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Abstract

Prompting a Large Language Model (LLM) to output Chain-of-Thought (CoT)
reasoning improves performance on complex problem-solving tasks. Moreover,
several popular approaches exist to “self-improve” the CoT reasoning abilities of
LLMs on tasks where supervised (question, answer) datasets are already available.
An emerging line of work explores whether self-improvement is possible with-
out these supervised datasets, instead utilizing the same large, unstructured text
corpora as used during pretraining. This would overcome the data availability bot-
tleneck present in current self-improvement methods, and open the door towards
compute-only scaling of language model reasoning ability. We investigate a funda-
mental question in this line of work: What constitutes a suitable reward function
for learning to reason during general language model pretraining? We empirically
demonstrate how different functions affect what reasoning is learnt and where rea-
soning is rewarded. Using these insights, we introduce a novel reward function
called Reasoning Advantage (RA) that facilitates self-improving CoT reasoning
on free-form question-answering (QA) data, where answers are unstructured and
difficult to verify. We also explore the optimization of RA on general unstructured
text using offline RL, and our analysis indicates that future work should inves-
tigate more powerful optimization algorithms, potentially moving towards more
online algorithms that better explore the space of CoT generations.

1 Introduction
Large Language Models (LLMs) have become increasingly effective at solving complex reasoning
tasks [Huang and Chang, 2022, Wei et al., 2023, Kojima et al., 2023, Havrilla et al., 2024a]. A
key driver of this success has been the discovery of Chain-of-Thought (CoT) reasoning [Wei et al.,
2023], whereby a model outputs a step-by-step “thought process” before arriving at a final answer.

While some CoT reasoning ability emerges naturally from pretraining on unstructured web-text data
[Fu et al., 2023], it is through further supervised finetuning (SFT) on curated question-answering
(QA) datasets [Saparov and He, 2023], as well as Reinforcement Learning from Human Feedback
(RLHF) [Ouyang et al., 2022], that CoT becomes such a powerful tool. Considerable effort is being
placed in curating large-scale (question, CoT, answer) datasets [Cobbe et al., 2021a, Saparov and He,
2023, Liu et al., 2023], often using an existing model to help generate this data [Zelikman et al., 2022,
Zhang et al., 2024]. However, curating sufficiently challenging datasets across diverse domains is
becoming increasing difficult and prohibitively expensive. For instance, a popular benchmark of
just 500 graduate-level science questions with CoT reasoning and answers cost over $120,000 and
required thousands of human expert hours [Rein et al., 2023].
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To address these limitations, an emerging line of work explores self-improving CoT reasoning ability
in a self-supervised setting—leveraging the large, unstructured datasets used for pretraining [Zelik-
man et al., 2024] instead of relying on curated QA or RLHF datasets. In this new setting, the LLM
learns to produce CoT reasoning for the task of next-token prediction: given n tokens from the pre-
training corpus, the model generates a CoT and receives a reward based on how well the CoT
helps predict the subsequent m tokens. This is an exciting prospect, as we have trillions of tokens
of unstructured text encompassing much of human knowledge. Therefore, learning to self-improve
CoT reasoning on pretraining scale data might overcome the data availability bottleneck in current
self-improvement methods, opening the door towards compute-only scaling of reasoning ability.

We investigate a fundamental problem in this emerging line of work: What constitutes a suitable
reward function for reasoning during general language model pretraining? We reveal critical
shortcomings in commonly used reward functions, including an inability to differentiate between
meaningful CoT reasoning and random sequences (what reasoning to reward), as well as a tendency
to incentivize reasoning at locations where predicting the subsequent tokens is trivial (where to
reward reasoning). We introduce a novel reward function called Reasoning Advantage (RA), an aug-
mentation of standard language modeling loss, and show that it addresses many of these limitations.

To facilitate more efficient study of self-improving CoT reasoning, we also introduce an open-ended
QA dataset called MMLU-FREE-FORM, where solutions are challenging to verify. We demonstrate
that RA is the only reward function which enables self-improvement of CoT reasoning on free-form
QA data, improving zero-shot transfer accuracy on GSM8K [Cobbe et al., 2021b] by nearly 7%,
compared to barely 0.5% when trained with other reward functions.

