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Abstract

Large language models increasingly saturate001
existing task benchmarks, in some cases002
outperforming humans, leaving little head-003
room with which to measure further progress.004
Adversarial dataset creation, which builds005
datasets using examples that a target system006
outputs incorrect predictions for, has been pro-007
posed as a strategy to construct more challeng-008
ing datasets, avoiding the more serious chal-009
lenge of building more precise benchmarks010
by conventional means. In this work, we011
study the impact of applying three common ap-012
proaches for adversarial dataset creation: (1)013
filtering out easy examples (AFLite), (2) per-014
turbing examples (TextFooler), and (3) model-015
in-the-loop data collection (ANLI and Adver-016
sarialQA), across 18 different adversary mod-017
els. We find that all three methods can pro-018
duce more challenging datasets, with stronger019
adversary models lowering the performance of020
evaluated models more. However, the result-021
ing ranking of the evaluated models can also022
be unstable and highly sensitive to the choice023
of adversary model. Moreover, we find that024
AFLite oversamples examples with low anno-025
tator agreement, meaning that model compar-026
isons hinge on the examples that are most con-027
tentious for humans. We recommend that re-028
searchers tread carefully when using adversar-029
ial methods for building evaluation datasets.030

1 Introduction031

Large-scale language models have attained strong032

performance across a variety of language under-033

standing tasks, including question-answering, nat-034

ural language inference (NLI), coreference resolu-035

tion and paraphrase identification. Standard bench-036

marking tasks such as SQuAD (Rajpurkar et al.,037

2016; Lee et al., 2020) and multi-task benchmarks038

such as GLUE (Wang et al., 2018) and SuperGLUE039

(Wang et al., 2019) have seen models attain scores040

higher than humans. This has left little headroom041

with which to measure further improvements in 042

models and progress in NLP. 043

Prior work such as Le Bras et al. (2020) and 044

Nie et al. (2020a) have proposed to construct more 045

challenging datasets adversarially, either by only 046

selecting examples that a given model predicts in- 047

correctly, or by constructing new examples to de- 048

liberately stump a model. Both of approaches aim 049

to raise the difficulty of task datasets by leveraging 050

highly capable models (known as the adversary 051

model) to assist with example selection or creation. 052

However, one potential issue is that an adversari- 053

ally constructed dataset that targets a specific model 054

may bias the resulting data, creating datasets that 055

are unduly challenging for one class of models but 056

not others (Bowman and Dahl, 2021). 057

In contrast to other work focused on adversarial 058

dataset creation for training (Wallace et al., 2021) 059

or training and evaluation data (Le Bras et al., 2020; 060

Nie et al., 2020b), we focus solely on evaluation 061

data, and whether the choice of adversary model 062

can introduce unwanted biases into an evaluation 063

dataset. Ideally, an adversarially created dataset 064

should be more difficult for all models, regardless 065

of the choice of the adversary. In this work, we in- 066

vestigate three different approaches to create more 067

challenging task evaluation datasets using adver- 068

sary models: (1) adversarial filtering, which filters 069

out examples from a static dataset that are iden- 070

tified to be easy for a given adversary model, (2) 071

adversarial perturbation, wherein examples are 072

modified to reduce performance of an adversary 073

model, and (3) model-in-the-loop adversarial data 074

collection, where human annotators interactively 075

create examples that stump an adversary model. 076

For adversarial filtering, we study AFLite (Sak- 077

aguchi et al., 2020; Le Bras et al., 2020), an al- 078

gorithm that identifies challenging subsets of an 079

existing dataset. For adversarial perturbation, we 080

evaluate TextFooler (Jin et al., 2019), a popular 081

method for adversarially perturbing examples to 082
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lower performance on a target model via word sub-083

