The dynamics are summarized as

θ ← optimizer(θ,∇θLsim), ψ ← optimizer(ψ,∇ψ
(
λ1Lsim + λ2LKL + LRL(s

l
t, zt)

)
, ω ← optimizer(ω,∇ωLrec)

(13)
where LKL = DKL(fψ(ht)∥N (0, I)) is the IB term in Eq. (11) that controls the latent complexity,
and LRL is the loss function for an arbitrary RL algorithm. We use the Adam optimizer [55]. We
summarize our algorithm in Alg. 1 in Appendix C.1.

6 Experiments
6.1 Benchmarks and Compared Methods

To quantify the generalizability of the proposed HIB, we conduct experiments in simulated envi-
ronments that include multiple domains for a comprehensive evaluation, and also the legged robot
locomotion task to evaluate the generalizability in sim-to-real transfer.

Privileged DMC Benchmark. We conduct experiments on DeepMind Control Suite (DMC) [56]
with manually defined privileged information, which contains dynamic parameters such as friction
and torque strength, and morphology parameters such as the lengths of specific legs. The privileged
knowledge is only visible in the training process. Following Benjamins et al. [57], we randomize the
privilege parameters at the beginning of each episode, and the randomization range can be different
for training and testing. Specifically, we choose three randomization ranges for varied difficulty levels,
i.e., ordinary, o.o.d., and far o.o.d.. The ordinary setting means that the test environment has the same
randomization range as in training, while o.o.d. and far o.o.d. indicate that the randomization ranges
are larger with different degrees, causing test environments being out-of-distribution compared with
training environment. The detailed setup can be found in Appendix B.1. For dynamic parameters, we
evaluate the algorithms in three different domains, namely pendulum, finger spin, and quadruped
walk; For morphology parameters, we evaluate the algorithms in quadruped walk with varying
lengths of front legs and back legs. Both settings cover various difficulties ranging from ordinary to
far o.o.d.. This benchmark is denoted as the DMC benchmark in the following for simplicity.

Sim-to-Real in Blind Legged Robot. This experiment is conducted on a quadrupedal robot. In this
domain, privileged knowledge is defined as terrain information (e.g. heights of surroundings) of the
environment and dynamic information such as friction, mass, and damping of the quadrupedal robot.
We leverage the Isaac Gym simulator [58] for training, which also provides multi-terrain simulation
(e.g., slopes, stairs, and discrete obstacles). Details can be found in Appendix B.2. For experiments
in the real robot, we utilize the Unitree A1 robot [59] to facilitate real-world deployment.
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Table 1: Evaluated episodic return achieved by HIB and baselines on DMC tasks. SAC is adopted as the basic
RL algorithm. We report the mean and standard deviation for 100K steps. Variances are large because dynamic
parameters are changed for each episode. We refer to Appendix B.1 for the details.

Domain Testing Difficulty Teacher HIB (ours) DR Student (RMA) DreamWaQ Dropper

Pendulum
ordinary −98.29±80.41 −110.33±89.67 −206.33±259.66 −107.69±90.87 −118.09±115.46 −204.90±223.74

o.o.d. −251.16±384.52 −271.25±355.96 −502.58±543.67 −401.39±504.42 −315.39±431.10 −436.82±473.84

far o.o.d. −660.98±535.22 −671.83±531.42 −800.62±583.95 −729.69±551.88 −677.20±509.85 −674.43±520.75

Finger Spin
ordinary 826.19±152.61 714.06±233.85 529.32±414.99 657.00±411.07 641.08±348.12 569.56±308.62

o.o.d. 793.18±196.02 669.21±254.22 460.79±417.85 649.58±405.97 618.72±318.64 551.61±318.03

far o.o.d. 663.73±292.41 645.42±248.03 453.00±396.03 598.76±409.50 605.01±356.14 518.05±293.88

Quadruped Walk
ordinary 973.34±30.12 946.72±31.43 224.02±27.57 863.83±36.74 877.04±40.16 334.45±380.94

o.o.d. 945.60±42.28 927.91±53.05 203.21±38.98 829.27±60.37 820.45±58.90 287.68±352.45

far o.o.d. 922.49±50.81 904.72±85.76 164.79±64.32 793.41±89.67 801.68±95.83 286.00±347.52

Table 2: Evaluated episodic return achieved by HIB and baselines on quadruped walk task with morphology
shifts. The lengths of the front legs and back legs are changed episodically. See Appendix B.1 for more details.

Changed Legs Testing Difficulty Teacher HIB (ours) DR Student (RMA) DreamWaQ Dropper

Front
ordinary 932.99±38.67 912.92±55.19 305.21±39.55 860.78±130.18 732.60±104.81 244.44±366.20

o.o.d. 914.26±54.36 896.69±62.72 300.94±27.32 851.79±144.73 728.37±102.04 238.84±357.67

far o.o.d. 861.92±99.11 867.18±96.68 294.50±32.07 814.52±178.59 721.16±126.57 220.11±340.13

Back
ordinary 926.73±42.32 914.05±52.02 66.93±97.41 860.11±135.18 733.21±121.31 230.99±380.79

o.o.d. 906.63±59.12 903.93±51.39 65.30±90.56 855.98±126.60 728.49±101.54 180.95±337.38

far o.o.d. 834.72±118.37 812.08±81.55 61.08±88.72 816.99±173.98 727.84±115.93 150.39±296.54

Baselines. We compare HIB to the following baselines. (i) Teacher policy is learned by oracle
states with privileged knowledge. (ii) Student policy follows RMA [21] that mimics the teacher
policy through supervised learning, with the same architecture as the history encoder in HIB. We
remark that student needs a two-stage training process to obtain the policy. (iv) DreamWaQ follows
the implementation in Nahrendra et al. [31], conditioning the critic on privileged information and
utilizing history trajectories to learn a latent variable z for action. (iv) Dropper is implemented
according to Li et al. [10], which gradually drops the privileged information and finally converts to a
normal agent that only takes local states as input. (v) DR agent utilizes domain randomization for
generalization and is directly trained with standard RL algorithms with local states as input.

