Adversarially Constructed Evaluation Sets Are More Challenging,
but May Not Be Fair

Anonymous ACL submission

Abstract

Large language models increasingly saturate
existing task benchmarks, in some cases
outperforming humans, leaving little head-
room with which to measure further progress.
Adversarial dataset creation, which builds
datasets using examples that a target system
outputs incorrect predictions for, has been pro-
posed as a strategy to construct more challeng-
ing datasets, avoiding the more serious chal-
lenge of building more precise benchmarks
by conventional means. In this work, we
study the impact of applying three common ap-
proaches for adversarial dataset creation: (1)
filtering out easy examples (AFLite), (2) per-
turbing examples (TextFooler), and (3) model-
in-the-loop data collection (ANLI and Adver-
sarialQA), across 18 different adversary mod-
els. We find that all three methods can pro-
duce more challenging datasets, with stronger
adversary models lowering the performance of
evaluated models more. However, the result-
ing ranking of the evaluated models can also
be unstable and highly sensitive to the choice
of adversary model. Moreover, we find that
AFLite oversamples examples with low anno-
tator agreement, meaning that model compar-
isons hinge on the examples that are most con-
tentious for humans. We recommend that re-
searchers tread carefully when using adversar-
ial methods for building evaluation datasets.

1 Introduction

Large-scale language models have attained strong
performance across a variety of language under-
standing tasks, including question-answering, nat-
ural language inference (NLI), coreference resolu-
tion and paraphrase identification. Standard bench-
marking tasks such as SQuAD (Rajpurkar et al.,
2016; Lee et al., 2020) and multi-task benchmarks
such as GLUE (Wang et al., 2018) and SuperGLUE
(Wang et al., 2019) have seen models attain scores
higher than humans. This has left little headroom

with which to measure further improvements in
models and progress in NLP.

Prior work such as Le Bras et al. (2020) and
Nie et al. (2020a) have proposed to construct more
challenging datasets adversarially, either by only
selecting examples that a given model predicts in-
correctly, or by constructing new examples to de-
liberately stump a model. Both of approaches aim
to raise the difficulty of task datasets by leveraging
highly capable models (known as the adversary
model) to assist with example selection or creation.
However, one potential issue is that an adversari-
ally constructed dataset that targets a specific model
may bias the resulting data, creating datasets that
are unduly challenging for one class of models but
not others (Bowman and Dahl, 2021).

In contrast to other work focused on adversarial
dataset creation for training (Wallace et al., 2021)
or training and evaluation data (Le Bras et al., 2020;
Nie et al., 2020b), we focus solely on evaluation
data, and whether the choice of adversary model
can introduce unwanted biases into an evaluation
dataset. Ideally, an adversarially created dataset
should be more difficult for all models, regardless
of the choice of the adversary. In this work, we in-
vestigate three different approaches to create more
challenging task evaluation datasets using adver-
sary models: (1) adversarial filtering, which filters
out examples from a static dataset that are iden-
tified to be easy for a given adversary model, (2)
adversarial perturbation, wherein examples are
modified to reduce performance of an adversary
model, and (3) model-in-the-loop adversarial data
collection, where human annotators interactively
create examples that stump an adversary model.

For adversarial filtering, we study AFLite (Sak-
aguchi et al., 2020; Le Bras et al., 2020), an al-
gorithm that identifies challenging subsets of an
existing dataset. For adversarial perturbation, we
evaluate TextFooler (Jin et al., 2019), a popular
method for adversarially perturbing examples to

lower performance on a target model via word sub-
stitution. We apply both AFLite and TextFooler
in experiments across four English-language NLP
datasets and 18 different models to study the in-
teraction between the choice of adversary model
and the evaluation and ranking of systems on the
resulting dataset. For adversarial data collection,
we evaluate a range of models against two adversar-
ially collected datasets: ANLI (Nie et al., 2020a)
and Adversarial QA (Bartolo et al., 2020).

We find that all three classes of methods do re-
sult in more challenging evaluation datasets, but
with some notable drawbacks. For both adversarial
filtering and adversarial perturbation, the general
outcome is to lower performance across the board,
with stronger adversary models leading to more
challenging subsets of examples. However, with
both methods, the relative order of model perfor-
mance is not preserved, with large random varia-
tion in model ranks as stronger adversaries are used.
Performance on the resulting datasets is also much
worse if the evaluated and adversary models are de-
rived from same pretrained model, which can lead
to the difficulty of the adversarially constructed
dataset being overstated. Furthermore, adversar-
ial filtering tends to oversamples examples with
low annotator agreement, which means that the
selected examples are often contentious even for
human annotators. On the other hand, TextFooler
perturbations can introduce errors and lead to label
flips, and the distortion in resulting model rankings
is generally larger for TextFooler than for AFLite.
Jointly, these suggest that using adversarially fil-
tered or perturbed datasets naively for benchmark-
ing models is problematic.

We find that adversarially collected datasets
ANLI (Nie et al., 2020a) and Adversarial QA (Bar-
tolo et al., 2020) are also more challenging for all
models while also showing signs of disproportion-
ately disadvantaging the adversary model. How-
ever, with only a small number of such datasets
available, it is difficult to draw strong conclusions
about the overall efficacy or potential drawbacks of
the approach. Importantly, unlike for adversarial fil-
tering and perturbation, we cannot easily swap out
the adversary model for analysis, as the adversarial
data collection procedure can involve hundreds of
hours of human labor per adversary.

In all three cases, our findings do not outright
preclude the viability of adversarial dataset creation
for evaluation purposes, but we urge researchers

to keep these issues in mind when evaluating or
comparing models based on adversarial datasets.

2 Related Work

AFLite is an adversarial filtering algorithm pro-
posed by Sakaguchi et al. (2020), which also in-
troduced Winogrande, an adversarial Winograd
Schema Challange dataset. Le Bras et al. (2020)
provided theoretical and empirical justification for
AFLite, showing that models trained on AFLite-
filtered data generalize better to out-of-domain
datasets. Other datasets constructed using adversar-
ial filtering include SWAG (Zellers et al., 2018) and
HellaSwag (Zellers et al., 2019), two adversarially
filtered commonsense multiple-choice datasets.
Given the over-parameterization of deep neu-
ral networks, adversarial perturbations (Goodfel-
low et al., 2015) have been identified as a par-
ticular weakness of these models. Within NLP,
most adversarial attacks tend to occur at the token
or word rather than continuous embedding level.
TextFooler (Jin et al., 2019) is a popular adver-
sarial textual perturbation method that swaps out
words for synonyms while attempting to retain the
semantic content and grammaticality of the origi-
nal example. TextBugger (Li et al., 2019) works
in a similar manner by searching for replacement
words in the neighborhood within a context-aware
embedding space, as well as using character-level
edits. BERT-ATTACK (Li et al., 2020) and BAE
(Garg and Ramakrishnan, 2020) use BERT’s mask
language modeling capability to substitute tokens.
An alternative approach is to collect data using
a model in the loop, where human example-writers
are given immediate feedback on whether an ad-
versary model is able to correctly answer their ex-
ample, and are incentivized to write examples on
which the models fail. ANLI (Nie et al., 2020b)
is an adversarial NLI dataset with multiple rounds
of data collection. Williams et al. (2020) further
provide fine-grained analysis of examples arising
from ANLI’s creation procedure. Bartolo et al.
(2020) introduce AdversarialQA, an adversarial
question-answering dataset. Kiela et al. (2021) fur-
ther extend this approach, building a platform for
continuous human-and-model-in-the-loop data cre-
ation. Using adversarially collected data as training
data has been shown to lead to better performance
on other adversarial datasets, but worse on out-
of-domain datasets (Kaushik et al., 2021; Bowman
et al., 2020). However, models trained on adversari-

ally collected data through many successive rounds
have been shown to attain better performance (Wal-
lace et al., 2021). In this work, we choose instead
to focus exclusively on using adversarial examples
as evaluation data.

In concurrent work, Adversarial Glue (Wang
et al., 2021) applying a range of textual adversarial
attacks to a subset of GLUE tasks to build a new
language understanding benchmark. Importantly,
they find that many adversarial attacks are prone to
generating invalid examples, and perform careful
manual filtering of the resulting examples.

3 Experimental Setup

Models The focus of our investigation is how the
filtered dataset changes based on the choice of the
adversary model. We consider a diverse set of pre-
trained Transformer models: BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019), ALBERT (Lan
etal., 2020), XLM-R (Conneau et al., 2020), ELEC-
TRA (Clark et al., 2020), MiniBERTa (Zhang et al.,
2021), BART (Lewis et al., 2020), and DeBERTa-
V2 and DeBERTa-V3 (He et al., 2021).

Tasks We consider four task datasets for our
AFLite experiments. MNLI (Williams et al., 2018)
and SNLI (Bowman et al., 2015), Cosmos QA
(Huang et al., 2019) and SocialiQA (Sap et al.,
2019). We chose these tasks based on several crite-
ria: having a large enough training set to be suitable
for AFLite, being in a format suitable for AFLite
(i.e. classification), and no model-adversarial pro-
cedure already having been applied in the cre-
ation of the dataset. We use MNLI and SNLI
for TextFooler experiments, as TextFooler was de-
signed with NLI tasks in mind.

