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Abstract

Code Large Language Models (CodeLLMs)001
have demonstrated impressive proficiency in002
code completion tasks. However, they often003
fall short of fully understanding the extensive004
context of a project repository, such as the in-005
tricacies of relevant files and class hierarchies,006
which can result in less precise completions. To007
overcome these limitations, we present REPO-008
HYPER, a multifaceted framework designed to009
address the complex challenges associated with010
repository-level code completion. Central to011
REPOHYPER is the Repo-level Semantic Graph012
(RSG), a novel semantic graph structure that013
encapsulates the vast context of code reposi-014
tories. Furthermore, REPOHYPER leverages015
Expand and Refine retrieval method, including016
a graph expansion and a link prediction algo-017
rithm applied to the RSG, enabling the effec-018
tive retrieval and prioritization of relevant code019
snippets. Our evaluations show that REPOHY-020
PER markedly outperforms existing techniques021
in repository-level code completion, showcas-022
ing enhanced accuracy across various datasets023
when compared to several strong baselines. Our024
implementation is published at. 1025

1 Introduction026

The advent of AI-assisted code completion tools,027

such as GitHub Copilot, marks a significant mile-028

stone in software development. These tools, while029

adept at interpreting the immediate context of030

the code being written, often do not fully exploit031

the broader context available within the entire032

code repository. This oversight results in sugges-033

tions that might not be optimally aligned with the034

project’s architecture or intended functionality, as035

these tools tend to overlook the rich information036

embedded in related files, class hierarchies, depen-037

dencies, and more.038

1https://anonymous.4open.science/r/RepoHyper-
3836/README.md

# ... (imports omitted for brevity)
from utils.sent_utils import get_similarity_metric
from invert.models import MultiLabelInversionModel, 
MultiSetInversionModel

def optimization_inversion():
 ...
 if FLAGS.low_layer_idx == 0:
  encoded = mean_pool(...)
 else:
  encoded = encode(...)
 targets = ...
 loss = get_similarity_metric(encoded, targets, 
FLAGS.metric, rtn_loss=True)

class MultiLabelInversionModel(object):
 def __init__(...):
 ... 
 if init_word_emb is not None:

 self.embedding = ...
else:
 self.embedding = None

RepoHyper

Similar-based

Inversion_bert.py

def optimization_inversion():
 ... 
 if FLAGS.low_layer_idx == 0:
  ...
 else:
  ...
 loss = get_similarity_metric

Inversion_albert.py

def get_similarity_metric(x, y, metric, rtn_loss=False):
 if metric == 'cosine’:
  x = tf.nn.l2_normalize(x, axis=-1)
 ...
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Figure 1: Illustration of graph-based semantic search
versus similarity-based search. The orange block in-
dicates the ground-truth line that needs to complete
to call the function get_similarity_metric. Similarity-
based methods mistakenly focus on MultiLabelInver-
sionModel class due to its similarity in form with current
in-file context, leading to incorrect completions. Con-
versely, REPOHYPER successfully identifies the correct
context via first identify the most similar code snippet
in the codebase then expand and link.

To overcome these shortcomings, a direct but 039

complex solution involves enhancing the context 040

length of language models by applying efficient 041

attention techniques (Dao et al., 2022; Dao, 2023; 042

Press et al., 2021; Chen et al., 2023). Nonetheless, 043

increasing the context length significantly raises 044

costs and is not feasible indefinitely, especially 045

with respect to the voluminous number of files in 046

a given repository. Hence, there is a crucial need 047

for more refined strategies that accurately identify 048

relevant contexts rather than indiscriminately ana- 049
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lyzing every file within a repository. In response to050