6.2 Simulation Comparison

For varying dynamic parameters, the results are shown in Table 1. Our method achieves the best
performance in almost all test environments, closely matching the returns of the oracle (teacher)
method. The results in Table 2 demonstrate that HIB can also generalize to unseen environments
with morphology shifts, highlighting its superior capability which benefits from our proposed IB-
style training. While the student baseline can perform slightly better than HIB, it exhibits larger
variance because its performance heavily relies on the teacher policy and its exploration ability is
restricted. The results on the Legged Robot benchmark (Table 3) further verify the advantage of HIB.
Our method outperforms the two strongest baselines, student and DreamWaQ, on the three most
challenging terrains: stairs, discrete obstacles, and slopes. From the simulation results, HIB can be
seamlessly combined with different RL algorithms and generalizes well across different domains and
tasks, demonstrating the efficacy and high scalability of HIB.
Table 3: Success rates and average distances achieved by HIB and baselines of legged robot for 1000 steps
evaluated in the Isaac-Gym simulator. Results are averaged over 1000 trajectories with different difficulties.
Reward designs follow [3], and environmental details can be achieved in Appendix B.2.

Success Rate (%) ↑ Average Distance (m) ↑
Stairs Discrete Obstacles Slope Stairs Discrete Obstacles Slope

Student (RMA) 94.2 82.1 96.1 7.96±1.21 7.67±2.14 8.69±1.09

DreamWaQ 94.1 81.3 97.1 8.09±1.34 7.51±2.38 8.78±0.95

HIB (ours) 96.7 85.8 97.7 8.67±1.16 7.84±2.07 9.04±1.12

Teacher 98.0 86.9 98.3 8.88±1.09 8.21±2.01 9.24±1.06

6.3 Visualization and Ablation Study

To investigate the ability of HIB in modeling the privileged knowledge, we visualize the latent
representation learned by HIB and student via dimensional reduction with t-SNE [60]. We also
visualize the true privileged information for comparison. The visualization is conducted in finger spin
task, and the results are given in Fig. 3. We find that the student agent can only recover part of the
privileged knowledge that covers the bottom left and upper right of the true privilege distribution. In
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contrast, the learned representation of HIB has almost the same distribution as privileged information.
This may help explain why our method outperforms other baselines and generalizes to o.o.d. scenarios
without significant performance degradation.

We conduct an ablation study for each component of HIB to verify their effectiveness. Specifically,
we design the following variants to compare with. (i) HIB-w/o-ib only uses RL loss to update history
encoder fψ, which is similar to a standard recurrent neural network policy. (ii) HIB-w/o-rl only
uses HIB loss to update the history encoder without the RL objective. (iii) HIB-w/o-proj drops the
projectors in HIB and directly compute cosine similarity loss between zt and ẽt. (iv) HIB-contra
employs contrastive loss [61] instead of cosine similarity, using a score function that assigns high
scores to positive pairs and low scores to negative pairs.

From the result in Fig. 4, we observe that HIB-w/o-ib almost fails and HIB-w/o-rl can get relatively
high scores, which signifies that both HIB loss and RL loss are important for the agent to learn a
well-generalized policy, especially the HIB loss. The HIB loss helps the agent learn a historical
representation that contains privileged knowledge for better generalization. Furthermore, projectors
and the momentum update mechanism are also crucial in learning robust and effective representation.
Moreover, HIB-contra performs well at the beginning but fails later, which indicates that the con-
trastive objective requests constructing valid negative pairs and learning a good score function, which
is challenging in the general state-based RL setting.

Figure 2: A Unitree A1 travers-
ing different terrains.
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Figure 3: t-SNE visualization for the privilege rep-
resentation and the learned latent representation of
history encoder in finger spin.
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6.4 Real-world Application

(a) w/ HIB (b) w/o HIB (DreamWaQ)

Figure 5: HIB successfully handles high stairs.
See more examples in our supplementary video.

To further evaluate the generalizability of HIB in the real
world, we deploy the HIB policy trained in the Legged
Robot benchmark on a real-world A1 robot without any
fine-tuning. Detailed setup is referred to Appendix B.3.
Note that the policy is directly run on the A1 hardware,
and the local state is read or estimated from the onboard
sensors and IMU, making the real-world control noisy
and challenging. Fig. 2 shows the snapshots of our HIB
agent traversing different terrains. The agent can generalize to different challenging terrains with
stable control behavior and there is no failure in the whole experimental process. Fig. 5 further
showcases the advantages of our proposed HIB, enabling the agent to navigate down high stairs
with a 0.6m height, achieving a 100% success rate in 10 trials, while the strongest baseline (e.g.
DreamWaQ) completely fail. These real experiments demonstrate that HIB enhances the ability to
bridge the sim-to-real gap without any additional tuning in real environments.

7 Conclusion and Limitation
We propose a novel privileged knowledge distillation method based on the Information Bottleneck to
narrow the knowledge gap between local and oracle RL environments. In particular, the proposed two-
stream model design and HIB loss help reduce the performance discrepancy given in our theoretical
analysis. Our experimental results on both simulated and real-world environments show that (i) HIB
learns robust representations to reconstruct privileged knowledge from local historical trajectories
and boosts the RL agent’s performance, and (ii) HIB can achieve improved generalizability in out-
of-distribution environments compared to previous methods. However, HIB is limited in recovering
multi-modal privileged knowledge (e.g., RGB images), which is more high-dimensional and complex.
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[54] J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. Richemond, E. Buchatskaya, C. Doersch,
B. Avila Pires, Z. Guo, M. Gheshlaghi Azar, B. Piot, k. kavukcuoglu, R. Munos, and M. Valko.
Bootstrap your own latent - a new approach to self-supervised learning. In NeurIPS, 2020.

[55] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. CoRR, abs/1412.6980,
2014. URL https://api.semanticscholar.org/CorpusID:6628106.

[56] S. Tunyasuvunakool, A. Muldal, Y. Doron, S. Liu, S. Bohez, J. Merel, T. Erez, T. Lillicrap,
N. Heess, and Y. Tassa. dm control: Software and tasks for continuous control. Software
Impacts, 2020.