Fine-Tuning For all models, we execute two sep-
arate fine-tuning setups. First, we perform full fine-
tuning on the training set, across 3 random restarts.
Second, we perform fine-tuning on a smaller held-
out subset of training examples'—these will serve
as the representations ®(X) for AFLite, as well
as the adversary models for TextFooler. We also
repeat this subsampling across 3 random seeds,
performing fine-tuning for each one. All of the
AFLite and TextFooler results are averaged across
the 3 fine-tuning and 3 AFLite runs. Refer to Ap-
pendix E for more details. All models were trained

IThis follows the AFLite protocol of training a set of
weaker classifiers to learn representations that effectively serve
as the adversary models.

using jiant (Phang et al., 2020), which is built
on Transformers (Wolf et al., 2020) and PyTorch
(Paszke et al., 2019).

Model MNLI SNLI Cosmos SIQA
MiniBERTa-S-1M 60.2 73.4 41.6 424
MiniBERTa-B-1B 79.3 87.2 55.0 57.3
BERT-Base 82.7 89.5 57.8 59.8
XLM-R-Base 81.2 87.4 59.3 63.1
BART-Base 84.6 89.8 63.4 65.2
BERT-Large 85.5 91.0 61.9 65.5
ALBERT-Large 86.3 89.9 62.3 68.5
RoBERTa-Base 86.1 91.1 67.1 69.6
ALBERT-XLarge 87.2 91.6 70.9 71.2
XLM-R-Large 88.3 90.8 70.6 72.5
ELECTRA-Base 87.4 91.5 69.9 73.4
BART-Large 89.1 91.2 76.7 77.3
DeBERTa-V3-Base 89.8 92.6 74.4 77.7
RoBERTa-Large 89.6 91.8 78.5 77.4
ELECTRA-Large 90.3 92.7 83.2 79.7

DeBERTa-V2-Large 90.5 92.7 85.5 79.1
DeBERTa-V2-XLarge 90.2 92.7 87.0 78.1
DeBERTa-V3-Large 90.8 93.1 87.6 81.2

Table 1: Accuracy (%) of fully fine-tuned models on
full validation sets. Models are sorted in order of aver-
age performance across all four tasks.

Table 1 shows the performance of fully fine-
tuned models on the validation set of each task.
In this and subsequent visualizations, we sort the
models based on the average full fine-tuned perfor-
mance on the four tasks, from weakest to strongest.

4 Adversarially Filtering Evaluation Sets

AFLite (Sakaguchi et al., 2020; Le Bras et al., 2020)
is an adversarial filtering algorithm that iteratively
removes “easy” examples from a dataset. To apply
AFLite, given a dataset D = (X,Y") of inputs X
and labels Y, we first compute a learned represen-
tation ®(x) for each example based on the adver-
sary model. In each iteration, we sample multiple
random subsets of the remaining data, fit weak clas-
sifiers on the subsets and compute predictions on
the held-out examples. If an example is predicted
correctly by more than a threshold 7 of weak classi-
fiers, it is removed from the dataset. This procedure
is repeated until the number of examples removed
in an iteration falls below a set threshold, resulting
in a reduced dataset. Details can be found in the
original work (Le Bras et al., 2020).

Sakaguchi et al. (2020) and Le Bras et al. (2020)
apply AFLite before applying train/validation/test
splits. However, because we are interested in the
impact of the adversarial filtering on evaluation
datasets,> we do not want to use evaluation exam-

In our experiments, we use the validation set of each task
as the evaluation set.

ples to train the weak classifiers or influence the
filtering procedure. Hence, we tweak the AFLite al-
gorithm to separately filter out evaluation examples.
We accomplish this by running the standard AFLite
on the training examples, but in each round, we use
the same weak classifiers and removal criteria to
filter out “easy” evaluation examples. We show our
modified AFlite in Algorithm 1 in the Appendix.

4.1 Results on AFLite Across Adversary and
Fine-tuned Models

We apply AFLite using all 18 models as ®(.X), and
evaluate against each fully fine-tuned model. The
statistics of the examples filtered per model and
task can be found in Section B in the Appendix.
Figure 1 shows the results of fine-tuned models on
validation sets filtered via AFLite using different
adversary models.’

Overall, using AFLite with stronger adversary
models leads to lower performance across all fine-
tuned models, across all four tasks. Using a suffi-
ciently strong adversary model for filtering pushes
the performance of all tuned models to only slightly
above chance: For instance, while most mod-
els score 80-90% on the unfiltered MNLI valida-
tion set, filtering using AFLite with DeBERTa-V3-
Large results in no model scoring better than 45%.

We also observe a mild pattern of the weakest
models performing slightly better as stronger ad-
versaries are used in MNLI, SNLI, and SociallQA.
One explanation is that weaker models rely on eas-
ily learned heuristics (McCoy et al., 2019), and the
weak classifiers in AFLite select examples that go
against these heuristics, which weaker models sub-
sequently perform poorly on. In contrast, stronger
adversaries may filter out these examples.

4.1.1 Impact on Model Comparison

Evaluation datasets are often used to compare mod-
els, so we analyze the impact of adversarial filter-
ing on the resulting sorting order of model perfor-
mance. For each adversary model, we evaluate the
fine-tuned models on the AFLite filtered dataset
and sort the models by performance. In Figure 2,
we show the ranked performance of models using
different adversaries for a subset of the largest ad-
versary models. We find that the sorting order of
models is generally not consistent across adversary
models. This is the case even if we ignore cases
where the fine-tuned and adversary models share

3We present the same information in heatmaps in Figure 7
in the Appendix.

the same pretrained model.For MNLI and SNLI,
evaluating on the datasets filtered by stronger adver-
saries appears to greatly distort the relative ranking
of models. For Cosmos QA and SociallQA, we
observe that even when filtering with stronger ad-
versaries, stronger models still tend to rank better
than weaker models, but the ranking order is still
not consistent across adversaries.

One interpretation of this result is that adversar-
ial filtering may not give us evaluation data that
is reliable for benchmarking and comparing mod-
els. An alternative interpretation is that as stronger
adversary models are used, a larger proportion of
remaining examples are challenging and therefore
models are more likely to perform at chance on
them. As such, we ought to expect stronger adver-
saries will lead to more randomness in the model
rankings. In the extreme, if the weak classifiers
in AFLite are as capable as the best-performing
model, all models should perform at chance on
the remaining examples. While performance on
the strongest adversarially filtered datasets is still
above chance for most models, we see that in
MNLI and SNLI, all models converge to a small
range of performance (35%—45%), meaning that a
small variation in the number of correctly predicted
examples can lead to a large change in model rank.
This can lead to a distorted ranking of models.

We might also be concerned that the impact of
adversarial filtering if the fine-tuned and adversary
models are based on the same pretrained model. To
measure this, we compute the rank of each model
when no filtering is applied, and show how much
the rank changes when filtering using the same pre-
trained model. However, as we show in Figure 10,
the impact of filtering with the same pretrained
model is disproportionately large, with all models
except the weakest ones—which by definition can-
not fall in rank—falling several positions in relative
rankings. This implies that adversarial filtering for
evaluation sets is very sensitive to the choice of
model, and the resulting dataset is unfairly chal-
lenging if the adversary and evaluated models are
based on the same pretrained model.

4.2 Label Agreement

To investigate the kinds of examples being iden-
tified as challenging via AFLite, we use the per-
annotator labels of the MNLI and SNLI datasets.
In the original data creation procedure, each
validation-set example is annotated by 5 crowd-

MNLI SNLI
‘ Fine-tuned
804 S 804 Model
9 \ —e Min-1M
g = \ ~— Min-1B
= 60 60 b
3 \ = \ N\ ~-— BERT-B
250 SINE w0l NANEAIS = —+— XLMR-B
= - - = ==z=-%-| —+— BART-B
AT T ESZRReaR (
20 - 20 o —+ BERT-L
& R (R R RNV (R RN (R VLR NV N v € R (R R (BN R AN RN N v v gV e ALBTL
F T E FLL S F L KEE L FESL TS F P EELELE S F L EEE O FE L QTS
FEEE _P,\“Q’v S v&-\@‘é’ F S O‘bo‘a‘ & FEEEL *y‘\z? FFF LT EF @S 0@0%4 ' —+ ROBE-B
R —+— ALBT-XL
Cosmos QA SociallQA —e— XLMR-L
80 SN, 801 —e— ELEC-B
- N 33—t I 09 — —+— BART-L
— | —
8 60 SL\ 'I\\../“‘l§1 == IESSN -~ \,‘."“‘Q"”"\“\ —— DBV3-B
3 X I —s 3| N — —— ROBE-L
3 Q;ji t“% = NN gk 50 @Q & N\ e ELECL
Lo S = = == “ . S —— DBv2-L
2 27 13 == — ~ 30 y - \ L__.__.| = bBv2XL
1 1 | I 1 1 I I ! 1 - DBV3-L
& R (R R RNV (R RN (RN NV N v @ R (R R RV N (R AN (RN N v N v
F T E X LL S F LK EE O FEL 0T F T EXTLL S F I KEE L FEL T
FEEE TS & S &’Jr&& FRL L P F EFE T TSP F T T @ & Fo L

Figure 1: Performance of fine-tuned models on validation sets filtered via AFLite using adversary models. ‘None’
indicates the full unfiltered validation set. The dotted line indicates performance at chance for each task. Filtering

with stronger adversary models leads to lower performance on the filtered dataset.