this challenge, the concept of repository-level code051

completion has gained traction. It aims to incorpo-052

rate the full context of a project, including inter-file053

relationships, imported modules, and the overarch-054

ing project structure (Liu et al., 2023b; Liao et al.,055

2023; Shrivastava et al., 2023a; Agrawal et al.,056

2023; Shrivastava et al., 2023b). These methodolo-057

gies generally employ a similarity-based approach058

to retrieve contexts for completing a given code059

snippet, drawing either from raw source code or a060

pre-constructed database with essential metadata.061

However, this strategy exhibits significant limita-062

tions. It often fails to consider that diverse con-063

texts within the current repository, not necessar-064

ily involving similar code, can provide valuable065

insights for code completion. This includes the066

intricate network of dependencies, shared utility067

functions, inter-module method calls, class hierar-068

chies, inter-class dependencies, and encapsulation069

patterns—all of which are fundamental to program070

semantics.071

To address these shortcomings, we introduce072

REPOHYPER, a novel repository-level code com-073

pletion approach that considers global, repository-074

level contexts including not only similarity code075

but also program-semantic related contextual infor-076

mation within the current repository. Specifically,077

REPOHYPER incorporates three following compo-078

nents: (1) Repo-level Semantic Graph (RSG),079

which is a graph-structure designed to encapsulate080

the core elements of a repository’s global context081

and their dependencies pertaining to code com-082

pletion, serve as a reliable knowledge source to083

retrieve accurate contexts instead of raw codebase;084

(2) Expand and Refine retrieval method which085

consists of two steps: (2.1) Search-then-Expand086

Strategies,which broaden the exploration of con-087

texts by identifying semantically similar ones and088

then expanding the search to include contexts se-089

mantically linked, utilizing the RSG for intelligent090

navigation and (2.2) Link Predictor which is a091

mechanism that refines the broad set of contexts092

obtained from the Search-then-Expand Strategies093

and prioritizes them in a smaller, highly relevant094

subset for code completion. This is accomplished095

by formulating the re-ranking problem as a link096

prediction within the RSG, thereby reducing dis-097

tractions for the LLM.098

We conduct comprehensive evaluations of RE-099

POHYPER on both context retrieval (CR) and100

end-to-end code completion tasks (EECC) us-101

ing the RepoBench benchmark (Liu et al., 2023a), 102

demonstrating significant improvements over exist- 103

ing state-of-the-art methods. In CR, REPOHYPER 104

outperforms similarity-based approaches by an av- 105

erage of 49% in retrieval accuracy, utilizing the 106

same encoder (Wang et al., 2023; Guo et al., 2022). 107

For EECC, our method surpasses RepoCoder and 108

other RepoBench baselines, achieving an improve- 109

ment of +4.1 in Exact Match (EM) and +5.6 in 110

CodeBLEU scores. 111

To summarize, our main contributions are: 112

1. We introduce REPOHYPER, a novel framework 113

featuring three novel modules designed to ad- 114

dress the multifaceted challenges of repository- 115

level end-to-end code completion. 116

2. We develop the RSG, a novel graph representa- 117

tion that captures the global context of a repos- 118

itory, expanding to include non-similar but yet 119

relevant contexts for repo-level code comple- 120

tion. This innovation significantly improves the 121

accuracy and relevance of context retrieval, sur- 122

passing conventional methods. 123

3. We implement an Expand and Refine retrieval 124

method via Search-then-Expand Strategies 125

and Link Prediction algorithm within the RSG, 126

optimizing the retrieval of the most relevant and 127

program-semantic related contexts. 128

4. We perform extensive evaluation of REPOHY- 129

PER in both repository-level code retrieval and 130

code completion tasks demonstrates a signifi- 131

cant improvement over the state-of-the-art ap- 132

proaches. Through a series of analytical and 133

ablation studies, we confirm the vital role of 134

each component of REPOHYPER. 135

2 Related Work 136

2.1 Code LLMs for code generation & 137

understanding 138

Recent research has introduced a plethora of Large 139

Language Models (LLMs) tailored for code-related 140

tasks (Bui et al., 2023; Chowdhery et al., 2023; 141

Chen et al., 2021a; Austin et al., 2021; Hendrycks 142

et al., 2021; Nijkamp et al., 2023b,a; Zheng et al., 143

2023; Wang et al., 2023; Bui and Jiang, 2018; Jaya- 144

sundara et al., 2019; Bui et al., 2023; Guo et al., 145

2024; Li et al., 2023; Roziere et al., 2023), aim- 146

ing to enhance code understanding and genera- 147

tion. These models are categorized into closed- 148

source and open-source variants. Initially, closed- 149
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source models like Codex (Chen et al., 2021a),150