[57] C. Benjamins, T. Eimer, F. Schubert, A. Biedenkapp, B. Rosenhahn, F. Hutter, and M. Lindauer.
Carl: A benchmark for contextual and adaptive reinforcement learning. In NeurIPS 2021
Workshop on Ecological Theory of Reinforcement Learning, 2021.

[58] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin,
A. Allshire, A. Handa, and G. State. Isaac gym: High performance gpu-based physics simulation
for robot learning. CoRR, 2021.

[59] Unitree. Unitree robotics. https://www.unitree.com/, 2022.

[60] L. Van der Maaten and G. Hinton. Visualizing data using t-sne. Journal of machine learning
research, 2008.

[61] A. Srinivas, M. Laskin, and P. Abbeel. Curl: Contrastive unsupervised representations for
reinforcement learning. In International Conference on Machine Learning, 2020.

[62] A. Escontrela, X. B. Peng, W. Yu, T. Zhang, A. Iscen, K. Goldberg, and P. Abbeel. Adversarial
motion priors make good substitutes for complex reward functions. 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 25–32, 2022. URL https:
//api.semanticscholar.org/CorpusID:247778924.

[63] J. Wu, Y. Xue, and C. Qi. Learning multiple gaits within latent space for quadruped robots. ArXiv,
abs/2308.03014, 2023. URL https://api.semanticscholar.org/CorpusID:
260682916.

[64] Y. Wang, Z. Jiang, and J. Chen. Learning robust, agile, natural legged locomotion skills in the
wild. 2023. URL https://api.semanticscholar.org/CorpusID:259313780.

12

http://dx.doi.org/10.1109/WACV51458.2022.00106
https://api.semanticscholar.org/CorpusID:62245742
https://api.semanticscholar.org/CorpusID:62245742
https://api.semanticscholar.org/CorpusID:6628106
https://www.unitree.com/
https://api.semanticscholar.org/CorpusID:247778924
https://api.semanticscholar.org/CorpusID:247778924
https://api.semanticscholar.org/CorpusID:260682916
https://api.semanticscholar.org/CorpusID:260682916
https://api.semanticscholar.org/CorpusID:259313780


A Theorems and Proofs

A.1 POMDP and Sim-to-Real Problems

We summarize common points and differences between POMDP and our setting as follows.

1. The transition function and reward function for both problems follows the ground-truth
dynamics of the environment.

2. In POMDP, the agent cannot access the oracle state in both training and evaluation, while in
sim-to-real adaptation, the agent can access the oracle in training (in the simulation).
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Figure 6: The difference between POMDP setting and the sim-to-real problem.

A.2 Proof of Theorem 1

We begin by deriving the imitation discrepancy bound in an ordinary MDP, as shown in the following
theorem.

Theorem A.1 (General oracle imitation discrepancy bound). Let the policy divergence between the
oracle policy π∗ and the learned policy π̂ is ϵπ = supsDTV(π

∗(·|s)∥π̂(·|s)). Then the difference
between the optimal action value function Q∗ of π∗ and the action value function Q̂ of π̂ is bounded
as

sup
s,a

∣∣Q∗(s, a)− Q̂(s, a)
∣∣ ≤ 2γrmax

(1− γ)2
ϵπ, (14)

where γ is the discount factor, and rmax is the maximum reward in each step.

Proof. For any (s, a) pair that s ∈ S, a ∈ A, the difference between Q∗(s, a) and Q̂(s, a) is

Q∗(s, a)− Q̂(s, a)

= r(s, a) + γEs′∼P (s,a),a′∼π∗(·|s′)
[
Q∗(s′, a′)

]
− r(s, a)− γEs′∼P (s,a),a′′∼π̂(·|s′)

[
Q̂(s′, a′′)

]
= γ

∑
s′,a′

P (s′|s, a)
[
π∗(a′|s′)Q∗(s′, a′)− π̂(a′|s′)Q̂(s′, a′)

]
.

(15)
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Then we introduce some intermediate terms and obtain

Q∗(s, a)− Q̂(s, a)

= γ
∑
s′,a′

P (s′|s, a)
[
π∗(a′|s′)Q∗(s′, a′)− π∗(a′|s′)Q̂(s′, a′) + π∗(a′|s′)Q̂(s′, a′)− π̂(a′|s′)Q̂(s′, a′)

]
= γ

∑
s′,a′

P (s′|s, a)π∗(a′|s′)
[
Q∗(s′, a′)− Q̂(s′, a′)

]
+ γ

∑
s′,a′

P (s′|s, a)Q̂(s′, a′)
[
π∗(a|s)− π̂(a|s)

]
≤ γ

∥∥Q∗ − Q̂
∥∥
∞ + γ

∥∥PQ̂∥∥
∞

∥∥π∗ − π̂
∥∥
1

▷ Hölder’s inequality

≤ γ
∥∥Q∗ − Q̂

∥∥
∞ + 2γ

∥∥Q̂∥∥
∞ϵπ

≤ γ
∥∥Q∗ − Q̂

∥∥
∞ +

2γrmax

1− γ
ϵπ. ▷ Q̂(s, a) ≤ rmax

1− γ
,∀s, a

(16)
Thus, ∥∥Q∗ − Q̂

∥∥
∞ − γ

∥∥Q∗ − Q̂
∥∥
∞ ≤

2γrmax

1− γ
ϵπ

(1− γ)
∥∥Q∗ − Q̂

∥∥
∞ ≤

2γrmax

1− γ
ϵπ.

(17)

Then we have ∥∥Q∗ − Q̂
∥∥
∞ ≤

2γrmax

(1− γ)2
ϵπ, (18)

which completes our proof.

Next, we consider the value discrepancy bound in policy imitation with the knowledge gap. Specifi-
cally, we denote the optimal value function with oracle states so = [sl, sp] as Q∗(sl, sp, a), and the
value function with local states as Q(sl, a). Then we have the following discrepancy bound (restate
of Theorems 1).

