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ABSTRACT

Technological advances are in part enabled by the development of novel manufac-
turing processes that give rise to new materials or material property improvements.
Development and evaluation of new manufacturing methodologies is labor-, time-,
and resource-intensive expensive due to complex, poorly defined relationships be-
tween advanced manufacturing process parameters and the resulting microstruc-
tures. In this work, we present a topological representation of temper (heat-
treatment) dependent material micro-structure, as captured by scanning electron
microscopy, called TopTemp. We show that this topological representation is able
to support temper classification of microstructures in a data limited setting, gen-
eralizes well to previously unseen samples, is robust to image perturbations, and
captures domain interpretable features. The presented work outperforms conven-
tional deep learning baselines and is a first step towards improving understanding
of process parameters and resulting material properties.

1 INTRODUCTION

Material microstructure dictates a sample’s properties. Subject matter experts (SMEs) such as ma-
terials or manufacturing scientists and engineers use microstructures to help guide experimental
design and inform selection of the relevant processing parameters. Material scientists seek to har-
ness advances in deep learning in order to reduce the resource-intensiveness of this traditionally
human-in-the-loop analysis. However, the viability of deep learning approaches is reduced due to
limited data and an accompanying preference for interpretability and explainability.

Evaluation of material microstructures can be performed through consideration of images derived
from Scanning Electron Microscopy (SEM) amongst other modalities. Material scientists look at
the relative size and distribution of structures present in the image such as grain size, grain bound-
ary density, precipitate density, precipitate morphology and distribution. Tempering refers to heat
treatments applied to metals and alloys to develop desirable microstructural features resulting in
properties of interest. During tempering, a sample is exposed to specific temperatures for fixed
lengths of time. The effects of tempering can be seen partially in SEM images and more distinctly
higher resolution imaging techniques. It is well known in materials and manufacturing domains that
there is a strong connection between the temper applied on a sample and its microstructure, and the
corresponding properties. The ability to capture explainable, relevant features tied to temper using
machine-assisted methodologies may therefore form a viable base for exploring the more complex
relationships between process conditions used to manufacture the sample and its properties. Even
more useful is the ability to distinguish between samples with different temper using SEM images
alone precluding the need for expensive imaging. Successful extraction of microstructural features
from SEM data could be used to support and guide future experimental design thereby reducing the
time and cost of technology validation and deployment.

In this work, we consider the task of machine-assisted classification of SEM images on the basis
of the temper applied after manufacturing them. We address the challenges of interpretability and
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(a) Example image crop for “as extruded” condition.

(b) Example image crop for T5 temper condition.

(c) Example image crop for T6 temper condition.

Figure 1: An example image crop for each temper condition (“as extruded”, T5, T6), the lowerstar
filtations (for threshold values 0 , 0.25, 0.5, and 0.75), and the resulting persistence diagrams.

explainability using topological representation of SEM images paired with sparse support vector
machines. The topological features are benchmarked against conventional convolutional neural net-
works applied to the SEM images directly. Models are trained on limited data and evaluated on
larger collections of images derived from previously unseen material samples to simulate a tradi-
tional human-in-the-loop, data-limited analysis scenario. We show that a topological representation
outperforms learned features for temper classification, generalizes better to unseen experiments, and
is more robust to noise.

2 BACKGROUND

2.1 SHEAR ASSISTED PROCESSING EXTRUSION MANUFACTURING

In this work, we consider AA7075 (aluminum) tubes produced using a novel solid phase process-
ing technique called Shear Assisted Processing Extrusion Whalen et al. (2021a;b). During ShAPE
manufacturing, a rotating die impinges on a stationary billet housed in an extrusion container with a
coaxial mandrel. Due to the shear forces applied on the billet as well as the friction at the tool/billet
interface, the temperature increases, and the billet material is plasticized. As the tool traverses into
the plasticized material at a predetermined feed rate, the billet material emerges from a hole in the
extrusion die to form the tube extrudate.

The ShAPE technology has been able to produce tubes from AA7075 that possess material prop-
erties that have been previously unachievable. At present, however, only nascent models exist for
simulating the microstructures resulting from ShAPE and any subsequent tempering. As a newly
developed manufacturing methodology with emerging first principles models, there are a limited
number of ShAPE experiments from which to learn about these fundamental relationships.