stitution. We apply both AFLite and TextFooler084

in experiments across four English-language NLP085

datasets and 18 different models to study the in-086

teraction between the choice of adversary model087

and the evaluation and ranking of systems on the088

resulting dataset. For adversarial data collection,089

we evaluate a range of models against two adversar-090

ially collected datasets: ANLI (Nie et al., 2020a)091

and AdversarialQA (Bartolo et al., 2020).092

We find that all three classes of methods do re-093

sult in more challenging evaluation datasets, but094

with some notable drawbacks. For both adversarial095

filtering and adversarial perturbation, the general096

outcome is to lower performance across the board,097

with stronger adversary models leading to more098

challenging subsets of examples. However, with099

both methods, the relative order of model perfor-100

mance is not preserved, with large random varia-101

tion in model ranks as stronger adversaries are used.102

Performance on the resulting datasets is also much103

worse if the evaluated and adversary models are de-104

rived from same pretrained model, which can lead105

to the difficulty of the adversarially constructed106

dataset being overstated. Furthermore, adversar-107

ial filtering tends to oversamples examples with108

low annotator agreement, which means that the109

selected examples are often contentious even for110

human annotators. On the other hand, TextFooler111

perturbations can introduce errors and lead to label112

flips, and the distortion in resulting model rankings113

is generally larger for TextFooler than for AFLite.114

Jointly, these suggest that using adversarially fil-115

tered or perturbed datasets naively for benchmark-116

ing models is problematic.117

We find that adversarially collected datasets118

ANLI (Nie et al., 2020a) and AdversarialQA (Bar-119

tolo et al., 2020) are also more challenging for all120

models while also showing signs of disproportion-121

ately disadvantaging the adversary model. How-122

ever, with only a small number of such datasets123

available, it is difficult to draw strong conclusions124

about the overall efficacy or potential drawbacks of125

the approach. Importantly, unlike for adversarial fil-126

tering and perturbation, we cannot easily swap out127

the adversary model for analysis, as the adversarial128

data collection procedure can involve hundreds of129

hours of human labor per adversary.130

In all three cases, our findings do not outright131

preclude the viability of adversarial dataset creation132

for evaluation purposes, but we urge researchers133

to keep these issues in mind when evaluating or 134

comparing models based on adversarial datasets. 135

2 Related Work 136

AFLite is an adversarial filtering algorithm pro- 137

posed by Sakaguchi et al. (2020), which also in- 138

troduced Winogrande, an adversarial Winograd 139

Schema Challange dataset. Le Bras et al. (2020) 140

provided theoretical and empirical justification for 141

AFLite, showing that models trained on AFLite- 142

filtered data generalize better to out-of-domain 143

datasets. Other datasets constructed using adversar- 144

ial filtering include SWAG (Zellers et al., 2018) and 145

HellaSwag (Zellers et al., 2019), two adversarially 146

filtered commonsense multiple-choice datasets. 147

Given the over-parameterization of deep neu- 148

ral networks, adversarial perturbations (Goodfel- 149

low et al., 2015) have been identified as a par- 150

ticular weakness of these models. Within NLP, 151

most adversarial attacks tend to occur at the token 152

or word rather than continuous embedding level. 153

TextFooler (Jin et al., 2019) is a popular adver- 154

sarial textual perturbation method that swaps out 155

words for synonyms while attempting to retain the 156

semantic content and grammaticality of the origi- 157

nal example. TextBugger (Li et al., 2019) works 158

in a similar manner by searching for replacement 159

words in the neighborhood within a context-aware 160

embedding space, as well as using character-level 161

edits. BERT-ATTACK (Li et al., 2020) and BAE 162

(Garg and Ramakrishnan, 2020) use BERT’s mask 163

language modeling capability to substitute tokens. 164

An alternative approach is to collect data using 165

a model in the loop, where human example-writers 166

are given immediate feedback on whether an ad- 167

versary model is able to correctly answer their ex- 168

ample, and are incentivized to write examples on 169

which the models fail. ANLI (Nie et al., 2020b) 170

is an adversarial NLI dataset with multiple rounds 171

of data collection. Williams et al. (2020) further 172

provide fine-grained analysis of examples arising 173

from ANLI’s creation procedure. Bartolo et al. 174

(2020) introduce AdversarialQA, an adversarial 175

question-answering dataset. Kiela et al. (2021) fur- 176

ther extend this approach, building a platform for 177

continuous human-and-model-in-the-loop data cre- 178

ation. Using adversarially collected data as training 179

data has been shown to lead to better performance 180

on other adversarial datasets, but worse on out- 181

of-domain datasets (Kaushik et al., 2021; Bowman 182

et al., 2020). However, models trained on adversari- 183
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ally collected data through many successive rounds184

have been shown to attain better performance (Wal-185

lace et al., 2021). In this work, we choose instead186

to focus exclusively on using adversarial examples187

as evaluation data.188

In concurrent work, Adversarial Glue (Wang189

et al., 2021) applying a range of textual adversarial190

attacks to a subset of GLUE tasks to build a new191

language understanding benchmark. Importantly,192

they find that many adversarial attacks are prone to193

generating invalid examples, and perform careful194

manual filtering of the resulting examples.195

3 Experimental Setup196

Models The focus of our investigation is how the197

filtered dataset changes based on the choice of the198

adversary model. We consider a diverse set of pre-199

trained Transformer models: BERT (Devlin et al.,200

2019), RoBERTa (Liu et al., 2019), ALBERT (Lan201

et al., 2020), XLM-R (Conneau et al., 2020), ELEC-202

TRA (Clark et al., 2020), MiniBERTa (Zhang et al.,203

2021), BART (Lewis et al., 2020), and DeBERTa-204

V2 and DeBERTa-V3 (He et al., 2021).205

Tasks We consider four task datasets for our206

AFLite experiments. MNLI (Williams et al., 2018)207

and SNLI (Bowman et al., 2015), Cosmos QA208

(Huang et al., 2019) and SocialiQA (Sap et al.,209

2019). We chose these tasks based on several crite-210

ria: having a large enough training set to be suitable211

for AFLite, being in a format suitable for AFLite212

(i.e. classification), and no model-adversarial pro-213

cedure already having been applied in the cre-214

ation of the dataset. We use MNLI and SNLI215

for TextFooler experiments, as TextFooler was de-216

signed with NLI tasks in mind.217

Fine-Tuning For all models, we execute two sep-218

arate fine-tuning setups. First, we perform full fine-219

tuning on the training set, across 3 random restarts.220

Second, we perform fine-tuning on a smaller held-221

out subset of training examples1–these will serve222

as the representations Φ(X) for AFLite, as well223

as the adversary models for TextFooler. We also224

repeat this subsampling across 3 random seeds,225

performing fine-tuning for each one. All of the226

AFLite and TextFooler results are averaged across227

the 3 fine-tuning and 3 AFLite runs. Refer to Ap-228

pendix E for more details. All models were trained229

1This follows the AFLite protocol of training a set of
weaker classifiers to learn representations that effectively serve
as the adversary models.

using jiant (Phang et al., 2020), which is built 230

on Transformers (Wolf et al., 2020) and PyTorch 231

(Paszke et al., 2019). 232

Model MNLI SNLI Cosmos SIQA

MiniBERTa-S-1M 60.2 73.4 41.6 42.4
MiniBERTa-B-1B 79.3 87.2 55.0 57.3
BERT-Base 82.7 89.5 57.8 59.8
XLM-R-Base 81.2 87.4 59.3 63.1
BART-Base 84.6 89.8 63.4 65.2
BERT-Large 85.5 91.0 61.9 65.5
ALBERT-Large 86.3 89.9 62.3 68.5
RoBERTa-Base 86.1 91.1 67.1 69.6
ALBERT-XLarge 87.2 91.6 70.9 71.2
XLM-R-Large 88.3 90.8 70.6 72.5
ELECTRA-Base 87.4 91.5 69.9 73.4
BART-Large 89.1 91.2 76.7 77.3
DeBERTa-V3-Base 89.8 92.6 74.4 77.7
RoBERTa-Large 89.6 91.8 78.5 77.4
ELECTRA-Large 90.3 92.7 83.2 79.7
DeBERTa-V2-Large 90.5 92.7 85.5 79.1
DeBERTa-V2-XLarge 90.2 92.7 87.0 78.1
DeBERTa-V3-Large 90.8 93.1 87.6 81.2

Table 1: Accuracy (%) of fully fine-tuned models on
full validation sets. Models are sorted in order of aver-
age performance across all four tasks.

Table 1 shows the performance of fully fine- 233

tuned models on the validation set of each task. 234

In this and subsequent visualizations, we sort the 235

models based on the average full fine-tuned perfor- 236

mance on the four tasks, from weakest to strongest. 237

4 Adversarially Filtering Evaluation Sets 238

AFLite (Sakaguchi et al., 2020; Le Bras et al., 2020) 239

is an adversarial filtering algorithm that iteratively 240

removes “easy” examples from a dataset. To apply 241

AFLite, given a dataset D = (X,Y ) of inputs X 242

and labels Y , we first compute a learned represen- 243

tation Φ(x) for each example based on the adver- 244

sary model. In each iteration, we sample multiple 245

random subsets of the remaining data, fit weak clas- 246

sifiers on the subsets and compute predictions on 247

the held-out examples. If an example is predicted 248

correctly by more than a threshold τ of weak classi- 249

fiers, it is removed from the dataset. This procedure 250

is repeated until the number of examples removed 251

in an iteration falls below a set threshold, resulting 252

in a reduced dataset. Details can be found in the 253

original work (Le Bras et al., 2020). 254

Sakaguchi et al. (2020) and Le Bras et al. (2020) 255

apply AFLite before applying train/validation/test 256

splits. However, because we are interested in the 257

impact of the adversarial filtering on evaluation 258

datasets,2 we do not want to use evaluation exam- 259

2In our experiments, we use the validation set of each task
as the evaluation set.
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ples to train the weak classifiers or influence the260