Theorem A.2 (Policy imitation discrepancy). The value discrepancy between the optimal value
function with privileged knowledge and the value function with local state is bounded as

sup
sl,sp,a

∣∣Q∗(sl, sp, a)− Q̂π̂(sl, a)
∣∣ ≤ 2γrmax

(1− γ)2
ϵπ̂, (19)

where
ϵπ̂ = sup

sl,sp
DTV(π

∗(·|sl, sp)∥π̂(·|sl)) (20)

is the policy divergence between π∗ and π̂, and rmax is the maximum reward in each step.

Proof. We note that the transition functions for learning π̂(a|sl) and π∗(a|sl, sp) are the same and
follow the ground-truth dynamics. Although we cannot observe the privileged state sp in learning the
local policy, the transition of the next state P (slt+1, s

o
t+1|slt, s

p
t ) still depends on the oracle state of

the previous step that contains the privileged state spt . Since the agent is directly interacting with the
environment, the privileged state does affect the transition functions. As a result, for policy imitation
of the local policy, we have a similar derivation as in (15) because the transition function in (15) is
the same for π∗(at+1|sot+1)Q

∗(sot+1, at+1) and π̂(at+1|slt+1)Q̂(slt+1, at+1), which leads to a similar
discrepancy bound as in an ordinary MDP.

A.3 Proof of Theorem 2

We have defined the history encoder P̂ϕ which takes the history as input and the privileged state as
output:

ŝpt = P̂ (·|ht). (21)

In the following, we give the performance discrepancy bound between the optimal value function
with oracle state sot = [slt, s

p
t ] and the value function with local state slt as well as the predicted

privileged state ŝpt (restate of Theorem 2).
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Theorem A.3 (Privilege modeling discrepancy). Let the divergence between the privileged state
model P̂ (spt+1|ht+1) and the true distribution of privileged state P (spt+1|ht+1) be bounded as

ϵP̂ = sup
t≥t0

sup
ht+1

DTV

(
P (· | ht+1) ∥ P̂ (· | ht+1)

)
. (22)

Then the performance discrepancy bound between the optimal value function with P and the value
function with P̂ holds, as

sup
t≥t0

sup
sl,sp,a

|Q∗(slt, s
p
t , at)− Q̂t(slt, ŝ

p
t , at)| ≤

∆E

(1− γ)
+

2γrmax

(1− γ)2
ϵP̂ , (23)

where ∆E = supt≥t0
∥∥Q∗ − Espt∼P (·|ht)[Q

∗]
∥∥
∞ +

∥∥Q̂− Eŝpt∼P̂ (·|ht)
[Q̂]

∥∥
∞ is the difference in the

same value function with sampled spt and the expectation of spt conditioned on ht.

Proof. For Q̂ that estimates the value function of state (slt, ŝ
p
t ), the value is stochastic since the

hidden prediction ŝpt is a single sample from the output of model P̂ (·|ht). We take the expectation to
the output of P̂ (·|ht) and obtain the expected Q̂ as

Eŝpt∼P̂ (·|ht)
[Q̂t(s

l
t, ŝ

p
t , at)]

= Espt∼P (·|ht)[r(s
l
t, s

p
t )] + γEslt+1∼P (·|ht,at),ŝ

p
t+1∼P̂ (·|ht,at,slt+1)

[
max
a′

Q̂t+1(s
l
t+1, ŝ

p
t+1, a

′)
]

▷ (21)

= Espt∼P (·|ht)[r(s
l
t, s

p
t )] + γEslt+1∼P (·|ht,at),ŝ

p
t+1∼P̂ (·|ht+1)

[
max
a′

Q̂t+1(s
l
t+1, ŝ

p
t+1, a

′)
]
,

(24)
where ht+1 = ht ∪ {slt+1, at}. We remark that the reward function r(slt, s

p
t ) is returned by the real

environment, thus spt follows the true P in the reward.

Remark 1 (Explanation of the Bellman Equation). Our goal is to fit the Bellman equation in (24).
Fitting the Bellman equation in (24) has several benefits. Firstly, it is easily implemented based on the
fitted privileged state model P̂ . Specifically, solving (24) is almost the same as solving an ordinary
MDP, with ŝpt generated by P̂ based on the history in place of the true privileged state of spt (which is
unavailable). Secondly and most importantly, when the history is sufficiently strong in predicting spt ,
solving (24) leads to approximately optimal solutions, as we show in this theorem.

For Q∗ that represents the optimal value function with the true privileged state, we have

Q∗(slt, s
p
t , at) = r(slt, s

p
t ) + γE(slt+1,s

p
t+1)∼P (·|slt,s

p
t ,at)

[max
a′

Q∗
t+1(s

l
t+1, s

p
t+1, a

′)]

= r(slt, s
p
t ) + γE(slt+1,s

p
t+1)∼P (·|ht,s

p
t ,at)

[max
a′

Q∗
t+1(s

l
t+1, s

p
t+1, a

′)],
(25)

where the second equation holds since ht contains slt. Then we take a similar expectation to the true
hidden transition function P as

Espt∼P (·|ht)[Q
∗(slt, s

p
t , at)]

= E[r(slt, s
p
t )] + γE(slt+1,s

p
t+1)∼P (·|ht,s

p
t ,at),s

p
t∼P (·|ht)[max

a′
Q∗
t+1(s

l
t+1, s

p
t+1, a

′)]

= E[r(slt, s
p
t )] + γE(slt+1,s

p
t+1)∼P (·|ht,at)[max

a′
Q∗
t+1(s

l
t+1, s

p
t+1, a

′)] ▷ according to Fig. 7

= E[r(slt, s
p
t )] + γEslt+1∼P (·|ht,at),s

p
t+1∼P (·|ht,at,slt+1)

[max
a′

Q∗
t+1(s

l
t+1, s

p
t+1, a

′)]

= E[r(slt, s
p
t )] + γEslt+1∼P (·|ht,at),s

p
t+1∼P (·|ht+1)[max

a′
Q∗
t+1(s

l
t+1, s

p
t+1, a

′)],

(26)
where the last equation follows ht+1 = ht ∪ {slt+1, at}, and the second equation follows the causal
graph shown in Fig. 7. Specifically, following the relationship in Fig. 7, we have

P (sot+1, ht, s
p
t , at) = P (ht)P (s

p
t |ht)P (at|ht)P (sot+1|ht, s

p
t , at). (27)
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spt

ht slt

at

slt+1, s
p
t+1

Figure 7: The causal graph. The agent takes action at by only considering local states without accessing the
privileged state spt . The privileged state is based on history ht. The next-state is conditional on ht, spt , and at.