Using our Reasoning Advantage (RA) reward function, we conduct an initial experiment on self-
improving CoT reasoning on general unstructured text using OpenWebMath [Paster et al., 2023], a
collection of 14.7 billion tokens of maths-heavy text. We find that the offline RL algorithm employed
is not sufficiently powerful to escape the local optimum of extremely conservative CoT reasoning
that just summarizes previous information instead of trying to solve the problem. Future work should
investigate more powerful optimization algorithms, potentially moving towards online algorithms
that better explore the space of CoT generations. To facilitate future work, we will open-source all
of our code, which runs on academic compute.

2 Reward Functions for Self-Improving CoT Reasoning
Given n tokens (a prefix p) from a pretraining corpus, the model generates a CoT r and receives a
reward based on how well this CoT helps predict the subsequent m tokens (the suffix s). Previous
works have primarily explored two reward functions for self-improving CoT reasoning: loss and
accuracy. Here, we explore other potential reward functions and their characteristics from the per-
spective of facilitating self-improving CoT reasoning on unstructured web-text at pretraining scale.
See Appendix A for a formal definition of self-improving CoT reasoning as reinforcement learning.

In this work, we do not consider using LLM-as-judge to evaluate or verify CoTs since: (1) it may
rely on a stronger model, which is not self-improvement, and (2) while one could use the same
model for both generation and verification, this approach incurs too much computational overhead
to apply to pretraining scale data as it requires additional generations from the verifier. Thus, we
choose to focus on rewards based on the language modeling loss of the suffix (see Appendix C for
further discussion on why we investigate loss-based rewards specifically). In particular,

R(p, r, s) = logP (s|p, r) =
m∑
i=0

logP (si|p, r, s0:i) (1)

This family of reward functions requires only one forward pass, does not require an external strong
model, and allows the model to place weight over a distribution of valid answers.

We investigate two main augmentations over the basic loss-based reward function from Equation 1:
(a) clipping (aka clamping) the minimum value of the token-level log probabilities to some −ϵ such
that Rclipped(p, r, s) =

∑m
i=0 max [logP (si|p, r, s0:i),−ϵ], and (b) subtracting a baseline value.

In the main text of this paper, we focus on two main combinations of these augmentations (Ap-
pendix D.1 contains results for additional reward functions):

• Delta Loss: RDL = R(p, r, s)−R(p, “ ”, s), where we subtract the “Empty CoT” baseline.

• Reasoning Advantage (RA): RRA =
Rclipped(p,r,s)−Rclipped(p,“ ”,s)

Rclipped(p,“ ”,s) , which is clipped delta
loss normalized by the “Empty CoT” baseline.
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Figure 1: Reward function performance for self-improving CoT reasoning on MMLU-FREE-FORM.
Only RA facilitates generalization to the MMLU test set and zero-shot transfer to GSM8k. Different
reward functions yield different amounts of filtered data, which affects the number of training steps.
The values after the < sign are the reward thresholds used for filtering the CoTs (see Section 3.2).

3 Experiments
Our experiments aim to analyze the effectiveness of the reward functions introduced in Section 2.
Namely: loss, delta loss, and RA. In Section 3.1, we evaluate whether these reward functions can (1)
distinguish meaningful CoTs and (2) identify optimal locations to produce CoT reasoning. We find
that RA performs best in both cases. In Section 3.2, we evaluate whether the reward functions can
be used to self-improve CoT reasoning ability on free-form QA data. We find that only RA facili-
tates generalization. Appendix D.1 contains a discussion of results for additional reward functions,
beyond those introduced in Section 2.

3.1 Reward Functions for Selecting What & Where to Reason

Reward What Where
Function (Acc) (AUC)

RA 66.3 77.0
Delta Loss 58.3 64.4
Loss 44.6 39.4

Table 1: Reward function performance for
distinguishing CoT types (What) and iden-
tifying optimal CoT placement (Where).

What reasoning is rewarded: Here, we evaluate the
ability of different reward functions to distinguish be-
tween three categories of CoTs: correct, incorrect, and
randomly generated. First, we select 1,000 prefix-suffix
pairs from random locations in FineWeb, a pretrain-
ing corpus of unstructured web-text data [Penedo et al.,
2024]. Then, for each pair, we generate the three types
of CoT: correct, incorrect, and random. “Correct” CoTs
are generated using GPT-4o with post-rationalization—
by showing GPT-4o both the prefix and suffix, but in-
structing the model to generate a CoT without explicitly
repeating the suffix (similar to Zelikman et al. [2022]).
“Incorrect” CoTs are generated by GPT-4o without post-
rationalization—while these CoTs often exhibit sophisticated reasoning, they typically do not pre-
dict the exact suffix as well as the “correct” CoTs, which is enough for the purposes of this experi-
ment. Finally, “random” CoTs consist of strings of random words and serve as our baseline.

