
Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

A SELF-PLAY POSTERIOR SAMPLING ALGORITHM FOR
ZERO-SUM MARKOV GAMES

Wei Xiong∗ Han Zhong† Chengshuai Shi ‡ Cong Shen§ Tong Zhang¶

ABSTRACT

Existing studies on provably efficient algorithms for Markov games (MGs) almost
exclusively build on the “optimism in the face of uncertainty” (OFU) principle. This
work focuses on a different approach of posterior sampling, which is celebrated
in many bandits and reinforcement learning settings but remains under-explored
for MGs. Specifically, for episodic two-player zero-sum MGs, a novel posterior
sampling algorithm is developed with general function approximation. Theoretical
analysis demonstrates that the posterior sampling algorithm admits a

√
T -regret

bound for problems with a low multi-agent decoupling coefficient, which is a new
complexity measure for MGs, where T denotes the number of episodes. When
specialized to linear MGs, the obtained regret bound matches the state-of-the-art
results. To the best of our knowledge, this is the first provably efficient posterior
sampling algorithm for MGs with frequentist regret guarantees, which enriches the
toolbox for MGs and promotes the broad applicability of posterior sampling.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) focuses on the sequential decision making problem
involving more than one agent, each of which aims to optimize her own long-term return by interacting
with the environment and other agents Zhang et al. (2021). Today, MARL has a diverse set of real-
world applications, including Go Silver et al. (2016; 2017), autonomous driving Shalev-Shwartz et al.
(2016), Poker Brown & Sandholm (2019), and Dota Berner et al. (2019), just to name a few. Due
to the large state space of these practical problems, function approximation (with neural networks)
is often used in these applications for the generalization across different state-action pairs. While
there is a long line of related works on the theoretical understanding of single-agent RL with general
function approximation Jiang et al. (2017); Sun et al. (2019); Wang et al. (2020); Jin et al. (2021a);
Du et al. (2021); Dann et al. (2021), the theory of MARL with general function approximation is
substantially less explored. In this paper, we aim to explore this topic in the context of two-player
zero-sum Markov games (MGs) Shapley (1953); Littman (1994).

The goal of learning in a two-player zero-sum MG is to learn the Nash equilibrium at which the
policy of each player maximizes her own cumulative rewards, provided that the policies of other
agents are fixed. Intuitively speaking, Nash equilibrium characterizes the point from which no agent
will deviate. Since the reward and the state transition are determined jointly by the actions of both
agents, in addition to the unknown environment, each agent must also handle the dynamics from
other strategic agents. Due to this game-theoretical feature, algorithms designed for MDP cannot
be directly extended to the MARL case. However, recent studies Jin et al. (2021b); Huang et al.
(2021) have shown that with an innovative asymmetrical structure, similar theoretical results can be
established for the two-player zero-sum MG with general function approximation.

Nevertheless, despite a handful of recent progress on the theory of the two-player zero-sum MG
with general function approximation, the existing works are mainly confined to algorithms based
on the optimism in the face of uncertainty (OFU) principle. In contrast, the theory of posterior-
sampling-based algorithms is less developed (in the frequentist setting). Recent works in the context
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of contextual multi-armed bandit and single-agent RL demonstrate that there is no statistical efficiency
gap between OFU and posterior sampling algorithms Dann et al. (2021); Zhang (2021). However,
whether we can design model-free posterior sampling algorithms in MARL that achieve similar
theoretical guarantees remains open.

In this paper, we are interested in the application of posterior sampling in the two-player zero-sum
MG with general function approximation. Our main result indicates that, similar to the single-agent
case, posterior sampling algorithms can achieve comparable theoretical guarantees as the OFU-based
algorithms. Our contributions are summarized as follows:

• A provably efficient posterior sampling algorithm is designed under the self-play framework
for the two-player zero-sum MG with general function approximation. To the best of our
knowledge, this is the first posterior sampling algorithm with frequentist regret guarantee in
the context of Markov games;

• The single-agent complexity measure of decoupling coefficient, first introduced in Dann
et al. (2021), is extended to the multi-agent setting, Moreover, a number of examples with
provably small multi-agent decoupling coefficients are identified;

• The proposed algorithm is rigorously proved to obtain a
√
T -regret for problems with low

multi-agent decoupling coefficient, where T is the number of episodes.

It is noted that while the sampling procedure of the proposed algorithm may not be computationally
efficient, the lack of computational tractability also appears in the works of Jin et al. (2021b); Huang
et al. (2021), as well as many previous works with general function approximation in the context
of single-agent RL (Jiang et al., 2017; Jin et al., 2021a; Dann et al., 2021; Du et al., 2021). It is an
interesting future research topic to identify cases where efficient sampling is possible. Moreover, we
do not take credit for the asymmetrical structure in our algorithmic framework. The main contribution
here is to extend the posterior sampling algorithm to MGs under the self-play framework.

1.1 RELATED WORKS

Due to the space limitation, a detailed literature review is deferred to Appendix A.

2 PROBLEM FORMULATION

We consider the episodic two-player zero-sum Markov Game (MG), which can be formally denoted
as MG(H,X ,A,B,P, r). Here H denotes the length of each episode, X is the state space, A and B
are the action spaces of two players (referred to as the max-player and the min-player), respectively,
Ph(·|x, a, b) is the transition measure of the next state from the current state x with two actions (a, b)
taken at step h, and rh(x, a, b) is the corresponding reward received with actions (a, b) taken for state
x at step h. Specifically, in this MG, each episode t starts from an initial state x1t . At each step h,
two players observe the current state xht , take actions (aht , b

h
t ) individually, and observe the next state

xh+1
t ∼ Ph(·|xht , aht , bht ). The current episode ends after step H and then a new episode starts.

Without loss of generality, each episode is assumed to have a fixed initial state x1t = x1, which can
be easily generalized to having x1t sampled from a fixed but unknown distribution. Also, for the ease
of presentation, the reward rh(x, a, b) is assumed to be deterministic and in the interval of [0, 1] for
any (x, a, b) in this paper, while the algorithm designs and theoretical results can also be applied for
stochastic bounded rewards with slight modifications.

Policies and Value Functions. With ∆A denoting the probability simplex over the action space A, a
Markov policy µ of the max-player can be defined as µ := {µh : X → ∆A}h∈[H]. Similarly, we can
define a Markov policy ν := {νh : X → ∆B}h∈[H] for the min-player.

Given a policy pair (µ, ν), the value function V µ,ν
h : X → R at step h is defined as

V µ,ν
h (x) := Eµ,ν

[∑H

h′=h
rh

′
(
xh

′
, ah

′
, bh

′
)
| xh = x

]
,
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and the Q-value function Qµ,ν
h : X ×A× B → R as

Qµ,ν
h (x, a, b) := Eµ,ν

[∑H

h=h
rh

′
(
xh

′
, ah

′
, bh

′
)
| (xh, ah, bh) = (x, a, b)

]
,

where the expectations are taken over the randomness of the environment and the policies.

For a clean presentation, we use the notation Ph (with a slight abuse) so that [PhV ](x, a, b) =
Ex′∼Ph(·|x,a,b)V (x′) for any value function V . Similarly, the notation Dπ is adopted so that
[DπQ] (x) := E(a,b)∼π(·,·|x)Q(x, a, b), for any policy pair π = (µ, ν) and action-value function
Q.

With these notations, the Bellman equations are given by

Qµ,ν
h (x, a, b) =

[
rh + PhV

µ,ν
h+1

]
(x, a, b), and V µ,ν

h (x) = [Dµh×νh
Qµ,ν

h ] (x).

Best Response. For any policy of max-player µ, a corresponding best response for the min-player can
be found, denoted as ν†(µ), such that V µ,ν†(µ)

h (x) = infν V
µ,ν
h (x) for all (x, h). This value is the best

favorable result for the min-player if the max-player announces that she will play strategy µ. Similarly,
for a min-player policy ν, there exists a best response for the max-player, denoted as µ†(ν), such

that V µ†,ν
h (x) = supµ V

µ,ν
h (x) for all (x, h). For simplicity, we denote V µ,†

h (x) := V
µ,ν†(µ)
h (x),

Qµ,†
h (x) := Q

µ,ν†(µ)
h (x), V †,ν

h (x) := V
µ†(ν),ν
h (x), and Q†,ν

h (x) := Q
µ†(ν),ν
h (x).

Nash Equilibrium. Moreover, there exists a set of Nash equilibrium (NE) policies (µ∗, ν∗) Filar &
Vrieze (2012) that are optimal against their best response such that

V µ∗,†
h (x) = supµ V

µ,†
h (x), V †,ν∗

h (x) = infν V
†,ν
h (x),

for all (x, h) ∈ X × [H]. For this NE, the following famous minimax equation holds:

supµ infν V
µ,ν
h (x) = V µ∗,ν∗

h (x) = infν supµ V
µ,ν
h (x)

for all (x, h) ∈ X × [H]. For simplicity, we denote V ∗
h (x) := V µ∗,ν∗

h (x) and Q∗
h(x) := Qµ∗,ν∗

h (x).
Note that although there might exist multiple NE policies, the NE value function is unique for a
zero-sum MG.

Performance metrics. A max-player’s policy µ is said to be ϵ-close to the NE if it satisfies
V ∗(x1) − V µ,†(x1) < ϵ. Note that we have V ∗(x1) − V µ,ν(x1) ≤ V ∗(x1) − V µ,†(x1) for all
min-player’s policy ν as the best response is the strongest opponent for the max-player. The main
goal of this paper is to find an ϵ-close policy for the max-player and her regret over T episodes can
be defined as

Reg(T ) :=
∑T

t=1

[
V ∗
1 (x1)− V µt,†

1 (x1)
]
,

where µt is the policy adopted by the max-player for episode t. Note that we can switch the roles of
two players to learn a policy ν that is ϵ-close to the NE for the min-player.

2.1 FUNCTION APPROXIMATION

We aim to approximate the Q-value functions for the MGs considered in this work by a class of
functions F = F1 × · · · × FH where Fh ⊂ (X ×A× B → R). For f ∈ F , a NE can be induced
and the corresponding policy µf of the max-player is defined for all (x, h) as

µf,h(x) = argmaxµ∈∆A
minν∈∆B µ

⊤fh(x, ·, ·)ν.

The induced value function for all (x, h) is then given by

Vf,h(x) = maxµ∈∆A minν∈∆B µ
⊤fh(x, ·, ·)ν.

Moreover, for a fixed max-player policy µ and a function f ∈ F , the induced value function of the
best response of the min-player is defined for all (x, h) as

V µ
f,h(x) = minν∈∆B µh(x)

⊤fh(x, ·, ·)ν.
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As common in Perolat et al. (2015); Jin et al. (2021b); Huang et al. (2021), two types of Bellman
operators are defined as

(Thf) (x, a, b) :=
[
rh + PhVf,h+1

]
(x, a, b), and (T µ

h f) (x, a, b) :=
[
rh + PhV

µ
f,h+1

]
(x, a, b).

The corresponding Bellman residual are denoted as
Eh(f ;x, a, b) = E(fh, fh+1;x, a, b) = fh(x, a, b)− (Thf)(x, a, b);
Eµ
h (f ;x, a, b) = Eµ(fh, fh+1;x, a, b) = fh(x, a, b)− (T µ

h f)(x, a, b).
(1)

Sometimes the state-action pair (x, a, b) may be replaced with a trajectory ζ =

{(xh′
, ah

′
, bh

′
, rh

′
)}Hh′=1, which indicates that the corresponding state-action pair at step h, i.e.

(xh, ah, bh), is taken as input.

