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ABSTRACT

This paper aims to define, visualize, and analyze the feature complexity that is
learned by a DNN. We propose a generic definition for the feature complexity.
Given the feature of a certain layer in the DNN, our method disentangles and
visualizes feature components of different complexity orders from the feature.
The disentanglement of feature components enables us to evaluate the reliability,
the effectiveness, and the significance of over-fitting of these feature components.
Furthermore, such analysis helps to improve the performance of DNNs. As a
generic method, the feature complexity also provides new insights into existing
deep-learning techniques, such as network compression and knowledge distilla-
tion. We will release the code when the paper is accepted.

1 INTRODUCTION

Deep neural networks (DNNs) have demonstrated significant success in various tasks. Besides the
superior performance of DNNs, some attempts have been made to investigate the interpretability of
DNNs in recent years. Previous studies of interpreting DNNs can be roughly summarized into two
types, i.e. the explanation of DNNs in a post-hoc manner (Lundberg & Lee, 2017; Ribeiro et al.,
2016), and the analysis of the representation capacity of a DNN (Higgins et al., 2017; Achille &
Soatto, 2018a;b; Fort et al., 2019; Liang et al., 2019).

This study focuses on a new perspective of analyzing the representation capacity of DNNs. I.e.
we define, visualize, and analyze the complexity of features in DNNs. Previous research usually
analyzed the maximum complexity of a DNN according to network architectures (Arora et al., 2016;
Zhang et al., 2016; Raghu et al., 2017; Manurangsi & Reichman, 2018). In comparison, we propose
to measure the complexity of features by analyzing the complexity of nonlinear transformations. The
actual complexity of nonlinear transformations is usually different from the maximum complexity
computed based on the network architecture.

In this paper, given the feature of a specific intermediate layer, we define the complexity of this
feature as the minimum number of nonlinear transformations required to compute this feature, when
we constrain the network to have a fixed width. However, the quantification of nonlinear transfor-
mations presents significant challenges to state-of-the-art algorithms. Thus, we use the number of
nonlinear layers to approximate the feature complexity. I.e. if a feature component can be computed
using k nonlinear layers with a fixed width, but cannot be computed with k− 1 nonlinear layers, we
consider its complexity to be of the k-th order.

Analyzing DNNs using feature complexity. Based on the above definition, we disentangle an
intermediate-layer feature into feature components of different complexity orders, as Figure 1 shows.
The clear disentanglement of feature components enables both qualitative and quantitative analysis
of a DNN as follows.

• We first visualize feature components of different complexity orders. Then, we explore the rela-
tionship between the feature complexity and the difficulty of the task. The distribution of feature
components of different complexity orders potentially reflects the difficulty of the task. A simple
task usually makes the DNN mainly learn simple features.

• We further analyze the reliability, the effectiveness, and the significance of over-fitting for the
disentangled feature components: (1) In this paper, reliable feature components refer to features that
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nents of different complexity orders. We further visualize and
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can be stably learned for the same task by DNNs with different architectures and parameters. (2) The
effectiveness of a feature component is referred to as whether the feature component corresponds to
neural activations relevant to the task. Usually, irrelevant neural activations can be considered as
noises. (3) The significance of over-fitting of a feature component represents whether the feature
component is over-fitted to specific training samples. In this paper, the significance of over-fitting
is quantified as the difference between a feature component’s numerical contribution to the decrease
of the training loss and its contribution to the decrease of the testing loss.

We obtain the following two conclusions based on the above analysis: First, the number of training
samples has small influence on the distribution of feature components, but significant impacts on
the feature reliability and the significance of over-fitting of feature components. Second, feature
components of the complexity order, which is about the half of the depth of DNNs, are usually more
effective in inference than other feature components.

• Above conclusions can be further used to improve the performance of DNNs. We use feature
components of low complexity orders, especially feature components with high effectiveness and
reliability, to improve the performance of DNNs.

Method. More specifically, the disentanglement of feature components of different complexity
orders is inspired by knowledge distillation (Hinton et al., 2015). We consider the target DNN as the
teacher network. Then, we design several neural networks (namely disentangler nets) with different
depths to mimic the feature in an intermediate layer of the teacher network. In this way, we assume
that feature components mimicked by shallow disentangler nets usually correspond to those of low
complexity. A deeper disentangler net can incrementally learn an additional feature component of a
bit higher complexity order, besides components of low complexity.

In addition, disentangler nets with different widths usually provide consistent disentanglement of
feature components. We find that the moderate change of the width of disentangler nets does not
significantly affect the distribution of feature components of different complexity orders. The pro-
posed method can be widely applied to DNNs learned for different tasks with different architectures.
The disentanglement of feature components provides insightful explanations for network compres-
sion and knowledge distillation.

Contributions. Our contributions can be summarized as follows: (1) We propose a method to disen-
tangle, visualize, and analyze the complexity of intermediate-layer features in a DNN. We measure
the minimum number of nonlinear transformations actually used to compute the feature, which is
usually different from the maximum complexity of a DNN computed based on its architecture. (2)
We visualize the disentangled feature components of different complexity orders. (3) We propose
new metrics to analyze these feature components in terms of the reliability, the effectiveness, and
the significance of over-fitting. Such metrics provide insightful analysis of advantages and disad-
vantages of the network compression and the knowledge distillation. (4) The disentangled feature
components improve the performance of DNNs.

2 RELATED WORK

In this section, we discuss related studies in the scope of interpreting DNNs.

Visual explanations for DNNs. The most direct way to interpret DNNs includes the visualiza-
tion of the knowledge encoded in intermediate layers of DNNs (Zeiler & Fergus, 2014; Simonyan
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et al., 2017; Yosinski et al., 2015; Mahendran & Vedaldi, 2015; Dosovitskiy & Brox, 2016), and the
estimation of the pixel-wise attribution/importance/saliency on input images (Ribeiro et al., 2016;
Lundberg & Lee, 2017; Kindermans et al., 2017; Fong & Vedaldi, 2017; Zhou et al., 2016; Sel-
varaju et al., 2017; Chattopadhay et al., 2018; Zhou et al., 2015). They visualized salient regions in
input images or salient feature units. In comparison, we propose to disentangle and visualize feature
components of different complexity orders, which provides a new perspective to understand DNNs.