AA7075 sample tubes considered in this work are produced using a variety of ShAPE processing
parameters including feed rate and die rotation rate (spindle speed). Different sections of the ex-
truded sample are then tempered to T5 and T6 conditions to understand the evolution of as-extruded
microstructures and resulting properties as a consequence of the heat treatment. Images are taken,
using SEM at a magnification of 500X, of samples for each of the three possible tempered states:
“as extruded” (e.g. pre-temper), T5, and T6. Each sample also corresponds to measurable material
properties that will be considered in future work.
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2.2 PERSISTENT HOMOLOGY

Persistent homology is a popular tool from algebraic topology used to study shapes of datasets Edels-
brunner et al. (2000). It tracks the birth and death of topological features particularly k-dimensional
holes (connected components, loops, voids, etc.) along a nested sequence of topological spaces. The
k-dimensional holes of a topological space X are encoded in an algebraic structure called the k-th
homology group of X denoted by Hk(X). Considering a filtration of the spaces, the birth and death
of the homological features can be encoded in a persistence diagram.

Lower star filtration (LSF), or sublevel set filtration, is a technique for gridded/pixel data where the
nested sequence of topological spaces are constructed based on the function value at each pixel. It
constructs a sparse distance matrix in which every pixel in the image is a vertex, and every vertex
is connected to its 8 adjacent neighboring pixels where the distance between two adjacent pixels is
defined to be the maximum of their values Tralie et al. (2018). Furthermore, a pixel appears in the
filtration only when its value is less than the specified filtration threshold.

3 TECHNICAL APPROACH AND EXPERIMENTAL DESIGN

Conversations with material science SMEs revealed that SEM images of AA7075 samples produced
using ShAPE manufacturing have multiple significant features such as grain boundary density, pre-
cipitate density and morphology as well as void size and distribution. Of these, precipitate mor-
phology and topology are known to be the most affected as a result of the tempering process. In
total there are approximately 30 AA7075 tubes manufactured using ShAPE that were considered in
this study. These samples came from different combinations of process parameters prior to being
tempered. Each experimental sample is subdivided and certain subsections are tempered to T5 or
T6 conditions. SEM images were taken for each of the AA7075 tubes that can give rise to numerous
smaller, cropped SEM images.

The cropped grayscale SEM images, chosen to be size 128 × 128, can be considered as bounded,
2-dimensional functions and therefore can be summarized by their sublevelset topology as described
in Section 2.2. Based on the characteristics used by SMEs we focus on the 1-dimensional homology
of the grayscale images. Example image crops for each temper condition are shown in the leftmost
plots of Figure 1. In addition, Figure 1 showcases the lower star filtation1 and resulting persistence
diagrams for each example. For each example of the LSF at a given threshold, the green pixels
are those which form the simplicial complex at the indicated threshold. A finer scale of filtration
thresholds are provided in Appendix A.

For each SEM image crop, we create a 10 × 10 pixel persistence image Adams et al. (2017) that
is then vectorized and used as the input into a sparse support vector machine (SSVM) classifier.
There are three temper classes considered: “as extruded”, T5, and T6. The SSVM classifier is
trained using a one versus rest approach resulting in three dividing hyperplanes2. We refer to the
process of applying an SSVM classifier to topological features extracted using the LSF to temper-
dependent micro-structure as TopTemp. As a benchmark, we compare the performance of an SSVM
applied to our explainable topological representation to a convolutional neural network3 applied to
the cropped SEM images directly. Both models are trained using the same train/test split consisting
of 50 random SEM image crops from each temper class for training and 475 random crops from
each class for testing. Train/test crops are drawn from disjoint sets of samples to evaluate model
generalization. We also create a second test set by adding random Gaussian noise to the original test
set with different values of variance to evaluate model robustness.

1We use Ripser’s Tralie et al. (2018) implementation of LSF and for persistence images we use Gaussian
distributions and weighting functions depending on vertical persistence coordinates.

2We use Scikit-learn Pedregosa et al. (2011) implementation of Linear SVM, LinearSVC, with l1-penalty
and squared hinge loss. We search over different values of regularization parameter 10−3, 10−2, 10−1, and 1.

3We fine tune a pre-trained ResNet18 He et al. (2016); Marcel & Rodriguez (2010) model on the 50 samples
from each temper class.
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Figure 2: The classification test accuracies for TopTemp and ResNet18 for different levels of Gaus-
sian noise are shown in the leftmost plot. The confusion matrices for Gaussian noise variance 0.0005
are shown for TopTemp SSVM (middle) and the fine tuned ResNet18 model (right).