We make the following assumptions that are commonly adopted in the literature of MDPs and MGs
with general function approximation (Wang et al., 2020; Jin et al., 2021a; Dann et al., 2021; Jin et al.,
2021b; Huang et al., 2021).
Assumption 1 (Realizability). For the Nash equilibrium, it holds thatQ∗

h ∈ Fh,∀h ∈ [H]. Moreover,
for any f ∈ F , it holds that Qµf ,†

h ∈ Fh,∀h ∈ [H].
Assumption 2 (Completeness). For any f, g ∈ F and the induced policy µf , it holds that T µf

h g ∈
Fh,∀h ∈ [H].
Assumption 3 (Boundedness). There exists β > 1 s.t. fh(x, a, b) ∈ [0, β − 1],∀(f, h, x, a, b) ∈
F × [H]×X ×A× B.

3 ALGORITHM

The proposed Conditional Posterior Sampling with Booster algorithm is presented in this section.

Algorithm 1 Conditional Posterior Sampling with Booster
1: Input: function class: F , learning rate η, horizon T , prior parameter λ.
2: S0 is initialized to be empty.
3: for Stage t = 1, . . . , T do
4: Main agent: µt ←Main(F , η, St−1, T, λ);
5: Booster agent: νt ← Booster(F , η, St−1, µt, T, λ);
6: Execute (µt, νt) and collect the trajectory (x1

t , a
1
t , b

1
t , r

1
t , · · · , xH

t , aH
t , bHt , rHt ) to obtain St.

7: end for

3.1 OVERVIEW

The existing algorithms with frequentist guarantee are confined to OFU-based algorithms. Algorith-
mically, these algorithms typically maintain a confidence set C whose components are consistent with
the Bellman equation so far. Then, an optimistic function f ∈ C is selected to approximate value
function through some optimization subroutine Jin et al. (2021b); Huang et al. (2021). Although
suitable for the worst case, it can be far too optimistic for average instances and is inferior to posterior
sampling, as supported by many existing works in bandits, contextual bandits, and MDPs (Chapelle
& Li, 2011; Osband et al., 2016).

However, a frequentist theoretical guarantee of posterior sampling algorithms is lacking for a long
time even in the context of contextual bandit. Recently, Zhang (2021) and Dann et al. (2021) show
that adding an extra optimistic term can lead to frequentistly optimal posterior sampling algorithm
in contextual bandit and MDP, respectively. However, in the MARL setting, the multi-agent nature
leads to complicated statistical dependence across the players. In particular, in addition to the
environment, the agent will also be affected by other strategic agents. Therefore, the situation is far
more complicated even in the two-player case. Inspired by Jin et al. (2021b); Huang et al. (2021),
we leverage the innovative asymmetric structure to pick the max-player and the min-player as the
main agent and the booster agent, respectively, where the booster agent, as the name suggests, aims
to assist the main agent’s learning.

Our algorithm is summarized in Algorithm 1 where the main agent’s algorithm and the booster
agent’s algorithm are given in Algorithms 2 and 3, respectively.
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Algorithm 2 Main(F , η,D, T, λ)
1: Draw f ∼ p(·|D) where the posterior is given by equation 4;
2: µf,h(x) = argmaxµ∈∆A

minν∈∆B µ⊤fh(x, ·, ·)ν, ∀(x, h);
3: Return µf .

3.2 THE MAIN AGENT

The main agent’s goal is to learn a Nash policy for the max-player, i.e., µ∗. With function class F
available, she aims to find a function f ∈ F to approximate the Nash Q-value function, i.e., Q∗,
which can be used to solve the Nash policy via the minimax equation. The following optimistic prior
and temporal difference error likelihood are carefully crafted to induce a desired posterior distribution
over F , which is further used to sample a suitable function f .

Optimistic prior. The following prior p0(·) over the function class F is adopted for the main agent:

p̃0(f) ∝ exp(λVf,1(x
1))

H∏
h=1

ph0 (f
h), (2)

where λ > 0 is a tuning parameter, and ph0 (·) is a distribution over Fh. Note that other than
the standard prior of p0(f) =

∏H
h=1 p

h
0 (f

h), an additional optimistic term, i.e., exp(λVf,1(x1), is
involved in the prior, which plays an important role of encouraging exploration for the main agent.

This prior is referred as an optimistic one because it favors large values for the initial state. Also,
technically, it compensates for one extra term arising in the value decomposition in Lemma 1 when
the optimism is not inherently available as in OFU-based algorithms. Similar techniques are also
adopted in the design of posterior sampling for MDPs (Dann et al., 2021) and contextual bandits
(Zhang, 2021). Furthermore, Zhang (2021) argues that in the context of contextual bandit, such
an optimistic component is necessary to design optimal posterior sampling-based algorithms in the
frequentist setting.

Likelihood function for the main agent. With the history up to the end of episode t denoted as
St = {xhs , ahs , bhs , rhs }s∈[t],h∈[H], a likelihood function over St is specified as

p(St|f) ∝
H∏

h=1

exp
(
−Lh(fh, fh+1;St)

)
Efh∼ph0

exp(−ηLh(fh, fh+1;St))
. (3)

{Lh(·)}Hh=1 is a collection of squared loss functions as

Lh(fh, fh+1;St) =

t∑
s=1

[
fh(xh

s , a
h
s , b

h
s )− rhs − Vfh+1(x

h+1
s )

]2
,

which is a proxy to the squared Th-Bellman error.

Posterior distribution for the main agent. Given the prior distribution and the likelihood function,
the posterior at the end of episode t can be naturally expressed as

p(f |St) ∝ exp(λVf,1(x
1))

H∏
h=1

q(fh|fh+1, St), (4)

where

q(fh|fh+1, St) =
ph0 (f

h) exp
(
−ηLh(fh, fh+1;St)

)
Efh∼ph0

exp(−ηLh(fh, fh+1;St))
.

The ”conditional” in the name of the algorithm comes from that the distribution of fh is conditioned
on fh+1. This allows us to introduce the denominator as as to handle the double-sampling issue as in
Dann et al. (2021).
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Algorithm 3 Booster(F , η,D, µf , T, λ)
1: Draw g ∼ pµf (·|D) where the posterior is given by equation 7
2: νh(x) = νf,g,h(x) = argminν∈∆B

µ⊤
f,hg

h(x, ·, ·)ν, ∀(x, h)
3: Return ν.

3.3 THE BOOSTER AGENT

As aforementioned, the main agent aims to learn the Nash policy. However, given the competing
nature of MGs, this task is not feasible if her opponent is naive. Thus, inspired by Jin et al. (2021b);
Huang et al. (2021), the second learning agent is set to be the booster agent. As opposed to the main
agent, the booster agent does not aim at the Nash policy. Instead her goal is to assist the main agent’s
learning. Specifically, she examines the adopted policy of the main agent and finds a best response
for it (since the best response is the strongest opponent). In this way, the underlying weakness of the
main agent is exploited, which facilitates the learning of the NE. To better illustrate the role of the
booster agent, we consider the following decomposition of the regret:

Reg(T ) =
(∑T

t=1
V ∗
1 (x1)− V µt,νt

1 (x1)
)

︸ ︷︷ ︸
main agent

+
(∑T

t=1
V µt,νt
1 (x1)− V µt,†

1 (x1)
)

︸ ︷︷ ︸
booster agent

.
(5)

The non-negative booster agent part is zero if we can find the best response to µt exactly. Motivated
by this observation, the booster agent keeps learning to approximate the best response to the given
max-player’s policy based on the historical trajectories. Due to the different goal, we adopt different
prior and likelihood functions for the booster agent.

Optimistic prior. A different optimistic prior is adopted for the booster agent (min-player), defined
as

pµ0 (g) ∝ exp(−λV µ
g,1(x

1))

H∏
h=1

ph0 (g
h). (6)

Intuitively, the booster agent favors small values for the initial state. The motivation for such a prior
will be clearer after the value decomposition lemma, i.e., Lemma 2, is presented.

Likelihood function for the booster agent. As the booster agent mainly focuses on approximating
the best response policy to µ instead of finding NE, a different squared loss function is specified as:

Lh
µ(g

h, gh+1;St) =

t∑
s=1

[gh(xh
s , a

h
s , b

h
s )− rhs − V µ

gh+1(x
h+1
s )]2,

which can be viewed as a proxy to the squared T µ
h -Bellman error. Consequently, a corresponding

likelihood function can be obtained by replacing Lh in equation 3 with Lh
µ.

Posterior distribution for the booster agent. With the prior and the likelihood function, the posterior
distribution for the booster agent can be obtained as:

pµ(g|St) ∝ exp(−λV µ
g,1(x

1))

H∏
h=1

qµ(gh|gh+1, St), (7)

where

qµ(gh|gh+1, St) =
ph0 (g

h) exp
(
−ηLh

µ(g
h, gh+1;St)

)
Egh∼ph0

exp(−ηLh
µ(gh, gh+1;St))

.

Note that sometimes we also employ the notation q(gh|gh+1, µ, St) = qµ(gh|gh+1, St) when we
need to use the superscript h.

4 SKETCH OF THE MAIN IDEAS

In this section, a sketch of the main ideas is provided for the algorithm design and theoretical proof.
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4.1 VALUE-DECOMPOSITION LEMMAS

It is well known that the immediate regret in one episode can be related to the Bellman residuals in
the single-agent setting Jiang et al. (2017), and this technique is well-adopted in the literature Jin
et al. (2021a); Dann et al. (2021); Du et al. (2021). With the regret decomposed as in equation 5, the
immediate regrets of the main agent part and the booster agent part can be related to the T -Bellman
residuals and the T µt -Bellman residuals, respectively, as we show below.
Lemma 1 (Value decomposition for the main agent.). Let µ = µf and ν be an arbitrary policy taken
by the min-player. It holds that

V ∗(x1)− V µ,ν
1 (x1) ≤

∑H

h=1
Eµ,νEh(fh, fh+1; ζ) + V ∗(x1)− Vf,1(x

1)

Lemma 2 (Value decomposition for the booster agent.). Suppose that µ = µf is taken by the
max-player and g is sampled from the posterior by the booster agent. Let ν be taken as in Algorithm 3.
Then, it holds that

V µ,ν
1 (x1)− V µ,†

1 (x1) = −
∑H

h=1
Eµ,νEµh (g

h, gh+1, ζ) + V µ
g,1(x

1)− V µ,†
1 (x1).

We remark that these two lemmas also account for the extra optimistic terms in the prior distributions.
The proofs of these two lemmas are deferred to Appendix. G.

4.2 MULTI-AGENT DECOUPLING COEFFICIENTS

In the previous subsection, we convert the problem of bounding Reg(T ) to bounding the summation
of Bellman residuals. However, the posterior distribution is more related to the squared Bellman
residuals. Therefore, we need some structural information to relate the growth of the cumulative
Bellman residuals to the growth of the cumulative squared Bellman residuals. To this end, the
multi-agent decoupling coefficient is introduced, which is an extension of the single-agent version in
Dann et al. (2021), as follows.
Definition 1 (Multi-agent decoupling coefficient). Given an MG(H,X ,A,B,P, r), a function class
F , a time horizon T , and a parameter µ > 0, the multi-agent decoupling coefficient dc(F ,MG, T, µ)
is given by the minimum integer K such that the following inequality holds

H∑
h=1

T∑
t=1

[
Eπt

[
Eµft
h

(
gt;x

h, ah, bh
)]]
≤ µ

H∑
h=1

T∑
t=1

[
t−1∑
s=1

[
EπsE

µft
h

(
gt;x

h, ah, bh
)]2]

+
K

4µ
,

where πs is a policy pair (µfs , νfs,gs) induced by (fs, gs) as in the Algorithms 2 and 3. The set of
these distributions induced by f, g ∈ F is denoted as DF .

It remains to bound the cumulative squared Bellman residuals
∑t−1

s=1

[
Eπs

Eµft

h

(
gt;x

h, ah, bh
)]2

by connecting it to log-likelihood function Lh
µft

(gh, gh+1;St−1). Then, similar online aggregation
techniques can be used as in Dann et al. (2021).