Then we have

P (sot+1|ht, s
p
t , at)P (s

p
t |ht) =

P (sot+1, ht, s
p
t , at)

P (ht)P (s
p
t |ht)P (at|ht)

P (spt |ht) =
P (sot+1, ht, s

p
t , at)

P (ht)P (at|ht)

=
P (sot+1, ht, s

p
t , at)

P (at, ht)
= P (sot+1, s

p
t |ht, at),

(28)

where we denote sot+1 = [slt+1, s
p
t+1].

Based on above analysis, we derive the value discrepancy bound as follows. For ∀slt, s
p
t , at, the

discrepancy between Q∗(slt, s
p
t , at) and Q̂t(slt, ŝ

p
t , at) can be decomposed as

Q∗(slt, s
p
t , at)− Q̂t(slt, ŝ

p
t , at)

= Q∗(slt, s
p
t , at)− Espt∼P (·|ht)[Q

∗(slt, s
p
t , at)]︸ ︷︷ ︸

(i)∆∗
E

−Q̂t(slt, ŝ
p
t , at) + Eŝpt∼P̂ (·|ht)

[Q̂t(s
l
t, ŝ

p
t , at)]︸ ︷︷ ︸

(ii)−∆̂E

+Espt∼P (·|ht)[Q
∗(slt, s

p
t , at)]− Espt∼P (·|ht)[Q̂t(s

l
t, s

p
t , at)]︸ ︷︷ ︸

(iii) value error

+Espt∼P (·|ht)[Q̂t(s
l
t, s

p
t , at)]− Eŝpt∼P̂ (·|ht)

[Q̂t(s
l
t, ŝ

p
t , at)]︸ ︷︷ ︸

(iv) model error

,

(29)

where we add three terms with positive sign and negative sign, including Q∗ with the expectation of
P (·|ht), Q̂t with the expectation of P (·|ht), and Q̂t with the expectation of P̂ (·|ht).

For (i) and (ii), we take the absolute value and get ∆∗
E − ∆̂E ≤ |∆∗

E|+ |∆̂E| = ∆E, where

∆∗
E − ∆̂E ≤ |∆∗

E|+ |∆̂E| ≤ sup
slt,s

p
t ,a

(
|∆∗

E|+ |∆̂E|
)

= sup
slt,s

p
t ,a

∣∣Q∗(slt, s
p
t , a)− Espt∼P (·|ht)[Q

∗(slt, s
p
t , a)]

∣∣+ ∣∣Q̂t(slt, spt , a)− Eŝpt∼P̂ (·|ht)
[Q̂t(s

l
t, ŝ

p
t , a)]

∣∣
=

∥∥Q∗ − Espt∼P (·|ht)[Q
∗]
∥∥
∞ +

∥∥Q̂− Eŝpt∼P̂ (·|ht)
[Q̂]

∥∥
∞,

(30)
which represents the difference in the same value function caused by the expectation of spt with
respect to the history.
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For (iii) that represents the value difference in the optimal value function Q∗ and the current value
function Q̂ with the same distribution of state-action, we have the following bound as

Espt∼P (·|ht)[Q
∗(slt, s

p
t , at)]− Espt∼P (·|ht)[Q̂t(s

l
t, s

p
t , at)]

= E[r(slt, s
p
t )] + γEslt+1∼P (·|ht,at),s

p
t+1∼P (·|ht+1)[max

a′
Q∗(slt+1, s

p
t+1, a

′)]

− E[r(slt, s
p
t )] + γEslt+1∼P (·|ht,at),s

p
t+1∼P (·|ht+1)[max

a′′
Q̂t+1(s

l
t+1, s

p
t+1, a

′′)] ▷ from (26)

= γEslt+1∼P (·|ht,at),s
p
t+1∼P (·|ht+1)[max

a′
Q∗(slt+1, s

p
t+1, a

′)−max
a′′

Q̂t+1(s
l
t+1, s

p
t+1, a

′′)]

≤ γmax
a′

Eslt+1∼P (·|ht,at),s
p
t+1∼P (·|ht+1)[Q

∗(slt+1, s
p
t+1, a

′)− Q̂t+1(s
l
t+1, s

p
t+1, a

′)]

≤ γ sup
slt+1,s

p
t+1,a

′

∣∣Q∗(slt+1, s
p
t+1, a

′)− Q̂t+1(s
l
t+1, s

p
t+1, a

′)
∣∣

= γ
∥∥Q∗ − Q̂t+1

∥∥
∞.

(31)

For (iv) that represents the model difference of hidden state with different distributions, we have the
following bound by following (24), as

Espt∼P (·|ht)[Q̂t(s
l
t, s

p
t , at)]− Eŝpt∼P̂ (·|ht)

[Q̂t(s
l
t, ŝ

p
t , at)]

= E[r(slt, s
p
t )] + γEslt+1∼P (·|ht,at),s

p
t+1∼P (·|ht+1)[max

a′
Q̂t+1(s

l
t+1, s

p
t+1, a

′)]

− E[r(slt, s
p
t )]− γEslt+1∼P (·|ht,at),ŝ

p
t+1∼P̂ (·|ht+1)

[max
a′′

Q̂t+1(s
l
t+1, ŝ

p
t+1, a

′′)]

= γEslt+1∼P (·|ht,at)

[
Espt+1∼P (·|ht+1)[max

a′
Q̂t+1(s

l
t+1, s

p
t+1, a

′)]− Eŝpt+1∼P̂ (·|ht+1)
[max
a′′

Q̂t+1(s
l
t+1, ŝ

p
t+1, a

′′)]
]

= γEslt+1∼P (·|ht,at)

∑
spt+1

max
a′

Q̂t+1(s
l
t+1, s

p
t+1, a

′)P (spt+1|ht+1)−max
a′′

Q̂t+1(s
l
t+1, s

p
t+1, a

′′)P̂ (spt+1|ht+1).