DBv3-L
DBv2-L
ENEES
DBv2-XL
DBv3-B
ROBE-L
BART-L
XLMR-L
ELEC-B
ALBT-XL
ALBT-L
ROBE-B

MNLI

Cosmos QA

DBv3-L
DBv2-L
DBv2-XL
ELEC-L
ROBE-L
DBv3-B
BART-L
ALBT-XL
XLMR-L
ELEC-B
ALBT-L
ROBE-B

DBv3-L
DBv2-XL
DBv2-L
ELEC-L
DBv3-B
ROBE-L
BART-L
XLMR-L
ELEC-B
ROBE-B

ALBT-L

ALBT-XL

ALBT-XL
DBv3-L
DBv2-XL
DBv2-L
ELEC-L
ROBE-L
BART-L
DBv3-B
XLMR-L
ELEC-B

ROBE-B

ALBT-XL

ALBT-XL

DBv3-L
DBv2-XL
DBv2-L
ELEC-L
DBv3-B
ROBE-L
BART-L
ALBT-XL
ALBT-L
ELEC-B

XLMR-L
ROBE-B

XLMR-L

DBv3-L
DBv2-XL
DBv2-L
ELEC-L
DBv3-B
ROBE-L
ALBT-XL
XLMR-L
ALBT-L
ELEC-B

BART-L
ROBE-B

DBv3-L
DBv2-XL
DBv2-L
ELEC-L
ROBE-L
DBv3-B
ALBT-XL
XLMR-L
ELEC-B

ALBT-L

BART-L
ROBE-B

BART-L

DBv3-L
DBv2-L
DBv2-XL
ELEC-L
DBv3-B
BART-L
ALBT-XL
XLMR-L
ALBT-L
ROBE-L
ELEC-B

ROBE-L

DBv3-L
ELEC-L
BART-L
DBv3-B

XLMR-L
ROBE-L
DBv2-XL
ALBT-L
DBv2-L
ROBE-B

ALBT-XL
ELEC-B

DBv2-XL

DBv3-L
ELEC-L
DBv2-L
DBv2-XL
ROBE-L
XLMR-L
ELEC-B
BART-L
DBv3-B

ROBE-B

ALBT-XL

DBv2-XL

DBv2-XL
BART-L
DBv2-L
ROBE-L
ELEC-L
XLMR-L

DBv3-B
ALBT-XL

ALBT-L
ELEC-B
ROBE-B

DBv2-XL
DBv2-L
ELEC-L
DBv3-L
BART-L
XLMR-L
ROBE-L

ROBE-B
ELEC-B
DBv3-B

ALBT-XL

DBv3-L
DBv2-L
EINECHN
DBv3-B
DBv2-XL
ROBE-L
BART-L
ALBT-XL
ELEC-B
XLMR-L
ALBT-L
ROBE-B

SNLI

DBv3-L
ELEC-L
DBv2-XL
DBv2-L
DBv3-B
ROBE-L
BART-L
ELEC-B
XLMR-L
ALBT-XL
ALBT-L
ROBE-B

SociallQA

ALBT-XL

DBv3-L
ELEC-L
DBv2-XL
DBv2-L
DBv3-B
ROBE-L
BART-L
ELEC-B
XLMR-L
ROBE-B
ALBT-L
ALBT-XL

ALBT-XL

DBv3-L
DBv2-L
ENEES
DBv2-XL
DBv3-B
ALBT-XL
ROBE-L
BART-L
ELEC-B

ALBT-L
ROBE-B

XLMR-L

XLMR-L

DBv3-L
DBv2-XL
DBv2-L
ELEC-L
ALBT-XL
DBv3-B
ROBE-L
ALBT-L
XLMR-L
ELEC-B

ROBE-B

DBv3-L
DBv2-XL
ELEC-L
DBv2-L
ROBE-L
DBv3-B
ELEC-B
ALBT-XL
BART-L
XLMR-L
ALBT-L
ROBE-B

BART-L

DBv3-L
DBv2-L
DBv2-XL
ELEC-L
DBv3-B
ALBT-XL

ALBT-L
ELEC-B

XLMR-L
ROBE-B
BART-L
ROBE-L

DBv3-L
DBv2-XL
DBv2-L
ELEC-L
DBv3-B
BART-L
ALBT-XL
ELEC-B
ALBT-L
ROBE-L
XLMR-L

ROBE-B

ROBE-L

DBv3-L
ELEC-L
ALBT-XL
DBv3-B
DBv2-L

DBv2-XL

ELEC-B
ROBE-L

ROBE-B
XLMR-L
BART-L
ALBT-L

DBv2-XL
DBv3-L
ELEC-L
ELEC-B
DBv2-L
DBv3-B
BART-L
ROBE-L

DBv2-XL

XLMR-L
ALBT-L

ROBE-B
ALBT-XL

DBv2-XL

DBv2-L

ALBT-XL
DBv2-XL

ALBT-L
ROBE-B
ELEC-L
XLMR-L

ROBE-L

ELEC:B

DBv3-B
BART-L
DBv3-L

DBv2-XL
ELEC-L
DBv2-L
ROBE-L
ELEC-B
BART-L
XLMR-L
DBv3-B
DBv3-L
ALBT-L

ALBT-XL
ROBE-B

AFLite Adversary Model

AFLite Adversary Model

Figure 2: Ranked performance of fine-tuned models on validation sets filtered via AFLite using adversary models.
We depict here a subset of the larger adversary models. For each AF Selected dataset, we sort models by their
performance (Figure 1) from best (top) to worst (bottom). ‘None’ indicates the full validation set with no filtering
applied. We find that the sorting order of model performance is not consistent across adversary models.

workers, and candidate examples are only accepted
if at least 3 out of 5 crowdworkers agree on the
label. We show in Figure 3 the average annotator
agreement in the AFLite-selected examples across
adversary models. For comparison, we also show
the agreement rate among examples eliminated in
the very first round of the AFLite procedure.

We observe a clear pattern across both datasets
that filtering with stronger adversary models se-
lects for examples with lower annotator agreement.
Combined with our results above on lower model

performance on filtered datasets, we take this as
good evidence that the AFLite procedure indeed
selects for the most challenging examples. It is
unclear if these examples are challenging because
they are genuinely difficult, where humans can eas-
ily make mistakes on them, genuinely ambiguous,
or simply mislabeled. Conversely, we see that the
first-pass filtered examples have consistently high
annotator agreement, and that this rate does not
vary across strength of the adversary models.

Oversampling low-agreement examples is not

MNLI SNLI
Min- 1M IR 85.8%
Min- 1B (RIS 31.2
[Ey] 91.0% ' 79.2%
XLMR-B [REREZAS - 79.0% 78.0%
 BART-B [RELKAN 80.1% 79.2%
T BERT-L | CLEA | 79.8% 89.6% | i)
2 ALBT-L RGN 77.7% 89.8% | k)
<. ROBE-B [\ CEAS 78.0% 89.7% | ki)
2 ALBT-XL [LELGA 75.9% 76.9%
@ XUMR-L SEIEAS 77.1% 77.1%
@ ELEC-B [NENGIAN 77.2% 76.6%
3 BART-L [IR 75.8% 89.7% 73.9%
< DBV3-B | A 75.5% 89.7% WIS
ROBE-L [REINEAN 75.4% 75.0%
ELEC-L [RERBIZ 73.5% 89.6% [uphik))
DBv2-L RN 73.9% 89.8% | (o))
DBv2-XL [EIEAN 74.0% CENAZINN 73.9%
DBv3-L IMEIIGAN 73.2% 73.2%

Filtered In AF Filtered In AF
First Selected First Selected
Iteration Iteration

Figure 3: Label agreement among the adversarially fil-
tered datasets from human annotators. AF Selected in-
dicates examples that are not filtered out. None indi-
cates no filtering applied i.e. agreement over the full
validation set. Label agreement for the AF-selected
datasets falls as better adversary models are used, in-
dicating that AFLite may be selecting for the examples
with the most ambiguity or labeling noise.

necessarily a bad thing if evaluated appropriately.
Pavlick and Kwiatkowski (2019) and Nie et al.
(2020c) show that there can be genuine disagree-
ment between annotators over the example label,
and argue that we should go beyond optimizing for
model accuracy and instead train models to predict
the full distribution of human judgements. The cur-
rent format of scoring models on simple accuracy
inadequate to evaluate on low-agreement examples,
as the distribution of labels is reduced to a single
label based on majority vote. Hence, if AFLite
selects for low-agreement examples, one potential
improvement would be to adjust the evaluation for-
mat to reflect annotator disagreement over labels.

5 Adversarially Perturbed Datasets

An alternative approach to creating more challeng-
ing datasets is to modify examples to lower the per-
formance of a given adversary model. TextFooler
(Jin et al., 2019) is a popular algorithm for adver-
sarially perturbing examples, which involves swap-
ping out words in the input for synonyms, with
additional constraints aimed at retaining grammati-
cality and semantic content of the original example.
We refer to the original work for full details of the
TextFooler algorithm.

We apply the TextFooler methods to the SNLI
and MNLI datasets, following the setup of the orig-
inal work, where only the hypotheses are perturbed.
For full comparability of results, we use the same
models for ®(X) in AFLite as the adversaries for

TextFooler, and evaluate using the models fine-
tuned on the full training set. We also use the same
hyperparameters for the TextFooler algorithm as in
the original work.