4.3 COMPLEXITY OF F

For optimization-based algorithms, the complexity of the function class F is usually characterized
through the cardinality |F| or the covering number Jiang et al. (2017); Wang et al. (2020); Jin et al.
(2021a;b); Huang et al. (2021). On the other hand, the posterior sampling algorithm employs a prior
distribution p0 over F , which allows the algorithm to favor certain parts of it. Accordingly, our
theoretical result depends on the complexity of F through the prior preference which is characterized
by the following quantity.
Definition 2. For a policy µf , f ∈ F and for any function g′ ∈ Fh+1, we define

Fµf

h (ϵ, g′) = {g ∈ Fh : supx,a,b |E
µf

h (g, g′;x, a, b)| ≤ ϵ},
containing the functions that have small T µf

h -Bellman error against g′ for all state-action pairs. We
then define

κµ(ϵ) = supg∈F
∑H

h=1
ln
(
1/ph0 (F

µ
h (ϵ, g

h+1))
)
,

and
κ(ϵ) = supf∈F κµf

(ϵ).

7
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Under Assumption 2, it is assumed that κ(ϵ) <∞, which is supported by the following two examples.
For the finite function class with completeness, with a uniform prior ph0 (f) = 1/|Fh|, we have

κ(ϵ) ≤
∑H

h=1
ln |Fh| = ln |F|,

due to the Realizability assumption. For an infinite function class, by replacing |F| with its covering
number, similar result can also be ontained. For a d-dimensional Lipschitz parametric models
Fh = {gθ ∈ Rd : θ ∈ Ωh} where Ωh is compact, we can generally assume that

κ(ϵ) ≤ c0Hd ln(c1/ϵ).

for some constants c0 and c1 depending on the prior and the Lipschitz constant (Dann et al., 2021).

5 MAIN RESULTS

In this section, we state the main theoretical result of this paper and interpret it using several examples.

5.1 THEORETICAL GUARANTEE

We now provide an upper bound for the overall regret.

Theorem 1 (Overall regret). Let Assumptions 1, 2 and 3 hold. If ηβ2 ≤ 0.5 and λβ2 ≥ 1 hold,
and let dc(F ,MG, T ) be an upper bound for the supµ≤1 dc(F ,MG, T, µ), and we further take

λ =

√
Tκ( β

T2 )

β2dc(F,MG,T ) , η = 1
4β2 , then, it holds that

EReg(T ) ≤ O

(
β

√
dc(F ,MG, T )κ(

β

T 2
)T + dc(F ,MG, T )

)
.

We shall use a sufficiently small learning rate η the condition about λ is easily to satisfy for large T .
Theorem 1 can be established once we can bound the main agent part and the booster agent part.

Theorem 2 (Bound of the main agent). With the same conditions as Theorem 1, it holds that

T∑
t=1

ESt−1Eft∼p̂tEgt∼p̂
µt
t
(V ∗

1 (x1)− V µt,νt
1 (x1)) ≤ O

(
β

√
dc(F ,MG, T )κ(

β

T 2
)T + dc(F ,MG, T )

)
.

The regret of the booster agent is induced by approximating the best response policy.

Theorem 3 (Bound of the booster agent). With the same conditions as Theorem 1, it holds that

T∑
t=1

ESt−1Eft∼p̂tEgt∼p̂
µt
t
(V µt,νt

1 (x1)− V µt,†
1 (x1)) ≤ O

(
β
√

dc(F ,MG, T )κ(β/T 2)T + dc(F ,MG, T )

)
.

The detailed proofs can be found in the appendix.

6 CONCLUSION

In this paper, a self-play posterior sampling algorithm is proposed for two-player zero-sum Markov
games with general function approximation, which is the first to the best of our knowledge. A new
complexity measure, multi-agent decoupling coefficient, is introduced to characterize the complexity
of function class. Rigorous theoretical analysis showed that the proposed algorithm can achieve
comparable regret bounds compared with other OFU-based algorithms for problems with low multi-
agent decoupling coefficient, which extends the results in the single-agent RL.

As existing algorithms with general function approximation are computationally inefficient in general,
one important direction for future works is to design computationally tractable algorithms for MGs
(and MDPs). Another interesting open question is how to extend the posterior sampling algorithms
for general-sum Markov games.

8
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A RELATED WORK

There have been a lot of works focusing on designing provably efficient algorithms for zero-sum
MGs. For the tabular setting, Bai et al. (2020); Bai & Jin (2020); Liu et al. (2020) provide
O(poly(|X |, |A|, |B|, H) ·

√
T ) regret guarantees for the proposed algorithms, where |X | is the

number of states, |A| and |B| are the number of action spaces of two players, respectively, H is
the episode length, and T is the number of episodes. Then, Xie et al. (2020); Chen et al. (2021)
study two linear-type MGs and design algorithms with O(poly(d,H) ·

√
T ) regret, where d is the

dimension of the linear features. Recently, Jin et al. (2021b); Huang et al. (2021) further propose
efficient algorithms for zero-sum MGs with general function approximation.

Our work is also closely related to another line of work on posterior sampling algorithms. In the
context of contextual bandit, due to the impressive empirical performance of Thompson Sampling,
there has been significant efforts in developing its theoretical analysis, including Russo & Van Roy
(2014) in the form of Bayesian regret and Kaufmann et al. (2012); Zhang (2021) in the frequentist
setting. For the Markov Decision Process (MDP), the seminal work Osband & Van Roy (2014)
considers the Bayesian regret and proposes a general posterior sampling RL method. The randomized
least-squares value iteration (RLSVI) algorithm Osband et al. (2016) is shown to admit frequentist
regret bounds for tabular MDP Russo (2019); Agrawal et al. (2020); Xiong et al. (2021) and linear
MDP Zanette et al. (2020). Beyond the linear setting, a recent work Dann et al. (2021) proposes a
conditional posterior sampling algorithm to solve the MDP with general function approximation.

A recent posterior-sampling-type work by Jafarnia-Jahromi et al. (2021) considers the infinite-horizon
zero-sum MGs with average-reward criterion in the tabular setting, with a focus on the Bayesian
regret, whose analysis technique is fundamental different from ours. To the best of our knowledge,
there is no posterior sampling algorithm with a frequentist regret guarantee to date.

B EQUIVALENT ALGORITHMS

We will consider a slightly more general posterior sampling algorithm with an extra parameter
α ∈ (0, 1]. We recall that the posterior defined in equation 4 is

p(f |St) ∝ exp(λVf,1(x
1))

H∏
h=1

q(fh|fh+1, St),

where

q(fh|fh+1, St) =
ph0 (f

h) exp
(
−ηLh(fh, fh+1;St)

)
Efh∼ph

0
exp(−ηLh(fh, fh+1;St))

.

Equivalently, we may consider the excess loss

∆Lh(fh, fh+1; ζs) =(fh(xhs , a
h
s , b

h
s )− rhs − Vfh+1(xh+1

s ))2

− (Thfh+1(xhs , a
h
s , b

h
s )− rhs − Vfh+1(xh+1

s ))2, (8)

where we employ the notation that ζs = {[xhs , ahs , bhs , rhs ]}Hh=1. We then define the potential function
as

Φh
t (f) =− ln ph0

(
fh
)
+ αη

t−1∑
s=1

∆Lh
(
fh, fh+1; ζs

)
+ α lnEf̃h∼ph

0
exp

(
−η

t−1∑
s=1

∆Lh
(
f̃h, fh+1; ζs

))
,

(9)

where α ∈ (0, 1] is the extra parameter to facilitate the proof. We also define

∆f1(x1) = Vf,1(x
1)− V ∗

1 (x
1).

Then, we obtain a generalized posterior distribution on F :

p̂t(f) ∝ exp

(
−

H∑
h=1

Φh
t (f) + λ∆f1(x1)

)
, (10)
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where it is equivalent to the posterior given in equation 4 when α = 1.

We then recall the posterior distribution of the booster agent defined in equation 7 is given by

pµ(g|St) ∝ exp(−λV µ
g,1(x

1))

H∏
h=1

qµ(gh|gh+1, St),

where

qµ(gh|gh+1, St) =
ph0 (g

h) exp
(
−ηLh

µ(g
h, gh+1;St)

)
Egh∼ph

0
exp(−ηLh

µ(g
h, gh+1;St))

.

Similarly, we define the excess loss for the booster agent:

∆Lh
µ(g

h, gh+1; ζs) =(gh(xhs , a
h
s , b

h
s )− rhs − V µ

gh+1(x
h+1
s ))2

− (T µ
h g

h+1(xhs , a
h
s , b

h
s )− rhs − V µ

gh+1(x
h+1
s ))2.

(11)

and
∆g1µ(x

1) = V µ,†
1 (v1)− V µ

g,1(x
1),

and use the following notation (with slight abuse of notation) for the potential function:

Φh
t (g, µ) =− ln ph0

(
gh
)
+ αη

t−1∑
s=1

∆Lh
µ

(
gh, gh+1; ζs

)
+ α lnEg̃h∼ph

0
exp

(
−η

t−1∑
s=1

∆Lh
µ

(
g̃h, gh+1; ζs

))
,

(12)

since the analyses for Algorithm 2 and Algorithm 3 are separate so the meaning of Φh
t (·) will be

clear from the context. Finally, we obtain a generalized posterior function for the booster agent:

p̂µt (g) ∝ exp

(
−

H∑
h=1

Φh
t (g, µ) + λ∆g1µ(x

1)

)
. (13)

The main motivation to use ∆Lh(·) (∆Lh
µ(·)) is that the variance will be cancelled during our

theoretical analysis as it is equivalent to the case where we know the Bellman operator. This is
possible because the novel denominator term is introduced in the likelihood function as in Dann et al.
(2021).

C USEFUL LEMMAS AND ADDITIONAL NOTATIONS

In this section, we provide several useful lemmas and additional notations that are useful later. We
start with the following definitions. First, we further define a quantity similar to Definition 2, which
will be used for the analysis of the main agent.
Definition 3. For any f ′ ∈ Fh+1, we define the set

Fh(ϵ, f
′) := {f ∈ Fh : sup

x,a,b
|Eh(f, f ′;x, a, b)| ≤ ϵ}

containing the functions that have small Th-Bellman error against f ′ for all state-action pairs. We
then define the quantity

κ1(ϵ) = sup
f∈F

H∑
h=1

ln
1

ph0 (Fh(ϵ, fh+1))
,

which is the probability assigned by the prior to functions that approximately satisfy the Bellman
equation w.r.t. f for all state-action pair.

Note that κ1(ϵ) ≤ κ(ϵ) because

κ1(ϵ) = sup
g∈F

H∑
h=1

ln
1

ph0 (F
µg

h (ϵ, gh+1))
≤ sup

f∈F
sup
g∈F

H∑
h=1

ln
1

ph0 (F
µf

h (ϵ, gh+1))
= κ(ϵ).

12



Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

Definition 4. For α ∈ (0, 1), we also use the notations:

κh1 (α, ϵ) = (1− α) lnEfh+1∼ph+1
0

ph0 (Fh(ϵ, f
h+1))−α/(1−α),

and κh1 (1, ϵ) = limα→1− κ
h(α, ϵ) where it holds that

κh1 (1, ϵ) = sup
fh+1∈Fh+1

ln
1

ph0 (Fh (ϵ, fh+1))
<∞,

and

κ1(ϵ) =

H∑
h=1

κh1 (1, ϵ) ≤ κ(ϵ).

Similarly, we define

κhµ(α, ϵ) = (1− α) lnEfh+1∼ph+1
0

ph0 (F
µ
h (ϵ, f

h+1))−α/(1−α),

and κhµ(1, ϵ) = limα→1− κ
h
µ(α, ϵ), Then, it holds that

κhµ(1, ϵ) = sup
fh+1∈Fh+1

ln
1

ph0 (F
µ
h (ϵ, f

h+1))
<∞,

and

κµ(ϵ) =

H∑
h=1

κhµ(1, ϵ) ≤ κ(ϵ).