Explanations for the representation capacity of DNNs. The evaluation of the representation
capacity of DNNs provides a new perspective for explanations. The information-bottleneck the-
ory (Wolchover, 2017; Shwartz-Ziv & Tishby, 2017) used the mutual information to evaluate the
representation capacity of DNNs (Goldfeld et al., 2019; Xu & Raginsky, 2017). Achille & Soatto
(2018b) further used the information-bottleneck to constrain the feature representation. Chen
et al. (2018) proposed instance-wise feature selection for model interpretation. The CLEVER
score (Weng et al., 2018) was used to estimate the robustness of DNNs. The stiffiness (Fort
et al., 2019), the Fourier analysis (Xu, 2018), and the sensitivity metrics (Novak et al., 2018)
were proposed to analyze the generalization capacity of DNNs. The canonical correlation analysis
(CCA) (Kornblith et al., 2019) was used to measure the similarity between feature representations
of DNNs. Liang et al. (2019) investigated the knowledge consistency between different DNNs.

Unlike previous methods, our research aims to explain a DNN from the perspective of feature com-
plexity. In comparison, previous methods mainly analyzed the difficulty of optimizing a DNN
(Arora et al., 2016; Blum & Rivest, 1989; Boob et al., 2018), the architectural complexity (Zhang
et al., 2016), and the representation complexity (Liang et al., 2017; Cortes et al., 2017; Raghu et al.,
2017), which are introduced as follows.

• Difficulty or computational complexity of optimizing a DNN: Some studies focus on the amount
of computation, which is required to ensure a certain accuracy of tasks. Blum & Rivest (1989);
Livni et al. (2014); Boob et al. (2018); Manurangsi & Reichman (2018) proved that learning a
neural network with one or two hidden layers was NP-hard in the realizable case. Arora et al.
(2016) showed that a ReLU network with a single hidden layer could be trained in polynomial time
when the dimension of input was constant. Based on topological concepts, Bianchini & Scarselli
(2014) proposed to evaluate the complexity of functions implemented by neural networks. Rolnick
& Tegmark (2017) focused on the number of neurons required to compute a given function for a
network with a fixed depth.

• Complexity measures of the feature representation in DNNs: Pascanu et al. (2013); Zhang et al.
(2016) proposed three architectural complexity measures for RNNs. Raghu et al. (2017) proved
the maximal complexity of features grew exponentially with depth. Liang et al. (2017); Cortes
et al. (2017) measured the maximal complexity of DNNs with Rademacher complexity. Kalimeris
et al. (2019) investigated the change of the the mutual information between features in a DNN and
features in a linear classifier. They found that during the learning process, the SGD optimizer learned
functions of increasing complexity.

Unlike investigating the maximal complexity of DNNs based on the network architecture, we mea-
sure the feature complexity by exploring the complexity of nonlinear transformations, and visualize
feature components of different complexity orders. Moreover, we analyze the quality of feature
components and successfully boost the performance of DNNs with these feature components.

3 ALGORITHM

3.1 COMPLEXITY OF FEATURE COMPONENTS

Given an input image x, let f(x) ∈ Rn denote the feature of a specific intermediate layer of the
DNN. y = g(f(x)) ∈ RC is the output of the DNN, where C denotes the number of categories in the
classification task. In this study, we define the complexity of feature components as the minimum
number of nonlinear transformations required to compute feature components. The disentanglement
of feature components of different complexity orders in Figure 1 can be represented as follows.

f(x) = c(1)(x) + c(2)(x) + . . .+ c(L)(x) + ∆f (1)

where c(l)(x) denotes the feature component of the l-th complexity order (or, the l-order complexity
for short). ∆f is the feature component with higher-order complexity.
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Definition. The feature component c of the l-order complexity is defined as the feature component
that can be computed using l nonlinear layers, but cannot be computed with l − 1 nonlinear layers,
when we constrain the network Φ to have a fixed width. I.e. l = argminl′,Φ{Φ(l′)(x) = c}, where
Φ(l′)(·) denotes a neural network with l′ nonlinear transformation layers.

Instead of directly disentangling the feature component c(l), we propose to use knowledge distillation
to extract all feature components with the complexity of no higher than the l-th order, i.e. Φ(l)(x) =∑l

i=1 c
(i)(x). Given a trained DNN as the teacher (target) network, we select an intermediate layer

f of the DNN as the target layer. Φ(l)(x) =
∑l

i=1 c
(i)(x) is disentangled using another DNN (termed

the disentangler net) with l nonlinear layers. The MSE loss ‖f(x)−Φ(l)(x)‖2 is used to force Φ(l)(x)
to mimic the target feature f(x), where f(x) denotes the feature of the target network. We use
disentangler nets with different depths Φ(1),Φ(2), . . . ,Φ(L) to extract feature components of different
complexity orders. In this way, the feature component of the l-order complexity is given as follows.

Loss = ‖f(x)− Φ(l)(x)‖2, c(l)(x) = Φ(l)(x)− Φ(l−1)(x) (2)

In particular, c(1)(x) = Φ(1)(x). Thus, f(x) is disentangled into two parts: f(x) = Φ(L)(x) + ∆f
where ∆f denotes the feature component with a higher complexity order than L.

Significance of feature components (ρ(l)
c ). Furthermore, we quantify the significance of feature

components of different complexity orders as the variance of feature components. The metric is
designed as ρ(l)

c = V ar[c(l)(x)]/V ar[f(x)], where V ar[c(l)(x)] = Ex[‖c(l)(x) − Ex′ [c
(l)(x′)]‖2]. For

fair comparisons, we use the variance of the entire feature f(x) to normalize V ar[c(l)(x)]. The
variance indicates the numerical impact of the feature component c(l)(x) to f(x). ρ(l)

c represents the
significance of the l-th order complex feature component w.r.t. the entire feature.

Limitations: accurate estimation vs. fair comparison. Theoretically, if the target DNN has D
nonlinear transformation layers, the complexity of its features must be no higher than theD-th order,
i.e. Φ(D′)(x) = f(x), D′ ≤ D. However, the optimization capacity for the learning of disentangler
nets is limited. A disentangler net with D nonlinear layers cannot learn all features encoded in f(x).
Thus, when Φ(D′) ≈ f(x) in real implementations, we have D′ ≥ D.

In this way, ρ(l)
c measures the relative distribution of feature components of different complexity

orders, instead of an accurate strength of feature components. Nevertheless, as Figure 4 shows,
even if we use disentangler nets with different architectures (different widths), we still get similar
distributions of feature components. This proves the trustworthiness of our method, and enables the
fair comparison of feature complexity between different DNNs.