Overall, we find that adversarial perturbations
impact model evaluation in a similar manner to ad-
versarial filtering. TextFooler adversarial perturba-
tions generally lower model performance across the
board, with stronger adversaries leading to lower
average performance across all models. However,
we also observe a strong trend of models perform-
ing much worse on data perturbed adversarially
to the same pretrained model, as seen by the dis-
tinct dip in performance along the diagonals of Fig-
ure 12. Moreover, using stronger adversaries also
distorts the order of model performance, as seen in
Figure 4, much moreso than with adversarial filter-
ing. For instance, using DeBERTa-V3-Large as the
adversary, ALBERT-XLarge is the best performing
model; however, with ALBERT-XLarge as the ad-
versary, DeBERTa-V3-Large is in turn the best per-
forming model. The inconsistent impact on model
performance across adversary models makes the
naive usage of adversarial perturbations to create
more challenging evaluation datasets problematic.

One major concern is whether the TextFooler-
perturbed examples still retain the same semantic
content and, more importantly, the labels of the
original examples. Jin et al. evaluated a 100 ex-
amples from the validation set and found that the
perturbations somewhat distorted the grammatical-
ity and the meaning of the SNLI examples with a
BERT adversary. We also observe a fall in quality
of the examples in our experiments, with label flips
arising from modifying key words, which greatly
hurts the validity of performance obtained on these
examples. We show a number of examples per-
turbed with different adversary models in (Table 4).
Without any additional checks, using automatically
perturbed examples for evaluating models can lead
to extremely misleading results. Works such as
Adversarial GLUE (Wang et al., 2021) perform an
additional step of human validation and filtering of
model-perturbed examples, which are necessary to
ensure reliable evaluation data.

6 Model-in-the-Loop Adversarially
Collected Datasets

In model-in-the-loop adversarial data collection,
human crowdworkers are tasked with writing exam-
ples that a given adversary model will incorrectly

DBv3-L DBv2-L ELEC-L ALBT-XL ALBT-XL

DBv2-L ELEC-L DBv2-L ELEC-L ELEC-L [
ELEC-L | ALBT-XL DBv3-L DBv2-L XLMR-L

DBv2-XL DBv3-L XLMR-L DBv3-L DBv2-L XLMR-L
DBv3-B DBv2-XL DBv3-B DBv2-XL DBv3-L

ROBE-L DBv3-B DBv2-XL XLMR-L ALBT-L ELEC-L
BART-L XLMR-L ROBE-L ALBT-L R-B

DBv3-L = DBv3-B DBv2-L | ALBT-XL g i ALBT-XL

DBv2-L DBv3-L DBv3-L DBv2-L B ALBT-L

DBv3-B DBv2-L DBv2-XL [WALBT:L

ROBE-L ~ROBE-L ROBE-L DBv3-L

DBv2-XL DBv2-XL DBv3-B DBv2-XL

ALBT-XL = XLMR-L ALBT-XL = XLMR-L

ELEC-L H ELEC-L ELEC-L

XLMR-L H ALBT-L' DBv3-B

ALBT-L WEE: ELEC-B in- ROBE-B

ELEC-B B ROBE-B BERT-B |10

ROBE-B ~ BERT-B R-E DBV3-B ELEC-B
i DBv2-L

DBv3-B

XLMR-L ROBE-L DBv3-B

ELEC-B WALBT-ININEANE: 8 DBv2-XL
ALBT-XL BART-L | ROBE-B |
o

MNLI
SNLI

ALBT-L ROBE-B ELEC-B ROBE-L
ELEC-B BART-L {

I BART-L ELEC:L
BART-L ROBE-B DBv3-L ELEC-L
ROBE-B DBv2-L DBv2-XL

ALBT-XL M ROBE-L BART-L BART-L
XLMR-L BART-L BART-L DBv2-XL DBv3-L

j
None BERT-L ALBT-XL XLMR-L BART-L ROBE-L DBv2-XL
TextFooler Adversary Model TextFooler Adversary Model

Min-1B Min-1B E|
_ BERT-B BERT-B | | ROBE-B ROBEB
XLMR-B M XLMR-B BART-L
Min-1B Min-1M Min-1M Min-1M
Mlnl-lM Mlnl-lM Mlnl-lM XLMR-L BART-L ROBE-L DBv3-L

None BERT-L ALBT-XL XLMR-L BART-L ROBE-L DBv2-XL DBv3-L

Figure 4: Ranked performance of fine-tuned models on validation sets perturbed via TextFooler using adversary
models. For each perturbed dataset, we sort models by their performance (Figure 1) from best (top) to worst
(bottom). ‘None’ indicates the full validation set with no filtering applied. We find that the sorting order of model
performance is not consistent across adversary models, with dramatic reversals in many cases.

Eval Dataset Eval Dataset
—e— MNLI —#— SNLI —e— ANLIRl —e— ANLIR2 —e— ANLIR3 —e— SQUAD —&— AQA-dBIDAF —®— AQA-dBERT —@— AQA-dROBERTa

 ~———

80
60
40
20

F1

; ? 2 MO o N

N} Vo

TP FIVITLEIPFTF P LI PP
(b) AdversarialQA

Figure 5: Measuring the performance of models on adversarially collected datasets. Exact Match scores for Ad-
versarialQA are shown in Figure 13 in the Appendix. For each adversarially created dataset, the corresponding
base adversary model used in model-in-the-loop data creation is circled in the corresponding color for that dataset.
Performance at chance on ANLI is shown with a dotted line. While adversarial dataset creation appears to create
datasets that are slightly harder for the adversary model compared to other models, the resulting datasets are harder
across the board for all models, with stronger models still performing relatively better.

label. We consider two established model-in-the- Figure 5 shows results on both model-in-the-
loop adversarially collected datasets. ANLI (Nie loop datasets. For ANLI, about half of the mod-
et al., 2020b) is an NLI dataset adversarially col- els perform at chance for ANLI R1, whereas
lected through three iterative rounds, where the the stronger models perform significantly above
data for each round is written to be adversarial to chance. On the other hand, for ANLI R2 and
models trained on a combination of MNLI, SNLI, R3, most models perform at chance except for the
and data from previous rounds. BERT-Large is largest DeBERTa models. These results show that
used as the adversary model for round 1 of data col- the ANLI data-generating procedure leads to exam-
lection, while ROBERTA-Large is used for rounds ples that are harder for all models. However, we
2 and 3. Adversarial QA (Bartolo et al., 2020), is also observe that for ANLI R2 and R3, the perfor-
an adversarial question-answering dataset in the =~ mance of the adversary model, RoBERTa-large, is
format of SQuAD 1.1 (Rajpurkar et al., 2016). Un- markedly below chance. This supports our obser-
like ANLLI, it consists of separately collected exam- vation above that while adversarial dataset creation
ples based on three adversary models: BiDAF (Seo can lower performance across the board, it still
et al., 2017), BERT-Large, and RoBERTa-Large. tends to hurt the adversary model more than others.

While both datasets come with training, valida- We see similar results for AdversarialQA, with
tion and test data splits, we conduct our analysis on ~ models performing poorer as the datasets are gen-
the validation data. For both datasets, we fine-tune erated with stronger adversaries. Unlike for ANLI,
models on the conventional training data for each ~ models do significantly better than chance on the
task,* before evaluating on both the standard and adversarial datasets, with almost all models staying

adversarial validation datasets. above 20% F1 and 10% EM.
“MNLI and SNLI for ANLI, and SQuAD 1.1 for Adver- Compared to our more extensive experiments
sarialQA. on adversarial filtering, there are fewer datasets

collected using different adversary models, given
the financial cost and manual writing needed to
obtain examples. Hence we cannot draw strong
conclusions about the efficacy of adversarial data
collection for evaluation data from the current set
of results. Moreover, the adversaries used in ANLI
and Adversarial QA are not among the strongest
models we used in our adversarial filtering experi-
ments, where we saw the greatest distortion in the
ranking of models. However, we do find that adver-
sarial data collection leads to harder examples with
stronger adversary models. As more work is done
on adversarially collecting datasets and building
benchmarks based on them (Kiela et al., 2021), we
recommend that researchers pay close attention to
the impact of the choice of adversary model and
evaluate across a range of different models.

7 Discussion

We highlight that this work has not investigated
the nature of the adversarial examples outside of
the impact on model performance and annotator
agreement. Works such as Williams et al. (2020)
will be important for understanding exactly what
examples are considered adversarial and why they
are challenging to different models.

While our adversarial filtering experiments were
performed on single adversary models, a possible
alternative is to ensemble a diverse set of adversary
models when running AFLite, or weight examples
based on the AFLite example selection based on
each adversary. This approach may help reduce the
issue of disproportionate impact on any given ad-
versary model’s performance, and weighting eval-
uation across different example subsets may also
potentially reduce the unstable ranking of models.
However, this would significantly increase the cost
of running the algorithm, would not address the is-
sue of oversampling low-agreement examples, and
may simply create a bias in favor of models that
are greatly dissimilar from the pool of adversaries
(e.g. non-Transformer models).

8 Conclusion

In this work, we have investigated three different
approaches to adversarially constructing more chal-
lenging evaluation datasets int extensive experi-
ments across 18 different pretrained models.
While all three methods result in lower scores as
stronger adversaries are used, our takeaways on the
viability of adversarial data creation to construct

more challenging evaluation datasets are mixed.