Code-Davinci (Chen et al., 2021a), and PaLM-151

Coder (Chowdhery et al., 2023) demonstrated ex-152

ceptional performance on well-known code com-153

pletion benchmarks, including HumanEval (Chen154

et al., 2021a), MBPP (Austin et al., 2021), and155

APPS (Hendrycks et al., 2021). Subsequently,156

the emergence of open-source models such as157

the CodeGen series (Nijkamp et al., 2023b,a),158

CodeT5 (Wang et al., 2021a), CodeT5+ (Wang159

et al., 2023), CodeGeeX (Zheng et al., 2023),160

StarCoder (Li et al., 2023), Wizard Coder (Luo161

et al., 2023), CodeLlama (Roziere et al., 2023),162

and DeepSeek-Coder (Guo et al., 2024) began to163

rival the closed-source models in terms of bench-164

mark performance. Despite their purported efficacy165

across a broad spectrum of code intelligence tasks,166

code generation and completion emerge as their167

most notable and widely utilized applications.168

2.2 Repository-level Code Completion169

Repository-level code completion has seen notable170

advancements through works like RLPG (Wang171

et al., 2021b), CoCoMIC (Ding et al., 2022), Re-172

poCoder (Liu et al., 2023b), CodePlan (Bairi et al.,173

2023) and A3-Codegen (Liao et al., 2023). These174

studies highlight the critical role of leveraging175

both within-file and cross-file contexts to improve176

code completion accuracy. Conversely, RepoFu-177

sion (Shrivastava et al., 2023a), RepoPrompts (Shri-178

vastava et al., 2023b), and MGD (Agrawal et al.,179

2023) propose methodologies for effectively in-180

tegrating these contexts, assuming their availabil-181

ity from external sources. RepoBench (Liu et al.,182

2023a) and CrossCodeEval (Ding et al., 2023) em-183

phasize the need for end-to-end benchmarks de-184

signed to evaluate code completion systems within185

the broader, repository-level contexts. Furthermore,186

CodeAgent (Zhang et al., 2024) incorporates doc-187

umentation, contexts, runtime environments, and188

a pipeline for interacting with repositories through189

multi-agent systems.190

3 Methodology191

Figure 2 illustrates the overall architecture of our192

approach, REPOHYPER. Given an existing, in-193

complete code snippet Q, we first encode it into194

a semantic vector using an encoder function. Our195

objective is to retrieve relevant semantic contexts196

T from the repository R. Consequently, these197

retrieved contexts are subsequently utilized by a198

Large Language Model (LLM) to generate the final199

code prediction: 200

C = LLM(Q,T ). 201

We present a Repo-level Semantic Graph (RSG) 202

for global context representation (Section 3.1) and 203

a Expand and Refine retrieval algorithm to re-rank 204

and select relevant snippets from RSG. This in- 205

cludes two key steps: Search-then-Expand which 206

tries to find the most similar and program-semantic 207

related contexts, and Re-ranking as Link Predic- 208

tion which aims to refine the contexts set found by 209

the prior step. (Section 3.2 and Section 3.3). 210

3.1 Repo-level Semantic Graph (RSG): 211

Representation for Global Contexts 212

We denotes Repo-level Semantic Graph (RSG) as 213

G = (V,E), where V denotes a set of nodes and E 214

denotes a set of relations, aims to capture the fun- 215

damental units of a project’s global context and the 216

intricate relationships among them. We consider 217

(1) function/method and (2) class to be fundamen- 218

tal units due to their crucial role in program struc- 219

ture. Each node contains the name, parameters, 220

and body of the corresponding function/method. 221

This allows for precise context access and clear 222

separation of function calls and class-method re- 223

lationships, which is crucial for repository-level 224

code completion (Shrivastava et al., 2022). This 225

also ensures precise context segmentation, elimi- 226

nating the need for manual chunking and size tun- 227

ing. After extracting functions and classes, the 228

remaining file content, such as import statements 229

and non-functional code, is encapsulated in a (3) 230

Script node. 231

The nodes in an RSG are interconnected based 232

on their types and relations, which are categorized 233

as follows: (1) Import Relations: These relations 234

(Imports and Imported By) exist between script 235

nodes and the imported modules identified from 236

the script’s import statements. This excludes exter- 237

nal modules not within the project’s scope; (2) In- 238

voke Relations: These relations (Caller and Callee) 239

exist between functions (or methods) when one 240

node invokes another; (3) Ownership Relations: 241

These relations (Owns and Owned By) exist be- 242

tween methods and the classes that contain them; 243

(4) Encapsulate Relations: These relations (En- 244

close and Enclosed By) exist between script nodes 245

and other nodes that have code snippets contained 246

within the file represented by the script node; and 247

(5) Class Hierarchy Relations: These relations (In- 248

herits and Inherited By) exist between classes. 249
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from array_handler import 
ArrHandler
from utils import convert, 
add_arrays