To evaluate how well a reward function distinguishes between these CoT types, we compute
the reward score for all CoTs—using Mistral-7B-Instruct [Jiang et al., 2023] to compute the log
probabilities—and partition them into thirds: the top third labeled as “correct,” the middle third as
“incorrect,” and the bottom third as “random.” An effective reward function should rank the CoTs in
the ideal order: correct > incorrect > random. The results in Table 1 demonstrate that RA performs
best. Moreover, Figure 2 reveals that standard loss struggles primarily in distinguishing between “in-
correct” and “random” CoTs. Interestingly, when we simplify to binary classification between only
“correct” and “incorrect” CoTs, non-clipping methods perform similar to clipping methods, which
suggests that the main advantage of clipping lies in distinguishing truly random reasoning.

Where reasoning is rewarded: Here, we investigate how different reward functions predict the
“most beneficial” location for CoT reasoning. Using 1,000 problems each from GSM8K [Cobbe
et al., 2021b], CSQA [Talmor et al., 2018], and MMLU [Hendrycks et al., 2020], we first format
each problem’s question, multiple choice options, and answer as a single text string. We then cre-
ate four (prefix, suffix) pairs per problem by splitting at different points: 1) mid-question, 2) after
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the question but before the multiple choice options, 3) after the multiple choice options (the ideal
location for CoT reasoning), and 4) mid-answer. This setup aims to mimic a key fact about unstruc-
tured pretraining text: not all locations are suitable for CoT reasoning. That is, reasoning may be
unhelpful if produced too early (insufficient context) or too late in a document.

To evaluate each reward function, we frame this as a binary classification task: identifying the
ideal location (after the multiple choice answers but before the solution) versus the three suboptimal
locations. Using reward as a classifier and computing the AUC for this classification task, we find
that RA performs best, followed by delta loss and standard loss. In particular, functions that use
a baseline consistently outperform those without, with clipping providing additional improvement.
Standard loss performs poorly, favoring locations late in the answer where suffix prediction becomes
trivial. Table 1 summarizes these results, with detailed results available in Appendix D.1.

3.2 Learning to Self-Improve CoT Reasoning on Free-Form QA Data
To investigate the ability of different reward functions to facilitate self-improving CoT during pre-
training, we create a new “free-form” QA dataset called MMLU-FREE-FORM by adapting the
popular MMLU dataset [Hendrycks et al., 2020] to be closer to the unstructured text setting. Specif-
ically, by removing its multiple-choice format and requiring models to generate full, unstructured
answers—which are hard to verify. We use the entire labeled free-form solution as the suffix when
computing rewards. This dataset provides a higher density of clear opportunities for CoT reason-
ing compared to typical pretraining corpora, since we know that reasoning is particularly beneficial
when predicting answers to questions. Moreover, prior works have shown that LLM reasoning
ability on MMLU can be improved with only few thousand labeled CoT examples. Thus, for the
purposes of our investigations, MMLU-FREE-FORM enables a more compute and time efficient
study of reward functions, acting as a stepping stone towards self-improving CoT reasoning on the
type of truly unstructured text seen during pretraining (i.e., OpenWebMath [Paster et al., 2023]).
Further discussion about MMLU-FREE-FORM can be found in Appendix D.2.

To self-improve CoT reasoning using MMLU-FREE-FORM as our dataset, we utilize a simple of-
fline RL method. First, we generate 16 CoTs for each question and compute the reward for each CoT
using the entire labeled free-form solution as the suffix. Then, we filter the CoTs with the highest
reward [Dong et al., 2023], finetune on MMLU-FREE-FORM containing these self-inserted CoTs,
and evaluate the trained model on a held-out test set. We test this pipeline using Mistral-7B-Base
[Jiang et al., 2023] and find that only RA facilitates generalization—both on the in-domain MMLU
test set (see Figure 1a) and on zero-shot transfer to GSM8k (see Figure 1b).