Disentangler nets. We design disentangler nets Φ(1)(x), . . . ,Φ(L)(x) with residual architectures (ac-
tually, we also use disentangler nets without skip-connections to demonstrate the trustworthiness of
the distribution of feature components. Please see Appendix B). The disentangler net consists of
three types of residual blocks, each type having m blocks. Each block of the three types consists of
a ReLU layer and a convolutional layer with 128r, 256r, 512r channels, respectively. In most experi-
ments, we set r = 1, but in Figure 4, we try different values of r to test the performance of different
disentangler nets. We use two additional convolutional layers before and after all 3m blocks, re-
spectively, to match the input and output dimensions. Therefore, a disentangler net contains 3m+ 2
convolutional layers and l = 3m+ 1 ReLU layers. Figure 10 shows the diagram of the disentangler
net with the residual architecture. For fair comparisons between DNNs, we use the same set of
disentangler nets to measure the complexity of each DNN.

Various disentangler nets generate similar distributions of feature components, which demonstrates
the trustworthiness of our methods. We learn a target DNN for Task-26 (which will be introduced
later) on the CIFAR-10 dataset and disentangle feature components from the output feature of the tar-
get DNN. We use disentangler nets with different widths (different values of r) for analysis. We ana-
lyze the complexity of the output feature of the last convolutional layer. We setm = 1, 2, 4, 8, 16, 32,
so that the nonlinear layer numbers of disentangler nets are l = 4, 7, 13, 25, 49, 97. Consider-
ing the computational cost, we calculate c(4)(x) = Φ(4)(x), c(7)(x) = Φ(7)(x)−Φ(4)(x), c(13)(x) =
Φ(13)(x)−Φ(7)(x), etc. This approximation does not affect the objectiveness of the quantified dis-
tribution of feature components of different complexity orders. Figure 4 compares distributions of
feature components disentangled by different disentanglers. As can be observed, disentangler nets
with different widths generate similar distributions of feature components, thereby verifying the
trustworthiness of our method. As an extended experiment in Appendix B, we also conduct such
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experiments using disentangler nets without skip-connections to demonstrate the trustworthiness of
the metric ρ(l)

c .

The relationship between the task complexity and the feature complexity. We define the com-
plexity of tasks first. Let Task-n denote a task of the n-order complexity as follows: we construct
another network (namely the task DNN) with n ReLU layers and randomly initialized parameters,
whose output is an 8× 8× 64 tensor. We learn the target DNN1 to reconstruct this output tensor via
an MSE loss. Since the task DNN contains n ReLU layers, we use Task-n to indicate the complex-
ity of mimicking the task DNN. Figure 3 compares distributions of feature components disentangled
from target DNNs learned for Task-0, Task-2, Task-8, Task-26, and Task-80. DNNs learned for more
complex tasks usually encode more high-complexity feature components. A an extended experiment
in Appendix B, we also use disentangler nets without skip-connections for these tasks.

3.2 RELIABILITY OF FEATURE COMPONENTS

To evaluate the reliability of a set of feature components Φ(l)(x) =
∑l

i=1 c
(i)(x), we disentangle

reliable feature components Φ(l),reli(x) and unreliable feature components Φ(l),unreli(x) as follows.

Φ(l)(x) = Φ(l),reli(x) + Φ(l),unreli(x) (3)

As discussed in (Liang et al., 2019), DNNs with different initializations of parameters usually learn
some similar feature representations for the same task, and these similar features are proved to be
reliable for the task. Thus, we consider the reliable feature components as features that can be sta-
bly learned by different DNNs trained for the same task. Suppose that we have K different DNNs
learned for the same task. For each DNN, we select the feature of a specific intermediate layer as the
target feature. Let f1(x), f2(x), . . . , fK(x) denote target features of K DNNs. We aim to extract fea-
tures shared by f1(x), f2(x), . . . , fK(x), i.e. disentangling Φ

(l),reli
1 (x),Φ

(l),reli
2 (x), . . . ,Φ

(l),reli
K (x) from

features of K DNNs as reliable components, respectively. For each pair of DNNs (i, j), Φ
(l),reli
i (x)

and Φ
(l),reli
j (x) are supposed to be able to reconstruct each other by a linear transformation:

Φ
(l),reli
i (x) = rj→i(Φ

(l),reli
j (x)), Φ

(l),reli
j (x) = ri→j(Φ

(l),reli
i (x)) (4)

where ri→j and rj→i denote two linear transformations.

Implementations. Inspired by the CycleGAN (Zhu et al., 2017), we apply the idea of cycle con-
sistency on knowledge distillation to extract reliable feature components. To extract reliable feature
components, we construct the following neural network for knowledge distillation. As Figure 2
shows, the network has a total of l ReLU layers. We add K parallel additional convolutional layers
g1, g2, . . . , gK to generate K outputs Φ̃

(l)
1 (x), Φ̃

(l)
2 (x), . . . , Φ̃

(l)
K (x), to mimic f1(x), f2(x), . . . , fK(x),

respectively. More specifically, Φ̃
(l)
k (x) = gk(ψ(l)(x)), where ψ(l)(x) denotes the output of the disen-

tangler net with l ReLU layers. Then, the distillation loss is given as Ldistill =
∑K

k=1‖fk(x)−Φ̃
(l)
k (x)‖2.

For the cycle consistency, we use Φ̃
(l)
k (x) to reconstruct ψ(l)(x) by another linear transformation

hk:hk(Φ̃
(l)
k (x)) = hk(gk(ψ(l)(x)))→ ψ(l)(x). We conduct cycle reconstructions between ψ(l)(x) and

Φ̃
(l)
k (x) for R iterations (R = 10 in experiments) to ensure a certain reconstruction accuracy. Let

ψ
(l)
0 (x)=ψ(l)(x), ψ

(l)
r (x)=Ek[hk ◦gk ◦ψ(l)

r−1(x)] denote the reconstruction output in the r-th iteration,
where hk◦gk denotes the cascaded layerwise operations. The cycle construction loss is as follows.

Lcycle =
∑R

r=1

∑K

k=1
‖hk ◦ gk ◦ ψ(l)

r−1(x)− ψ(l)
r−1(x)‖2 (5)

Appendix C provides more insightful understanding of the motivation and the explanation for tech-
niques used in Eq. (5).