class TensorHandler(
   ArrHandler): 
 def __init__(self, config):
  super().__init__(config)
  self.config = config

 def tensor_add(self, 
  tensor_1, tensor_2):
  array_1 = convert(tensor_1)
  array_2 = convert(tensor_2)
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Figure 2: Overall Architecture of RepoHyper. Here we use K = 1.

While our implementation is for Python, RSG250

can be adapted for using in other high-level pro-251

gramming languages, e.g., Java or C++. This adap-252

tation involves utilizing different program elements253

as context units, and their relations in an RSG.254

3.2 Search-then-Expand Strategies255

Our methodology employs a search-then-expand256

approach to identify the most suitable file for the257

decoding process within a repository context. We258

aim to broaden the search space beyond similarity-259

based candidates to encompass more relevant files,260

as suggested by Shrivastava et al. (2022); Liu et al.261

(2023b,a). These studies indicate that files with262

similar imports, names, or code snippets are typ-263

ically the correct contexts for retrieval, and that264

semantic search using k-Nearest Neighbor (kNN)265

with encoders like UniXCoder (Guo et al., 2022)266

or CodeT5+ (Wang et al., 2023) is effective. Addi-267

tionally, they highlight the importance of structured268

context sources such as Sibling files or Import of269

Parent Class in providing relevant contexts.270

Based on these insights, REPOHYPER initially271

performs a kNN search with a small K to identify272

a set of anchor nodes in the RSG. These nodes are273

then expanded using strategy F :274

Aexp = F(A), A = {Vi|i ∈ kNN(G, ZQ)}275

Here, kNN(G, ZQ) represents the kNN search for276

the K nodes most similar to the query vector ZQ277

in the graph G. We experiment different strategies278

to find the most optimal nodes in the graph for279

decoding process. Our two proposed strategies are:280

(1) Exhausted Search: Beginning from a node 281

Vj ∈ A, we utilize a straightforward Breadth First 282

Search algorithm (BFS) with a maximum depth of 283

D. Theoretically, D should reach 4 to encompass 284

the complete relationship between two contexts for 285

repo-level code completion. However, in practice, 286

setting D ≥ 3 may result in the BFS covering 287

nearly 50% of the graph. Hence, we introduce 288

another parameter alongside D to constrain the 289

number of BFS expanded nodes: the maximum 290

number of nodes per BFS denoted as M . 291

(2) Pattern Search: We found that exhausted
search on all the directions and paths can include
too many irrelevant contexts to the query. Thus,
we conduct kNN search for all the queries in the
training set, then expand using exhausted strategy
from kNN searched node Vj to target node Vtarget,
then collect the most frequent type paths into path
set P , then add them as filters for later BFS. This
is called as pattern search since it will eliminates
non-frequent paths during exhausted exploration
saving the walking nodes.

Aexp = {Vi|Vi ∈ Fexh(A),PATH(Vj , Vi) ∈ P}

where PATH denotes the type of BFS exploration 292

path from kNN searched node Vj ∈ A to any walk- 293

ing node Vi. For example, one might prioritize the 294

exploration from a class node to its script node then 295

to imported function to draw a possible invoke rela- 296

tionship for code completion (class-script-function 297

path type), but one is unlikely to explore chain of 298

method calls (method-method-method path type). 299

More details are in Appendix A.3. 300
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3.3 Re-ranking as Link Prediction301