(32)

Define a new function as Ft+1(s
l
t+1, s

p
t+1) = maxa Q̂t+1(s

l
t+1, s

p
t+1, a), then we have

Espt∼P (·|ht)[Q̂t(s
l
t, s

p
t , at)]− Eŝpt∼P̂ (·|ht)

[Q̂t(s
l
t, ŝ

p
t , at)]

= γEslt+1∼P (·|ht,at)

∑
spt+1

Ft+1(s
l
t+1, s

p
t+1)P (s

p
t+1|ht+1)− Ft+1(s

l
t+1, s

p
t+1)P̂ (s

p
t+1|ht+1)

≤ γEslt+1∼P (·|ht,at)

∑
spt+1

Ft+1(s
l
t+1, s

p
t+1)

∣∣P (spt+1|ht+1)− P̂ (spt+1|ht+1)
∣∣

≤ γFmax

∥∥P (·|ht+1)− P̂ (·|ht+1)
∥∥
1

▷ Hölder’s inequality

=
2γrmax

1− γ
DTV(P (·|ht+1)∥P̂ (·|ht+1)) ▷ Fmax ≤ rmax/1−γ

(33)

According to derivation of (i) ∼ (iv), we take the supreme of slt, s
p
t , at and obtain the discrepancy

between Q∗(slt, s
p
t , at) and Q̂t(slt, ŝ

p
t , at) as

∥Q∗ − Q̂t∥∞ ≤ sup
slt,s

p
t ,a

(
|∆∗

E|+ |∆̂E|
)
+

2γrmax

1− γ
DTV(P (·|ht+1)∥P̂ (·|ht+1)) + γ∥Q∗ − Q̂t+1∥∞

≤ sup
slt,s

p
t ,a

(
|∆∗

E|+ |∆̂E|
)
+

2γrmax

1− γ
ϵP̂t+1

+ γ∥Q∗ − Q̂t+1∥∞

= ∆E(t) +
2γrmax

1− γ
ϵP̂t+1

+ γ∥Q∗ − Q̂t+1∥∞,
(34)

where we define
ϵP̂t+1

= sup
ht+1

DTV(P (·|ht+1)∥P̂ (·|ht+1))

17



as the model difference at time step t+ 1 with the worst-case history. Meanwhile, we define

∆E(t) = sup
slt,s

p
t ,a

(
|∆∗

E|+ |∆̂E|
)

=
∥∥Q∗ − Espt∼P (·|ht)[Q

∗]
∥∥
∞︸ ︷︷ ︸

(i)

+
∥∥Q̂− Eŝpt∼P̂ (·|ht)

[Q̂]
∥∥
∞︸ ︷︷ ︸

(ii)

,

(35)
to measure the difference in the same value function with true spt and the expectation of spt conditioned
on history ht.

In the following, we consider the step in worst case by taking supremum of t when t greater some t0,
and ensure the history is long and informative, as

sup
t≥t0
∥Q∗ − Q̂t∥∞ ≤ sup

t≥t0
∆E(t) + sup

t≥t0

2γrmax

1− γ
ϵP̂t+1

+ γ sup
t≥t0
∥Q∗ − Q̂t+1∥∞

≤ sup
t≥t0

∆E(t) + sup
t≥t0

2γrmax

1− γ
ϵP̂t+1

+ γ sup
t≥t0
∥Q∗ − Q̂t∥∞

(36)

where we use inequality

sup
t≥t0
∥Q∗ − Q̂t+1∥∞ = sup

t≥t0+1
∥Q∗ − Q̂t∥∞ ≤ sup

t≥t0
∥Q∗ − Q̂t∥∞.

Then we have

sup
t≥t0
∥Q∗ − Q̂t∥∞ ≤

supt≥t0 ∆E(t)

(1− γ)
+ sup
t≥t0

2γrmax

(1− γ)2
ϵP̂t+1

=
∆E

1− γ
+

2γrmax

(1− γ)2
ϵP̂ ,

(37)

where we define ∆E = supt≥t0 ∆E(t) to consider the step of worst case by taking supremum of
t ≥ t0. Meanwhile, we define the model error in worst case as

ϵP̂ = sup
t≥t0

ϵP̂ (t+ 1), (38)

which can be minimized by using a neural network to represent P̂ , and reducing the error through
Monte Carlo sampling of transitions in training.

We remark that in ∆E of Eq. (35), the term (i) in (35) captures how informative the history ht is in
inferring necessary information of the hidden state spt . Intuitively, term (i) characterizes the error in
estimating the optimal Q-value with the informative history ht. Similarly, term (ii) characterizes the
error in predicting the hidden state spt that follows the estimated model P̂ based on the history. If the
model P̂ is deterministic and each ŝpt ∈ Sp has a corresponding history ht, then term (ii) vanishes.
Empirically, we use an informative history to make ∆E sufficiently small.
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B Environment Setting

We will open-source our code once the paper is accepted. Below, we provide the details of the
environment setup.

B.1 Details of Privileged DMC Benchmark

(a) origin (b) morphology shift
Figure 8: An example of morphology shift.

Based on existing benchmarks [57, 56], we develop three
environments for privileged knowledge distillation, in-
cluding pendulum, finger spin, and quadruped walk, that
cover various training difficulties from easy to difficult.
Each environment defines a series of privilege param-
eters, which are indeed real-world physical properties,
such as gravity, friction, or mass of an object. Such privi-
lege parameters define the behavior of the environments,
and are only visible in training and hidden in testing.
In order to train a generalizable policy, we follow the domain randomization method and define a
randomization range for privilege parameters for training. The underlying transition dynamics will
change since we sample these privilege parameters uniformly from a pre-defined randomization
range every episode. For policy evaluation, we additionally define two testing randomization ranges
(o.o.d and far o.o.d) that contain out-of-distribution parameters compared to the training range. The
privilege parameters and the corresponding ranges of each environment are listed in Table 4, Table 5,
and Table 6, respectively.

