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ABSTRACT

Federated Learning (FL) is a collaborative machine learning framework for decen-
tralized nodes with non-IID(non- independent, identically, distributed) distributed
private data, to create a globally un-biased, high performing central model. A ma-
jority of the proposed FL protocols report performances in varied non-IID settings.
Heterogeneity in non-IID descriptions in each protocol paper makes it very hard
to compare the robustness of approaches to other studied approaches in differing
settings. In this paper, we define a metric, NIRo, to capture data-quantity and data
label-skewness and use it to propose a cumulative area-under-the-curve metric that
can be used to quantify the robustness of FL protocols in varied non-IID settings.

1 INTRODUCTION

Federated learning (FL) in non-IID setting has been widely studied in literature both theoretically
(Wang et al., 2022; Ye et al., 2023) and empirically (Li et al., 2022). Various data benchmarks and
metrics (Caldas et al., 2018; Yin et al., 2023; Haller et al., 2023) have been proposed for evaluation,
each generating specific set of label, feature, and quantity skews. We propose a quantifiable method
for exploring the entire skew spectrum and also an area-under-curve performance metric.

Consider the setting of a K - class classification problem (C1, . . . , CK) and a group of N decen-
tralized nodes (N1, . . . , NN ). Each node, Ni, holds a private dataset, Di, comprising of individual
class-labelled data points Ci

k s.t.
∑j=K

j=1 Ci
j = Di. FL is usually studied in the following two non-

IID settings: (1) Label skewness - Each of the Ci
k are distributed in a non-IID manner, within each

Di. (2) Data quantity skewness - |D1|, .., |DN | are distributed in a non-IID manner. Commonly,
real-world non-IID conditions are a combination of both of these non-IID settings. In most FL
works, protocol robustness to non-IID settings is generally studied in specific, simulated non-IID
data distributions(Gao et al. (2022); Zhang et al. (2021); Li et al. (2021b), which leads to significant
difficulty in comparing the non-IID robustness of the protocols with each other, without complete
experiment repetition. We attempt to suggest a comparison metric across various non-IID data dis-
tributions to facilitate easy comparison of non-IID robustness between protocols.

2 COMPARISON METRIC (NON-IID ROBUSTNESS) - NIRO

We define the metric NIRobust (NIRo), to ‘measure’ the degree of non-IID-ness in data distribution
across the nodes:

NIRo(D1, . . . , DN ) =
Cvar

Cvar +DSvar
Ċvar +

DSvar

Cvar +DSvar
ḊSvar,

where DSvar = σ2(|D1|,...,|DN )|
σ2(NICount

max (|D1|,...,|DN )|) and Cvar = Σi=N
i=1

|Di|
|D| × σ2(|Ci

1|,...,|C
i
K)|

σ2(NIClass
max (|Di|)) .

Here, NICount
max is a vector of all N − 1 ones in a single |D| − |N | term. Similarly, NIClass

max is a
vector with K − 1 zeros and a single |Di| term. They represent the highest variance permutation of
each data-skew.
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The NIRo metric (∈ [0, 1]) provides a single estimate of the level of non-IID-ness in any given data
distributed. A NIRo value of 0 corresponds to a IID setting i.e. equitable data-count distribution and
within each node, an equitable label distribution and a NIRo metric of 1 corresponds to an extreme
non-IID setting - i.e., a single data point in all nodes and a large dataset in one of the nodes or an
equitable distribution of data points across nodes but a completely skewed label distribution within
each node. The combination of both these extreme cases also yields a NIRo value of 1.

2.1 NIRO AREA UNDER CURVE (AUC)

In order to get a holistic perspective of algorithmic non-iid robustness, we quantify the performance
of protocols across multiple non-IID levels and combine them to measure robustness through the
proposed Area under the curve (NIRo-AuC) metric. We plot the global test accuracy and corre-
sponding NIRo metrics for various non-IID settings in multiple runs. The area under this curve
provides us with a single measure of unified non-IID performance for the specific protocol.

2.2 EXPERIMENT AND DISCUSSION

To generate non-IID partitions, use the Dirichlet distribution (over label, and volume distributions)
with parameter α ∈ [0, 2.0] (higher is more IID). We rely on the numpy implementation of Dirichlet
distribution and use NIID Bench (Li et al., 2022) in order to generate data partitions. We plot the
computed NIRo against the α parameter in Figure 1(a) and find that as the parameter α draws higher
(closer to IID), NIRo converges to a value close to 0, signifying minimal non-IID ness. When α is
closer to 0 (high non-IIDness), we note a peak towards 1 in NIRo.