To manage the increased number of contexts from302

our Search-then-Expand strategy and reduce noise,303

we refine the context selection process for the de-304

coder. Instead of using all retrieved contexts, we305

only consider the top-N2 (where N2 < N1) most306

relevant ones. Initially, we tried ranking contexts307

by their embedding distances to the query, but this308

approach underperformed in our evaluation.309

To improve relevance ranking, we treat it as a310

link prediction problem on a RSG. We embed the311

query as a node in the RSG and use a message312

passing network, along with a link prediction head,313

to score the connections between the query and314

other nodes in the graph. The final embeddings315

after going to message passing network f are used316

to calculate linking scores, which determine the317

relevance of each context to the query.318

Z
(L)
i = f(Z

(0)
i ,G ⊕Q)319

Z
(0)
i is initial embedding taken from encoder for320

ith node in graph, Z(L)
i is the last layer embed-321

ding after going to message passing network f .322

G1 = G ⊕Q is concatenation of query Q node has323

query Q as the raw source code of the node and ZQ324

as initial embedding to G, by adding this into set325

of nodes V and add new relations to the query. For326

example, if the current code already have invoke re-327

lations with some function nodes in graph, we add328

these edges to the current node avoiding duplicate329

prediction.330

si = WT concat(Z
(L)
i , Z

(L)
Q ) ∀i ∈ {i|Vi ∈ Aexp} (1)331

, where W is a trainable model parameter, si is332

the linking score between query node and all other333

nodes inside the RSG. In practice, we focus on334

nodes that are imported into the file being predicted,335

as suggested in RepoBench (Liu et al., 2023a). The336

training loss of node link prediction for each query337

is computed as338

L = − 1

N1

N1∑
i=1

yi log ŷi where ŷi =
1

1 + e−si
(2)339

More details about incorporating query node into340

inference process can be found in Appendix A.6 In341

all experiments, we employ GraphSAGE (Hamil-342

ton et al., 2017) with L layers as the graph neural343

network (GNN) model to update the representation344

for each node based on the passage graph. The l-th345

layer of the GNN model updates the embedding of 346

node i as follows: 347

Z
(l)
i = h

(
Z

(l−1)
i ,

{
Z

(l−1)
j

}
(i,j)∈G1

)
(3) 348

where h is usually a non-linear learnable function 349

which aggregates the embeddings of the node itself 350

and its neighbor nodes. After re-ranking with link- 351

ing scores, the final top-N2 (N2 < N1) contexts 352

are sent for decoding. Suppose their indices are 353

{g1, g2, · · · , gN2}, the decoding process for final 354

prediction C is: 355

C = LLM
(
Q,

[
Pg1 ;Pg2 ; · · · ;PgN2

])
(4) 356

where Pi is code representation of node Vi ∈ V 357

To train such a network to re-rank inside a repos- 358

itory, we solely optimize loss function defined in 359

(1) on dataset R =
{(

Gi, yioptimal, Q
i
)}

with Gi is 360

a RGS for a ith repository and yioptimal is the optimal 361

context node corresponding to query Qi. 362

4 Empirical Evaluation 363

4.1 Tasks & Datasets 364

We choose RepoBench (Liu et al., 2023a)as the 365

main dataset for our evaluation pipeline due to 366

its large scale and comprehensive, making it 367

an ideal candidate for assessing repository-level 368

code completion from multiple perspectives. Re- 369

poBench consists of three distinct subsets, each 370

designed to evaluate different aspects of repo-level 371

code completion. Each subset contains up to 12000 372

samples for evaluation 2. 373

1. RepoBench-R focuses on evaluating the re- 374

trieval of relevant code snippets, crucial for ac- 375

curate code prediction. It assesses the model’s 376

ability to sift through extensive repository data 377

to identify useful snippets for code completion, 378

termed as the Context Retrieval task. 379

2. RepoBench-C is designed to predict the next 380

line of code using provided in-file and cross-file 381

contexts, testing a model’s ability to predict pre- 382

cise code completion from available contexts. 383

3. RepoBench-P combines the challenges of 384

RepoBench-R and C, testing a model’s pipeline 385

from snippet retrieval to code prediction, reflect- 386

ing real-world auto-completion (denoted as the 387

End-to-End Code Completion task). 388

2Statistic of RepoBench can be found in Appendix Section.
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Retrieval Model
Easy Hard