filtering procedure. Hence, we tweak the AFLite al-261

gorithm to separately filter out evaluation examples.262

We accomplish this by running the standard AFLite263

on the training examples, but in each round, we use264

the same weak classifiers and removal criteria to265

filter out “easy” evaluation examples. We show our266

modified AFlite in Algorithm 1 in the Appendix.267

4.1 Results on AFLite Across Adversary and268

Fine-tuned Models269

We apply AFLite using all 18 models as Φ(X), and270

evaluate against each fully fine-tuned model. The271

statistics of the examples filtered per model and272

task can be found in Section B in the Appendix.273

Figure 1 shows the results of fine-tuned models on274

validation sets filtered via AFLite using different275

adversary models.3276

Overall, using AFLite with stronger adversary277

models leads to lower performance across all fine-278

tuned models, across all four tasks. Using a suffi-279

ciently strong adversary model for filtering pushes280

the performance of all tuned models to only slightly281

above chance: For instance, while most mod-282

els score 80-90% on the unfiltered MNLI valida-283

tion set, filtering using AFLite with DeBERTa-V3-284

Large results in no model scoring better than 45%.285

We also observe a mild pattern of the weakest286

models performing slightly better as stronger ad-287

versaries are used in MNLI, SNLI, and SocialIQA.288

One explanation is that weaker models rely on eas-289

ily learned heuristics (McCoy et al., 2019), and the290

weak classifiers in AFLite select examples that go291

against these heuristics, which weaker models sub-292

sequently perform poorly on. In contrast, stronger293

adversaries may filter out these examples.294

4.1.1 Impact on Model Comparison295

Evaluation datasets are often used to compare mod-296

els, so we analyze the impact of adversarial filter-297

ing on the resulting sorting order of model perfor-298

mance. For each adversary model, we evaluate the299

fine-tuned models on the AFLite filtered dataset300

and sort the models by performance. In Figure 2,301

we show the ranked performance of models using302

different adversaries for a subset of the largest ad-303

versary models. We find that the sorting order of304

models is generally not consistent across adversary305

models. This is the case even if we ignore cases306

where the fine-tuned and adversary models share307

3We present the same information in heatmaps in Figure 7
in the Appendix.

the same pretrained model.For MNLI and SNLI, 308

evaluating on the datasets filtered by stronger adver- 309

saries appears to greatly distort the relative ranking 310

of models. For Cosmos QA and SocialIQA, we 311

observe that even when filtering with stronger ad- 312

versaries, stronger models still tend to rank better 313

than weaker models, but the ranking order is still 314

not consistent across adversaries. 315

One interpretation of this result is that adversar- 316

ial filtering may not give us evaluation data that 317

is reliable for benchmarking and comparing mod- 318

els. An alternative interpretation is that as stronger 319

adversary models are used, a larger proportion of 320

remaining examples are challenging and therefore 321

models are more likely to perform at chance on 322

them. As such, we ought to expect stronger adver- 323

saries will lead to more randomness in the model 324

rankings. In the extreme, if the weak classifiers 325

in AFLite are as capable as the best-performing 326

model, all models should perform at chance on 327

the remaining examples. While performance on 328

the strongest adversarially filtered datasets is still 329

above chance for most models, we see that in 330

MNLI and SNLI, all models converge to a small 331

range of performance (35%–45%), meaning that a 332

small variation in the number of correctly predicted 333

examples can lead to a large change in model rank. 334

This can lead to a distorted ranking of models. 335

We might also be concerned that the impact of 336

adversarial filtering if the fine-tuned and adversary 337

models are based on the same pretrained model. To 338

measure this, we compute the rank of each model 339

when no filtering is applied, and show how much 340

the rank changes when filtering using the same pre- 341

trained model. However, as we show in Figure 10, 342

the impact of filtering with the same pretrained 343

model is disproportionately large, with all models 344

except the weakest ones—which by definition can- 345

not fall in rank—falling several positions in relative 346

rankings. This implies that adversarial filtering for 347

evaluation sets is very sensitive to the choice of 348

model, and the resulting dataset is unfairly chal- 349

lenging if the adversary and evaluated models are 350

based on the same pretrained model. 351

4.2 Label Agreement 352

To investigate the kinds of examples being iden- 353

tified as challenging via AFLite, we use the per- 354

annotator labels of the MNLI and SNLI datasets. 355

In the original data creation procedure, each 356

validation-set example is annotated by 5 crowd- 357
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Figure 1: Performance of fine-tuned models on validation sets filtered via AFLite using adversary models. ‘None’
indicates the full unfiltered validation set. The dotted line indicates performance at chance for each task. Filtering
with stronger adversary models leads to lower performance on the filtered dataset.
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Figure 2: Ranked performance of fine-tuned models on validation sets filtered via AFLite using adversary models.
We depict here a subset of the larger adversary models. For each AF Selected dataset, we sort models by their
performance (Figure 1) from best (top) to worst (bottom). ‘None’ indicates the full validation set with no filtering
applied. We find that the sorting order of model performance is not consistent across adversary models.

workers, and candidate examples are only accepted358

if at least 3 out of 5 crowdworkers agree on the359

label. We show in Figure 3 the average annotator360

agreement in the AFLite-selected examples across361

adversary models. For comparison, we also show362

the agreement rate among examples eliminated in363

the very first round of the AFLite procedure.364

We observe a clear pattern across both datasets365

that filtering with stronger adversary models se-366

lects for examples with lower annotator agreement.367

Combined with our results above on lower model368

performance on filtered datasets, we take this as 369

good evidence that the AFLite procedure indeed 370

selects for the most challenging examples. It is 371

unclear if these examples are challenging because 372

they are genuinely difficult, where humans can eas- 373

ily make mistakes on them, genuinely ambiguous, 374

or simply mislabeled. Conversely, we see that the 375

first-pass filtered examples have consistently high 376

annotator agreement, and that this rate does not 377

vary across strength of the adversary models. 378

Oversampling low-agreement examples is not 379
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Figure 3: Label agreement among the adversarially fil-
tered datasets from human annotators. AF Selected in-
dicates examples that are not filtered out. None indi-
cates no filtering applied i.e. agreement over the full
validation set. Label agreement for the AF-selected
datasets falls as better adversary models are used, in-
dicating that AFLite may be selecting for the examples
with the most ambiguity or labeling noise.