1For simplicity, we design the target DNN to have the same architecture as the disentangler net with l = 19.
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This loss makes the feature Φ̃
(l)
k (x) approximately shared by K DNNs. In this way, Φ

(l),reli
k (x) =

Φ̃
(l)
k (x) can be considered as the reliable feature component. Compared with the traditional cycle

consistency (Zhu et al., 2017), the above loss is much simpler and requires less computational cost.
In this way, we can disentangle the unreliable feature component of the k-th DNN as Φ

(l),unreli
k (x) =

Φ
(l)
k (x)− Φ

(l),reli
k (x), with the other K − 1 DNNs as assistant DNNs. In experiments, we set K = 3,

including a target DNN and DNNsA andB. The reliable feature components are shared by the three
DNNs. DNNsA andB have been well-trained as two additional assistant DNNs, namely exemplary
DNNs, in order to disentangle reliable and unreliable feature components from the target DNN. The
exemplary DNNs A and B are selected as those with state-of-the-art performance in the target task,
in order to obtain convincing results. To enable fair comparisons, the same pair of DNNs A and B
are uniformly used to analyze various DNNs.

Reliability of feature components in Φ
(l)
k (x) can be quantified as the ratio of reliable feature com-

ponents in Φ
(l)
k (x) as ρ(l),reli = V ar[Φ

(l),reli
k (x)]/V ar[Φ

(l)
k (x)].

Effectiveness of feature components (α(l)
effective) measures whether the feature components c(l)(x)

extracted from the training sample x directly contributes to the task. We define this metric as
the numerical contribution of each feature component c(l)(x) to the decrease of the task loss.
Based on the Shapley value (Shapley, 1953; Lundberg & Lee, 2017), numerical contributions of
all the L feature components can be fairly allocated and given as ϕtrain

1 + ϕtrain
2 + · · · + ϕtrain

L =
Ex∈Xtrain [L(∆fx) − L(∆fx + Φ(L)(x))]. The Shapley value has been widely used as a standard met-
ric for the feature importance in literature (Chen et al., 2019; Ghorbani & Zou, 2019; Williamson
& Feng, 2020). ∆fx is the high-order component within the sample x in Equation (1). L(∆fx)
represents the task loss when we remove all feature components in Φ(L)(x), and L(∆fx + Φ(L)(x))
denotes the task loss when both ∆fx and feature components in Φ(L)(x) are used for inference.
In this way, Ex∈Xtrain [L(∆fx) − L(∆fx + Φ(L)(x))] can be considered as the overall numerical
contribution of all the L feature components through all training samples. Thus, the metric
α

(l)
effective = ϕtrain

l /
√
V ar[c(l)(x)] measures the normalized effectiveness of the feature component c(l)

to the decrease of the training loss (
√
V ar[c(l)(x)] is used for normalization). Please see Appendix D

for discussions about the trustworthiness of the metric α(l)
effective.

Significance of over-fitting of feature components (α(l)
overfit) measures whether c(l)(x) is over-fitted

to specific training samples. Similarly, we first measure the numerical contribution ϕoverfit
l of each

feature component c(l)(x) to over-fitting based on the Shapley value. In this way, we have ϕoverfit
1 +

ϕoverfit
2 + · · ·+ϕoverfit

L = Loverfit(∆f + Φ(L))−Loverfit(∆f), where Loverfit(∆f + Φ(L)) = Ex∈Xtest [L(∆fx +
Φ(L)(x))] − Ex∈Xtrain [L(∆fx + Φ(L)(x))] uses the gap between the testing loss and the training loss
to quantify the over-fitting caused by both feature components in ∆f and Φ(L). Then, the metric of
the significance of over-fitting for c(l) is given as α(l)

overfit = ϕoverfit
l /ϕtrain

l . Please see Appendix D for
discussions about the trustworthiness of the metric α(l)

overfit.

4 EXPERIMENTS

Datasets, DNNs & Implementation details. We used our method to analyze VGG-16 (Simonyan
et al., 2017) and ResNet-8/14/18/20/32/34/44 (He et al., 2016).2 For simplification, we limited our
attention to coarse-grained and fine-grained object classification. We trained these DNNs based
on the CIFAR-10 dataset (Krizhevsky et al., 2009), the CUB200-2011 dataset (Wah et al., 2011),
and the Stanford Dogs dataset (Khosla et al., 2011). For the CUB200-2011 dataset and the Stanford
Dogs dataset, we used object images cropped by object bounding boxes for both training and testing.
The classification accuracy of learned DNNs is shown in Appendix E.

Visualization of feature components. Given a pre-trained VGG-16 and input images in the
CUB200-2011 dataset, we disentangled and visualized feature components of different orders in
Figure 5. We took the feature in the conv4-3 layer (with the size of 28 × 28 × 512) as the target
feature f(x). Then, we disentangled the target feature and visualized the feature map of a random

2Compared with the original VGG-16, we added a BatchNorm layer before the output feature of each
convolutional layer, before we use its feature to guide the distillation process. ResNet-8 and ResNet-14 had the
similar structure as ResNet-20, ResNet-32 and ResNet-44 in (He et al., 2016), except that they had 1 and 2
blocks in each stage, respectively.
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Figure 5: Visualization of the disentangled feature components.
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Figure 6: Significance (ρ(l)
c ) and reliability (ρ(l),reli) of the disentangled feature components.

channel in f(x), and the corresponding channel in c(l)(x) and Φ(l)(x). Low-complexity feature com-
ponents usually represented the general shape of objects, while high-complexity feature components
corresponded to detailed shape and noises.

Exp. 1, the number of training samples had small influence on the distribution of feature com-
ponents, but had significant impacts on the feature reliability. We learned ResNet-8/14/20/32/44
using different numbers of training samples, which were randomly sampled from the the CIFAR-10
dataset. Then, we disentangled feature components of different complexity orders from the output
feature of the last residual block. More specifically, two exemplary DNNs A and B were used to
help us extract the reliable feature components in the target feature. They were implemented as
ResNet-44 learned on the entire CIFAR-10 dataset with different initial parameters.

Figure 6 compares the significance of disentangled feature components ρ(l)
c and the reliability of

feature components ρ(l),reli in different DNNs. The DNN learned from the larger training set usually
encoded more complex features, but the overall distribution of feature components was very close
to the DNN learned from the smaller training set. This indicated that the number of training sam-
ples had small impacts on the significance of feature components of different complexity orders.
However, in Figure 6 (right), DNNs learned from many training samples always exhibited higher
reliability than DNNs learned form a few training samples, which meant that the increase of the
number of training samples would help DNN learn more reliable features. Beyond Figure 6, Ap-
pendix G shows more discussions about the result in Figure 6 and the extended experiments towards
the same conclusions on the CUB200-2011 dataset and the Stanford Dogs dataset.