Lemma 3. For any fixed g ∈ F and max-player’s policy µ := µf for some f ∈ F , we define a
random variable for all s and h as follows:

ξhs
(
gh, gh+1, ζs

)
=− 2η∆Lh

µ

(
gh, gh+1, ζs

)
− lnExh+1

s ∼Ph(·|xh
s ,a

h
s )
exp

(
−2η∆Lh

µ

(
gh, gh+1, ζs

))
.

Then, for all h, we have

ESt−1
exp

(
t−1∑
s=1

ξhs
(
gh, gh+1, ζs

))
= 1.

A special case is that f = g where we have

∆Lh
µf
(fh, fh+1, ζs) = ∆Lh(fh, fh+1, ζs).

Proof. This lemma is from Zhang (2005) and is also proved in Dann et al. (2021).

Lemma 4. Let ν be a probability distribution. Then, Eνf − H(ν) is minimized at ν(x) ∝
exp(−f(x)).

Proof. This is a corollary of Gibbs variational principle whose proof can be found in Van Handel
(2014), Lemma 4.10.

Using Lemma 4, we can obtain the following key lemma as used in Dann et al. (2021).
Lemma 5. It holds that

Ef∼p̂t

(
H∑

h=1

Φh
t (f)− λ∆f1

(
x1
)
+ ln p̂t(f)

)
= inf

p
Ef∼p(·)

(
H∑

h=1

Φh
t (f)− λ∆f1

(
x1
)
+ ln p(f)

)
;

Eg∼p̂µ
t

(
H∑

h=1

Φh
t (g, µ)− λ∆g1µ

(
x1
)
+ ln p̂µt (g)

)
= inf

p
Eg∼p(·)

(
H∑

h=1

Φh
t (g, µ)− λ∆g1µ

(
x1
)
+ ln p(g)

)
,

(14)
where we remark that the definitions of Φh

t (·) in two equations are different.

In what follows, we derive a lower bound of LHS of equation 14, and an upper bound of RHS of
equation 14 for the proof of Theorems 2 and 3.
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D PROOF OF THE THEOREM 2

In this section, we provide the proof for Theorem 2. The proof provided in this section basically
follows the same line of that of single-agent RL because essentially the algorithms employ the same
properties of the problem as discussed in Section 4 and for the main agent, and the Bellman residuals
is free of the min-player’s policy.
Lemma 6. For all functions f ∈ F , we have

Exh+1
s ∼Ph(·|xh

s ,a
h
s ,b

h
s )
∆Lh

(
fh, fh+1, ζs

)
=
(
Eh
(
f ;xhs , a

h
s , b

h
s

))2
and

Exh+1
s ∼Ph(·|xh

s ,a
h
s ,b

h
s )
∆Lh

(
fh, fh+1, ζs

)2 ≤ 4β2

3

(
Eh
(
f ;xhs , a

h
s , b

h
s

))2
Proof. We define the random variable

Z = fh(xhs , a
h
s , b

h
s )− rhs − Vf,h+1(x

h+1
s ).

Let E be conditioned on [xhs , a
h
s , b

h
s ]. Then, the randomness is from the state transition and we have

EZ = Eh(f ;xhs , ahs , bhs ).

We also have
∆Lh(fh, fh+1, ζs) = Z2 − (Z − EZ)2.

and
E[Z2 − (Z − EZ)2] = EZ2 − var(Z) = (EZ)2 = (Eh(f ;xhs , ahs , bhs ))2.

Also note that Z ∈ [−β, β − 1] and maxZ − minZ ≤ β if it is conditioned on [xhs , a
h
s , b

h
s ], this

implies that

E(Z2 − (Z − EZ)2)2 ≤ 4

3
β2(EZ)2.

Lemma 7. If the learning rate η is sufficiently small such that ηβ2 ≤ 0.8, then for all functions
f ∈ F , we have

lnExh+1
s ∼Ph(·|xh

s ,a
h
s ,b

h
s )
exp

(
−η∆Lh

(
fh, fh+1, ζs

))
≤ Exh+1

s ∼Ph(·|xh
s ,a

h
s ,b

h
s )
exp

(
−η∆Lh

(
fh, fh+1, ζs

))
− 1

≤ −0.25η
(
Eh
(
f ;xhs , a

h
s , b

h
s

))2
.

Proof. With ηβ2 ≤ 0.8, for all f ∈ F , we have

−η∆Lh(fh, fh+1, ζs) ≤ 0.8.

This implies that

exp
(
−η∆Lh(fh, fh+1, ζs)

)
≤ 1− η∆Lh(fh, fh+1, ζs) + 0.67η2∆Lh(fh, fh+1, ζs)

2,

where we use the fact that ψ(z) = (ez − 1− z)/z2 is increasing in z and ψ(0.8) < 0.67. Therefore,
we have

lnExh+1
s ∼Ph(·|xh

s ,a
h
s ,b

h
s )
exp

(
−η∆Lh

(
fh, fh+1, ζs

))
≤ Exh+1

s ∼Ph(·|xh
s ,a

h
s ,b

h
s )
exp

(
−η∆Lh

(
fh, fh+1, ζs

))
− 1

≤ Exh+1
s ∼Ph(·|xh

s ,a
h
s ,b

h
s )

− η∆Lh(fh, fh+1, ζs) + 0.67η2∆Lh(fh, fh+1, ζs)
2

≤ −0.25η(Eh(fh, fh+1, ζs)
2,

where the first inequality is because ln z ≤ z − 1 and the last inequality is because Lemma 6 and
( 43ηb

20.67) ≤ 0.75.
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Lemma 8. It holds that

inf
p
ESt−1Ef∼p(·)

[
H∑

h=1

Φh
t (f)− λ∆f1

(
x1
)
+ ln p(f)

]
≤ λϵ+ 4αη(t− 1)Hϵ2 −

H∑
h=1

ln ph0
(
Fh

(
ϵ,Q∗

h+1

))
.

Proof. Consider any fixed f ∈ F . For any f̃h ∈ Fh that depends on Ss−1, we obtain from Lemma 7
that

Eζs exp
(
−η∆Lh

(
f̃h, fh+1, ζs

))
− 1 ≤ −0.25ηEζs

(
f̃h(x, a)− Thfh+1(x, a, b)

)2
≤ 0.

We let

Wh
t := EStEf∼p(·) lnEf̃h∼ph

0
exp

(
−η

t∑
s=1

∆Lh(f̃h, fh+1, ζs)

)
,

and recall that

q̂ht

(
f̃h | fh+1, St−1

)
=
ph0 (f̃

h) exp
(
−η
∑t−1

s=1 ∆L
h
(
f̃h, fh+1, ζs

))
Ef̃ ′∼ph

0
exp

(
−η
∑t−1

s=1 ∆L
h
(
f̃ ′, fh+1, ζs

)) .
We have

Wh
s −Wh

s−1 = ESs
Ef∼p(·) lnEf̃h∼ph

0

exp
(
−η
∑s−1

t=1 ∆L
h
(
f̃h, fh+1, ζt

))
Ef̃ ′∼ph

0
exp

(
−η
∑s−1

t=1 ∆L
h
(
f̃ ′, fh+1, ζt

)) exp
(
−η∆Lh

(
f̃h, fh+1, ζs

))
= ESsEf∼p(·) lnEf̃h∼q̂hs (·|fh+1,Ss−1)

exp
(
−η∆Lh

(
f̃h, fh+1, ζs

))
≤ ESsEf∼p(·)

(
Ef̃h∼q̂hs (·|fh+1,Ss−1)

exp
(
−η∆Lh

(
f̃h, fh+1, ζs

))
− 1
)
≤ 0

where we use ln z ≤ z − 1. By Wh
0 = 0, we know that

Wh
t =Wh

0 +

t∑
s=1

[Wh
s −Wh

s−1] ≤ 0,

equivalently,

EStEf∼p(·) lnEf̃h∼ph
0
exp

(
−η

t∑
s=1

∆Lh(f̃h, fh+1, ζs)

)
≤ 0.

This implies that for any p(·), we have

ESt−1
Ef∼p(·)

[
H∑

h=1

Φh
t (f)− λ∆f1

(
x1
)
+ ln p(f)

]

= ESt−1
Ef∼p(·)

[
−λ∆f1

(
x1
)
+ αη

H∑
h=1

t−1∑
s=1

∆Lh
(
fh, fh+1, ζs

)
+α

H∑
h=1

lnEf̃h∼ph
0
exp

(
−η

t−1∑
s=1

∆Lh
(
f̃h, fh+1, ζs

))
+ ln

p(f)

p0(f)

]

≤ ESt−1Ef∼p(·)

[
−λ∆f1

(
x1
)
+

H∑
h=1

αη

t−1∑
s=1

(
Eh
(
f ;xhs , a

h
s , b

h
s

))2
+ ln

p(f)

p0(f)

]
,

where we use the definition of the potential function in first equality. Since p(·) is arbitrary, we can
take fh ∈ Fh(ϵ,Q

∗
h+1) for all h ∈ [H]. We then have

|fh(x, a, b)−Q∗
h(x, a, b)| = |fh(x, a, b)− T Q∗

h+1(x, a, b)| ≤ ϵ,
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for all (x, a, b, h) ∈ X ×A× B × [H]. Then, we have

|Eh(f ;x, a, b)| ≤ |fh(x, a, b)−Q∗
h(x, a, b)|+ sup

x′
|Vf,h+1(x

′)− V ∗
h+1(x

′)| ≤ 2ϵ,

where we use
|Vf,h+1(x

′)− V ∗
h+1(x

′)| = | sup
µ

inf
ν
Dµ,νf

h+1(x′)− sup
µ

inf
ν
Dµ,νQ

∗
h+1(x

′)|

≤ sup
µ

sup
ν

|Dµ,ν(f
h+1(x′)−Q∗

h+1(x
′))| ≤ ϵ,

where the first inequality is because of
| inf

A
f − inf

A
g| ≤ sup

A
|f − g|.

By taking p(f) = p0(f)I(f ∈ F(ϵ))/p0(F(ϵ)), with F(ϵ) =
∏

h Fh(ϵ,Q
∗
h+1), we obtain the

desired result.

Lemma 9. It holds that

Ef∼p̂t(f) ln p̂t(f) ≥αEf∼p̂t
ln p̂t(f) + (1− α)Ef∼p̂t

H∑
h=1

ln p̂t
(
fh
)

≥α
2

H∑
h=1

Ef∼p̂t
ln p̂t

(
fh, fh+1

)
+ (1− 0.5α)Ef∼p̂t ln p̂t

(
f1
)
+ (1− α)

H∑
h=2

Ef∼p̂t ln p̂t
(
fh
)
.

(15)

Proof. To show the first inequality, we just subtract all terms of RHS from LHS to see that it is a
KL-divergence which is non-negative. The second inequality is equivalent to

Ef∼p̂t ln p̂t(f) ≥ 0.5Ef∼p̂t ln p̂t
(
f1
)
+ 0.5

H∑
h=1

Ef∼p̂t ln p̂t
(
fh, fh+1

)
.

This follows from

0.5Ef∼p̂t ln p̂t(f) ≥ 0.5

H∑
h=1

Ef∼p̂t ln p̂t
(
fh, fh+1

)
I(h is a odd number )

and

0.5Ef∼p̂t
ln p̂t(f) ≥ 0.5Ef∼p̂t

ln p̂t
(
f1
)
+0.5

H∑
h=1

Ef∼p̂t
ln p̂t

(
fh, fh+1

)
I(h is an even number )

which is a result of the non-negativity of mutual information.