Using a modified AFLite to adversarially filter
evaluation examples, we find that there is a dis-
proportionately large impact on the performance
of fine-tuned models derived from the same pre-
trained model as the adversary, that the resulting
ranking of models is unstable across the choice of
adversary model especially as stronger adversaries
are used, and that the filtering selects for examples
with low annotator agreement over labels. On the
other hand, the impact on model rankings is some-
what expected as a higher proportion of difficult
examples remain after filtering.

Using TextFooler to perturb examples, we find
even greater distortion in model rankings with
stronger adversaries, and that examples can often
be perturbed to the point of flipping labels, which
is dire for model evaluation.

In a smaller set of experiments on adversarially
collected datasets, we find hints of datasets being
more challenging for the same pretrained model as
the adversary, consistent with (Nie et al., 2020a),
but are unable to draw stronger conclusions given
the small number of adversaries used.

As the cost of using models goes down and their
capabilities improve, we are likely to see more at-
tempts to involve them in dataset creation. Models
may be used adversarially as discussed above, or
used to assist in writing examples via text gen-
eration models, or used in others ways, such as
automatically identifying outliers or low-quality
human-written examples. In any of these cases,
it is possible to create an adverse and undesirable
feedback loop in the data creation procedure.

While we believe that adversarially data meth-
ods can helpful in to creating more challenging
evaluation benchmarks, we should take extra care
to avoid the pitfalls of these approaches. Careful
human validation of examples, as in (Wang et al.,
2021), can help to address some pitfalls of adversar-
ial approaches, but addressing biases at the dataset
rather than example level can still be challenging.
Importantly, adversarial datasets must accurately
reflect the core task or capability being measured,
ideally with a diverse set of examples that have
good coverage of the linguistic phenomena asso-
ciated with the task. As it stands, we do not yet
find any free lunch for creating more challenging
evaluation datasets.

References

Mazx Bartolo, Alastair Roberts, Johannes Welbl, Sebas-
tian Riedel, and Pontus Stenetorp. 2020. Beat the
Al Investigating adversarial human annotation for
reading comprehension. Transactions of the Associ-
ation for Computational Linguistics, 8:662—678.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing (EMNLP).
Association for Computational Linguistics.

Samuel R. Bowman and George Dahl. 2021. What will
it take to fix benchmarking in natural language un-
derstanding? In Proceedings of the 2021 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, pages 4843—4855, Online. As-
sociation for Computational Linguistics.

Samuel R. Bowman, Jennimaria Palomaki, Livio Bal-
dini Soares, and Emily Pitler. 2020. New protocols
and negative results for textual entailment data col-
lection. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Process-
ing (EMNLP), pages 8203—-8214, Online. Associa-
tion for Computational Linguistics.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: Pre-
training text encoders as discriminators rather than
generators. In International Conference on Learn-
ing Representations.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmén, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440—
8451, Online. Association for Computational Lin-
guistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Siddhant Garg and Goutham Ramakrishnan. 2020.
BAE: BERT-based adversarial examples for text
classification. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 6174—-6181, Online. As-
sociation for Computational Linguistics.

Tan J. Goodfellow, Jonathon Shlens, and Christian
Szegedy. 2015. Explaining and harnessing adversar-
ial examples.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and

Weizhu Chen. 2020. Deberta: Decoding-enhanced
bert with disentangled attention.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and

Weizhu Chen. 2021. Deberta: Decoding-enhanced
bert with disentangled attention. In International
Conference on Learning Representations.

Lifu Huang, Ronan Le Bras, Chandra Bhagavatula, and

Yejin Choi. 2019. Cosmos QA: Machine reading
comprehension with contextual commonsense rea-
soning. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
2391-2401, Hong Kong, China. Association for
Computational Linguistics.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter

Szolovits. 2019. Is bert really robust? natural lan-
guage attack on text classification and entailment.
arXiv preprint arXiv:1907.11932.

Divyansh Kaushik, Douwe Kiela, Zachary C. Lipton,

and Wen-tau Yih. 2021. On the efficacy of adversar-
ial data collection for question answering: Results
from a large-scale randomized study. In Proceed-
ings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 6618-6633,
Online. Association for Computational Linguistics.

Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh

Kaushik, Atticus Geiger, Zhengxuan Wu, Bertie Vid-
gen, Grusha Prasad, Amanpreet Singh, Pratik Ring-
shia, Zhiyi Ma, Tristan Thrush, Sebastian Riedel,
Zeerak Waseem, Pontus Stenetorp, Robin Jia, Mo-
hit Bansal, Christopher Potts, and Adina Williams.
2021. Dynabench: Rethinking benchmarking in
NLP. arXiv preprint.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,

Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. ALBERT: A lite BERT for self-supervised
learning of language representations. In 8th Inter-

national Conference on Learning Representations,
ICLR 2020.

Ronan Le Bras, Swabha Swayamdipta, Chandra Bhaga-

vatula, Rowan Zellers, Matthew Peters, Ashish Sab-
harwal, and Yejin Choi. 2020. Adversarial filters
of dataset biases. In Proceedings of the 37th Inter-
national Conference on Machine Learning, volume
119 of Proceedings of Machine Learning Research,
pages 1078-1088. PMLR.

Gyeongbok Lee, Seung-won Hwang, and Hyunsouk

Cho. 2020. SQuAD2-CR: Semi-supervised anno-
tation for cause and rationales for unanswerability
in SQUAD 2.0. In Proceedings of the 12th Lan-
guage Resources and Evaluation Conference, pages
5425-5432, Marseille, France. European Language
Resources Association.

https://doi.org/10.1162/tacl_a_00338
https://doi.org/10.1162/tacl_a_00338
https://doi.org/10.1162/tacl_a_00338
https://doi.org/10.1162/tacl_a_00338
https://doi.org/10.1162/tacl_a_00338
https://doi.org/10.18653/v1/2021.naacl-main.385
https://doi.org/10.18653/v1/2021.naacl-main.385
https://doi.org/10.18653/v1/2021.naacl-main.385
https://doi.org/10.18653/v1/2021.naacl-main.385
https://doi.org/10.18653/v1/2021.naacl-main.385
https://doi.org/10.18653/v1/2020.emnlp-main.658
https://doi.org/10.18653/v1/2020.emnlp-main.658
https://doi.org/10.18653/v1/2020.emnlp-main.658
https://doi.org/10.18653/v1/2020.emnlp-main.658
https://doi.org/10.18653/v1/2020.emnlp-main.658
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.emnlp-main.498
https://doi.org/10.18653/v1/2020.emnlp-main.498
https://doi.org/10.18653/v1/2020.emnlp-main.498
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/2006.03654
http://arxiv.org/abs/2006.03654
http://arxiv.org/abs/2006.03654
https://openreview.net/forum?id=XPZIaotutsD
https://openreview.net/forum?id=XPZIaotutsD
https://openreview.net/forum?id=XPZIaotutsD
https://doi.org/10.18653/v1/D19-1243
https://doi.org/10.18653/v1/D19-1243
https://doi.org/10.18653/v1/D19-1243
https://doi.org/10.18653/v1/D19-1243
https://doi.org/10.18653/v1/D19-1243
https://doi.org/10.18653/v1/2021.acl-long.517
https://doi.org/10.18653/v1/2021.acl-long.517
https://doi.org/10.18653/v1/2021.acl-long.517
https://doi.org/10.18653/v1/2021.acl-long.517
https://doi.org/10.18653/v1/2021.acl-long.517
http://arxiv.org/abs/2104.14337
http://arxiv.org/abs/2104.14337
http://arxiv.org/abs/2104.14337
https://arxiv.org/abs/1909.11942
https://arxiv.org/abs/1909.11942
https://arxiv.org/abs/1909.11942
http://proceedings.mlr.press/v119/bras20a.html
http://proceedings.mlr.press/v119/bras20a.html
http://proceedings.mlr.press/v119/bras20a.html
https://www.aclweb.org/anthology/2020.lrec-1.667
https://www.aclweb.org/anthology/2020.lrec-1.667
https://www.aclweb.org/anthology/2020.lrec-1.667
https://www.aclweb.org/anthology/2020.lrec-1.667
https://www.aclweb.org/anthology/2020.lrec-1.667

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871-7880, Online. Association
for Computational Linguistics.

Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting
Wang. 2019. Textbugger: Generating adversarial
text against real-world applications. Proceedings
2019 Network and Distributed System Security Sym-
posium.

Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue,
and Xipeng Qiu. 2020. BERT-ATTACK: Adversar-
ial attack against BERT using BERT. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
6193-6202, Online. Association for Computational
Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized bert pretraining ap-
proach. arXiv preprint.

Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019.
Right for the wrong reasons: Diagnosing syntactic
heuristics in natural language inference. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 3428-3448,
Florence, Italy. Association for Computational Lin-
guistics.

Yixin Nie, Adina Williams, Emily Dinan, Mohit
Bansal, Jason Weston, and Douwe Kiela. 2020a. Ad-
versarial NLI: A new benchmark for natural lan-
guage understanding. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 4885-4901, Online. Association
for Computational Linguistics.

Yixin Nie, Adina Williams, Emily Dinan, Mohit
Bansal, Jason Weston, and Douwe Kiela. 2020b.
Adversarial NLI: A new benchmark for natural lan-
guage understanding. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics. Association for Computational Linguis-
tics.

Yixin Nie, Xiang Zhou, and Mohit Bansal. 2020c.
What can we learn from collective human opinions
on natural language inference data? In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
9131-9143, Online. Association for Computational
Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca

10

Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. PyTorch:
An Imperative Style, High-Performance Deep Learn-
ing Library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d” Alché-Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 32, pages 8024—-8035. Curran Asso-
ciates, Inc.