necessarily a bad thing if evaluated appropriately.380

Pavlick and Kwiatkowski (2019) and Nie et al.381

(2020c) show that there can be genuine disagree-382

ment between annotators over the example label,383

and argue that we should go beyond optimizing for384

model accuracy and instead train models to predict385

the full distribution of human judgements. The cur-386

rent format of scoring models on simple accuracy387

inadequate to evaluate on low-agreement examples,388

as the distribution of labels is reduced to a single389

label based on majority vote. Hence, if AFLite390

selects for low-agreement examples, one potential391

improvement would be to adjust the evaluation for-392

mat to reflect annotator disagreement over labels.393

5 Adversarially Perturbed Datasets394

An alternative approach to creating more challeng-395

ing datasets is to modify examples to lower the per-396

formance of a given adversary model. TextFooler397

(Jin et al., 2019) is a popular algorithm for adver-398

sarially perturbing examples, which involves swap-399

ping out words in the input for synonyms, with400

additional constraints aimed at retaining grammati-401

cality and semantic content of the original example.402

We refer to the original work for full details of the403

TextFooler algorithm.404

We apply the TextFooler methods to the SNLI405

and MNLI datasets, following the setup of the orig-406

inal work, where only the hypotheses are perturbed.407

For full comparability of results, we use the same408

models for Φ(X) in AFLite as the adversaries for409

TextFooler, and evaluate using the models fine- 410

tuned on the full training set. We also use the same 411

hyperparameters for the TextFooler algorithm as in 412

the original work. 413

Overall, we find that adversarial perturbations 414

impact model evaluation in a similar manner to ad- 415

versarial filtering. TextFooler adversarial perturba- 416

tions generally lower model performance across the 417

board, with stronger adversaries leading to lower 418

average performance across all models. However, 419

we also observe a strong trend of models perform- 420

ing much worse on data perturbed adversarially 421

to the same pretrained model, as seen by the dis- 422

tinct dip in performance along the diagonals of Fig- 423

ure 12. Moreover, using stronger adversaries also 424

distorts the order of model performance, as seen in 425

Figure 4, much moreso than with adversarial filter- 426

ing. For instance, using DeBERTa-V3-Large as the 427

adversary, ALBERT-XLarge is the best performing 428

model; however, with ALBERT-XLarge as the ad- 429

versary, DeBERTa-V3-Large is in turn the best per- 430

forming model. The inconsistent impact on model 431

performance across adversary models makes the 432

naive usage of adversarial perturbations to create 433

more challenging evaluation datasets problematic. 434

One major concern is whether the TextFooler- 435

perturbed examples still retain the same semantic 436

content and, more importantly, the labels of the 437

original examples. Jin et al. evaluated a 100 ex- 438

amples from the validation set and found that the 439

perturbations somewhat distorted the grammatical- 440

ity and the meaning of the SNLI examples with a 441

BERT adversary. We also observe a fall in quality 442

of the examples in our experiments, with label flips 443

arising from modifying key words, which greatly 444

hurts the validity of performance obtained on these 445

examples. We show a number of examples per- 446

turbed with different adversary models in (Table 4). 447

Without any additional checks, using automatically 448

perturbed examples for evaluating models can lead 449

to extremely misleading results. Works such as 450

AdversarialGLUE (Wang et al., 2021) perform an 451

additional step of human validation and filtering of 452

model-perturbed examples, which are necessary to 453

ensure reliable evaluation data. 454

6 Model-in-the-Loop Adversarially 455

Collected Datasets 456

In model-in-the-loop adversarial data collection, 457

human crowdworkers are tasked with writing exam- 458

ples that a given adversary model will incorrectly 459
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Figure 4: Ranked performance of fine-tuned models on validation sets perturbed via TextFooler using adversary
models. For each perturbed dataset, we sort models by their performance (Figure 1) from best (top) to worst
(bottom). ‘None’ indicates the full validation set with no filtering applied. We find that the sorting order of model
performance is not consistent across adversary models, with dramatic reversals in many cases.
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Figure 5: Measuring the performance of models on adversarially collected datasets. Exact Match scores for Ad-
versarialQA are shown in Figure 13 in the Appendix. For each adversarially created dataset, the corresponding
base adversary model used in model-in-the-loop data creation is circled in the corresponding color for that dataset.
Performance at chance on ANLI is shown with a dotted line. While adversarial dataset creation appears to create
datasets that are slightly harder for the adversary model compared to other models, the resulting datasets are harder
across the board for all models, with stronger models still performing relatively better.

label. We consider two established model-in-the-460

loop adversarially collected datasets. ANLI (Nie461

et al., 2020b) is an NLI dataset adversarially col-462

lected through three iterative rounds, where the463

data for each round is written to be adversarial to464

models trained on a combination of MNLI, SNLI,465

and data from previous rounds. BERT-Large is466

used as the adversary model for round 1 of data col-467

lection, while RoBERTA-Large is used for rounds468

2 and 3. AdversarialQA (Bartolo et al., 2020), is469

an adversarial question-answering dataset in the470

format of SQuAD 1.1 (Rajpurkar et al., 2016). Un-471

like ANLI, it consists of separately collected exam-472

ples based on three adversary models: BiDAF (Seo473

et al., 2017), BERT-Large, and RoBERTa-Large.474

While both datasets come with training, valida-475

tion and test data splits, we conduct our analysis on476

the validation data. For both datasets, we fine-tune477

models on the conventional training data for each478

task,4 before evaluating on both the standard and479

adversarial validation datasets.480

4MNLI and SNLI for ANLI, and SQuAD 1.1 for Adver-
sarialQA.