4 Challenges and Future Directions
To chart a course for future work, we present an exploratory experiment applying the offline RL
procedure from Section 3.2 to the general language modeling setting. Specifically, we use our
novel Reasoning Advantage (RA) reward function to self-improve CoT reasoning on OpenWebMath
[Paster et al., 2023], a pretraining corpus of unstructured web-text data (see Appendix D.3 for further
experiment details). However, this procedure fails to generalize when optimizing RA for more than
a few steps, and is also unable to match the performance of vanilla language modeling without any
self-inserted CoTs. Our analysis indicates that this method is not sufficiently powerful to escape the
local optimum of extremely conservative CoT reasoning that just summarizes previous information
instead of attempting to actually solve the problem. That is, since generating an incorrect CoT might
lower the reward score more than just summarizing, the model learns this conservative strategy to
minimize the risk of receiving a low reward.

To increase the diversity of explored CoTs, future work might use Quality-Diversity [Mouret and
Clune, 2015] or other evolutionary techniques [Fernando et al., 2023, Samvelyan et al., 2024], which
could generate more diverse CoTs. Better exploration may also be facilitated by using online RL,
but the only existing method in this direction generates a CoT at every token in a document [Ze-
likman et al., 2024], which is highly inefficient. We believe that the computational feasibility of
generating CoTs in large, offline batches and performing supervised finetuning is key to enabling
the self-improvement of CoT reasoning at the pretraining scale. To facilitate further research on
this important problem, we will open-source our offline RL code, which can be run on an academic
compute budget. Moreover, we will release MMLU-FREE-FORM, which serves as a middle ground
between the simple QA setting and general language modeling on unstructured text, for investigating
self-improving CoT reasoning.
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A Background

CoT Reasoning Given n prefix tokens p, performing CoT reasoning refers to an LLM M gener-
ating a sequence of reasoning tokens r before the m answer suffix tokens s. The goal of generating
CoT reasoning tokens before the final answer is to maximize PM(s|p, r), the probably of the an-
swer suffix tokens s conditioned on both the prefix p and the CoT reasoning tokens r. The (prefix,
suffix) pair can be any token sequence, ranging from question-answer pairs in mathematical datasets
to arbitrarily split sentences from an unstructured text corpus.

Traditionally, CoT reasoning has been elicited by pre-pending few-shot examples of (question, CoT,
answer) to the prefix [Wei et al., 2023]. This approach relies the pattern-completion tendencies of
LLMs to continue generating CoTs for subsequent outputs. Alternatively, it has also become popular
to elicit CoT reasoning by appending prompts like “Let’s think step by step.” to the prefix, especially
for instruction-tuned models [Kojima et al., 2023].

Self-Improving CoT Reasoning as Reinforcement Learning We consider self-improvement to
refer to any process where an LLM is finetuned on self-generated data, leading to performance gains
without human intervention or assistance from a stronger model. This process can be framed as a
Reinforcement Learning (RL) problem. In RL, an agent interacts with an environment by taking
an action a ∈ A in a state s ∈ S to maximize cumulative reward. The agent receives a reward
Rt = R(st, at) after each action at and aims to learn a policy π(a|s) that maximizes the expected
cumulative discounted reward Gt =

∑∞
k=0 γ

kRt+k, where γ ∈ [0, 1] is the discount factor.

In the context of CoT generation, each token can be viewed as an action at, with the current string of
generated tokens representing the state st so far. We focus on a sparse reward setting where rewards
are zero until CoT generation is complete, and with a discount factor γ = 1. The reward function
maps the prefix p, CoT reasoning tokens r, and answer suffix s to a real number R(p, r, s) ∈ R,
with higher rewards for CoTs that better predict the suffix. As long as this reward function does
not require external intervention from humans or more powerful models, we consider optimizing it
through RL methods as self-improving CoT reasoning.

Self-Improving CoT Reasoning Using Supervised Datasets When a supervised dataset of (ques-
tion, answer) pairs is available, accuracy can serve as a reward function:

Racc(p, r, s) =

{
1 if argmaxs′ PM(s′|p, r) = s

0 otherwise
(2)

In this case, we can sample multiple CoTs and finetune on those that lead to correct answers [Dong
et al., 2023, Zelikman et al., 2022]. Iterating this process yields increasingly high-quality CoT gen-
eration, and this iterative self-improvement is equivalent to online reinforcement learning [Zelikman
et al., 2022]. There are also more complex methods, such as Process Reward Models (PRMs), which
provide dense rewards for each step in a CoT and address credit assignment challenges [Ma et al.,
2023, Wang et al., 2023, Lightman et al., 2023, Havrilla et al., 2024a].