Lemma 10. It holds that

ESt−1
Ef∼p̂t

(
H∑

h=1

Φh
t (f)− λ∆f1

(
x1
)
+ ln p̂t(f)

)

≥ ESt−1
Ef∼p̂t

[
−λ∆f1

(
x1
)
+ (1− 0.5α) ln

p̂t
(
f1
)

p10 (f
1)

]
︸ ︷︷ ︸

A

+

H∑
h=1

0.5αESt−1Ef∼p̂t

[
η

t−1∑
s=1

2∆Lh
(
fh, fh+1, ζs

)
+ ln

p̂t
(
fh, fh+1

)
ph0 (f

h) ph+1
0 (fh+1)

]
︸ ︷︷ ︸

Bh

+

H∑
h=1

ESt−1
Ef∼p̂t

[
α lnEf̃h∼ph

0
exp

(
−η

t−1∑
s=1

∆Lh
(
f̃h, fh+1, ζs

))
+ (1− α) ln

p̂t
(
fh+1

)
ph+1
0 (fh+1)

]
︸ ︷︷ ︸

Ch

.

(16)
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Proof. We use the definition of the potential function and apply Lemma 9. The desired result follows
from some calculations.

Lemma 11. If ηβ2 ≤ 0.4, it holds that

A ≥ −λESt−1
Eft∼p̂t

∆f1t (x
1), (17)

Bh ≥ 0.25αη

t−1∑
s=1

ESt−1
Ef∼p̂t

Eπs

(
Eh
(
f ;xhs , a

h
s , b

h
s

))2
(18)

Ch ≥ −αηϵ(2b+ ϵ)(t− 1)− κh1 (α, ϵ). (19)

Proof. The bound of A comes from the non-negativity of KL-divergence and α ∈ (0, 1]. To prove
the lower bound of Bh, we define

ξhs
(
fh, fh+1, ζs

)
=− 2η∆Lh

(
fh, fh+1, ζs

)
− lnExh+1

s ∼Ph(·|xh
s ,a

h
s ,b

h
s )
exp

(
−2η∆Lh

(
fh, fh+1, ζs

))
.

Then, for all h ∈ [H], we have

ESt−1 exp

(
t−1∑
s=1

ξhs
(
fh, fh+1, ζs

))
= 1,

according to Lemma 3. Then, by Lemma 4, we have

Ef∼p̂t

[
t−1∑
s=1

−ξhs
(
fh, fh+1, ζs

)
+ ln

p̂t
(
fh, fh+1

)
ph0 (f

h) ph+1
0 (fh+1)

]

≥ inf
p
Ef∼p

[
t−1∑
s=1

−ξhs
(
fh, fh+1, ζs

)
+ ln

p
(
fh, fh+1

)
ph0 (f

h) ph+1
0 (fh+1)

]

= − lnEfh∼ph
0
Efh+1∼ph+1

0
exp

(
t−1∑
s=1

ξhs
(
fh, fh+1, ζs

))
,

where we use the fact that Lemma 4 implies that the inf is achieved at

p
(
fh, fh+1

)
∝ ph0

(
fh
)
ph+1
0

(
fh+1

)
exp

(
t−1∑
s=1

ξhs
(
fh, fh+1, ζs

))
,

and the expectation is equal to

−Ep(fh,fh+1)

t−1∑
s=1

ξhs (f
h, fh+1, ζs) + Ep(fh,fh+1) ln

exp(
∑t−1

s=1 ξ
h
s (f

h, fh+1, ζs))

c
= − ln c

where c = Efh∼ph
0
Efh+1∼ph+1

0
exp

(∑t−1
s=1 ξ

h
s

(
fh, fh+1, ζs

))
is the normalized constant. It then

follows that

ESt−1Ef∼p̂t

[
t−1∑
s=1

−ξhs
(
fh, fh+1, ζs

)
+ ln

p̂t
(
fh, fh+1

)
ph0 (f

h) ph+1
0 (fh+1)

]

≥ −ESt−1
lnEfh∼ph

0
Efh+1∼ph+1

0
exp

(
t−1∑
s=1

ξhs
(
fh, fh+1, ζs

))

≥ − lnEfh∼ph
0
Efh+1∼ph+1

0
ESt−1 exp

(
t−1∑
s=1

ξhs
(
fh, fh+1, ζs

))
= 0,

17
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where we use the above result in the first inequality and use the convexity of − ln(·) in the last
inequality. We then have

Bh = 0.5αESt−1
Ef∼p̂t

[
η

t−1∑
s=1

2∆Lh
(
fh, fh+1, ζs

)
+ ln

p̂t
(
fh, fh+1

)
ph0 (f

h) ph+1
0 (fh+1)

]

≥ 0.5αESt−1
Ef∼p̂t

t−1∑
s=1

− lnExh+1
s ∼Ph(·|xh

s ,a
h
s ,b

h
s )
exp

(
−2η∆Lh

(
fh, fh+1, ζs

))
≥ −0.5αη

t−1∑
s=1

1

2
(Eh(f ;xhs , ahs , rhs ))2,

where we use the definition of ξhs
(
fh, fh+1, ζs

)
in the first inequality and we use Lemma 7 in the

last step.

We now turn to the lower bound of Ch. We have

Ef∼p̂t

[
α lnEf̃h∼ph

0
exp

(
−η

t−1∑
s=1

∆Lh
(
f̃h, fh+1, ζs

))
+ (1− α) ln

p̂t
(
fh+1

)
ph+1
0 (fh+1)

]

≥ (1− α) inf
ph

Ef∼ph

[
α

1− α
lnEf̃h∼ph

0
exp

(
−η

t−1∑
s=1

∆Lh
(
f̃h, fh+1, ζs

))
+ ln

ph
(
fh+1

)
ph+1
0 (fh+1)

]

= −(1− α) lnEfh+1∼ph+1
0

(
Efh∼ph

0
exp

(
−η

t−1∑
s=1

∆Lh
(
fh, fh+1, ζs

)))−α/(1−α)

,

where we use the fact that the inf is achieved at

ph
(
fh+1

)
∝ ph+1

0

(
fh+1

)(
Efh∼ph

0
exp

(
−η

t−1∑
s=1

∆Lh
(
fh, fh+1, ζs

)))−α/(1−α)

.

We now consider a fixed fh ∈ Fh(ϵ, f
h+1). It holds that∣∣∆Lh

(
fh, fh+1, ζs

)∣∣ ≤ (Eh (f, xhs , ahs ))2 + 2β
∣∣Eh (f, xhs , ahs )∣∣ ≤ ϵ(2β + ϵ)

To show this, we recall the definition

∆Lh
(
fh, fh+1; ζs

)
=
(
fh
(
xhs , a

h
s , b

h
s

)
− rhs − Vf,h+1

(
xh+1
s

))2
−
(
Thfh+1

(
xhs , a

h
s , b

h
s

)
− rhs − Vf,h+1

(
xh+1
s

))2
,

and we subtract and add Thfh+1(xhs , a
h
s ) inside the first term to obtain

∆Lh(fh, fh+1, ζs) = Eh(f, xhs , ahs )2 + 2Eh(f, xhs , ahs )(T ∗
h f

h+1(xhs , a
h
s )− rhs − fh+1(xh+1

s )).

It follows that

Efh∼ph
0
exp

(
−η

t−1∑
s=1

∆Lh
(
fh, fh+1, ζs

))
≤ ph0

(
Fh

(
ϵ, fh+1

))
exp(−η(t− 1)(2β + ϵ)ϵ).

Thus, we have

Ch ≥ αESt−1
lnEfh+1∼ph+1

0
ph0 (Fh(ϵ, f

h+1)) exp(−η(t− 1)(2β + ϵ)ϵ)

= −αηϵ(2β + ϵ)(t− 1) + αESt−1
lnEfh+1∼ph+1

0
ph0 (Fh(ϵ, f

h+1))

≥ −αηϵ(2β + ϵ)(t− 1)− κh1 (α, ϵ)

where we use the definition

κh1 (α, ϵ) = (1− α) lnEfh+1∼ph+1
0

ph0
(
Fh

(
ϵ, fh+1

))−α/(1−α)
.
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We are ready to prove Theorem 2.

Proof of Theorem 2. Let πt denote the distribution induced by µt × νt and define

δht = λEh(ft;xht , aht , bht )− 0.25αη

t−1∑
s=1

Eπs

(
Eh(ft;xht , aht , bht )

)2
.

Then, we have
T∑

t=1

ESt−1Eft∼p̂tEgt∼p̂
µt
t
Eζt∼πt

H∑
h=1

δht ≤ λ2

αη
dc(F ,MG, T, 0.25αη/λ).

For arbitrary νt induced by µft and gt, according to the value-decomposition Lemma 1 we have

ESt−1
Eft∼p̂t

Egt∼p̂
µt
t
λ(V ∗

1 (x
1)− V µt,νt

1 (x1))− ESt−1
Eft∼p̂t

Egt∼p̂
µt
t
Eζt∼πt

H∑
h=1

δht

≤ −λESt−1
Eft∼p̂t

∆f1t (x
1) + 0.25αη

H∑
h=1

t−1∑
s=1

ESt−1
Eft∼p̂t

Eπs

(
Eh(ft;xht , aht , bht )

)2
≤ ESt−1Ef∼p̂t

(
H∑

h=1

Φh
t (f)− λ∆f1

(
x1
)
+ ln p̂t(f)

)
+ αηϵ(2β + ϵ)(t− 1)H +

H∑
h=1

κh1 (α, ϵ)

= ESt−1
inf
p
Ef∼p

(
H∑

h=1

Φh
t (f)− λ∆f1

(
x1
)
+ ln p(f)

)
+ αηϵ(2β + ϵ)(t− 1)H +

H∑
h=1

κh1 (α, ϵ)

≤ λϵ+ αηϵ(ϵ+ 4ϵ+ 2β)(t− 1)H −
H∑

h=1

ln ph0 (F(ϵ,Q∗
h+1)) +

H∑
h=1

κh1 (α, ϵ),

where the first inequality also uses the definition of ∆f1t (x
1); the second inequality comes from

Lemma 10 and Lemma 11; the equality is because Lemma 5, and the last step comes from Lemma 8.
Summing over t, we obtain that
T∑

t=1

ESt−1Eft∼p̂tEgt∼p̂
µt
t

(
V ∗
1 (x

1)− V µt,νt

1 (x1)
)

≤ ϵT +
1

λ
αη(5ϵ+ 2β)

T (T − 1)

2
H − T

λ

H∑
h=1

ln ph0 (F(ϵ,Q∗
h+1)) +

T

λ

H∑
h=1

κh(α, ϵ) +
λ

αη
dc(F ,MG, T, 0.25αη/λ)

≤ O(β
√
dc(F ,MG, T )κ(β/T 2)T + dc(F ,MG, T )).

Here in the last step, we first let α→ 1− and note that

− ln ph0
(
F(ϵ,Q∗

h+1

)
≤ κh1 (1, ϵ),

−
H∑

h=1

ln ph0
(
F(ϵ,Q∗

h+1

)
+

H∑
h=1

κh1 (1, ϵ) ≤ 2κ(ϵ).

Then, we take ϵ = β
T 2 , λ =

√
Tκ(β/T 2)

β2dc(F,MG,T ) , and η = 1
4β2 . This concludes the proof.

E PROOF OF THE THEOREM 3

In this section, we provide a proof for Theorem 3.
Lemma 12. For any max-player’s policy µ and all functions g ∈ F , we have

Exh+1
s ∼Ph(·|xh

s ,a
h
s ,b

h
s )
∆Lh

µ

(
gh, gh+1, ζs

)
=
(
Eµ
h

(
g;xhs , a

h
s , b

h
s

))2
and

Exh+1
s ∼Ph(·|xh

s ,a
h
s ,b

h
s )
∆Lh

µ

(
gh, gh+1, ζs

)2 ≤ 4β2

3

(
Eµ
h

(
g;xhs , a

h
s , b

h
s

))2
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Proof. The proof of this lemma only employs the Markov property of the transition and the range of
function g ∈ F . By replacing the notations in the proof of Lemma 6, we conclude the proof.