Figure 5 shows results on both model-in-the- 481

loop datasets. For ANLI, about half of the mod- 482

els perform at chance for ANLI R1, whereas 483

the stronger models perform significantly above 484

chance. On the other hand, for ANLI R2 and 485

R3, most models perform at chance except for the 486

largest DeBERTa models. These results show that 487

the ANLI data-generating procedure leads to exam- 488

ples that are harder for all models. However, we 489

also observe that for ANLI R2 and R3, the perfor- 490

mance of the adversary model, RoBERTa-large, is 491

markedly below chance. This supports our obser- 492

vation above that while adversarial dataset creation 493

can lower performance across the board, it still 494

tends to hurt the adversary model more than others. 495

We see similar results for AdversarialQA, with 496

models performing poorer as the datasets are gen- 497

erated with stronger adversaries. Unlike for ANLI, 498

models do significantly better than chance on the 499

adversarial datasets, with almost all models staying 500

above 20% F1 and 10% EM. 501

Compared to our more extensive experiments 502

on adversarial filtering, there are fewer datasets 503
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collected using different adversary models, given504

the financial cost and manual writing needed to505

obtain examples. Hence we cannot draw strong506

conclusions about the efficacy of adversarial data507

collection for evaluation data from the current set508

of results. Moreover, the adversaries used in ANLI509

and AdversarialQA are not among the strongest510

models we used in our adversarial filtering experi-511

ments, where we saw the greatest distortion in the512

ranking of models. However, we do find that adver-513

sarial data collection leads to harder examples with514

stronger adversary models. As more work is done515

on adversarially collecting datasets and building516

benchmarks based on them (Kiela et al., 2021), we517

recommend that researchers pay close attention to518

the impact of the choice of adversary model and519

evaluate across a range of different models.520

7 Discussion521

We highlight that this work has not investigated522

the nature of the adversarial examples outside of523

the impact on model performance and annotator524

agreement. Works such as Williams et al. (2020)525

will be important for understanding exactly what526

examples are considered adversarial and why they527

are challenging to different models.528

While our adversarial filtering experiments were529

performed on single adversary models, a possible530

alternative is to ensemble a diverse set of adversary531

models when running AFLite, or weight examples532

based on the AFLite example selection based on533

each adversary. This approach may help reduce the534

issue of disproportionate impact on any given ad-535

versary model’s performance, and weighting eval-536

uation across different example subsets may also537

potentially reduce the unstable ranking of models.538

However, this would significantly increase the cost539

of running the algorithm, would not address the is-540

sue of oversampling low-agreement examples, and541

may simply create a bias in favor of models that542

are greatly dissimilar from the pool of adversaries543

(e.g. non-Transformer models).544

8 Conclusion545

In this work, we have investigated three different546

approaches to adversarially constructing more chal-547

lenging evaluation datasets int extensive experi-548

ments across 18 different pretrained models.549

While all three methods result in lower scores as550

stronger adversaries are used, our takeaways on the551

viability of adversarial data creation to construct552

more challenging evaluation datasets are mixed. 553

Using a modified AFLite to adversarially filter 554

evaluation examples, we find that there is a dis- 555

proportionately large impact on the performance 556

of fine-tuned models derived from the same pre- 557

trained model as the adversary, that the resulting 558

ranking of models is unstable across the choice of 559

adversary model especially as stronger adversaries 560

are used, and that the filtering selects for examples 561

with low annotator agreement over labels. On the 562

other hand, the impact on model rankings is some- 563

what expected as a higher proportion of difficult 564

examples remain after filtering. 565

Using TextFooler to perturb examples, we find 566

even greater distortion in model rankings with 567

stronger adversaries, and that examples can often 568

be perturbed to the point of flipping labels, which 569

is dire for model evaluation. 570

In a smaller set of experiments on adversarially 571

collected datasets, we find hints of datasets being 572

more challenging for the same pretrained model as 573

the adversary, consistent with (Nie et al., 2020a), 574

but are unable to draw stronger conclusions given 575

the small number of adversaries used. 576

As the cost of using models goes down and their 577

capabilities improve, we are likely to see more at- 578

tempts to involve them in dataset creation. Models 579

may be used adversarially as discussed above, or 580

used to assist in writing examples via text gen- 581

eration models, or used in others ways, such as 582

automatically identifying outliers or low-quality 583

human-written examples. In any of these cases, 584

it is possible to create an adverse and undesirable 585

feedback loop in the data creation procedure. 586

While we believe that adversarially data meth- 587

ods can helpful in to creating more challenging 588

evaluation benchmarks, we should take extra care 589

to avoid the pitfalls of these approaches. Careful 590

human validation of examples, as in (Wang et al., 591

2021), can help to address some pitfalls of adversar- 592

ial approaches, but addressing biases at the dataset 593

rather than example level can still be challenging. 594

Importantly, adversarial datasets must accurately 595

reflect the core task or capability being measured, 596

ideally with a diverse set of examples that have 597

good coverage of the linguistic phenomena asso- 598

ciated with the task. As it stands, we do not yet 599

find any free lunch for creating more challenging 600

evaluation datasets. 601
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Algorithm 1: AFLite for Evaluation Data
Input: training dataset DT = (XT , YT ), evaluation

dataset DV = (XV , YV ), pre-computed
representation (Φ(XT ),Φ(XV )), model family
M, target dataset size n, number of random
partitions m, training set size t < n, slice size
k ≤ n, early-stopping threshold τ

Output: Filtering history of evaluation examples H ,
remaining evaluation examples R

S = DT

R = DV

while |S| > n do
// Filtering phase
forall i ∈ S do

Initialize multiset of out-of-sample training
predictions ET (i);

forall i ∈ R do
Initialize multiset of out-of-sample evaluation

predictions EV (i);
for iteration j : 1..m do

Randomly partition S into (Tj , S \ Tj) s.t.
|S \ Tj | = t;

Train a classifier L ∈M on
{(Φ(x), y)|(x, y) ∈ S \ Tj};

forall i = (x, y) ∈ Tj do
Add the prediction L(Φ(x)) to ET (i);

forall i = (x, y) ∈ R do
Add the prediction L(Φ(x)) to EV (i);

forall i = (x, y) ∈ S do
Compute the predictability score
p̃(i) = |{ŷ ∈ ET (i) s.t. ŷ = y}|/|ET (i)|;

forall i = (x, y) ∈ R do
Compute the predictability score
p̃(i) = |{ŷ ∈ EV (i) s.t. ŷ = y}|/|EV (i)|;

Select up to k instances S′ in S with the highest
predictability scores subject to p̃(i) ≥ τ ;
S = S \ S′;
Select all instances R′ in R where p̃(i) ≥ τ ;
R = R \R′;
Append R′ to H;
if |S’| < k then