Ellie Pavlick and Tom Kwiatkowski. 2019. Inherent
disagreements in human textual inferences. Transac-
tions of the Association for Computational Linguis-

tics, 7:677-694.

Jason Phang, Phil Yeres, Jesse Swanson, Haokun Liu,
Ian F. Tenney, Phu Mon Htut, Clara Vania, Alex
Wang, and Samuel R. Bowman. 2020. jiant
2.0: A software toolkit for research on general-
purpose text understanding models. http://
Jjiant.info/.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383-2392, Austin,
Texas. Association for Computational Linguistics.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2020. Winogrande: An adver-
sarial winograd schema challenge at scale. In Pro-
ceedings of the AAAI Conference on Artificial Intel-
ligence, volume 34, pages 8732-8740.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan
Le Bras, and Yejin Choi. 2019. Social IQa: Com-
monsense reasoning about social interactions. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 4463—
4473, Hong Kong, China. Association for Computa-
tional Linguistics.

Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2017. Bidirectional attention
flow for machine comprehension. In 5th Inter-
national Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings.

Eric Wallace, Adina Williams, Robin Jia, and Douwe
Kiela. 2021. Analyzing dynamic adversarial train-
ing data in the limit.

Alex Wang, Yada Pruksachatkun, Nikita Nangia,
Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. 2019. SuperGLUE:
A Stickier Benchmark for General-Purpose Lan-
guage Understanding Systems. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. dAlché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neu-
ral Information Processing Systems 32, pages 3266—
3280. Curran Associates, Inc.

https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.14722/ndss.2019.23138
https://doi.org/10.14722/ndss.2019.23138
https://doi.org/10.14722/ndss.2019.23138
https://doi.org/10.18653/v1/2020.emnlp-main.500
https://doi.org/10.18653/v1/2020.emnlp-main.500
https://doi.org/10.18653/v1/2020.emnlp-main.500
https://arXiv.org/abs/1907.11692
https://arXiv.org/abs/1907.11692
https://arXiv.org/abs/1907.11692
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.18653/v1/2020.emnlp-main.734
https://doi.org/10.18653/v1/2020.emnlp-main.734
https://doi.org/10.18653/v1/2020.emnlp-main.734
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1162/tacl_a_00293
https://doi.org/10.1162/tacl_a_00293
https://doi.org/10.1162/tacl_a_00293
http://jiant.info/
http://jiant.info/
http://jiant.info/
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D19-1454
https://doi.org/10.18653/v1/D19-1454
https://doi.org/10.18653/v1/D19-1454
https://openreview.net/forum?id=HJ0UKP9ge
https://openreview.net/forum?id=HJ0UKP9ge
https://openreview.net/forum?id=HJ0UKP9ge
http://arxiv.org/abs/2110.08514
http://arxiv.org/abs/2110.08514
http://arxiv.org/abs/2110.08514
http://papers.nips.cc/paper/8589-superglue-a-stickier-benchmark-for-general-purpose-language-understanding-systems.pdf
http://papers.nips.cc/paper/8589-superglue-a-stickier-benchmark-for-general-purpose-language-understanding-systems.pdf
http://papers.nips.cc/paper/8589-superglue-a-stickier-benchmark-for-general-purpose-language-understanding-systems.pdf
http://papers.nips.cc/paper/8589-superglue-a-stickier-benchmark-for-general-purpose-language-understanding-systems.pdf
http://papers.nips.cc/paper/8589-superglue-a-stickier-benchmark-for-general-purpose-language-understanding-systems.pdf

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353-355, Brussels, Belgium.
Association for Computational Linguistics.

Boxin Wang, Chejian Xu, Shuohang Wang, Zhe Gan,
Yu Cheng, Jianfeng Gao, Ahmed Hassan Awadallah,
and Bo Li. 2021. Adversarial GLUE: A multi-task
benchmark for robustness evaluation of language
models. CoRR, abs/2111.02840.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112-1122. Association for
Computational Linguistics.

Adina Williams, Tristan Thrush, and Douwe Kiela.
2020. ANLIzing the adversarial natural language in-
ference dataset. arXiv preprint.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38—45, Online. Asso-
ciation for Computational Linguistics.

Rowan Zellers, Yonatan Bisk, Roy Schwartz, and Yejin
Choi. 2018. Swag: A large-scale adversarial dataset
for grounded commonsense inference. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing (EMNLP).

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. HellaSwag: Can
a machine really finish your sentence? In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4791—
4800, Florence, Italy. Association for Computational
Linguistics.

Yian Zhang, Alex Warstadt, Xiaocheng Li, and
Samuel R. Bowman. 2021. When do you need bil-
lions of words of pretraining data? In Proceed-
ings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 1112-1125,
Online. Association for Computational Linguistics.

11

https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
http://arxiv.org/abs/2111.02840
http://arxiv.org/abs/2111.02840
http://arxiv.org/abs/2111.02840
http://arxiv.org/abs/2111.02840
http://arxiv.org/abs/2111.02840
http://aclweb.org/anthology/N18-1101
http://aclweb.org/anthology/N18-1101
http://aclweb.org/anthology/N18-1101
http://arxiv.org/abs/2010.12729
http://arxiv.org/abs/2010.12729
http://arxiv.org/abs/2010.12729
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/2021.acl-long.90
https://doi.org/10.18653/v1/2021.acl-long.90
https://doi.org/10.18653/v1/2021.acl-long.90

Algorithm 1: AFLite for Evaluation Data

Input: training dataset Dr = (X7, Yr), evaluation
dataset Dy = (Xv, Yy), pre-computed
representation (®(Xr7),P (X)), model family
M, target dataset size n, number of random
partitions m, training set size ¢t < n, slice size
k < n, early-stopping threshold 7

Output: Filtering history of evaluation examples /1,

remaining evaluation examples R

S=Dr

R = Dy

while |S| > n do

// Filtering phase

forall i € S do

Initialize multiset of out-of-sample training

predictions Er(1);

forall : € R do

Initialize multiset of out-of-sample evaluation

predictions Ey (4);
for iterationj : /..m do
Randomly partition S into (T3, S \ T}) s.t.
S\ | = &
Train a classifier £ € M on
{(@(x), y)l(z,y) € S\ Ty}
forall i = (z,y) € T do
| Add the prediction £(®(x)) to Er(i);
forall i = (z,y) € Rdo
| Add the prediction £(®(z)) to Ev (i);
forall i = (x,y) € S do

Compute the predictability score

p(i) = {9 € Er(i) s.t. § = y}|/|Er(i)];
foralli = (z,y) € Rdo

Compute the predictability score

B(i) = {3 € Bv (i) st. 7 = y}/|Bv) ;

Select up to k instances S’ in S with the highest

predictability scores subject to p(i) > T

S=5\9,

Select all instances R’ in R where p(i) > 7

R=R\ R

Append R’ to H;

if IS’l < k then

| break;
return H, R

A Modified AFLite

Algorithm 1, shows the modified AFLite algorithm,
where the original algorithm applied to training
examples is shown in black, and the additional lines
applied to the evaluation examples are highlighted
in red.

®(X) is the CLS or <S> embeddings of corre-
sponding adversary model, fine-tuned on a separate
held-out training set for the task (10% of the train-
ing data, following AFLte).

B AFLite Filtering Statistics

Figure 6 shows the breakdown of filtered exam-
ples when applying AFLite with different models.
Each example in the validation set falls into one
of three categories: examples filtered out on the

12

first iteration of AFLite, examples filtered in all
subsequent iterations, and examples remaining af-
ter applying AFLite (AF Selected). In most cases,
more than half the validation datasets are filtered
out within the first iteration, meaning that these ex-
amples were largely correctly predicted by a set of
weak classifiers using the learned representations
of partially tuned adversary models. Moreover,
the stronger the adversary model, the more exam-
ples tend to be removed in the first iteration. Sub-
sequent filtering iterations remove comparatively
much fewer examples.

Among the AF Selected examples for Cosmos
QA and SociallQA, we see a trend that the stronger
the adversary model, the fewer examples remain af-
ter AFLite. We do not see the same pattern in
MNLI and SNLI, where the number of AF Se-
lected examples does not vary consistently across
strength of models. We note that Cosmos QA and
SociallQA use different AFLite hyperparameters
from MNLI and SNLI because of the difference in
datasets sizes (Table 3.

C Additional Results

Figure 8 shows the same information as Figure 1,
with fine-tuned models on the X-axis and adver-
sary models shown in different curves. Figure 7
shows the same information in a heatmap. Fig-
ure 11 shows the average agreement across adver-
sarially filtered datasets, including the agreement
among subsequent iterations of AFLite. Figure 13
shows exact-match scores on the AdversarialQA
datasets.

D Models

Table 2 shows additional details for each of the
pretrained models used in our experiments.