Lemma 13. Letting ηβ2 ≤ 0.8, then for all functions g ∈ F and any max-player’s policy µ, we have

lnExh+1
s ∼Ph(·|xh

s ,a
h
s ,b

h
s )
exp

(
−η∆Lh

µ

(
gh, gh+1, ζs

))
≤ Exh+1

s ∼Ph(·|xh
s ,a

h
s ,b

h
s )
exp

(
−η∆Lh

µ

(
gh, gh+1, ζs

))
− 1

≤ −0.25η
(
Eµ
h

(
f ;xhs , a

h
s , b

h
s

))2
.

Proof. The proof of this lemma only employs the range of function g ∈ F . By replacing the notations
in the proof of Lemma 7, we conclude the proof.

Lemma 14. It holds that

ESt−1Eft∼p̂t inf
p
Eg∼p(·)

[
H∑

h=1

Φh
t (g, µt)− λ∆g1µt

(
x1
)
+ ln p(g)

]

≤ λϵ+ 4αη(t− 1)Hϵ2 − ESt−1
Eft∼p̂t

H∑
h=1

ln ph0

(
Fµt

h

(
ϵ,Qµt,†

h+1

))

Proof. Consider any fixed g ∈ F . For any g̃h ∈ Fh that depends on Ss−1 and µfs , and for any µf

we obtain from Lemma 7 that

Eζs exp
(
−η∆Lh

µf

(
g̃h, gh+1, ζs

))
− 1 ≤ −0.25ηEζs

(
g̃h(x, a)− T µf

h gh+1(x, a, b)
)2 ≤ 0.

We now fix some t. For all s ≤ t, we define

Wh
s := ESs

Ef∼p̂t+1
Eg∼p(·) lnEg̃h∼ph

0
exp

(
−η

s∑
ℓ=1

∆Lh
µf
(g̃h, gh+1, ζℓ)

)
,

and recall that

q̂ht
(
g̃h | gh+1, µf , St−1

)
=
ph0 (g̃

h) exp
(
−η
∑t−1

s=1 ∆L
h
µf

(
g̃h, gh+1, ζs

))
Eg̃′∼ph

0
exp

(
−η
∑t−1

s=1 ∆L
h
µf

(g̃′, gh+1, ζs)
) .

We have

Wh
s −Wh

s−1 = ESs
Ef∼p̂t+1(·) lnEg̃h∼q̂hs (·|gh+1,µf ,Ss−1) exp

(
−η∆Lh

µf

(
g̃h, gh+1, ζs

))
≤ ESs

Ef∼p̂t(·)

(
Eg̃h∼q̂hs (·|gh+1,µf ,Ss−1) exp

(
−η∆Lh

µf

(
g̃h, gh+1, ζs

))
− 1
)
≤ 0

where we use ln z ≤ z − 1. By Wh
0 = 0, we know that

Wh
t =Wh

0 +

t∑
s=1

[Wh
s −Wh

s−1] ≤ 0,

equivalently,

ESt
Ef∼p̂t+1(·)Eg∼p(·) lnEg̃h∼ph

0
exp

(
−η

t∑
s=1

∆Lh
µf
(g̃h, gh+1, ζs)

)
≤ 0.
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Note that t is arbitrary. This implies that for any p(·) and any t, we have

ESt−1
Ef∼p̂t(·)Eg∼p(·)

[
H∑

h=1

Φh
t (g, µf )− λ∆g1µf

(
x1
)
+ ln p(g)

]

= ESt−1
Ef∼p̂t(·)Eg∼p(·)

[
−λ∆g1µf

(
x1
)
+ αη

H∑
h=1

t−1∑
s=1

∆Lh
µf

(
gh, gh+1, ζs

)
+α

H∑
h=1

lnEg̃h∼ph
0
exp

(
−η

t−1∑
s=1

∆Lh
µf

(
g̃h, gh+1, ζs

))
+ ln

p(g)

p0(g)

]

≤ ESt−1
Ef∼p̂t(·)Eg∼p(·)

[
−λ∆g1µf

(
x1
)
+

H∑
h=1

αη

t−1∑
s=1

(
Eµf

h

(
g;xhs , a

h
s , b

h
s

))2
+ ln

p(g)

p0(g)

]
.

Since p(·) is arbitrary, we can take gh ∈ Fµ
h (ϵ,Q

µ,†
h+1) for all h ∈ [H]. We need to show that gh

admits a small T µ
h -Bellman-residual. We have

|gh(x, a, b)−Qµ,†
h (x, a, b)| = |gh(x, a, b)− T µ

h Q
µ,†
h+1(x, a, b)| ≤ ϵ,

for all (x, a, b, h) ∈ X ×A× B × [H]. Then, we have

|Eµ
h (g;x, a, b)| ≤ |gh(x, a, b)−Qµ,†

h (x, a, b)|+ sup
x′

|V µ
g,h+1(x

′)− V µ,†
h+1(x

′)| ≤ 2ϵ,

where we use

|V µ
g,h+1(x

′)− V µ,†
h+1(x

′)| = | inf
ν
Dµ,νg(x

′)− inf
ν
Dµ,νQ

µ,†
h+1(x

′)|

≤ sup
ν

|Dµ,ν(g(x
′)−Qµ,†

h+1(x
′))| ≤ ϵ,

where we use the fact that

| inf
A
f − inf

A
g| ≤ sup

A
|f − g|.

By taking p(f) = p0(f)I(f ∈ F(ϵ, µf ))/p0(F(ϵ, µf )), with F(ϵ, µf ) =
∏

h F
µf

h (ϵ,Q
µf ,†
h+1), we

obtain the desired result.

Lemma 15. For any max-player’s policy µ that is induced by some f ∈ F , we have

Eg∼p̂µ
t (g)

ln p̂µt (g) ≥αEg∼p̂µ
t
ln p̂µt (g) + (1− α)Eg∼p̂µ

t

H∑
h=1

ln p̂µt
(
gh
)

≥α
2

H∑
h=1

Eg∼p̂µ
t
ln p̂µt

(
gh, gh+1

)
+ (1− 0.5α)Eg∼p̂µ

t
ln p̂µt

(
g1
)
+ (1− α)

H∑
h=2

Eg∼p̂µ
t
ln p̂µt

(
gh
)
.

(20)

Proof. The proof of this lemma only relies on the non-negativity of mutual information and KL-
divergence. By replacing the notations in the proof of Lemma 9, we conclude the proof.
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Lemma 16. It holds that

ESt−1Eft∼p̂tEg∼p̂µ
t

(
H∑

h=1

Φh
t (g)− λ∆g1µt

(
x1
)
+ ln p̂µt

t (g)

)

≥ ESt−1Eft∼p̂tEg∼p̂µ
t

[
−λ∆g1µt

(
x1
)
+ (1− 0.5α) ln

p̂µt

t

(
g1
)

p10 (g
1)

]
︸ ︷︷ ︸

A′

+

H∑
h=1

0.5αESt−1
Eft∼p̂t

Eg∼p̂
µt
t

[
η

t−1∑
s=1

2∆Lh
µt

(
gh, gh+1, ζs

)
+ ln

p̂µt

t

(
gh, gh+1

)
ph0 (g

h) ph+1
0 (gh+1)

]
︸ ︷︷ ︸

B′
h

+

H∑
h=1

ESt−1Eft∼p̂tEg∼p̂
µt
t

[
α lnEg̃h∼ph

0
exp

(
−η

t−1∑
s=1

∆Lh
µt

(
g̃h, gh+1, ζs

))
+ (1− α) ln

p̂µt

t

(
gh+1

)
ph+1
0 (gh+1)

]
︸ ︷︷ ︸

C′
h

.

(21)

Proof. We use the definition of the potential function and apply Lemma 15 (note that it is valid for
any µf , f ∈ F).

Lemma 17. If ηβ2 ≤ 0.4, it holds that

A′ ≥ −λESt−1
Eft∼p̂t

Eg∼p̂
µt
t
∆g1µt

(x1), (22)

B′
h ≥ 0.25αη

t−1∑
s=1

ESt−1
Ef∼p̂t

Eg∼p̂
µt
t
Eπs

(
Eµt

h

(
f ;xhs , a

h
s , b

h
s

))2
(23)

C ′
h ≥ −αηϵ(2b+ ϵ)(t− 1)− ESt−1

Eft∼p̂t
κhµt

(α, ϵ). (24)

Proof. The bound of A′ comes from the non-negativity of KL-divergence and α ∈ (0, 1]. To prove
the lower bound of B′

h, we define

ξhs
(
gh, gh+1, µt, ζs

)
=− 2η∆Lh

µt

(
gh, gh+1, ζs

)
− lnExh+1

s ∼Ph(·|xh
s ,a

h
s ,b

h
s )
exp

(
−2η∆Lh

µt

(
gh, gh+1, ζs

))
,

where µt is an arbitrary policy induced by some ft ∈ F . Then, for all h ∈ [H], we have

ESt−1
exp

(
t−1∑
s=1

ξhs
(
gh, gh+1, ζs

))
= 1,

according to Lemma 3. Then, by Lemma 4, we have

Eg∼p̂
µt
t

[
t−1∑
s=1

−ξhs
(
gh, gh+1, µt, ζs

)
+ ln

p̂µt

t

(
gh, gh+1

)
ph0 (g

h) ph+1
0 (gh+1)

]

≥ inf
p
Eg∼p

[
t−1∑
s=1

−ξhs
(
gh, gh+1, µt, ζs

)
+ ln

p
(
gh, gh+1

)
ph0 (g

h) ph+1
0 (gh+1)

]

= − lnEgh∼ph
0
Egh+1∼ph+1

0
exp

(
t−1∑
s=1

ξhs
(
gh, gh+1, µt, ζs

))
,

where the last step is from some simple calculations and the fact that Lemma 4 implies that the inf is
achieved by p(gh, gh+1) ∝ ph0 (g

h)ph+1
0 (gh+1) exp(

∑t−1
s=1 ξ

h
s

(
gh, gh+1, µt, ζs

)
).
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This implies that

ESt−1
Ef∼p̂t

Eg∼p̂
µt
t

[
t−1∑
s=1

−ξhs
(
fh, fh+1, µt, ζs

)
+ ln

p̂µt

t

(
fh, fh+1

)
ph0 (f

h) ph+1
0 (fh+1)

]

≥ −ESt−1Ef∼p̂t lnEgh∼ph
0
Egh+1∼ph+1

0
exp

(
t−1∑
s=1

ξhs
(
gh, gh+1, µt, ζs

))

≥ − lnEgh∼ph
0
Egh+1∼ph+1

0
Ef∼p̂t

ESt−1
exp

(
t−1∑
s=1

ξhs
(
gh, gh+1, µt, ζs

))
= 0,

where we use the convexity of − ln(·). With this result, the definition of B′
h and the definition of

ξhs
(
gh, gh+1, µt, ζs

)
, we have

B′
h = 0.5αESt−1Eft∼p̂tEg∼p̂

µt
t

[
η

t−1∑
s=1

2∆Lh
µt

(
gh, gh+1, ζs

)
+ ln

p̂µt

t

(
gh, gh+1

)
ph0 (g

h) ph+1
0 (gh+1)

]

≥ 0.5αESt−1
Eft∼p̂t

Eg∼p̂
µt
t

t−1∑
s=1

− lnExh+1
s ∼Ph(·|xh

s ,a
h
s ,b

h
s )
exp

(
−2η∆Lh

µt

(
gh, gh+1, ζs

))
≥ −0.5αη

t−1∑
s=1

1

2
ESt−1Ef∼p̂tEg∼p̂

µt
t
Eπs(E

µt

h (g;xhs , a
h
s , r

h
s ))

2,

where we use Lemma 13 in the last step.