Self-improving CoT Reasoning on General, Unstructured Text This setting explores the possi-
bility of self-improving CoT reasoning given only an unstructured corpus of text, without access to
a curated dataset of (question, CoT, answer) or (question, answer) pairs. In this setting, the model
generates and inserts CoTs at various points in a sequence of tokens. For example, at various points
in a web-document that shows how to apply the quadratic formula.

A key challenge in this setting is evaluating the performance of CoT reasoning tokens that are
inserted into general, unstructured text. The exact-match accuracy-based reward Racc is ineffec-
tive here, as it would almost always be zero. Instead, standard language modeling loss—the log-
likelihood of the suffix conditioned on the prefix and CoT—-serves as a more natural starting point
for a reward function:

Rloss(p, r, s) = logPM(s|p, r) (3)

The ultimate goal of our work is to advance the field towards this setting, enabling the self-
improvement of CoT reasoning on general, unstructured text—without access to supervised datasets.
In this paper, we specifically focus on developing and analyzing reward functions to address the
unique challenges posed by this unstructured environment.
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B Related work
LLM Reasoning Various works have looked at improving the reasoning capabilities of LLMs.
Rajani et al. [2019] improve the commonsense reasoning ability of language models by training on
human explanations for commonsense problems. Nye et al. [2021] generate tokens in a “scratchpad”
for intermediate computations when solving multi-step reasoning problems. On difficult algorithmic
tasks, Pfau et al. [2024] show that LLMs can even be trained to leverage meaningless filler tokens
under dense supervision, in place of legible CoTs. Further, theoretical analyses by Merrill and
Sabharwal [2023] and Feng et al. [2024] show that CoT improves the expressivity of Transformers
[Vaswani et al., 2017].

LLM Self-improvement Using Supervised Datasets Iterated learning approaches involve LLMs
generating new outputs and using “successful” ones to improve generation quality [Anthony et al.,
2017, Vani et al., 2021, Polu et al., 2022]. Such methods have been applied to LLMs [Zelikman
et al., 2022, Huang et al., 2022, Chen et al., 2024]. However, much of the research on LLM
self-improvement has been limited to question-answer (QA) domains where accuracy is an ap-
propriate success measure, such as multiple-choice opions or simple numeric answers. This lim-
itation is evident in the policy gradient objective approximated by STaR [Zelikman et al., 2022]:
∇J(M,X, Y ) =

∑
i Er̂i,ŷi∼pM (·|xi)[1(ŷi = yi) · ∇ log pM (ŷi, r̂i|xi)]. It makes use of an indi-

cator function with respect to ground truth labels (i.e., exact-match accuracy). Clearly, this breaks
down in settings where ground truth labels are not available, such as the open-ended or “free-form”
QA setting as well as the general language modeling setting. Havrilla et al. [2024b] show that
Expert Iteration [Anthony et al., 2017], a self-improvement method based on iterative Supervised
Fine-Tuning (SFT), outperforms RL in their evaluations. Building on prior work, the offline RL
algorithm employed in our work is similar to RAFT [Dong et al., 2023], which also uses iterative
SFT.

Process Reward Models (PRMs) [Ma et al., 2023, Wang et al., 2023, Lightman et al., 2023, Havrilla
et al., 2024a] have been used to enhance reasoning using RL by rewarding individual problem-
solving steps in a CoT. However, PRM training is computationally expensive, usually involving
backtracking and resampling from specific points in the CoT. Moreover, the points from which one
resamples are usually determined by hard-coded heuristics such as new line breaks.

Self-Supervised LLM Self-improvement Quiet-STaR [Zelikman et al., 2024] looks to self-
improve reasoning during general language modeling on unstructured text. Zelikman et al. [2024]
generate a CoT at every token in an unstructured text document, using the negative cross-entropy
loss on the suffix tokens as a reward. They employ REINFORCE [Williams, 1992] to optimize the
loss of the suffix s given a prefix p and a reasoning trace r, with a baseline for variance reduction.
Importantly, performing CoT reasoning at every token is highly computationally expensive, making
it difficult to use for pretraining-scale datasets and also limiting the length of CoT sequences that
can be learnt (the reasoning learnt in Quiet-STaR is quite short and simple). Regardless, Quiet-STaR
provides key insights into how to optimize for reward on general, unstructured text—a very difficult
problem. Our work aims to take a step back and investigate what reward we should be optimizing
for in the first place, and whether we can take steps towards determining where is the best place to
produce CoT reasoning (see experiments in Section 3).