In addition to the aforementioned shifted dynamic parameters, which belong to external privilege, we
consider shifted morphology parameters, classified as internal privilege, in the quadruped walk task.
Specifically, we reset the lengths of the front legs or back legs at the beginning of each episode. The
lengths are sampled uniformly from the ranges indicated in Table 7. Visualization of morphology
shift can be seen in Fig. 8.

Table 4: Privileged knowledge randomization range on pendulum. The testing range (ordinary) is the same as
the training range. The privilege parameter dt refers to the observation interval length, g to gravity, l to the pole
length, m to the pole mass.

Privilege Parameter Training Range(ordinary) Testing Range (o.o.d.) Testing Range (far o.o.d.)
dt [0.0, 0.05] [0.0, 0.1] [0.0, 0.2]
g [-2.0, 2.0] [-3.0, 3.0] [-4.0, 4.0]
m [-0.5, 0.5] [-0.8, 0.8] [-0.9, 1.5]
l [-0.5, 0.5] [-0.8, 0.8] [-0.9, 1.5]

Table 5: Privileged knowledge randomization range on finger spin. The testing range (ordinary) is the same as the
training range. friction tangential, friction torsional, and friction rolling refer to the scaling factors for tangential
friction, torsional friction, and rolling friction of all objects, respectively. kp and kd are the hyper-parameters
for the PD controller for all joints. actuator strength refers to the scaling factor for all actuators in the model.
Viscosity refers to the scaling factor of viscosity used to simulate viscous forces. Wind x, wind y, and wind z
are used to compute viscous, lift and drag forces acting on the body, respectively.

Privilege Parameter Training Range(ordinary) Testing Range (o.o.d.) Testing Range (far o.o.d.)
friction tangential [-0.8, 0.8] [-0.9, 1.0] [-0.9, 1.0]
friction torsional [-0.8, 0.8] [-0.9, 1.0] [-0.9, 1.0]
friction rolling [-0.8, 0.8] [-0.9, 1.0] [-0.9, 1.0]

kp [-0.8, 0.8] [-0.9, 1.0] [-0.9, 1.0]
kd [0, 1.0] [0.0, 1.5] [0.0, 3.0]

actuator strength [-0.8, 0.8] [-0.9, 1.0] [-0.9, 1.0]
viscosity [0, 0.8] [0.0, 1.2] [0.0, 2.0]
wind x [-2, 2] [-3, 3] [-7, 7]
wind y [-2, 2] [-3, 3] [-7, 7]
wind z [-2, 2 [-3, 3]] [-7, 7]
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Table 6: Privileged knowledge randomization range on quadruped walk. The testing range (ordinary) is the same
as the training range. Density is used to simulate lift and drag forces, which scale quadratically with velocity.
geom density is used to infer masses and inertias. The other parameters have the same meaning described in
Table 5.

Privilege Parameter Training Range(ordinary) Testing Range (o.o.d.) Testing Range (far o.o.d.)
gravity [-0.2, 0.2] [-0.4, 0.4] [-0.6, 0.6]

friction tangential [-0.1, 0.1] [-0.4, 0.4] [-0.6, 0.6]
friction torsional [-0.1, 0.1] [-0.4, 0.4] [-0.6, 0.6]
friction rolling [-0.1, 0.1] [-0.4, 0.4] [-0.6, 0.6]

kp [-0.1, 0.1] [-0.4, 0.4] [-0.6, 0.6]
kd [0, 0.1] [0.0, 0.4] [0.0, 0.6]

actuator strength [-0.1, 0.1] [-0.4, 0.4] [-0.6, 0.6]
density [0.0, 0.1] [0.0, 0.4] [0.0, 0.6]

viscosity [0.0, 0.1] [0.0, 0.4] [0.0, 0.6]
geom density [-0.1, 0.1] [-0.4, 0.4] [-0.6, 0.6]

Table 7: Privileged knowledge randomization range on morph quadruped walk. The testing range (ordinary) is
the same as the training range. Length is used to identify the length of the modified leg. The other parameters
have the same meaning described in Table 5.

Privilege Parameter Training Range(ordinary) Testing Range (o.o.d.) Testing Range (far o.o.d.)
gravity [-0.2, 0.2] [-0.4, 0.4] [-0.6, 0.6]

friction tangential [-0.1, 0.1] [-0.4, 0.4] [-0.6, 0.6]
friction torsional [-0.1, 0.1] [-0.4, 0.4] [-0.6, 0.6]
friction rolling [-0.1, 0.1] [-0.4, 0.4] [-0.6, 0.6]

kp [-0.1, 0.1] [-0.4, 0.4] [-0.6, 0.6]
kd [0, 0.1] [0.0, 0.4] [0.0, 0.6]

actuator strength [-0.1, 0.1] [-0.4, 0.4] [-0.6, 0.6]
density [0.0, 0.1] [0.0, 0.4] [0.0, 0.6]

viscosity [0.0, 0.1] [0.0, 0.4] [0.0, 0.6]
geom density [-0.1, 0.1] [-0.4, 0.4] [-0.6, 0.6]

length [-0.1, 0.1] [-0.15, 0.15] [-0.25, 0.25]

B.2 Details of Legged Robot Benchmark

(a) Smooth slope (b) Rough slope (c) Stairs up

(d) Stairs down (e) Wave (f) Discrete obstacle

Figure 9: Visualization of stairs up, smooth slope, rough slope, stairs
up, stairs down, and discrete obstacle.