Exp. 2, improvement of the classification accuracy based on Φ(l)(x). We compared the effec-
tiveness α(l)

effective and the significance of over-fitting α(l)
overfit of feature components disentangled from

different DNNs in Figure 7. We found that (1) when the complexity order of feature components is
about the half of the depth of the DNN, these feature components exhibited the highest effectiveness.
(2) Low-complexity feature components learned from a small number of samples were usually more
over-fitted than low-complexity feature components learned from many samples. However, we could
not summarize clear conclusions from the significance of over-fitting for high-complexity feature
components. This might be due to the low effectiveness of these feature components. Please see
Appendix H for more discussions about Figure 7.

Based on above observations, we further tested the classification accuracy of DNNs by directly re-
placing the original target feature f(x) with Φ(l)(x). Figure 9(a) shows the accuracy improvement
using Φ(l)(x) when l = 7. Figure 9(b) shows that as the complexity order l increased, the accuracy
improvement first increased, and then decreased. This was because the very few feature compo-
nents of the lowest complexity did not contain enough information for the classification, while high-
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Figure 9: Improvements of the classification accuracy based on Φ(l)(x). (left) The accuracy im-
provement of different DNNs learned on the CIFAR-10 dataset with l = 7 using different number of
training samples. (right) The accuracy improvement with different values of l. Here ResNet-32 was
learned on the CIFAR-10 dataset, and ResNet-34 was learned on the CUB200-2011 dataset and the
Stanford Dogs dataset, respectively.

complexity feature components had high significance of over-fitting. Appendix I provides a detailed
discussion about the improvement of the accuracy.

Exp. 3, analysis of network compression and knowledge distillation. We learned the ResNet-32
on the CIFAR-10 dataset as the originial DNN. We used the compression algorithm (Han et al.,
2015) to learn another DNN (termed the compressed DNN) by pruning and quantizing the original
DNN. For the knowledge distillation, we used another network (termed the distilled DNN)3, to dis-
till (Hinton et al., 2015) the output feature of the last residual block in the original DNN. Appendix J
summarizes technique details of network compression and knowledge distillation provided in (Han
et al., 2015; Hinton et al., 2015). We compared the compressed DNN and the distilled DNN with
the original DNN. We disentangled feature components from the output feature of the last residual
block in the original DNN and the compressed DNN, and the output feature of the distilled DNN.

Figure 8 shows ρ(l)
c , ρ(l),reli, α

(l)
effective, and α(l)

overfit in three DNNs. For the compressed DNN, (1) the net-
work compression did not affect the distribution of feature components and their reliability. (2) Low-
complexity feature components in the compressed DNN exhibited lower effectiveness and higher
significance of over-fitting than low-complexity feature components in the original DNN.

For the knowledge distillation, (1) the distilled DNN had more low-complexity feature components
than the original DNN. The low-complexity feature components in the distilled DNN were more
effective than those in the original DNN. (2) High-complexity feature components in the distilled
DNN were more reliable and less over-fitted than high-complexity feature components in the original
DNN. These results demonstrated that the knowledge distillation would help DNNs learn more
reliable features, which prevented over-fitting.

Inspired by Figure 8, we thought there was a close relationship between the feature complexity and
the performance of DNNs. We conducted experiments to discover this relationship, and further used
the feature complexity to predict the performance of DNNs in Appendix K.

5 CONCLUSION

In this paper, we have proposed a generic definition of the feature complexity of DNNs. We design a
method to disentangle and visualize feature components of different complexity orders, and analyze
the disentangled feature components from three perspectives. Then, a close relationship between
the feature complexity and the performance of DNNs is discovered. Furthermore, the disentangled
feature components can improve the classification accuracy of DNNs. As a generic tool, the feature
complexity provides a new perspective to explain existing deep-learning techniques, which has been
validated by experiments.

3The distilled DNN had the same architecture with the disentangler net with 7 ReLU layers.
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A ARCHITECTURE OF THE DISENTANGLER NET

A block: conv ReLU

ReLUconv block 
type 1

m x
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m x
block 
type 3

m x

conv

Figure 10: The architecture of the disentangler net.

B THE RELATIONSHIP BETWEEN TASK COMPLEXITY AND FEATURE
COMPLEXITY & THE TRUSTWORTHINESS OF THE DISENTANGLEMENT

This section provides more discussion about the result in Figure 3 and Figure 4. Figure 3 compares
distributions of feature components encoded in target DNNs that were learned for tasks of different
difficulties. We found that DNNs learned form more complex tasks usually encoded more high-
complexity feature components. Let us take the target DNNs learned for Task-0 and Task-80 for
example. For the target DNN learned for Task-0, the significance of the 4-order feature component
was much higher than that of feature components of higher orders. However, in the target DNN
learned for Task-80, the significance of the 7-order and the 13-order feature components exceeded
the half of the significance of the 4-order feature component. Thus, experimental results show that
DNNs learned for more complex tasks usually encode more high-complexity feature components.

Task-0 Task-2 Task-8 Task-26 Task-80

𝑙 = 4

𝑙 = 7

𝑙 = 13

𝑙 = 25

0.0

0.2

0.4
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0.8

1.0
𝜌𝑐
(𝑙)

Figure 11: Significance of feature components in DNNs learned for different tasks using disentan-
gler nets w/o skip-connections. We simply revised the disentangler nets introduced in Figure 10 by
removing the skip-connections, so as to obtain the stacked disentangler nets.
In order to further show the robustness and trustworthiness of the distribution of feature components
using various disentangler nets, we used disentangler nets with a different architecture from the one
we used in this paper (in Figure 10). Specifically, we used a simply stacked architecture by only re-
moving the skip-connections from the residual disentangler net we adopted in this paper. We did the
same tasks mentioned in the “the relationship between the task complexity and the feature complex-
ity” paragraph in Section 3.1. Figure 11 shows that distributions of feature components generated
by the simply stacked disentangler nets on different tasks were similar to the distributions generated
by the the residual disentangler nets in Figure 3. This consistency demonstrated the robustness of
the distribution of feature components over different disentangler architectures.

𝑟 = 1/2

𝑟 = 1

𝑟 = 2

𝜌𝑐
(𝑙)

4 7 13 25
𝑙-th order

Figure 12: Significance of feature components using disentangler nets w/o skip connections of dif-
ferent widths. It shows that distributions of feature components generated by the simply stacked
disentangler nets were similar to the distributions generated by the residual disentangler nets in
Figure 4. This consistency demonstrated the trustworthiness of the metric ρ(l).
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Figure 12 shows that distributions of feature components generated by the simply stacked disentan-
gler nets were similar to the distributions generated by the residual disentangler nets in Figure 4.
This consistency demonstrated the trustworthiness of the metric ρ(l).