break;
return H,R

A Modified AFLite888

Algorithm 1, shows the modified AFLite algorithm,889

where the original algorithm applied to training890

examples is shown in black, and the additional lines891

applied to the evaluation examples are highlighted892

in red.893

Φ(X) is the CLS or <S> embeddings of corre-894

sponding adversary model, fine-tuned on a separate895

held-out training set for the task (10% of the train-896

ing data, following AFLte).897

B AFLite Filtering Statistics898

Figure 6 shows the breakdown of filtered exam-899

ples when applying AFLite with different models.900

Each example in the validation set falls into one901

of three categories: examples filtered out on the902

first iteration of AFLite, examples filtered in all 903

subsequent iterations, and examples remaining af- 904

ter applying AFLite (AF Selected). In most cases, 905

more than half the validation datasets are filtered 906

out within the first iteration, meaning that these ex- 907

amples were largely correctly predicted by a set of 908

weak classifiers using the learned representations 909

of partially tuned adversary models. Moreover, 910

the stronger the adversary model, the more exam- 911

ples tend to be removed in the first iteration. Sub- 912

sequent filtering iterations remove comparatively 913

much fewer examples. 914

Among the AF Selected examples for Cosmos 915

QA and SocialIQA, we see a trend that the stronger 916

the adversary model, the fewer examples remain af- 917

ter AFLite. We do not see the same pattern in 918

MNLI and SNLI, where the number of AF Se- 919

lected examples does not vary consistently across 920

strength of models. We note that Cosmos QA and 921

SocialIQA use different AFLite hyperparameters 922

from MNLI and SNLI because of the difference in 923

datasets sizes (Table 3. 924

C Additional Results 925

Figure 8 shows the same information as Figure 1, 926

with fine-tuned models on the X-axis and adver- 927

sary models shown in different curves. Figure 7 928

shows the same information in a heatmap. Fig- 929

ure 11 shows the average agreement across adver- 930

sarially filtered datasets, including the agreement 931

among subsequent iterations of AFLite. Figure 13 932

shows exact-match scores on the AdversarialQA 933

datasets. 934

D Models 935

Table 2 shows additional details for each of the 936

pretrained models used in our experiments. 937

E Fine-Tuning Details 938

For full fine-tuning, we fine-tune for 3 epochs for 939

MNLI and SNLI, and 5 epochs for Cosmos QA 940

and SocialIQA. For fine-tuning weak classifiers 941

for Φ(x), we subsample 10% of the training ex- 942

amples for MNLI and SNLI, and 5000 examples 943

for Cosmos QA and SocialIQA, fixing the subsam- 944

ples across all models. We repeat the subsampling 945

procedure three times. In both fine-tuning setups, 946

we hold out 500 examples from the training set for 947

early stopping. These training examples are held 948

out for both full fine-tuning as well as the AFLite 949
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Figure 6: Statistics of AFLite-filtered datasets. We apply Algorithm 1 to the validation set of each task across
adversary models, and average across three random seeds. AF Selected indicates examples that are included in the
final evaluation set. For most models, majority of the examples are filtered out within the first iteration of AFLite.

Model Abbreviation Reference Parameters Training Objective

MiniBERTa Small 1M Min-1M Zhang et al. (2021) ∼45M Masked language modeling
MiniBERTa Base 1B Min-1B Zhang et al. (2021) ∼100M Masked language modeling
BERT-Base (cased) BERT-B Devlin et al. (2019) ∼100M Masked language modeling + NSP
BERT-Large (cased) BERT-L Devlin et al. (2019) ∼340M Masked language modeling + NSP
XLM-R-Base XLMR-B Conneau et al. (2020) ∼100M Masked language modeling
XLM-R-Large XLMR-L Conneau et al. (2020) ∼340M Masked language modeling
BART-Base BART-B Lewis et al. (2020) ∼100M Text infilling + Sentence permutation
BART-Large BART-L Lewis et al. (2020) ∼340M Text infilling + Sentence permutation
ALBERT-Large (v2) ALB-L Lan et al. (2020) ∼18M Masked language modeling + SOP
ALBERT-XLarge (v2) ALB-XL Lan et al. (2020) ∼60M Masked language modeling + SOP
RoBERTa-Base RoBE-B Liu et al. (2019) ∼100M Masked language modeling
RoBERTa-Large RoBE-L Liu et al. (2019) ∼340M Masked language modeling
ELECTRA-Base ELEC-B Clark et al. (2020) ∼100M Replaced token detection
ELECTRA-Large ELEC-L Clark et al. (2020) ∼340M Replaced token detection
DeBERTa-V2-Large (v2) DBv2-L He et al. (2021) ∼900M Masked language modeling
DeBERTa-V2-XLarge (v2) DBv2-XL He et al. (2021) ∼1.5B Masked language modeling
DeBERTa-V3 Base DBv3-B He et al. (2021) ∼100M Replaced token detection
DeBERTa-V3 Large DBv3-L He et al. (2021) ∼418M Replaced token detection

Table 2: Pretrained models used in our experiments

procedure. As such, validation examples never in-950

fluence the fine-tuning or AFLite procedures, only951

being used when we perform AFLite and filter our952

validation examples as described in Algorithm 1.953

For DeBERTa, unlike in He et al. (2020), we do954

not apply SiFT during fine-tuning.955

F AFLite Hyperparameters956

Table 3 shows the hyperparameters for our AFLite957

runs.958

13



No
ne

Mi
n-

1M

Mi
n-

1B

BE
RT

-B

XL
MR

-B

BA
RT

-B

BE
RT

-L

AL
BT

-L

RO
BE

-B

AL
BT

-X
L

XL
MR

-L

EL
EC

-B

BA
RT

-L

DB
v3

-B

RO
BE

-L

EL
EC

-L

DB
v2

-L

DB
v2

-X
L

DB
v3

-L

Min-1M

Min-1B

BERT-B

XLMR-B

BART-B

BERT-L

ALBT-L

ROBE-B

ALBT-XL

XLMR-L

ELEC-B

BART-L

DBv3-B

ROBE-L

ELEC-L

DBv2-L

DBv2-XL

DBv3-L

Fi
ne

-t
un

ed
 M

od
el

60 42 30 27 24 30 32 29 33 31 33 32 34 33 34 36 36 36 36
79 73 43 37 26 35 32 30 32 32 34 30 34 33 33 37 38 39 37
83 78 57 40 36 43 37 32 35 35 38 32 36 36 35 38 39 42 40
81 75 53 42 23 38 37 30 32 34 33 30 34 36 33 36 37 40 36
85 80 62 50 39 39 43 34 35 36 37 34 34 37 35 37 39 41 38
86 81 64 53 44 50 39 39 40 38 40 37 38 38 37 39 40 43 39
86 82 67 58 48 55 51 35 45 38 44 41 40 40 40 39 40 42 38
86 82 66 55 47 50 48 38 32 39 39 36 36 36 35 38 40 42 37
87 84 71 62 53 59 57 45 50 34 48 45 44 43 41 40 42 41 38
88 85 72 63 54 60 57 47 49 44 40 44 43 42 40 40 42 43 40
87 84 70 60 51 56 53 45 45 40 43 30 39 37 37 36 40 41 37
89 86 75 67 60 63 61 51 54 46 49 50 38 44 41 41 42 45 42
90 87 76 69 62 66 63 56 56 52 53 50 47 37 46 42 43 44 38
90 87 75 67 61 65 64 53 56 48 52 50 47 46 39 43 42 43 40
90 87 77 70 63 67 65 56 58 54 54 54 50 48 47 36 44 45 40
90 88 78 71 67 69 68 59 62 54 58 55 53 50 50 45 42 42 41
90 88 78 70 68 69 67 59 62 56 58 59 53 50 50 47 45 42 45
91 88 79 70 66 70 69 59 63 56 59 58 54 51 51 44 46 45 35