E Fine-Tuning Details

For full fine-tuning, we fine-tune for 3 epochs for
MNLI and SNLI, and 5 epochs for Cosmos QA
and SociallQA. For fine-tuning weak classifiers
for ®(x), we subsample 10% of the training ex-
amples for MNLI and SNLI, and 5000 examples
for Cosmos QA and SociallQA, fixing the subsam-
ples across all models. We repeat the subsampling
procedure three times. In both fine-tuning setups,
we hold out 500 examples from the training set for
early stopping. These training examples are held
out for both full fine-tuning as well as the AFLite

MNLI

0 2000

4000 6000
Cosmos QA

8000

[500 1000

1500 2000
W Filtered in First Iteration

2500

SNLI

2000

4000 B 6000 8000
SociallQA

[

250 500
[Filtered in Remaining Iterations

750 1000 1250 1500 1750
B AF Selected

Figure 6: Statistics of AFLite-filtered datasets. We apply Algorithm 1 to the validation set of each task across
adversary models, and average across three random seeds. AF Selected indicates examples that are included in the
final evaluation set. For most models, majority of the examples are filtered out within the first iteration of AFLite.

Model Abbreviation Reference Parameters Training Objective
MiniBERTa Small 1M Min-1M Zhang et al. (2021) ~45M Masked language modeling
MiniBERTa Base 1B Min-1B Zhang et al. (2021) ~100M Masked language modeling
BERT-Base (cased) BERT-B Devlin et al. (2019) ~100M Masked language modeling + NSP
BERT-Large (cased) BERT-L Devlin et al. (2019) ~340M Masked language modeling + NSP
XLM-R-Base XLMR-B Conneau et al. (2020) ~100M Masked language modeling
XLM-R-Large XLMR-L Conneau et al. (2020) ~340M Masked language modeling
BART-Base BART-B Lewis et al. (2020) ~100M Text infilling + Sentence permutation
BART-Large BART-L Lewis et al. (2020) ~340M Text infilling + Sentence permutation
ALBERT-Large (v2) ALB-L Lan et al. (2020) ~18M Masked language modeling + SOP
ALBERT-XLarge (v2) ALB-XL Lan et al. (2020) ~60M Masked language modeling + SOP
RoBERTa-Base RoBE-B Liu et al. (2019) ~100M Masked language modeling
RoBERTa-Large RoBE-L Liu et al. (2019) ~340M Masked language modeling
ELECTRA-Base ELEC-B Clark et al. (2020) ~100M Replaced token detection
ELECTRA-Large ELEC-L Clark et al. (2020) ~340M Replaced token detection
DeBERTa-V2-Large (v2) DBv2-L He et al. (2021) ~900M Masked language modeling
DeBERTa-V2-XLarge (v2) DBv2-XL He et al. (2021) ~1.5B Masked language modeling
DeBERTa-V3 Base DBv3-B He et al. (2021) ~100M Replaced token detection
DeBERTa-V3 Large DBv3-L He et al. (2021) ~418M Replaced token detection

Table 2: Pretrained models used in our experiments

procedure. As such, validation examples never in-
fluence the fine-tuning or AFLite procedures, only
being used when we perform AFLite and filter our
validation examples as described in Algorithm 1.

For DeBERTR4, unlike in He et al. (2020), we do
not apply SiFT during fine-tuning.

F AFLite Hyperparameters

Table 3 shows the hyperparameters for our AFLite
runs.

13

MNLI SNLI
Min-1M - 7=)
Min-1B - 87 78

[AENIIE 60° 42 30
Min-1B -79 /= EZE]

BERT-B-83 78 BERT-B - 90 82
XLMR-B - 81 XLMR-B - 87 78
BART-B - 85 BART-B - 90 82
BERT-L - 86 BERT-L - 91 84
5 ALBT-L-86 ALBT-L-90 83
% ROBE-B-86 ROBE-B-91 85
%ALBT-XL-87 ALBT-XL - 92 86
S XLMR-L-88 XLMR-L - 91 84
§ ELEC-B -87 ELEC-B-92 85
L BART-L-89 BART-L - 91
DBv3-B-90 DBv3-B - 93
ROBE-L - 90 ROBE-L - 92
ELEC-L - 90 ELEC-L-93
DBv2-L-90 88 DBv2-L - 93
DBv2-XL -90 88 78 69 DBv2-XL - 93
DBv3-L-91 88 79 70 DBV3-L - 93 m
STlecegrgd gygomp g SiteéprEu ggE0ded o
EE%#FE%&'E;?d%%EdEg% Eg%iéﬁéggidéggdggg
Cosmos QA SociallQA

Min-1M
Min-1B
BERT-B
XLMR-B
BART-B
BERT-L
ALBT-L
ROBE-B -/ 7%
ALBT-XL ALBT»XL-m 63 58 57 55 57 47 51 40 44 44 41 39 42 36 39 39 38

XLMR-L 7L)
ELEC-B)

BART-L -2/ 74
DBV3-B-78 /-
ROBE-L~77‘

DBv2-L~79
DBV2-XL - 78 71

Fine-tuned Model

ROBE-L-79 70
ELEC-L-83 82 //

DBv2-XL -87 85

DBv3-L-88 86 83 82 82 79 80 79 78 DBv3-L - 81 80 mm

1 1 T 1 T 1 1 1 1 1

[=] o o - - 2] - - 2] o - - - - - (] = o o (=] o - - o - - o - 2] - - - —)

N A ok 0 g gz moa@@ @y @@ g

o ' ' F £ F = = W ' x U FF m w O o 0 m [=} . ' F £ = E = W ' x U FF M W O o ' m

= [C X £ £ @ m 0 - = W o< > oo w > o > = [= C X £ X &£ o0 0 - = W o > o w > o >
- - w - << w - o o - - << o o - o > o - — w =) << w - o o - - << o o - o > o

AFLite Adversary Model AFLite Adversary Model

Figure 7: Performance of fine-tuned models on validation sets filtered via AFLite using adversary models. ‘None’
indicates the full validation set with no filtering applied. Filtering with stronger adversary models leads to lower
performance on the filtered dataset, across all fine-tuned models. However, filtering also tends to hurt the adversary
model itself more than other models on average (darker cells on the diagonal).

MNLI SNLI Cosmos QA SociallQA
m 64 64 64 64
t 50K 40K 10k 10k
k 10K 10K 500 500
T 0.75 0.75 0.75 0.75

Taken From Le Bras etal. (2020) Le Bras et al. (2020) Sakaguchi et al. (2020) Sakaguchi et al. (2020)

Table 3: AFLite Hyperparameters

14

SNLI

MNLI

p. Zoef0 90X Jday04 X
8T TP ESEEREWU L clEnW S
PSS EEE35E00932%80988a
WMNMMBXBBARAXEBDREDDD
T°
S SSERERREERERER R
x X
s, S
KN KN
& [
2 % 2 %
&/ r
»ozo Vc.vo
NS P,
PN 2%
BN HEEN
& % e %
P R
x, % x, %
y.\@\v‘ y&m\v‘
%o@ @o@
P P
»«»@m‘ 2%
r%, = [%
%48 % F
Yo, 9 .,
o, %8 &y, %
P %, " [, %
V,,«% V,,«%
»,.vvv "V,avvv
H %, N
8 HEC
y.\&w‘ V&Qv.
®, 9 8,
v\ﬁ v\V
& % & %
y&&v y&&v
N N
. | %,
% iy,

Kdeanddy

Adeanddy

Fine-tuned Model

-tuned Model

Fine

tuned models on validation sets filtered via AFLite using adversary models. ‘None’

Figure 8: Performance of fine

indicates the full validation set with no filtering applied. The dotted line indicates performance at chance for
each task. Filtering with stronger adversary models leads to lower performance on the filtered dataset, across all

fine-tuned models.

15

DBv3-L DBv3-L DBv3-L DBv2-L DBv2-XL DBv3-L DBv3-L DBv2-L DBv3-L DBv3-L DBv3-L DBv2-XL DBv3-L DBv3-L DBv3-L DBv2-XL DBv3-L DBv3-L
DBv2-L DBv2-L DBv2-L DBv3-L DBv2-L DBv2-L DBv2-L DBv3-L DBv2-XL DBv2-XL DBv3-L DBv2-XL DBv2-XL DBv2-L DBv2-L DBv2-XL ELEC-L
ELEC-L DBv2-XL DBv2-XL DBv2-XL DBv3-L DBv2-XL DBv2-XL DBv2-XL DBv2-L DBv2-L DBv2-L DBv2-L DBv2-L DBv2-XL DBv3-L ELEC-L BART-L
DBv2-XL ELEC-L ELEC-L ELEC-L ELEC-L ELEC-L ELEC-L ELEC-L ELEC-L ELEC-L ELEC-L ELEC-L ELEC-L ELEC-L ROBE-L DBv3-B DBv3-B
DBv3-B DBv3-B DBv3-B DBv3-B DBv3-B DBv3-B ROBE-L DBv3-B DBv3-B DBv3-B ROBE-L DBv3-B DBv3-B DBv3-B ROBE-L
ROBE-L ROBE-L ROBE-L ROBE-L ROBE-L ROBE-L DBv3-B ROBE-L -L ROBE-L ROBE-L DBv3-B ROBE-L BART-L BART-L XLMR-L XLMR-L
BART-L BART-L BART-L BART-L BART-L BART-L BART-L BART-L BART-L BART-L BART-L ALBT-XL ALBT-XL XLMR-L DBv2-L ROBE-L
XLMR-L XLMR-L XLMR-L XLMR-L XLMR-L XLMR-L ALBT-XL XLMR-L XLMR-L ALBT-XL ALBT-XL XLMR-L XLMR-L ALBT-XL BART-L DBv2-XL
ELEC-B ELEC-B ALBT-XL ALBT-XL ALBT-XL ALBT-XL XLMR-L ALBT-XL ELEC-B = ALBT-L XLMR-L ALBT-L ALBT-L ALBT-L ALBT-XL ALBT-L
ALBT-XL ALBT-XL ELEC-B ELEC-B ELEC-B ELEC-B ELEC-B ELEC-B ROBE-B ELEC-B ALBT-L ELEC-B ROBE-L ALBT-L DBv2-L
ALBT-L ALBT-L ALBT-L ALBT-L ALBT-L ALBT-L ALBT-L Y ELEC-B ROBE-B ROBE-B
ROBE-B ROBE-B ROBE-B ROBE-B ROBE-B ROBE-B ROBE-B ROBE-B ALBT-L XLMR-L ROBE-B BART-L ROBE-B
ALBT-L ROBE-B ROBE-B ELEC-B ALBT-XL
ELEC-B