We now turn to the lower bound of Ch. For any max-player’s policy µ, we have

Eg∼p̂µ
t

[
α lnEg̃h∼ph

0
exp

(
−η

t−1∑
s=1

∆Lh
µ

(
g̃h, gh+1, ζs

))
+ (1− α) ln

p̂µt
(
gh+1

)
ph+1
0 (gh+1)

]

≥(1− α) inf
ph

Eg∼ph

[
α

1− α
lnEg̃h∼ph

0
exp

(
−η

t−1∑
s=1

∆Lh
µ

(
g̃h, gh+1, ζs

))
+ ln

ph
(
gh+1

)
ph+1
0 (gh+1)

]

=− (1− α) lnEgh+1∼ph+1
0

(
Egh∼ph

0
exp

(
−η

t−1∑
s=1

∆Lh
µ

(
gh, gh+1, ζs

)))−α/(1−α)

,

where we use the fact that the inf is achieved at

ph
(
gh+1

)
∝ ph+1

0

(
gh+1

)(
Egh∼ph

0
exp

(
−η

t−1∑
s=1

∆Lh
µ

(
gh, gh+1, ζs

)))−α/(1−α)

.

We now consider a fixed gh ∈ Fµ
h (ϵ, g

h+1). Using the same arguments as in the proof of Lemma 11,
it holds that∣∣∆Lh

µ

(
gh, gh+1, ζs

)∣∣ ≤ (Eµ
h

(
g, xhs , a

h
s

))2
+ 2b

∣∣Eµ
h

(
g, xhs , a

h
s

)∣∣ ≤ ϵ(2b+ ϵ).

It follows that

Egh∼ph
0
exp

(
−η

t−1∑
s=1

∆Lh
µ

(
gh, gh+1, ζs

))
≤ ph0

(
Fµ

h

(
ϵ, gh+1

))
exp(−η(t− 1)(2b+ ϵ)ϵ)

Thus, we have

Ch ≥ αESt−1
Ef∼p̂t

lnEfh+1∼ph+1
0

ph0 (F
µt

h (ϵ, gh+1)) exp(−η(t− 1)(2b+ ϵ)ϵ)

= −αηϵ(2b+ ϵ)(t− 1) + αESt−1Ef∼p̂t lnEgh+1∼ph+1
0

ph0 (F
µt

h (ϵ, gh+1))

≥ −αηϵ(2b+ ϵ)(t− 1)− ESt−1
Eft∼p̂t

κhµt
(α, ϵ),

where we use the definition

κhµ(α, ϵ) = (1− α) lnEgh+1∼ph+1
0

ph0
(
Fµ

h

(
ϵ, gh+1

))−α/(1−α)
.
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We are ready to prove Theorem 3.

Proof of Theorem 3. Let πt denote the distribution induced by µt × νt and define

δht = −λEµt

h (gt, x
h
t , a

h
t , b

h
t )− 0.25αη

t−1∑
s=1

Eπs

(
Eµt

h (gt, x
h
t , a

h
t , b

h
t )
)2
.

According to the value-decomposition Lemma 2, we have

ESt−1
Eft∼p̂t

Egt∼p̂
µt
t
λ(V µt,νt

1 (x1)− V µt,†
1 (x1))− ESt−1

Eft∼p̂t
Egt∼p̂

µt
t
Eζt∼πt

H∑
h=1

δht

= −λESt−1
Eft∼p̂t

Egt∼p̂
µt
t
∆gµt

t,1(x
1) + 0.25αη

H∑
h=1

t−1∑
s=1

ESt−1
Eft∼p̂t

Egt∼p̂
µt
t
Eπs

(
Eµt

h (gt, x
h
t , a

h
t , b

h
t )
)2

≤ ESt−1Eft∼p̂tEgt∼p̂t

(
H∑

h=1

Φh
t (gt, µt)− λ∆gµt

t,1(x
1) + ln p̂µt

t (gt)

)

+ αηϵ(2b+ ϵ)(t− 1)H + ESt−1
Eft∼p̂t

H∑
h=1

κhµt
(α, ϵ)

= ESt−1
Eft∼p̂t

inf
p
Eg∼p

(
H∑

h=1

Φh
t (g, µt)− λ∆gµt

t,1(x
1) + ln p(g)

)

+ αηϵ(2β + ϵ)(t− 1)H + ESt−1Eft∼p̂t

H∑
h=1

κhµt
(α, ϵ)

≤ λϵ+ αηϵ(ϵ+ 4ϵ+ 2β)(t− 1)H − ESt−1
Eft∼p̂t

H∑
h=1

ln ph0 (Fh(ϵ,Q
µt,†
h+1)) + ESt−1

Eft∼p̂t

H∑
h=1

κhµt
(α, ϵ).

Summing over t, we obtain that
T∑

t=1

ESt−1
Eft∼p̂t

Egt∼p̂t
(V µt,νt

1 (x1)− V µt,†
1 (x1))

≤ ϵT +
1

λ
αη(5ϵ+ 2β)

T (T − 1)

2
H − 1

λ

T∑
t=1

ESt−1
Eft∼p̂t

H∑
h=1

ln ph0 (Fh(ϵ,Q
µt,†
h+1))

+
1

λ

T∑
t=1

ESt−1
Eft∼p̂t

H∑
h=1

κhµt
(α, ϵ) +

λ

αη
dc(F ,MG, T, 0.25αη/λ)

≤ O(β
√
dc(F ,MG, T )κ(β/T 2)T + dc(F ,MG, T )).

The last step is proved as follows. We find an upper bound for ESt−1
Eft∼p̂t

∑T
t=1

∑H
h=1 κ

h
µt
(α, ϵ).

We note that for all µt, κhµt
(α, ϵ) is increasing w.r.t. α with the limit κhµt

(1, ϵ) ≤ κ(ϵ) < ∞. By
monotone convergence theorem, we know that

ESt−1
Eft∼p̂t

T∑
t=1

H∑
h=1

κhµt
(α, ϵ) → ESt−1

Eft∼p̂t

T∑
t=1

H∑
h=1

κhµt
(1, ϵ) =

T∑
t=1

ESt−1
Eft∼p̂t

κµt
(ϵ) ≤ Tκ(ϵ).

We also have

ESt−1Eft∼p̂t

T∑
t=1

H∑
h=1

− ln ph0

(
Fh(ϵ,Q

µt,†
h+1)

)
≤ ESt−1Eft∼p̂t

T∑
t=1

κµt(ϵ) ≤ Tκ(ϵ).

It follows that

−
T∑

t=1

ESt−1
Eft∼p̂t

H∑
h=1

ln ph0 (Fh(ϵ,Q
µt,†
h+1)) +

T∑
t=1

ESt−1
Eft∼p̂t

H∑
h=1

κhµt
(1, ϵ) ≤ 2Tκ(ϵ).
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Now we first let α→ 1−1. Then, we take ϵ = β
T 2 , λ =

√
Tκ(β/T 2)

β2dc(F,MG,T ) , η = 1
4β2 . This concludes

the proof.

F INTERPRETATION OF THEOREM 1

F.1 BOUNDS FOR THE MULTI-AGENT DECOUPLING COEFFICIENT

In this subsection, we provide several examples whose multi-agent decoupling coefficient is provably
small. The proof can be found in Appendix H.

Linear MG. The first example is the MG with linear function approximation Xie et al. (2020). In
this case, there exists a feature map ϕ(x, a, b) ∈ Rd and it holds that rh(x, a, b) = ϕ(x, a, b)⊤θh

and Ph(x′|x, a, b) = ϕ(x, a, b)⊤µh(x
′) for some unknown θh ∈ Rd and µh(·) ∈ Rd satisfying

max{
∥∥θh∥∥ , ∥µh∥} ≤

√
d. We have the following upper bound for the multi-agent decoupling

coefficient.
Proposition 1 (Linear MG). For a d-dimensional MG with Fh = {ϕh(·, ·, ·)⊤θh :

∥∥θh∥∥ ≤ (H +

1− h)
√
d} and ∥ϕ(x, a, b)∥ ≤ 1,∀(x, a, b) ∈ X ×A× B, then for all µ ≤ 1, it holds that

dc(F ,MG, T, µ) ≤ 2dH(2 + ln(2HT )).

Note that Jin et al. (2021b) considers a more general setting of linear function approximation whose
multi-agent decoupling coefficient is also provably small due to Proposition 3. Also note that as a
special case, tabular MG is a linear MG of dimension d = |X ||A||B|.
Generalized Linear MG. We then consider the generalized linear MG. In this case, we have
(fh − T µ

h fh+1)(x, a, b) = σ(ϕ(x, a, b)⊤θh) for any µ induced by some function in F and f ∈
F where σ is differentiable and strictly increasing. We further assume that σ′ ∈ (c1, c2) and
max{∥ϕ(x, a, b)∥ ,

∥∥θh∥∥} ≤ R for some c1, c2, R > 0.
Proposition 2 (Generalized Linear MG.). For a generalized linear MG, with F = {(x, a, b) →
σ(ϕ(x, a, b)⊤θ : ∥θ∥ ≤ H

√
d}, then for all µ ≤ 1, it holds that

dc(F ,MG, T, µ) ≤ 2dH(c22/c
2
1)(2 + ln(2HT )).

We can also derive an upper bound for the multi-agent decoupling coefficient through multi-agent
Bellman Eluder dimension introduced in Jin et al. (2021b).
Definition 5 (ϵ-independence between distributions). Let F be a function class defined on X , and
π, π1, · · · , πn be probability measures over X . We say π is ϵ-independent of {π1, · · · , πn} with
respect to F if there exists f ∈ F such that

√∑n
i=1(Eπi

[f ])2 ≤ ϵ but |Eπ[f ]| > ϵ.
Definition 6 (Distributional Eluder dimension). Let F be a function class defined on X , and Π
be a family of probability measures over X . The distributional Eluder dimension dimDE(F ,Π, ϵ)
is the length of the longest sequence ρ1, · · · , ρi−1 ⊂

∏
such that there exists ϵ′ > ϵ where ρi is

ϵ′-independent of {ρ1, · · · , ρi−1} for all i ∈ [n].
Definition 7 (multi-agent Bellman Eluder dimension). Let HF be teh function classes of Bellman
residuals where HF,h := {fh−T µg

h fh+1|f, g ∈ F}. Then, the Bellman-Eluder dimension is defined
as

dimBE(F ,Π, ϵ) = max
h

dimDE (HF,h,Π, ϵ)

Proposition 3 (Reduction to multi-agent Bellman Eluder dimension). Let ΠF = DF be the set of
probability measures over X × A × B at each step h obtained by following (µf , νf,g) for some
f, g ∈ F . If for all ϵ > 0 we have

dimBE(F ,Π, ϵ) ≤ E ln(1/ϵ),

then for all µ ≤ 1, the multi-agent decoupling coefficient satisfies:
dc(F ,MG, T, µ) ≤ 4(1 + ln(T ))EH.

Similar to the single-agent case, the multi-agent decoupling coefficient exhibits an additional factor
of H due to the formulation of summation over all steps instead of maximum as in the multi-agent
Bellman Eluder dimension case. This formulation can offer advantages when the complexity of the
function class varies with time steps h.
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F.2 INTERPRETATION OF THEOREM 1

We now illustrate Theorem 1 by concrete examples. The first example is for the finite function classes.

Corollary 4 (Finite function classes with completeness). Let F be a finite function class satisfying
Assumptions 1, 2 and 3 with β = 2. Assume that the prior is uniform ph0 (f) = 1/|Fh|, and

|F| =
∏H

h=1 |Fh|. With η = 0.1 and λ =
√

T ln |F|
dc(F,MG,T ) , we have

EReg(T ) = O(
√
dc(F ,MG, T )T ln(|F|).

Note that it is straightforward to generalize this result to the infinite function classes by replacing
the cardinality |F| with its covering number N∞(F , ϵ) with an appropriate choice of ϵ. We then
illustrate Theorem 1 by considering the MGs with linear function approximation.

Corollary 5 (Linear MG). For the linear MG, if we assume that the prior is uniform, we have

κ(ϵ) = O(Hd ln(1/ϵ)). With η = 0.4
H2 and λ =

√
Tκ(H/T 2)

dH3(1+ln(2HT )) , we have

EReg(T ) = O(H2d
√
T ln(HT )).