MNLI

No
ne

Mi
n-

1M

Mi
n-

1B

BE
RT

-B

XL
MR

-B

BA
RT

-B

BE
RT

-L

AL
BT

-L

RO
BE

-B

AL
BT

-X
L

XL
MR

-L

EL
EC

-B

BA
RT

-L

DB
v3

-B

RO
BE

-L

EL
EC

-L

DB
v2

-L

DB
v2

-X
L

DB
v3

-L

Min-1M

Min-1B

BERT-B

XLMR-B

BART-B

BERT-L

ALBT-L

ROBE-B

ALBT-XL

XLMR-L

ELEC-B

BART-L

DBv3-B

ROBE-L

ELEC-L

DBv2-L

DBv2-XL

DBv3-L

73 48 29 28 23 30 32 31 28 33 30 32 31 31 34 34 33 36 34
87 78 43 38 35 35 31 32 28 34 31 33 29 33 34 34 34 40 36
90 82 59 42 45 45 38 40 37 38 40 36 32 35 39 33 37 43 39
87 78 51 39 29 39 35 33 29 35 30 34 28 32 35 35 34 39 36
90 82 59 48 47 39 40 37 32 36 34 36 29 34 35 35 35 42 37
91 84 65 52 51 53 40 44 43 43 43 40 35 40 42 35 37 44 40
90 83 64 51 52 52 48 35 41 39 42 40 37 39 40 34 36 41 38
91 85 65 54 51 51 47 43 34 43 40 40 33 38 37 35 36 41 38
92 86 69 57 56 58 52 48 47 42 50 48 41 43 43 38 40 46 40
91 84 66 56 53 54 49 45 41 42 36 41 35 37 38 34 36 41 37
92 85 68 59 57 56 51 47 45 39 44 34 35 36 39 33 36 42 36
91 85 67 57 54 54 52 49 44 43 44 42 27 35 37 34 34 41 34
93 87 73 64 63 63 59 57 53 52 55 51 41 36 45 38 38 45 35
92 86 70 61 57 58 52 51 48 46 48 47 37 40 35 35 37 42 37
93 87 74 64 63 65 60 60 56 54 57 53 45 43 49 35 41 47 38
93 87 74 66 65 66 63 60 56 56 59 56 45 48 50 41 37 45 40
93 88 74 63 64 65 58 58 55 57 57 54 46 48 49 38 40 43 39
93 88 76 69 66 67 64 63 59 57 61 58 48 48 51 42 42 47 34

SNLI

No
ne

Mi
n-

1M

Mi
n-

1B

BE
RT

-B

XL
MR

-B

BA
RT

-B

BE
RT

-L

AL
BT

-L

RO
BE

-B

AL
BT

-X
L

XL
MR

-L

EL
EC

-B

BA
RT

-L

DB
v3

-B

RO
BE

-L

EL
EC

-L

DB
v2

-L

DB
v2

-X
L

DB
v3

-L

AFLite Adversary Model

Min-1M

Min-1B

BERT-B

XLMR-B

BART-B

BERT-L

ALBT-L

ROBE-B

ALBT-XL

XLMR-L

ELEC-B

BART-L

DBv3-B

ROBE-L

ELEC-L

DBv2-L

DBv2-XL

DBv3-L

Fi
ne

-t
un

ed
 M

od
el

42 28 28 27 27 27 27 29 29 31 28 28 28 29 28 28 27 26 27
55 49 27 32 31 28 32 36 33 38 31 32 31 32 31 33 30 32 33
58 53 41 26 39 34 31 38 37 39 34 33 33 35 34 34 35 35 34
59 54 39 39 31 34 38 41 36 43 34 36 36 35 36 37 37 36 38
63 58 45 41 41 24 37 39 34 39 32 32 29 32 30 33 32 31 31
62 58 47 40 45 39 28 41 38 40 35 35 34 34 34 34 35 34 34
62 59 50 46 48 41 43 33 40 37 36 37 35 36 34 33 33 31 32
67 63 54 50 50 41 45 45 32 42 36 36 34 35 32 36 35 35 36
71 67 60 56 58 51 53 48 50 39 46 46 41 42 39 36 35 32 34
71 68 59 55 56 49 52 52 48 49 37 43 40 40 38 39 39 39 39
70 67 58 54 56 47 51 50 46 47 43 29 39 37 37 37 39 39 36
77 74 67 63 64 56 60 58 56 54 52 52 34 45 42 39 40 38 39
74 72 65 61 63 55 57 57 54 52 49 48 43 31 41 37 40 37 34
79 76 70 67 69 62 64 63 61 60 57 57 50 50 39 40 43 41 38
83 82 77 75 77 72 73 72 71 68 67 67 62 60 58 35 48 47 43
85 84 79 78 78 74 76 75 74 71 70 70 65 64 62 53 46 46 49
87 85 81 79 81 77 79 77 76 75 74 74 68 68 65 57 53 45 51
88 86 83 82 82 79 80 79 78 76 76 76 71 70 68 58 59 56 41