MNLI

ALBT-XL

Min-1B ALBT-XL DBv2-XL
DBv3-L DBv3-L DBv3-L DBv3-L DBv3-L
DBv2-L DBv2-L DBv2-L ELEC-L ELEC-L
DBv2-XL DBv2-XL ALBT-XL ALBT-XL ALBT-XL
ELEC-L ELEC-L DBv2-XL DBv2-XL DBv3-B
ALBT-XL DBv3-B DBv3-B DBv3-B DBv2-L

ALBT-XL ROBE-L DBv2-L
ROBE-L DBv2-XL
ALBT-L ALBT-L ROBE-B ROBE-L
ROBE-B ELEC-B ELEC-B
XLMR-L ELEC-L XLMR-L ROBE-L
ELEC-B XLMR-L ELEC-B
DBv3-B ROBE-B XLMR-L ROBE-B ROBE-B
BART-L BART-L ALBT-L XLMR-L
ROBE-L BART-L
BART-L ALBT-L
ALBT-L

SNLI

ELEC-B
Min-1B ALBT-XL DBv2-XL
DBv3-L DBv3-L DBv3-L
DBv2-XL DBv2-XL DBv2-XL
DBv2-L DBv2-L ELEC-L
ELEC-L ROBE-L DBv2-L
ROBE-L BART-L ROBE-L
BART-L XLMR-L DBv3-B
DBv3-B DBv3-B BART-L
XLMR-L ELEC-B XLMR-L
ELEC-B ELEC-B
ALBT-XL
ROBE-B ROBE-B ROBE-B
ELEC-L
ALBT-XL

Cosmos QA

ALBT-XL
ALBT-L

ALBT-L

ALBT-XL DBv2-XL
DBv3-L DBv3-L DBv3-L DBv3-L
DBv2-XL ELEC-L ELEC-L ELEC-L
ELEC-L DBv2-XL ROBE-L ELEC-B
DBv2-L DBv2-L DBv2-XL DBv2-L
ROBE-L DBv3-B BART-L DBv3-B
DBv3-B ROBE-L DBv3-B BART-L
BART-L BART-L ELEC-B ROBE-L
ALBT-XL ELEC-B DBv2-L DBv2-XL
ELEC-B XLMR-L XLMR-L
XLMR-L ROBE-B XLMR-L
ALBT-L ALBT-L ROBE-B
ALBT-L ALBT-XL ALBT-L ALBT-L
ROBE-B
ROBE-B ALBT-XL ALBT-XL

SociallQA

Min-1M ALBT-L ROBE-B ALBT-XL XLMR-L ELEC-B DBv2-XL
AFLite Adversary Model

Figure 9: Ranked performance of fine-tuned models on validation sets filtered via AFLite using adversary models.
We depict here a subset of the larger adversary models. For each AF Selected dataset, we sort models by their
performance (Figure 1) from best (top) to worst (bottom). ‘None’ indicates the full validation set with no filtering
applied. We find that the sorting order of model performance is not consistent across adversary models.

16

Premise

Original Hypothesis

Label

Perturbed Hypothesis

Issue

Adversary: BERT-Large

In Hong Kong you can
have a plate, or even
a whole dinner service,
hand-painted to your
own design.

He hadn’t seen even
pictures of such things
since the few silent
movies run in some of
the little art theaters.

As a basic guide, the
symbols below have
been used to indicate
high-season rates in
Hong Kong dollars,
based on double oc-
cupancy, with bath or
shower.

It’s impossible to have a
plate hand-painted to your
own design in Hong Kong.

He had recently seen
pictures depicting those
things.

As you can see, the sym-
bols are of dolphins and
octopuses.

contradiction

contradiction

neutral

It’s imaginable to have
a plate hand-painted to
your own design in
Hong Kong.

He had recently experi-
mented pictures expos-
ing those things.

As you can see, the sym-
bols are of sharks and oc-
topuses.

Semantics change

Problematic word

substitution

Semantics change

Adversary: DeBERTa-V3-Large

Do you think Mrs. In-
glethorp made a will
leaving all her money to
Miss Howard? I asked in
a low voice, with some
curiosity.

But when the cushion is
spent in a year or two, or
when the next recession
arrives, the disinterme-
diating voters will find
themselves playing the
roles of budget analysts
and tax wonks.
substitute my my yeah
my kid’ll do uh four or
five hours this week for
me no problem

I yelled at the top of my
lungs.

The cushion will likely be
spent in under two years.

I just can’t make the time
because of my job.

contradiction

entailment

neutral

I muttered at the supe-
rior of my lungs.

The cushion will likely
be spent in under three
years.

I just can’t make the
time for of my job.

Problematic word

substitution

Semantics change

Grammatical error

Table 4: TextFooler Examples

17

Min-1M -
Min-1B -
BERT-B-
XLMR-B-
BART-B-
BERT-L-
ALBT-L-
ROBE-B -
ALBT-XL-
XLMR-L -
ELEC-B -
BART-L-
DBv3-B -
ROBE-L -
ELEC-L EETN
DBv2-L -
DBv2-XL -
DBv3-L

POURPLAOONHEHENHOO
NNFOOORWORNEFO

o
|
AN ONWANWHHOOO

U

=)
WNI—‘&NH
0~ U LHNWNNWD—‘NN}—‘NOO

MNLI SNLI Cos;'nos SIQA

Figure 10: For each fine-tuned model, we compute the
change in rank (1=best, 18=worst) from evaluating on
the full evaluation set, and on the dataset filtered using
the same pretrained model for the adversary. In almost
all cases, filtering on the same pretrained model leads
to a fall in ranking, indicating that the model is dispro-
portionately affected by filtering with itself.

18

MNLI SNLI

None -
Min-1M
Min-1B
BERT-B
XLMR-B
BART-B
BERT-L
ALBT-L
ROBE-B

ALBT-XL
XLMR-L
ELEC-B
BART-L
DBv3-B
ROBE-L
ELEC-L
DBv2-L

DBv2-XL
DBv3-L

87.2%
83.4%
81.3%

86.7%
81.3%

Adversary Model

Filtered In Filtered In AF Filtered In Filtered In AF
First Remaining Selected First Remaining Selected
Iteration Iterations Iteration Iterations

Figure 11: Label agreement among the adversarially filtered datasets from human annotators. AF Selected indicates
examples that are not filtered out. Label agreement is very high for first pass filtered examples for all models. On
the other hand, label agreement for the remainder datasets falls as better adversary models are used, indicating that
AFLite may be selecting for the examples with the most ambiguity or labeling noise.

MNLI SNLI
Min-1M &0 Min-1M - 73 B13
Min-1B - 79 Min-1B - 87 77
BERT-B- 83 79 BERT-B- 90 80
XLMR-B-81 78 XLMR-B - 87 78
BART-B- 85 79 BART-B- 90 79
BERT-L- 86 81 BERT-L-91 81
T ALBT-L- 86 82 ALBT-L- 90 82
E ROBE-B - 86 83 ROBE-B-91 81
g ALBT-XL- 87 84 ALBT-XL-92 83
§ XLMR-L - 88 83 XLMR-L-91 82
E ELEC-B-87 82 ELEC-B-92 83
& BART-L-89 83 BART-L- 91 82
DBv3-B-90 85 DBv3-B-93 85
ROBE-L-90 85 ROBE-L-92 83
ELEC-L-90 86 ELEC-L-93 84
DBv2-L - 90 86 DBv2-L-93 84
DBv2-XL-90 84 78 76 74 DBv2-XL-93 83 75
DBv3-L-91 85 80 78 76 75 74 DBv3-L-93 85 75
e T R
R Rl A R R SRR R Rl A R ARl
®F£fE3:823853338838¢8433 ®fEE5:83853338838¢8433
TextFooler Adversary Model TextFooler Adversary Model

Figure 12: Performance of fine-tuned models on validation sets perturbed via TextFooler using adversary models.
‘None’ indicates the full validation set with no perturbation applied. Perturbing with stronger adversary models
leads to lower performance on the filtered dataset, across all fine-tuned models. However, perturbing also tends to
hurt the adversary model itself more than other models on average (darker cells on the diagonal).

Eval Dataset
—8— SQUAD —®— AQA-dBIDAF —8— AQA-dBERT —@— AQA-dRoBERTa

< 80
I~
© 60
=
+ 40
2
25 20

0.

Figure 13: Measuring the performance of models on AdversarialQA. Adversarial QA models are fine-tuned on
SQuAD 1.1. For each adversarially created dataset, the corresponding base adversary model used in model-in-the-
loop data creation is circled in the corresponding color for that dataset.

19