The NIRo-AuC is studied in Figure 1(b) for the FedAvg (McMahan et al., 2017) and the FedProx
(Li et al., 2020) protocols on the CIFAR-10 dataset (12 nodes, 0.3 random client participation,
µFedProx = 3, Global Model Accuracy). As is known from literature, the FedProx protocol is more
non-IID robust i.e. has a better NIRo-AuC, than the FedAvg protocol. We see the same trend with
our NIRo-AuC as well. In addition, we can now also quantifiably infer that FedProx (area = 54.49)
is 11% better at performing on non-IID distributions than FedAvg (area = 48.48) on average.

(a) (b)

Figure 1: (a) NIRo variation with different α parameters, (b) NIRo@5epoch vs global ac-
curacy AuC for various non-IID data distribution (FedAvg vs FedProx) under Dirichlet(α =
500.0, 0.055, 0.05, 0.045, 0.00001). The @epoch suffix denotes the number of FL epochs.

3 CONCLUSION

In this paper, we address the issue of heterogenous non-IID settings that are explored for federated
learning use-cases. We present the Non-IID Robustness (NIRo) metric for comparing the non-IID
robustness of different FL protocols with a quantifiable measure (Area Under Curve).
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A TECHNICAL BACKGROUND AND INTRODUCTION

Federated Learning(FL) is a decentralized privacy-preserving machine learning framework. Intro-
duced in 2016 by Google (McMahan et al., 2017), FL provides a framework to generate a high-
performing global model by combining learnings from individually distributed local data-nodes.
The traditionally proposed FL framework relied on using a weighted average of individual local
gradients approach, termed as FedAvg, to generate global gradients and support iterations of global
models along with globally synchronized local models. An active area of research in FL has been
the performance of protocols in different data-distribution settings - specifically in IID (Independent,
Identically distributed) and non-IID settings, since this is of particular importance in decentralized
settings. In recent years, a thorough understanding of FL has resulted in the development of many
non-IID distribution robust algorithms. Some of these include FedProx (Li et al., 2020), SCAF-
FOLD (Karimireddy et al., 2021) and FedNova (Wang et al., 2020), to name a few.

Each FL algorithm tackles the issue of non-IID robustness with a novel approach. In each such
approach, a baseline set of protocols are defined and used in the introductory paper to measure the
comparative robustness of the novel approach against previously introduced protocols (Wang et al.,
2020). Traditionally, non-IID data-distributions (for testing) are generated by splitting the original
dataset based on samples drawn from a Dirichlet distribution (Li et al., 2021a; Hsu et al., 2019; Gao
et al., 2022), that can be fine tuned via an input alpha parameter (closer to 1 is more IID). However,
most papers study and report robustness on specific non-IID distributions, that the authors explore
and evaluate against. Given the variability in testing datasets (and distributions) per paper, a direct
translation of FL protocol performance, without complete experiment reproduction, is infeasible.
Contrary to metrics like accuracy and convergence, that can be directly compared in IID settings
(since a model will learn almost similarly if trained across multiple IID samples of a distributions),
the same is not true in non-IID cases, since the level of non-IID ness is an essential determinant of
performance in a distributed learning case. In order to accurately compare performance of protocols,
the underlying testing conditions of the protocols must be the same, similar or translatable across
experiments.

On a similar thread, in order to aid comparative performance analysis, a better metric would be
one that could capture the wholistic performance of protocols across multiple non-IID settings. In
most real-world conditions, a spectrum-wide analysis is more informative and indicative of non-IID
robustness than single-point analysis.

In this paper, we present a step in this direction by introducing the NIRo metric, which allows us to
gather the level of non-IID-ness of any given data-distribution in terms of data-count heterogeneity
as well as label heterogeneity and represent it with a single numeric metric. Given our representation
of non-IID-ness with a single variable with a set, defined range (between 0 and 1), we can then
evaluate the performance of protocols across the range of the variable and be able to gather an
overall robustness analysis of any given protocol as well. Across papers, we can further use this
to compare and contrast with other protocols that report their results on the same scale as well,
regardless of whether the datapoint distribution across both the experimental settings is exactly the
same. We propose the Area Under NIRo Curve (AuC) metric allows us this freedom and provides
us with a comparable metric of wholistic non-IID robustness performance across multiple protocols
and test settings.
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