C Important Criteria for Effective Reward Functions
There are several key criteria to consider when designing a reward function for self-improving CoT
reasoning on unstructured text. Primarily, it should reward high-quality reasoning over CoTs con-
taining logical errors or simply random characters. As shown in Section 3.1, this is not always the
case. Moreover, for the purposes of self-improving CoT reasoning, the reward function must not de-
pend on an stronger source of intelligence (i.e., using a more powerful LLM to verify the correctness
of its CoT). Further, for reasonable use on pretraining scale datasets, evaluating the function should
be fast and ideally parallelizable—requiring a minimal number of model forward passes.

Importantly, accuracy is a challenging metric to use on unstructured or free-form text, since answers
often impossible to verify using exact-match. In these cases, it is possible to use an LLM-as-judge
to predict whether two free-form answers match. However, as discussed in Section 2, using an LLM-
as-judge either requires a stronger model (which is not self-improvement) or it requires using the

9



same model to generate a verification output for every generation (which is highly inefficient for
pretraining-scale data). Thus, in this work, we investigate a family of loss-based reward functions.

D Additional Experiment Details, Results, and Visualizations
To compute the log probabilities for all reward functions, we use a Mistral-7B-Instruct [Jiang et al.,
2023] model that has been finetuned on a small set of 1,000 GPT-4 generated CoTs, filtered for
correctness (by providing the model with the correct answer and asking whether it corresponds).
This finetuning allows us to start from an initial model that is familiar with the format:

### Question: <question> ### Thought <reasoning> ### Answer: <response>.

D.0.1 Additional Visualizations for What & Where to Reason

Figure 2 and Figure 3 provide additional visualization for the What and Where experimental results
from Section 3.1, respectively.
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Figure 2: (What to reward) Distribution of reward scores across different CoT types using standard
loss (left) and RA (right) reward functions. Each histogram shows the reward distribution for three
categories: "correct" post-rationalized CoTs (blue), "incorrect" non-post-rationalized CoTs (orange),
and "random" token CoTs (green). Notice that RA is better able to differentiate between incorrect
and random CoTs. Moreover, the RA scores are normalized to the range [-1, 1], which may facilitate
better learning. See Section 3.1 for more details.
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Figure 3: (Where to reward) Distribution of reward scores for CoTs inserted at different locations
using standard loss (left) and RA (right) reward functions. Each histogram shows the reward distribu-
tion for four insertion points: halfway through question (blue), after question before multiple-choice
options (orange), after multiple-choice options before answer (green), and halfway through answer
(red). As mentioned in Section 3.1, we assume that "after multiple-choice options before answer"
(green) is the optimal location to generate CoT reasoning. RA successfully scores these CoTs higher,
while standard loss does not. Particularly, standard loss fails to prevent halfway-through-answer
CoTs from receiving high rewards.

D.1 What & Where to Reason Results for Additional Reward Functions
Table 2 and Table 3 show full results for additional combinations of the augmentations described
in Section 2. That is, for the entire family of loss-based reward functions. Moreover, they include
results for the "empty CoT" baseline as well as two new types of baselines: "random CoT" and
"mean loss". So, the three baselines are:

1. Empty CoT: R(p, “ ”, s) where the CoT is an empty string.
2. Mean loss: 1

n

∑n
i=1 R(p, ri, s), where ri is the ith generated CoT at this location.

3. Random CoT: R(p, rrandom, s), where rrandom is a sequence of random tokens.
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We explore incorporating these baselines both with normalization (R − B)/B and without normal-
ization R−B, where R is the reward score and B is the baseline value.

In Tables 2 and 3, RA outperforms standard loss and delta loss—as in the main text. However, it’s
worth mentioning that there are three combinations of augmentations that perform better than RA in
Table 2 (What to reward), while performing much worse than RA in Table 3 (Where to reward). In
the main text of this work, we choose to focus mainly on standard loss, delta loss, and RA since delta
loss shows how the simple change of adding an empty CoT baseline improves results over standard
loss, and RA shows the added effectiveness of clipping and normalization.