XF-F XF-R XF-F XF-R

acc@1 acc@3 acc@1 acc@3 acc@1 acc@3 acc@5 acc@1 acc@3 acc@5

Random 15.68 47.01 15.61 46.87 6.44 19.28 32.09 6.42 19.36 32.19

Lexical Jaccard 20.82 53.27 24.28 54.72 10.01 25.88 39.88 11.38 26.02 40.28
Edit 17.91 50.61 20.25 51.73 7.68 21.62 36.14 8.13 22.08 37.18

Similarity-based CodeBERT 16.47 48.23 17.87 48.35 6.56 19.97 33.34 7.03 19.73 32.47
UniXcoder 25.94 59.69 29.40 61.88 17.70 39.02 53.54 20.05 41.02 54.92
CodeT5+ 18.29 53.31 19.61 53.05 9.51 25.24 37.81 13.21 28.15 38.76
OpenAI 28.14 64.24 31.15 65.29 18.23 42.01 60.39 23.78 45.67 58.53

REPOHYPER
UniXcoder 32.56 68.91 33.79 69.67 25.81 49.51 61.19 27.12 51.12 63.23
CodeT5+ 31.15 67.23 32.01 68.12 25.16 46.70 60.19 23.81 43.61 57.12

Table 1: Results of REPOHYPER on RepoBench-R dataset. The studied encoder models include codebert-base
for CodeBERT, unixcoder-base for UniXcoder, codet5p for using CodeT5+ 770M parameters. REPOHYPER has
UniXcoder and CodeT5+ 770M as the base encoders, respectively. Numbers are shown in percentage (%), with the
best performance highlighted in bold. text-embedding-large-3 for OpenAI.