Cosmos QA

No
ne

Mi
n-

1M

Mi
n-

1B

BE
RT

-B

XL
MR

-B

BA
RT

-B

BE
RT

-L

AL
BT

-L

RO
BE

-B

AL
BT

-X
L

XL
MR

-L

EL
EC

-B

BA
RT

-L

DB
v3

-B

RO
BE

-L

EL
EC

-L

DB
v2

-L

DB
v2

-X
L

DB
v3

-L

AFLite Adversary Model

Min-1M

Min-1B

BERT-B

XLMR-B

BART-B

BERT-L

ALBT-L

ROBE-B

ALBT-XL

XLMR-L

ELEC-B

BART-L

DBv3-B

ROBE-L

ELEC-L

DBv2-L

DBv2-XL

DBv3-L

42 26 32 32 32 33 32 33 31 35 35 35 34 35 35 33 35 35 37
57 52 35 37 36 35 39 34 34 36 33 34 35 34 36 33 37 37 35
60 56 45 31 39 39 38 34 36 35 34 33 33 33 35 30 36 36 34
63 59 49 46 36 40 46 35 37 38 33 35 36 35 37 34 40 41 38
65 62 52 48 43 36 48 36 38 38 34 35 32 34 35 33 38 39 36
65 62 53 46 47 45 42 40 41 39 37 36 36 36 37 33 39 38 36
68 66 59 55 52 50 53 38 46 42 41 42 39 39 40 38 40 39 38
70 67 58 54 50 47 53 43 37 42 37 38 36 34 36 34 40 39 37
71 69 63 58 57 55 57 47 51 40 44 44 41 39 42 36 39 39 38
73 70 64 60 57 55 59 49 50 47 37 44 41 39 40 37 40 40 40
73 72 65 61 59 56 59 51 50 48 45 34 41 36 41 36 42 43 41
77 75 71 67 66 62 66 57 58 54 53 52 41 43 45 39 43 42 40
78 76 71 68 66 63 67 58 59 55 53 52 48 34 46 39 43 42 40
77 76 71 67 66 63 66 58 59 54 53 52 48 44 40 39 44 42 41
80 78 74 71 70 68 70 63 64 59 59 58 53 48 51 35 45 45 42
79 77 74 70 69 67 69 63 64 59 58 58 53 49 51 43 42 43 41
78 77 73 71 69 68 69 63 65 59 59 59 55 52 52 45 44 41 44
81 80 76 74 73 71 73 67 68 63 64 62 59 53 56 46 50 49 39

SocialIQA

Figure 7: Performance of fine-tuned models on validation sets filtered via AFLite using adversary models. ‘None’
indicates the full validation set with no filtering applied. Filtering with stronger adversary models leads to lower
performance on the filtered dataset, across all fine-tuned models. However, filtering also tends to hurt the adversary
model itself more than other models on average (darker cells on the diagonal).

MNLI SNLI Cosmos QA SocialIQA

m 64 64 64 64
t 50K 40K 10k 10k
k 10K 10K 500 500
τ 0.75 0.75 0.75 0.75

Taken From Le Bras et al. (2020) Le Bras et al. (2020) Sakaguchi et al. (2020) Sakaguchi et al. (2020)

Table 3: AFLite Hyperparameters
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Figure 8: Performance of fine-tuned models on validation sets filtered via AFLite using adversary models. ‘None’
indicates the full validation set with no filtering applied. The dotted line indicates performance at chance for
each task. Filtering with stronger adversary models leads to lower performance on the filtered dataset, across all
fine-tuned models.
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Figure 9: Ranked performance of fine-tuned models on validation sets filtered via AFLite using adversary models.
We depict here a subset of the larger adversary models. For each AF Selected dataset, we sort models by their
performance (Figure 1) from best (top) to worst (bottom). ‘None’ indicates the full validation set with no filtering
applied. We find that the sorting order of model performance is not consistent across adversary models.
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Premise Original Hypothesis Label Perturbed Hypothesis Issue

Adversary: BERT-Large

In Hong Kong you can
have a plate, or even
a whole dinner service,
hand-painted to your
own design.

It’s impossible to have a
plate hand-painted to your
own design in Hong Kong.

contradiction It’s imaginable to have
a plate hand-painted to
your own design in
Hong Kong.

Semantics change

He hadn’t seen even
pictures of such things
since the few silent
movies run in some of
the little art theaters.

He had recently seen
pictures depicting those
things.

contradiction He had recently experi-
mented pictures expos-
ing those things.

Problematic word
substitution

As a basic guide, the
symbols below have
been used to indicate
high-season rates in
Hong Kong dollars,
based on double oc-
cupancy, with bath or
shower.

As you can see, the sym-
bols are of dolphins and
octopuses.

neutral As you can see, the sym-
bols are of sharks and oc-
topuses.

Semantics change

Adversary: DeBERTa-V3-Large

Do you think Mrs. In-
glethorp made a will
leaving all her money to
Miss Howard? I asked in
a low voice, with some
curiosity.

I yelled at the top of my
lungs.

contradiction I muttered at the supe-
rior of my lungs.

Problematic word
substitution

But when the cushion is
spent in a year or two, or
when the next recession
arrives, the disinterme-
diating voters will find
themselves playing the
roles of budget analysts
and tax wonks.

The cushion will likely be
spent in under two years.

entailment The cushion will likely
be spent in under three
years.

Semantics change

substitute my my yeah
my kid’ll do uh four or
five hours this week for
me no problem

I just can’t make the time
because of my job.

neutral I just can’t make the
time for of my job.

Grammatical error

Table 4: TextFooler Examples
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MNLI SNLI Cosmos SIQA

Min-1M
Min-1B
BERT-B
XLMR-B
BART-B
BERT-L
ALBT-L

ROBE-B
ALBT-XL
XLMR-L
ELEC-B
BART-L
DBv3-B
ROBE-L
ELEC-L
DBv2-L

DBv2-XL
DBv3-L

0 0 0 0
0 0 1 0
1 0 2 2
2 1 1 1
1 1 6 2
1 3 3 2
2 2 4 1
6 4 6 3
6 3 6 2
4 2 1 2
8 8 7 8
5 9 7 2
6 7 10 11
4 8 2 4

15 8 8 9
5 2 1 5
4 4 2 4

17 16 3 8

Figure 10: For each fine-tuned model, we compute the
change in rank (1=best, 18=worst) from evaluating on
the full evaluation set, and on the dataset filtered using
the same pretrained model for the adversary. In almost
all cases, filtering on the same pretrained model leads
to a fall in ranking, indicating that the model is dispro-
portionately affected by filtering with itself.
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90.6% 77.1% 75.9%
90.8% 78.7% 77.1%
90.8% 78.4% 77.2%
90.8% 78.0% 75.8%
90.7% 76.6% 75.5%
90.8% 76.7% 75.4%
90.7% 74.5% 73.5%
90.9% 80.2% 73.9%
90.8% 74.8% 74.0%
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Figure 11: Label agreement among the adversarially filtered datasets from human annotators. AF Selected indicates
examples that are not filtered out. Label agreement is very high for first pass filtered examples for all models. On
the other hand, label agreement for the remainder datasets falls as better adversary models are used, indicating that
AFLite may be selecting for the examples with the most ambiguity or labeling noise.
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Figure 12: Performance of fine-tuned models on validation sets perturbed via TextFooler using adversary models.
‘None’ indicates the full validation set with no perturbation applied. Perturbing with stronger adversary models
leads to lower performance on the filtered dataset, across all fine-tuned models. However, perturbing also tends to
hurt the adversary model itself more than other models on average (darker cells on the diagonal).
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Figure 13: Measuring the performance of models on AdversarialQA. AdversarialQA models are fine-tuned on
SQuAD 1.1. For each adversarially created dataset, the corresponding base adversary model used in model-in-the-
loop data creation is circled in the corresponding color for that dataset.
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