Name Baseline Clipping Normalisation Mean q0.025 q0.975 Rank

Loss none none none 44.6% 44.0% 45.4% 9
- empty CoT clipped none 67.2% 65.7% 68.3% 3
RA empty CoT clipped yes 66.3% 64.5% 67.8% 4
Delta Loss empty CoT none none 58.3% 57.8% 58.9% 8
- empty CoT none yes 58.8% 58.1% 59.8% 7
- random CoT clipped none 80.4% 79.7% 81.4% 1
- random CoT clipped yes 78.4% 77.8% 79.0% 2
- random CoT none none 60.9% 60.1% 62.7% 6
- random CoT none yes 60.9% 59.2% 63.1% 5
- mean loss clipped none 30.8% 30.1% 31.7% 10
- mean loss clipped yes 30.7% 29.9% 31.3% 11
- mean loss none none 29.2% 28.7% 29.8% 13
- mean loss none yes 30.7% 30.0% 31.7% 11

Table 2: Full results for What to reward experiment, showing all combinations of augmentations to
the basic loss-based reward in Equation 1.

Name Baseline Clipping Normalisation Mean q0.025 q0.975 Rank

Loss none none none 39.4% 37.7% 40.8% 6
- empty CoT clipped none 55.9% 52.5% 59.9% 4
RA empty CoT clipped yes 77.0% 75.3% 79.0% 1
Delta Loss empty CoT none none 64.4% 62.7% 67.0% 3
- empty CoT none yes 73.0% 71.9% 74.3% 2
- random CoT clipped none 29.8% 28.2% 30.6% 9
- random CoT clipped yes 40.8% 38.9% 43.4% 5
- random CoT none none 27.9% 26.7% 28.8% 11
- random CoT none yes 27.3% 25.8% 28.6% 13
- mean loss clipped none 27.7% 25.8% 29.2% 12
- mean loss clipped yes 33.4% 32.5% 35.4% 7
- mean loss none none 28.3% 26.5% 30.0% 10
- mean loss none yes 32.1% 30.8% 33.4% 8

Table 3: Full results for Where to reward experiment, showing all combinations of augmentations to
the basic loss-based reward in Equation 1.

D.2 Self-Improving CoT Reasoning on MMLU-FREE-FORM

As discussed in Section 3.2, self-improving CoT reasoning on MMLU-FREE-FORM is a stepping
stone towards self-improving CoT reasoning on truly unstructured web-text data like OpenWebMath
[Paster et al., 2023]. MMLU-FREE-FORM is a modified version of MMLU [Hendrycks et al., 2021],
created by simply removing the multiple-choice options from each questions so that answers can be
expressed in multiple different and equally valid ways (i.e., "Henry VIII had 6 wives" vs "In total
there were 6 different woman who were married to Henry the Eighth"). Note that some problems
become almost impossibly difficult to answer ("Which of the following is the correct method of
multiple 32 x 18?"), as is the case with many next-token prediction problems in general unstructured
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Figure 4: Example from MMLU-FREE-FORM, our modified version of MMLU [Hendrycks et al.,
2020] designed to study improving CoT reasoning on unstructured, open-ended text. By removing
multiple-choice options, answers become free-form so that they can can be expressed in multiple
different and equally valid ways—this invalidates the use of accuracy without an external verifier.
The left-hand side is the example from MMLU-FREE-FORM and the right-hand side is the original
example from MMLU.

Figure 5: Performance breakdown on MMLU test set after self-improving CoT reasoning on
MMLU-FREE-FORM. Results are shown for different question types. RA has better performance
on reasoning-style questions compared to recall-style questions. Left: Ensembled cross-entropy
loss (lower is better). Right: Correct answer probability (higher is better). See Section 3.2 for full
experiment and method details.

text. MMLU-FREE-FORM offers a higher density of locations that afford useful CoT reasoning,
making it particularly suitable for research on self-improving CoT reasoning using academic-scale
computing resources. See Figure 4 for an example datapoint from MMLU-FREE-FORM.

See Figure 5 for a more complete breakdown of the results on the MMLU test set after self-
improving CoT reasoning on MMLU-FREE-FORM using the method outlined in Section 3.2.
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D.3 Self-Improving CoT Reasoning on OpenWebMath

In Section 4, we explore optimizing for RA using the unstructured OpenWebMath dataset [Paster
et al., 2023]. Here, we provide additional experimental details and results.