4 EXPERIMENTAL RESULTS

Our core results are summarized in Figure 2. In the leftmost plot, we show the model accuracies as
a function of the additive Gaussian noise with mean 0 and different variance values (for pixel scale
[0, 1]) for both the TopTemp model and the fine-tuned ResNet18 model. Across all noise levels,
including noise-free, TopTemp outperforms the ResNet18 model. As seen in Figure 2, the ResNet18
model’s performance drops off rapidly and then stabilizes at approximately the same model accuracy
as the worst TopTemp accuracy. The two confusion matrices to the right of the plot in Figure 2
provide a more detailed perspective on the model performances for the 0.0005 additive Gaussian
noise test set where there is the greatest discrepancy in model performance.

All errors from the TopTemp model come from misclassification of “as extruded” or T5 samples
as T6 samples. Alternatively, the ResNet18 model fails by roughly splitting the T5 samples across
the other two classes as well as a substantial number of “as extruded” samples into T6. As can
be seen in the leftmost images of Figure 1, T6 images can present with a structure that strongly
resembles Gaussian noise. Therefore, it is reasonable to assume that a model built on features
capturing meaningful structure would have a failure mode where “as extruded” or T5 samples would
be classified as T6 in the presence of additive white noise. This is strongly suggestive that TopTemp
captures meaningful, interpretable, and more robust features than the ResNet18 model. The pattern
is maintained across all noise levels.

In addition to outperforming the ResNet18 model, the SSVM classifier applied to TopTemp features
yields a second level of explainability. Appendix B shows reshaped SSVM weight vectors for each
of the dividing hyperplanes. From the dividing hyperplane weights it can be seen that the most
important regions of the topological representation for differentiating T6 crops from the other classes
are those that correspond to low persistence features, e.g. small, low contrast precipitates. Similar
relationships, consistent with SME descriptions, can be seen by observing the average topological
representations shown in Appendix C.

5 CONCLUSIONS AND FUTURE WORK

In this work, we have presented a novel approach for using a topological representation for temper
classification for SEM images of AA7075 tube samples produced using the innovative ShAPE man-
ufacturing process. The developed technique, called TopTemp, is able to achieve superior temper
classification accuracy relative to a conventional deep learning architecture. Additionally, TopTemp
is able to maintain its superior classification accuracy when tested on a large collection of images
corresponding to previously unseen material samples. Finally, TopTemp performance is less im-
pacted when evaluated on test images corrupted by noise as observed in Figure 2. The misclas-
sification that occurs in the presence of noise is explainable and further reflects that topological
representations capture domain relevant structure.

This work provides a valuable first step for demonstrating the ability to parse precipitate structure
using domain-relevant, explainable features based on temper topology. Building on this foundation,
in future work we explore the utility of topological features for connecting additional process pa-
rameters to the material properties of samples they produce. Successful use of topological features

4



Accepted at the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

for relating process parameters to material properties would provide a robust, generalizable method
that could be used to inform and explain future experimental design.
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A TopTemp FINE-SCALE THRESHOLDING

In Figure 3, we showcase the lower star image filtrations for a finer choice of thresholds. We observe
from the persistence diagrams that the “as extruded” SEM sample contains persistent 1-dimensional
homological features corresponding to high contrast patches compared to the T6 SEM sample with
no high contrast patches. Indeed, the T5 SEM sample lies in the middle of both cases with not-so-
high contrast patches.

B SSVM FEATURE IMPORTANCE

In Figure 4, we showcase the resulting reshaped sparse SSVM weight vectors indicating the most
important regions in the persistence images that differentiate each class from the rest. We observe
that persistent 1-dimensional homological features distinguish the “as extruded” class from the rest.
In contrast, early low-persistence 1-dimensional homological features identify the T6 class from the
rest.
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(a) Example image crop for “as extruded” condition.

(b) Example image crop for T5 temper condition.

(c) Example image crop for T6 temper condition.

Figure 3: An example image crop for each temper condition (“as extruded”, T5, T6), the lowerstar
filtations (for threshold values 0, 0.1, 0.2, · · · , 0.9), and the resulting persistence diagrams.

Figure 4: The reshaped SSVM weight vectors for each of the dividing hyperplanes for each class
using a one versus rest approach: (left) “as extruded”; (middle) T5; (right) T6.
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Figure 5: The average 10 × 10 persistence image constructed from the peristence diagram of the
1-dimensonal homology for each temper condition: (left) “as extruded”; (middle) T5; (right) T6.

C AVERAGE PERSISTENCE IMAGES

We showcase in Figure 5, the average 10× 10 H1 persistence images generated from the train data
for each class. The average persitence image corresponding to “as extruded” condition showcases
features with a higher lifetime (vertical persistence coordinate) indicating persistent 1-dimensional
homological features compared to the persistence image of T5 temper conditions with less prominent
1-dimensional homological features.
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