C ABOUT THE RELIABILITY OF FEATURES

This section explains the rationality and implementation details of the algorithm in Section 3.2.
For each DNN, we select the feature of a specific intermediate layer as the target feature. Let
f1(x), f2(x), . . . , fK(x) denote target features of K DNNs. We aim to extract reliable features of
different complexity orders in the K DNNs, i.e. Φ

(l),reli
1 (x),Φ

(l),reli
2 (x), . . . ,Φ

(l),reli
K (x).

Inspired by (Liang et al., 2019), we consider each pair of the K reliable feature components is
able to reconstruct each other by a linear transformation. As is mentioned in Section 3.2, ψ(l)(x)
is the output of a disentangler net with l ReLU layers. We add K parallel additional convolutional
layers g1, g2, . . . , gK on top of ψ(l)(x) to mimic f1(x), f2(x), . . . , fK(x). At this time, their outputs
Φ̃

(l)
k (x) = gk(ψ(l)(x)) are not able to reconstruct each other linearly.

To enable Φ̃
(l)
i (x) and Φ̃

(l)
j (x) to reconstruct each other linearly, we first transform Φ̃

(l)
i (x) to ψ(l)(x)

by the linear regressor hi, and then use ψ(l)(x) to reconstruct Φ̃
(l)
j (x) by another linear regressor gj ,

as shown in Figure 13. Similarly, we can use Φ̃
(l)
j (x) to regress ψ(l)(x) via hj , and then use ψ(l)(x)

to linearly regress Φ̃
(l)
i (x).

…

…

nonlinear 
layers

disentangler
net

r iterations

Figure 13: The network for the disentanglement of reliable feature components.

In this way, Φ̃
(l)
i (x) and Φ̃

(l)
j (x) can reconstruct each other by a linear transformation:

Φ̃
(l)
i (x) = gi(hj(Φ̃

(l)
j (x))), Φ̃

(l)
j (x) = gj(hi(Φ̃

(l)
i (x)))

We repeat the reconstruction for R iterations and design the loss in Eq. (5).

In the implementation, we first train g1, g2, . . . , gK , and then fix g to train h1, h2, . . . , hK . To reduce
the computational complexity, we did not explicitly optimize on the loss in Eq. (5) which requires a
sum over r, from 1 toR. Instead, in each r-th training phase, we optimize

∑K
k=1‖hk ◦gk ◦ψ

(l)
r (x)−

ψ
(l)
r (x)‖2, r ∈ {1, 2, . . . , R}.

D METRICS OF EFFECTIVENESS & OVER-FITTING, AND THEIR
TRUSTWORTHINESS

D.1 PRELIMINARY: THE SHAPLEY VALUE

The Shapley value was originally proposed in the game theory (Shapley, 1953). It has been widely
used as a standard metric for the feature importance in literature. Let us consider a game with multi-
ple players. Each player can participate in the game and receive a reward individually. Besides, some
players can form a coalition and play together to pursue a higher reward. Different players in a coali-
tion usually contribute differently to the game, thereby being assigned with different proportions of
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the coalition’s reward. The Shapley value is considered as a unique method that fairly allocates the
reward to players with certain desirable properties (Ancona et al., 2019). Let N = {1, 2, . . . , n}
denote the set of all players, and 2N represents all potential subsets of N . A game v : 2N → R
is implemented as a function that maps from a subset to a real number. When a subset of players
S ⊆ N plays the game, the subset can obtain a reward v(S). Specifically, v(∅) = 0. The Shapley
value of the i-th player φNi,v can be considered as an unbiased contribution of the i-th player.

φNi,v =
∑

S⊆N\{i}

(n− |S|−1)! |S|!
n!

[
v(S ∪ {i})− v(S)

]

Weber et al. (Weber, 1988) have proved that the Shapley value is the only reward with the following
axioms.

Linearity axiom: If the reward of a game u satisfies u(S) = v(S) + w(S), where v and w are
another two games. Then the Shapley value of each player i ∈ N in the game u is the sum of
Shapley values of the player i in the game v and w, i.e. φNi,u = φNi,v + φNi,w.

Dummy axiom: The dummy player is defined as the player that satisfies ∀S ⊆ N\{i}, v(S∪{i}) =
v(S) + v({i}). In this way, the dummy player i satisfies v({i}) = φNi,v , i.e. the dummy player has
no interaction with other players in N .

Symmetry axiom: If ∀S ⊆ N\{i, j}, v(S ∪ {i}) = v(S ∪ {j}), then φNi,v = φNj,v .

Efficiency axiom:
∑
i∈N

φNi,v = v(N). The efficiency axiom can ensure the overall reward can be

distributed to each player in the game.

D.2 EFFECTIVENESS OF FEATURE COMPONENTS

The effectiveness of feature components (α(l)
effective) measures whether the feature component c(l)(x)

extracted from the training sample x directly contributes to the task. The metric is defined based
on the game theory. We first quantify the numerical contribution ϕtrain

l of each feature component
c(l)(x) to the decrease of the task loss in training as the Shapley value. I.e. ϕtrain

l measures the
change of the training loss caused by feature components {c(l)(x)|x ∈ Xtrain}. In this way, numerical
contributions of all the L feature components can be allocated and given as ϕtrain

1 +ϕtrain
2 + · · ·+ϕtrain

L =
Ex∈Xtrain [L(∆fx)− L(∆fx + Φ(L)(x))], where ∆fx is the high-order component computed using the
sample x. L(∆fx) represents the task loss when we remove all feature components in Φ(L)(x),
and L(∆fx + Φ(L)(x)) denotes the task loss when both ∆fx and feature components in Φ(L)(x) are
used for inference. Thus, the metric α(l)

effective = ϕtrain
l /

√
V ar[c(l)(x)] measures the effectiveness of the

feature component c(l) to the decrease of the training loss. We use
√
V ar[c(l)(x)] for normalization.

D.3 SIGNIFICANCE OF OVER-FITTING OF FEATURE COMPONENTS

The significance of over-fitting of feature components (α(l)
overfit) measures whether c(l)(x) is over-

fitted to specific training samples. Similarly, this metric is also defined based on Shapley values.
We quantify the numerical contribution ϕoverfit

l of each feature component c(l)(x) to over-fitting,
whose significance is quantified as Loverfit(f) = Loverfit(∆f + Φ(L)) = Ex∈Xtest [L(∆fx + Φ(L)(x))] −
Ex∈Xtrain [L(∆fx+Φ(L)(x))]. In this way, the numerical contribution can also be measured as Shapley
values ϕoverfit

1 + ϕoverfit
2 + · · · + ϕoverfit

L = Loverfit(∆f + Φ(L)) − Loverfit(∆f), where Loverfit(∆f + Φ(L)) is
computed using both components ∆fx and components Φ(L)(x) in different images. I.e. ϕoverfit

l mea-
sures the change of Loverfit caused by the feature component c(l)(x). The metric of the significance of
over-fitting for c(l) is given as α(l)

overfit = ϕoverfit
l /ϕtrain

l . Thus, α(l)
overfit represents the ratio of the increase

of the gap ∆Loverfit to the decrease of the training loss ∆Ltrain.