We develop our codes based on
Rudin et al. [3]. We create 4096 en-
vironment instances to collect data
in parallel. In each environment,
the robot is initialized with random
poses and commanded to walk for-
ward at vcmdx = 0.4m/s. The robot
receives new observations and up-
dates its actions every 0.02 seconds.
Similar to Rudin et al. [3], we gen-
erate different sets of terrain, includ-
ing smooth slope, rough slope, stairs
up, stairs down, wave, and discrete
obstacle (see Fig. 9 for visualiza-
tion), with varying difficulty terrain
levels. At training time, the envi-
ronments are arranged in a 10× 20
matrix with each row having terrain
of the same type and difficulty in-
creasing from left to right. We train
with a curriculum over terrain where robots are first initialized on easy terrain and promoted to harder
terrain if they traverse more than half its length. They are demoted to easier terrain if they fail to
travel at least half the commanded distance vcmdx T where T is the maximum episode length.
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The parameters of dynamic and heights of surroundings are defined as privilege parameters in this
environment, as they can only be accessed in simulation but masked in the real world. The Heights
of surroundings is an ego-centric map of the terrain around the robot. In particular, it consists of
the height values mt = {h(x, y)|(x, y) ∈ P} at 187 points P = {−0.8,−0.7, . . . , 0.7, 0.8} ×
{−0.5,−0.4, . . . , 0.4, 0.5}. The randomization range of dynamic parameters is shown in Table 8.
We use the same reward function for our method and all baselines, including task rewards following
[3] and style rewards (given by Adversarial Motion Priors [62]) following [63, 64].

Table 8: Privileged knowledge randomization range on Legged Robot Benchmark

Privilege Parameter Training Range Testing Range
Added mass (kg) [0, 3] [0, 7]

kp [22.4, 33.6] [20, 60]
kd [0.56, 0.84] [0.5, 1.0]

Table 9: Hyperparameters used in HIB

HyperParameter Value
τ 0.01

update target interval 1
λ1 0.1
λ2 0.1

history length k 50

B.3 Details of Experiments on Real A1 Robot

We apply our method HIB, and the strongest baseline, DreamWaQ, which uses asymmetric actor critic
without using HIB, to a Unitree A1 robot without any fine-tuning in the real world. The computations
are performed on an onboard NVIDIA Jetson TX2. The policy runs at 50Hz and the target joint
angles were tracked by a PD controller at a frequency of 200 Hz. The PD gains are kp = 28 and
kd = 0.7, respectively. Policies rely on only the proprioception without any visual information for
taking actions.

During the experiments, we send 2-dimensional linear velocity and 1-dimensional angular velocity
commands to the robot with a remote controller. The performance of the robot is evaluated on
different terrains, including plains, stairs, slopes and grass fields. The robot is commanded to perform
basic moving skills like walking forward/backward and steering with different speed (maximum
1m/s)(see Fig. 10 for examples of real world terrains).

(a) Plain (b) Grass (c) Slopes (d) Stairs
Figure 10: Examples of real-world terrains.

To further evaluate the robustness and the generalizability of the trained policy and also validate the
effectiveness of the HIB method, we design two hard cases to test its performance. For the first case,
the robot is required to safely jump down from a 0.6m-high stair. HIB can go down this stair with a
100% success rate while DreamWaQ completely fails. For the second case, the robot is required to
maintain its balance when a leg is suddenly pulled back in dashing. HIB can achieve 75% success
rate in 10 trials while DreamWaQ only obtains a 25% success rate. See Fig. 11 for examples.

21



(a) High stairs (b) Pull a leg in dash

Figure 11: Examples of two hard cases.

Algorithm 1 Historcal Information Bottleneck (HIB)
# Training Process (sim)
Initialize: Buffer D = {[slt, s

p
t ], at, rt, [s

l
t+1, s

p
t+1], ht}

Initialize: Historical encoder fψ , privilege encoder fω , projector gθ and target projector gθ− .
1: while not coverge do
2: Interact to the environment to collect (soi , ai, ri, s

o
i+1) with privileged state and save it to D

3: for j from 0 to N do
4: Sample a batch of (soi , ai, ri, s

o
i+1) with history hi

5: Feed online zi ∼ fψ(hi), yi ← gθ(zi), and target network ẽi ← fω(s
p
i ), ỹi ← gθ−(ẽi)

6: Compute cosine similarity Lsim(yi, ỹi), KL regularization LKL, reconstruction loss Lrec

and RL objective LRL

7: Update the HIB parameters via Eq. (13)
8: end for
9: end while

# Evaluation Process (real)
1: Reset the environment and obtain the initial s0 and h0
2: for t from t0 to tmax do
3: Estimate the privileged state via zt ∼ fψ(ht), and select action via a ∼ π̂(a|slt, zt)
4: Interact with the environment, obtain the next state, set slt ← slt+1, and update ht
5: end for

C Implementation Details

C.1 Algorithm Implementation

Empirically we find that the learned privilege representation zt is requested to have similar and
compact dimensions compared with another policy input slt. So when privileged state spt is high-
dimensional, for example, spt in Legged Robot benchmark, the encoder fω is necessary to project
privileged state in a lower dimension, keeping the dimension between zt and ẽt being the same.
In order to prevent information loss, we implement fω as an AutoEncoder [53]. Specifically, after
fω projecting spt into representation ẽt, we have a decoder denoted as Dω′ to reconstruct the spt .
Therefore, we leverage the following reconstruction loss to update encoder fω:

Lrec = ∥spt −Dω′(fω(s
p
t ))∥2. (39)

As a result, we employ Adam optimizer [55] to perform the following stochastic optimization step:

ω ← optimizer(ω,∇ωLrec). (40)

In the Legged Robot benchmark, the privileged state consists of elevation information and some
dynamic parameters, which are noisy and high-dimensional. To project spt in a lower-dimensional
space, encoder fω can be a simple two-layer MLP. In the DMC benchmark, encoder fω can be an
identity operator because the privileged state is defined as dynamic parameters that are compact and
have similar dimensions with slt. In this case, zt has the same dimensions as spt and ẽt.

Considering there is no historical trajectory at the beginning of the episode, we warm up it with zero
padding and then gradually update it for practical implementation. In order to compute HIB loss
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more accurately, we maintain another IB buffer Bib to sample ht and spt practically, which only stores
normal trajectories without zero padding.

C.2 Model Architecture and Hyperparameters

• History encoder fψ is a TCN model, consisting of three conv1d layers and two linear layers.

• The projector and target projector both have the same architecture, which is a two-layered MLP.

• Encoder fω is a two-layer MLP on the Legged Robot Benchmark, and an identical operator on the
privileged DMC benchmark.

• Actor-Critic is 3-layered MLPs (with Relu activation).

• Hyperparameters used in HIB can be found in Table 9.
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