Compared with Xie et al. (2020), our algorithm improves the regret bound for linear MGs by a
factor of

√
d. Compared to the recent works on MGs (Jin et al., 2021b; Huang et al., 2021), our

posterior sampling algorithm achieves comparable regret bound to that of algorithms based on the
OFU principle in the two-player zero-sum MG.

G PROOF OF THE VALUE-DECOMPOSITION LEMMA

Proof of Lemma 1. Let µ = µf and ν be an arbitrary policy taken by the min-player.

V ∗
1 (x

1)− V µ,ν
1 (x1)

=

H∑
h=1

Eµ,νVf,h(x
h)− rh(xh, ah, bh)− Vf,h+1(x

h+1) + V ∗
1 (x

1)− Vf,1(x
1)

=

H∑
h=1

Eµ,ν min
ν′

Dµ,ν′f(xh)− rh(xh, ah, bh)− Vf,h+1(x
h+1) + V ∗

1 (x
1)− Vf,1(x

1)

≤
H∑

h=1

Eµ,νDµ,νf
h(xh)− rh(xh, ah, bh)− Vf,h+1(x

h+1) + V ∗
1 (x

1)− Vf,1(x
1)

=

H∑
h=1

Eµ,νf
h(xh, ah, bh)− rh(xh, ah, bh)− Vf,h+1(x

h+1) + V ∗
1 (x

1)− Vf,1(x
1)

=

H∑
h=1

Eµ,νEh(fh, fh+1, ζ) + V ∗
1 (x

1)− Vf,1(x
1),

where the first equality comes from the value-decomposition Theorem Jiang et al. (2017) (can be
verified easily by telescope sum and V H+1 = 0); the second equality is because of the definition of
µ = µf,h(x) = argmax

µ∈∆A

minν∈∆B µ
⊤fh(x, ·, ·)ν; the inequality comes from the fact that µ = µf

and ν may not be argminν′ Dµ,ν′f(xh). This decomposition accounts for the use of an optimistic
prior in Algorithm 2.
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Proof of Lemma 2. Suppose that µ = µf is taken by the max-player and g is sampled from the
posterior by the booster agent. Let ν be given by ν = argminν′ V

µ
h (x) for all (x, h). Then, we have:

V µ,†
1 (x1)− V µ,ν

1 (x1)

= V µ
g,1(x

1)− V µ,ν
1 (x1) + V µt,†

1 (x1)− V µ
g,1(x

1)

=

H∑
h=1

Eµ,νDµ,νg(x
h)− rh(xh, ah, bh)− V µ

g,h+1(x
h+1) + V µ,†

1 (x1)− V µ
g,1(x

1)

=

H∑
h=1

Eµ,νg
h(xh, ah, bh)− rh(xh, ah, bh)− V µ

g,h+1(x
h+1) + V µ,†

1 (x1)− V µ
g,1(x

1)

=

H∑
h=1

Eµ,νEµ
h (g

h, gh+1, ζ) + V µ,†
1 (x1)− V µ

g,1(x
1).

H PROOF OF THE DECOUPLING COEFFICIENT BOUNDS

In this section, we provide proofs for the decoupling coefficient bounds. We need the following
lemma.

Lemma 18 (Elliptical Potential Lemma, Lemma 10 of Xie et al. (2020)). Suppose {ϕt}t≥0 is a
sequence in Rd satisfying ∥ϕt∥ ≤ 1. Let Λ0 ∈ Rd×d be a positive definite matrix, and Λt =

Λ0 +
∑t

i=1 ϕiϕ
⊤
i . If the smallest eigenvalues of Λ0 is lower bounded by 1, then

log

(
detΛt

detΛ0

)
≤
∑
i∈[t]

ϕ⊤i Λ
−1
j−1ϕi ≤ 2 log

(
detΛt

detΛ0

)
.

Proof of Proposition 1. We first note that the completeness assumption is satisfied in linear MG case
whose proof can be found in Huang et al. (2021). Now we consider two arbitrary θh, θh+1 whose
norms are bounded by H

√
d and f ∈ F . We also define a function g ∈ F s.t. gh = g(θh) and

gh+1 = g(θh+1). By Assumption 2, we can find some θh(f) ∈ Rd with
∥∥θh(f)∥∥ ≤ H

√
d s.t.

T µf

h (ϕ(x, a, b)⊤θh+1) = ϕ(x, a, b)⊤θh(f). Therefore, we have

Eµf

h (g;x, a, b) = ϕ(x, a, b)⊤(θh − θh(f)) = ϕ(x, a, b)⊤wh(f, g),

where wh(f, g) ∈ Rd satisfies
∥∥wh(f, g)

∥∥ ≤ 2H
√
d. We denote ϕhs = Eπs

[ϕ(xh, ah, bh)] and
Φh

t = λI +
∑t

s=1 ϕ(x
h, ah, bh)ϕ(xh, ah, bh)⊤ where λ ≥ 1 is a tuning parameter. Then, we have

Eπt

[
Eµft

h

(
gt;x

h
t , a

h
t , b

h
t

)]
− µ

t−1∑
s=1

Eπs

[
Eµft

h

(
gt;x

h
s , a

h
s

)2]
= wh (ft, gt)

⊤
ϕht − µwh (ft, gt)

⊤
t−1∑
s=1

Eπs

[
ϕ
(
xh, ah, bh

)
ϕ
(
xh, ah, bh

)⊤]
wh (ft, gt)

≤ wh (ft, gt)
⊤
ϕht − µwh (ft, gt)

⊤
Φh

t−1w
h (ft, gt) + 4µλdH2

≤ 1

4µ

(
ϕht
)⊤ (

Φh
t−1

)−1
ϕht + 4µλdH2

where the first inequality uses Jensen’s inequality and
∥∥wh(ft, gt)

∥∥ ≤ 2H
√
d and the second

inequality comes from the fact (a⊤b) ≤ (∥a∥Φh
t−1

∥b∥(Φh
t−1)

−1) ≤ 1
2 (∥a∥

2
Φh

t−1
+ ∥b∥2(Φh

t−1)
−1).
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Summing over t ∈ [T ] and h ∈ [H], we have

T∑
t=1

H∑
h=1

Eπt

[
Eµft

h

(
gt;x

h
t , a

h
t , b

h
t

)]
− µ

t−1∑
s=1

Eπs

[
Eµft

h

(
gt;x

h
s , a

h
s

)2]
≤

H∑
h=1

[
ln(det(Φh

T )− d ln(λ)

2µ
+ 4µλdH2T

]
≤ H(

d ln(λ+ T/d)− d ln(λ)

2µ
+ 4µλdH2T ),

where we use the Elliptical Potential lemma in the first inequality and the second inequality uses

ln det(Φh
T ) ≤ d ln

trace(Φh
T )

d
, and, trace(Φh

t ) ≤ λd+ T.

By setting λ = min{1, 1
µ2H2T }, we conclude the proof.

Proof of Proposition 2. We assume that c1 ≤ 1 ≤ c2. Otherwise, we can scale the feature maps and
the link function accordingly. By similar arguments with the completeness assumption as in the proof
of Proposition 1, we have

Eµf

h (g;x, a, b) = σ(ϕ(x, a, b)⊤θh)− σ(ϕ(x, a, b)⊤θh(f)).

By the Lipschitz property, we have

c1|ϕ(x, a, b)⊤w(f, g)| ≤ |Eµf

h (g;x, a, b)| ≤ c2|ϕ(x, a, b)⊤w(f, g)|,

for some w(f, g) ∈ Rd satisfying w(f, g) ≤ 2H
√
d. We denote ϕsh = Eπs

[ϕ(xh, ah, bh)] and
Φh

t = λI +
∑t

s=1 ϕ(x
h, ah, bh)ϕ(xh, ah, bh)⊤ where λ ≥ 1 is a tuning parameter. Then, we have

Eπt

[
Eµft

h

(
gt;x

h
t , a

h
t , b

h
t

)]
− µ

t−1∑
s=1

Eπs

[
Eµft

h

(
gt;x

h
s , a

h
s

)2]
≤ c2|wh (ft, gt)

⊤
ϕht | − µc21w

h (ft, gt)
⊤

t−1∑
s=1

Eπs

[
ϕ
(
xh, ah, bh

)
ϕ
(
xh, ah, bh

)⊤]
wh (ft, gt)

≤ c2|wh (ft, gt)
⊤
ϕht | − µc21w

h (ft, gt)
⊤
Φh

t−1w
h (ft, gt) + 4µc21λdH

2

≤ c22
4µc21

(
ϕht
)⊤ (

Φh
t−1

)−1
ϕht + 4µc21λdH

2.

Summing over t ∈ [T ] and h ∈ [H], we have

T∑
t=1

H∑
h=1

Eπt

[
Eµft

h

(
gt;x

h
t , a

h
t , b

h
t

)]
− µ

t−1∑
s=1

Eπs

[
Eµft

h

(
gt;x

h
s , a

h
s

)2]
≤

H∑
h=1

c22

[
ln(det(Φh

T )− d ln(λ)

2µc21
+ 4µλc21H

2dT

]
≤ Hc22(

d ln(λ+ T/d)− d ln(λ)

2µc21
+ 4µλc21H

2dT ).

Setting λ = min{1, 1
µ2c21H

2T
} concludes the proof.

In what follows, we prove the reduction of Bellman-Eluder dimension to the decoupling coefficient.
The proof is almost the same as that of Dann et al. (2021) with minor modification. We start with the
following lemma from Dann et al. (2021).
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Lemma 19. Let π1, · · · , πt−1 denote the measures over X ×A×B obtained by following the policy
induced by (fs, gs)

t−1
s=1 ∈ F × F at stage h and {d1, · · · , dM} be the set of unique measures in

decreasing order of occurrences and let (Ni)
M
i=1 be the number of times a measure appears in the

sequence. If the ϵ-BE dimension for the distribution set DF and the function classes:

{gh − T µf

h gh+1 : f, g ∈ F}.

is E and |Ex,a,b∼πtE
µft

h (gt;x, a, b)| > ϵ. Then, it holds that

t−1∑
s=1

Ex,a,b∼πs

[
Eµft

h (gt;x, a, b)
2
]
≥ wh

t

(
Ex,a,b∼πt

[
Eµft

h (gt;x, a, b)
])2

where wh
t =

{
Ni if πt = di ∧ i ∈ [E − 1]⌈∑M

i=E Ni

E

⌉
otherwise.

(25)

Proof of Proposition 3. Denote ϵht,s = Exh
s ,a

h
s ,b

h
s
Eµft

h (gt;x, a, b), the LHS is upper bounded by

T∑
t=1

H∑
h=1

ϵhtt ≤ EH + ϵTH +

T∑
t=E+1

H∑
h=1

ϵhttI
{
ϵhtt > ϵ

}
.

For each h ∈ [H], the RHS is bounded by

µ

T∑
t=1

t−1∑
s=1

ϵhts
2 +

2E(1 + ln(T ))

4µ
≥
√
2E(1 + ln(T ))

T∑
t=E+1

wh
t ϵ

h2

tt I
{
ϵhtt > ϵ

}

≥

√√√√2E(1 + ln(T ))∑T
t=E+1

1
wh

t

T∑
t=E+1

ϵhttI
{
ϵhtt > ϵ

}
,

where the last inequality is because√∑
t

1

wh
t

∑
t

wh
t ϵ

h2

tt I2
{
ϵhtt > ϵ

}
≥
√∑

t

ϵhttI
{
ϵhtt > ϵ

}
,

which is due to √∑
xiyi ≤

√∑
x2i
∑

y2i .

Every time a measure πt appears in theE−1 most common measures, one ofNi increases. Otherwise,∑
i≥E Ni increases by 1. Hence,

T∑
t=1

1

wh
t

≤
E−1∑
i=1

T∑
t=1

1

t
+

T∑
t=1

E

t
≤ 2E(1 + ln(T )).
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