E ACCURACY OF DNNS

This section contains more details of DNNs in Exp. 2. We trained ResNet-8/14/20/32/44 based
on the CIFAR-10 dataset (Krizhevsky et al., 2009), and trained VGG-16, ResNet-18/34 based on
the CUB200-2011 dataset (Wah et al., 2011) and the Stanford Dogs dataset (Khosla et al., 2011).
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More specifically, we trained each DNN with different numbers of training samples, which were
randomly sampled from the training set. All (target) networks were pre-trained with different pa-
rameter initialization. Table 1 reports the accuracy and loss of the prediction on the testing samples.

Table 1: Accuracy of DNNs on different datasets.
(a) On the CIFAR-10 dataset.

Accuracy
# of training samples 200 500 1000 2000 5000

ResNet-8 31.37% 39.55% 45.08% 53.82% 67.80%
ResNet-14 31.50% 39.21% 47.71% 52.41% 68.30%
ResNet-20 31.56% 38.40% 46.09% 56.15% 70.62%
ResNet-32 30.48% 37.94% 46.71% 56.80% 72.83%
ResNet-44 28.73% 38.57% 46.63% 56.00% 70.66%

(b) On the CUB200-2011 dataset.
Accuracy

# of training samples 2000 3000 4000 5000
ResNet-18 32.36% 44.82% 52.73% 56.18%
ResNet-34 29.43% 43.86% 52.17% 53.68%
VGG-16 28.18% 41.04% 47.03% 53.83%

(c) On the Stanford Dogs dataset.
Accuracy

# of trainingsamples 1200 2400 3600 4800
ResNet-18 10.93% 19.42% 28.51% 37.95%
ResNet-34 9.37% 18.83% 27.05% 32.23%
VGG-16 10.36% 16.78% 23.63% 29.14%
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Figure 14: Visualization of feature components of different complexity orders on the CUB200-2011
dataset.
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F VISUALIZATION OF FEATURE COMPONENTS

This section shows more visualization results in Section 4 by visualizing feature components dis-
entangled from the target feature in Figure 14. Given a pre-trained VGG-16 and input images in
the CUB200-2011 dataset, we disentangled and visualized feature components of different orders in
Figure 5. We took the feature in the conv4-3 layer (with the size of 28 × 28 × 512) as the target
feature f(x). Then, we disentangled the target feature and visualized the feature map of a random
channel in f(x), and the corresponding channel in c(l)(x) and Φ(l)(x). We found that low-complexity
feature components usually represented the general shape of objects, while high-complexity feature
components corresponded to detailed shape and noises.

G EVALUATION OF DNNS LEARNED ON THE CUB200-2011 DATASET AND
THE STANFORD DOGS DATASET.

This section provides more discussions about Exp. 1, and shows more experimental results on dif-
ferent datasets. In Figure 6 (left), we found that the number of training samples had a small influence
on the distribution of feature components, but had significant impacts on the feature reliability. Let
us take ResNet-8 for instance, when we used different numbers of training samples, the overall dis-
tributions of feature components were similar, i.e. low-complexity feature components exhibited
higher significance than high-complexity feature components. Besides, on different target DNNs,
the distributions of feature components were also similar over different target DNNs, which indi-
cated that the depths of target DNNs also did not affect this distribution. However, In Figure 6
(right), the number of training samples significantly affected the reliability of feature components.
When we used more training samples, the reliability of feature components became higher. This
phenomenon was also consistent through target DNNs with different architectures.

Figure 15 shows the result of ρ(l)c of ResNet-18/34 and VGG-16 learned on the CUB200-2011
dataset and the Stanford Dogs dataset. We found that the DNN learned from the larger training set
usually encoded more complex features, but the overall distribution of feature components was very
close to the DNN learned from the smaller training set. This indicated that the number of training
samples had small impacts on the significance of feature components of different complexity orders.
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Figure 15: Significance of feature components in DNNs learned on the CUB200-2011 dataset and
the Stanford Dogs dataset.

Figure 16 shows the result of ρ(l),reli of ResNet-18/34 and VGG-16 learned on the CUB200-2011
dataset and the Stanford Dogs dataset. We also used two exemplary DNNsA andB to help us extract
the reliable feature components from the target feature. DNNs A and B were implemented as two
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DNNs of ResNet-34 trained on the entire training set in the CUB200-2011 dataset. Similarly, the two
exemplary DNNs for the Stanford Dogs dataset were also implemented as two DNNs of ResNet-34.
We found that DNNs learned from many training samples always exhibited higher reliability than
DNNs learned form a few training samples, which meant that the increase of the number of training
samples would help DNNs learn more reliable features.
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Figure 16: Reliability of feature components in DNNs learned on the CUB200-2011 dataset and the
Stanford Dogs dataset.
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Figure 17: (left) Effectiveness of feature components α(l)
effective. The top-right sub-figure shows the

Shapley value ϕtrain
l ; (right) Significance of feature components being over-fitted α(l)

overfit. The top-
right sub-figure shows the Shapley value ϕoverfit

l .

H ANALYSIS OF THE EFFECTIVENESS AND THE SIGNIFICANCE OF
OVER-FITTING OF FEATURE COMPONENTS.

This section provides more discussions about the result in Figure 7. Figure 17 compares the ef-
fectiveness α(l)

effective and the significance of over-fitting α(l)
overfit of feature components in different

DNNs, which have been reported in Figure 7. Besides, Figure 17 also includes sub-figures which
show the Shapley values ϕtrain

l and ϕoverfit
l . ϕtrain

l measures the change of the training loss caused by
feature components {c(l)(x)|x ∈ Xtrain}. ϕoverfit

l measures the numerical contribution of each feature
component c(l)(x) to the significance of over-fitting.

We obtained the following two conclusions:

(1) When the complexity order of feature components is about half of the depth of the DNN, these
feature components exhibited the highest effectiveness. For ResNet-8, the feature component with
the highest effectiveness was of the 4-th order. For ResNet-14, the 7-order feature component was
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the most effective. In other words, these feature components contributed the most to the decrease of
the loss in DNNs, which was verified by large values of ϕtrain

l when l ≈ 1
2depth in sub-figures.