Experimental Setup We first finetune Mistral-7B-Instruct [Jiang et al., 2023] on a small set of
CoTs to learn the "[THOUGHT]...[/THOUGHT]" syntax. Then, we randomly sample 50,000 (prefix,
suffix) pairs from OpenWebMath and generate CoTs for each location. From this pool of generated
CoTs, we create three variants of an augmented OpenWebMath dataset by selecting 3,200 CoTs
using different filtering methods:

• Random selection ("All Thoughts" in Figure 6)

• Best loss scores ("Loss Filtered Thoughts" in Figure 6)

• Best RA scores ("RA Filtered Thoughts" in Figure 6)

Additional Results Throughout training, we evaluate each model’s CoT reasoning ability on a
holdout set of OpenWebMath documents using the following procedure. At each checkpoint, we
identify locations where "[THOUGHT]" is predicted as the most likely next token, generate CoTs at
these points, and measure three metrics on the holdout documents (excluding CoT tokens but using
them as context): standard loss, delta loss, and RA. Figure 6 show three plots—each measuring
one of these metrics at various checkpoints throughout training. Notice that each line represents an
entirely different model trained on differently filtered CoTs.
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Figure 6: Standard loss, delta loss, and RA on the holdout documents measured at different train-
ing checkpoints (see Appendix D.3 for details). Each line represents an entirely different model
trained on differently filtered CoTs. The filtering strategies are: random selection ("All Thoughts"),
loss-based ("Loss Filtered Thoughts"), RA-based ("RA Filtered Thoughts"), and a "No Thoughts
Control" baseline (trained on standard OpenWebMath documents without any self-inserted CoTs).

E Examples of Conservative Chain-of-Thought

As discussed in Section 4, our offline RL procedure applied to the unstructured OpenWebMath
dataset [Paster et al., 2023] seems to converge to a local optimum where the model generates overly
conservative CoT reasoning, merely restating or summarizing information rather than attempting
actual problem-solving. Below are some examples of this behavior. Notice that the model knows
about the “prefix” and “completion” from the prompts it received.

GSM8K Example:

Q: Richard lives in an apartment building with 15 floors. Each floor
contains 8 units, and 3/4 of the building is occupied. What’s the
total number of unoccupied units In the building? [THOUGHT] The prefix
provides information about an apartment building with 15 floors, each
floor containing 8 units, and 3/4 of the building occupied. The
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completion likely provides the total number of unoccupied units in the
building, based on the given information. [/THOUGHT]

A: 30

OpenWebMath Example 1:

In this article, by using norms($T$ and $C$), we present the concept of
intuitionistic fuzzy implicative ideals, intuitionistic fuzzy closed
implicative ideals and intuitionistic fuzzy commutative ideals of
$BCI$-algebras. Some interesting results of them are given.
Characterisations of implicative ideals, closed implicative ideals and
commutative ideals of $BCI$-algebras by using them are explored. By
using intersections, direct products and homomorphisms, some
interesting results are obtained [THOUGHT] Consider the prefix, which
introduces the concept of intuitionistic fuzzy implicative ideals in
$BCI$-algebras. The completion likely provides a definition or
description of these ideals, along with their properties and
applications. [/THOUGHT] .

OpenWebMath Example 2:

# Chapter 8 - Polynomials and Factoring - Chapter Review - 8-3 and 8-4
Multiplying Binomials: 31

$9r^{2}-12r+4 [THOUGHT] The prefix provides a list of equations, each with
a variable and a coefficient. The completion likely provides the
solution to each equation, using the variable and coefficient to
determine the value of the equation. The completion may also provide a
step-by-step explanation [/THOUGHT] $

#### Work Step by Step

Simplify and write in standard form $(3r-2)^{2}$ Rewrite as:
$(3r-2)(3r-2)$ Foil $9r^{2}-6r-6r+4$ Combine like terms $9r^{2}-12r+4$

After you claim an answer you’ll have 24 hours to send in a draft. An
editor will review the submission and either publish your submission
or provide feedback.

F Societal Impact

While our work is primarily analytical and does not introduce new models, the broader direction of
self-improving CoT reasoning on large-scale unstructured text datasets could significantly enhance
LLMs’ problem-solving capabilities—if successful. Such advances would amplify both the benefits
and risks associated with current language models, warranting continued attention from the research
community on ensuring responsible development.
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