(2) Low-complexity feature components learned from a small number of samples were usually more
over-fitted than low-complexity feature components learned from many samples. We cannot sum-
marize clear conclusions from the significance of over-fitting for high-complexity feature compo-
nents. This might be due to the low effectiveness of high-complexity feature components (noise-like
features).

I IMPROVEMENT OF THE CLASSIFICATION ACCURACY BASED ON Φ(l)(x)

This section discusses the improvement of performance in Figure 9. When we used the feature
components with l = 7, the classification accuracy of ResNet-14 learned on the CIFAR-10 dataset
was improved by over 5%. Besides, for different complexity orders, the accuracy improvement was
different. When the complexity order increased, the accuracy improvement first increased, and then
decreased. This was because the very few feature components of the lowest complexity did not
contain enough information for the classification. However, high-complexity feature components
usually had a high significance of over-fitting, which hurt the performance of DNNs.

J DETAILS OF NETWORK COMPRESSION AND KNOWLEDGE DISTILLATION

This section introduces more details about the network compression and knowledge distillation in
Exp. 3.

Network compression based on (Han et al., 2015): We learned a compressed DNN by pruning and
then quantization. In the pruning phase, we pruned the DNN with the sensitivity rate 1.0 for all con-
volutional and fully connected layers. We iteratively pruned the DNN and retrained the weights. The
number of this iteration was 300, and the weights were retrained for 20 epochs in our experiments.
The weights in the pruned DNN was retrained for 100 epochs. For example, as a result, ResNet-
32 trained on CIFAR10-1000 had an overall pruning rate of 5.88× without affecting the accuracy
significantly. To compress further, we quantized weights in the DNN. For weights in convolutional
layers, we quantized them to 8 bits, while for weights in fully connected layers, we quantized them
to 5 bits. In this way, we obtained the compressed DNN.

Knowledge distillation based on (Hinton et al., 2015): To obtain the distilled DNN, we used a
shallower DNN to mimic the intermediate-layer feature of the original DNN. For simplicity, we let
the distilled DNN have the same architecture with the disentangler net with seven ReLU layers. The
distilled DNN usually addressed the problem of over-fitting. For example, the distilled DNN based
on ResNet-32 on CIFAR10-1000 had a 3.48% decrease in testing accuracy, without affecting the
training accuracy significantly.

K STRONG RELATIONSHIP BETWEEN FEATURE COMPLEXITY AND
PERFORMANCE OF DNNS

To investigate the relationship between the feature complexity and the performance of DNNs,
we learned a regression model, which used the distribution of feature components of differ-
ent complexity orders to predict the performance of DNNs. For each DNN, we used disentan-
gler nets with l = 4, 7, 13, 25 to disentangle out Φ(l),reli(x) and Φ(l),unreli(x). Then, we calcu-
lated V ar[Φ(l),reli(x)−Φ(l−1),reli(x)]/V ar[f(x)] and V ar[Φ(l),unreli(x)−Φ(l−1),unreli(x)]/V ar[f(x)] for
l = 4, 7, 13, 25, thereby obtaining an 8-dimensional feature to represent the distribution of different
feature components. In this way, we learned a linear regressor to use the 8-dimensional feature to
predict the testing loss or the classification accuracy, as follows.

result =

4∑
i=1

αi×
V ar[Φ(li),reli(x)− Φ(l(i−1)),reli(x)]

V ar[f(x)]
+

4∑
i=1

βi×
V ar[Φ(li),unreli(x)− Φ(l(i−1)),unreli(x)]

V ar[f(x)]
+b

where li ∈ {4, 7, 13, 25}.
For the CIFAR-10 dataset, we applied cross validation: we randomly selected 20 DNNs from 25 pre-
trained ResNet-8/14/20/32/44 models on different training sets in Exp. 2 to learn the regressor and
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used the other 5 DNNs for testing.4 These 25 DNNs were learned using 200-5000 samples, which
were randomly sampled from the CIFAR-10 dataset to boost the model diversity. We repeated such
experiments for 1000 times for cross validation.

Table 2 reports the mean absolute value of prediction error for the classification accuracy and the
task loss over 1000 repeated experiments. The prediction error was much less than the value gap
of the testing accuracy and the value gap of the task loss, which indicated the strong relationship
between the distribution of feature complexity and the performance of DNNs.

Table 2: The mean absolute value of prediction errors.

Accuracy Task loss
Prediction Range Prediction Range

error of value error of value
CIFAR-10 2.73% 28.73%-72.83% 0.49 1.59-6.42

CUB200-2011 5.66% 28.18%-56.18% 0.47 2.94-5.76
Stanford Dogs 3.26% 9.37%-37.95% 0.34 4.34-7.97

Figure 18 further visualizes the plane of the linear regressor learned on the CIFAR-10 dataset. The
visualization was conducted by using PCA (Wold et al., 1987) to reduce the 8-dimensional feature
into a 2-dimensional space, i.e. (x, y) in Figure 18. There was a close relationship between the
distribution of feature complexity and the performance of a DNN.
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Figure 18: Relationship between the feature complexity and the accuracy.

Testing on the compressed DNNs. We also conducted experiments to show the strong relationship
between the feature complexity and the network performance in terms of the compressed DNNs.
We predicted the accuracy of the compressed DNNs with the learned regressor and Table 3 shows
the result. The prediction error was relatively small, and it further validated the close relationship
between the feature complexity and the performance of DNNs.

Table 3: Prediction result of the accuracy of the compressed DNNs.

Model ResNet-14 ResNet-20 Resnet-32 ResNet-44
Dataset CIFAR10-2000

Test acc. before compression 52.41 56.15 56.80 56.00
Test acc. after compression 53.88 57.94 60.81 58.04

Predicted acc. after compression 50.97 54.32 60.46 57.41
Error -2.91 -3.62 -0.35 -0.63

Model ResNet-32
Dataset CIFAR10-500 CIFAR10-1000 CIFAR10-5000

Test acc. before compression 37.94 46.71 72.83
Test acc. after compression 38.35 49.86 73.62

Predicted acc. after compression 45.23 53.35 72.85
Error +6.88 +3.49 -0.77

4For the CUB200-2011 dataset and the Stanford Dogs dataset, we randomly selected 11 models from 12
pre-trained ResNet-18/34 and VGG-16 models to learn the regressor. One model was used for testing.
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