Our work focuses on the creation of repository-389

level code graphs and retrieval strategies, primarily390

utilizes RepoBench-R and RepoBench-P. These391

subsets align with our goals to enhance context392

retrieval and code completion accuracy, directly393

showcasing our contributions.394

Within these benchmarks, there are two set-395

tings (Liu et al., 2023b) to thoroughly assess per-396

formance: Cross-File-First (XF-F) challenges a397

model to predict the first occurrence of a cross-file398

line, requiring adept handling of long-range con-399

texts; Cross-File-Random (XF-R) masks a ran-400

dom cross-file line where prior usage might offer401

clues for prediction. These settings enable a robust402

evaluation on these code completion scenarios.403

4.2 Baselines & Metrics404

4.2.1 Context Retrieval on RepoBench-R405

We follow Liu et al. (2023a) to define 4 base-406

lines: (1) Random Retrieval, where code snip-407

pets are chosen randomly, providing a basic com-408

parison level. This process is repeated 100 times409

to average the results for consistency. (2) Lexi-410

cal Retrieval, which uses simple text comparison411

techniques like Jaccard Similarity and Edit Dis-412

tance to find relevant snippets based on the code413

tokens. (3) Similarity-based Retrieval, employ-414

ing encoder models like CodeBERT, UnixCoder415

and OpenAI Text Embedding Models to generate416

code embeddings and Cosine Similarity to measure417

the semantic similarity between the cropped code418

and the candidate snippets. In REPOHYPER setting,419

we employ our pipeline, which leverages different420

encoder models (UniXCoder (Guo et al., 2022),421

CodeT5+-770M (Wang et al., 2023)) to encode the 422

query, construct semantic graph, node expansion, 423

and link prediction to retrieve the contexts. 424

Evaluation Metrics We also follow (Liu et al., 425

2023a) use to Accuracy@k (acc@k) metric to eval- 426

uate performance on this task. For the easy subset 427

of tasks, we assess performance using acc@1 and 428

acc@3, while for the more challenging subset, we 429

evaluate using acc@1, acc@3, and acc@5. 430

4.2.2 Code Completion on RepoBench-P 431

This end-to-end code completion task requires two 432

components: Context Retrieval and Code Comple- 433

tion. Given our research’s emphasis on developing 434

novel context retrieval strategies, we examine how 435

these strategies perform under various settings, us- 436

ing consistent code completion models for compar- 437

ison. Specifically, we utilized GPT-3.5-Turbo and 438

DeepSeek-Coder-33B (Guo et al., 2024) as our the 439

LLM for code completion in our workflow. 440

We follow (Liu et al., 2023a) to define baselines 441

according to different settings on the contexts: (1) 442

Gold-Only, which uses only the ‘gold snippet’ for 443

cross-file completions and leaves in-file comple- 444

tion contexts empty, testing a model’s efficacy with 445

minimal context. (2) In-File-Only, which uses 446

maximum 30 lines up from prediction line in same 447

file, indicates lower-bound performance without 448

repo-level contexts. (3) RepoBench, which uses 449

similarity-based search, UniXCoder, to retrieve top 450

contexts, then prompts LLM for code completion. 451

We also assess snippet ranking strategies, H2L 452

(High-to-Low) and L2H (Low-to-High), to see 453

how the order of context relevance affects code 454

6



completion performance. We also include Re-455

poCoder (Liu et al., 2023b), which is a method456

on the repo-level code completion task as another457

baseline. This method is run iteratively with Jac-458

card retrieval method and maximum iterations of 4.459

Evaluation Metrics We use Exact Match (EM)460

and CodeBLEU (Ren et al., 2020) to measure next-461

line completion accuracy as in (Liu et al., 2023a).462

4.3 Implementation Details463

To construct the Repo-level Semantic Graph (RSG)464

for a repository, we first parse functions, methods,465

and classes using tree-sitter3, a tool for generating466

abstract syntax trees (AST). We then extract code467

entities from the AST and integrate them into a468

semantic graph4. In our methodology, we adopt469

Pattern Search for expansion with parameters set470

to a maximum depth D = 4, M = 1000, and471

K = 3. The number of prompt contexts for LLM472

completion, N2, is dynamically selected to maxi-473

mize token count within LLMs’ context length lim-474

its. The Link Predictor is trained on training subset475

of RepoBench-R’s gold context labels, with a text476

matching algorithm based on Jaccard distance used477

to align labels with RSG nodes. We use a homo-478

geneous GraphSAGE network f with L = 3 GNN479

layers, optimized with Adam at a learning rate of480

0.01 for 10 epochs, noting homogeneous networks481

performed adequately for RSG. Link Predictor is482

trained on 2 A100 GPUs in 6 hours.483

5 Evaluation Results484

5.1 Performance on Context Retrieval485

The results presented in Table 1 demonstrate the486

enhanced performance of REPOHYPER when com-487

pared to similarity-based approaches . By imple-488

menting graph-based semantic search strategies,489

REPOHYPER significantly outperforms the base-490

line methods, including those utilizing CodeBERT491

and UniXCoder, as well as our own tests with492

CodeT5+. Specifically, it achieves high improve-493

ments, with UniXcoder and CodeT5+ showing rela-494

tive increases of nearly 26% and 72%, respectively,495

across various subsets and task scenarios.496

5.2 Performance on Code Completion497

Table 2 shows that REPOHYPER emerges as the498

most effective strategy, consistently achieving the499

highest scores across both EM (Exact Match)500

3https://github.com/tree-sitter/tree-sitter
4See Appendix A.1 for RSG construction details.

CR Strategy XF-F XF-R

EM CodeBLEU EM CodeBLEU

G
pt

-3
.5

-t
ur

bo

In-File-Only∗ 26.35 33.14 36.31 44.01
Gold-Only∗ 30.59 38.37 40.65 49.12

RepoBench-L2H 37.51 46.19 49.3 57.20
RepoBench-H2L 39.89 48.01 51.21 59.44

RepoCoder 48.73 57.62 59.55 67.42

REPOHYPER-L2H 52.76 61.49 64.06 71.59
REPOHYPER-H2L 48.8 57.21 59.81 66.85

D
ee

pS
ee

k-
C

od
er

In-File-Only∗ 25.46 32.39 34.23 42.13
Gold-Only∗ 27.29 35.15 37.10 46.08

RepoBench-H2L 34.02 43.08 45.96 53.62
RepoBench-L2H 36.55 44.53 47.71 55.81

RepoCoder 45.47 54.32 56.24 64.23

REPOHYPER-L2H 49.49 58.48 59.03 66.98
REPOHYPER-H2L 45.17 53.71 56.56 63.41

Table 2: Comparison of various context retrieval strate-
gies (CR Strategy) on the end-to-end code completion
task on RepoBench-P for Python using GPT-3.5-turbo-
16k and DeepSeek-Coder-33B.

.

and CodeBLEU metrics in both XF-F and XF- 501

R settings, with notable scores such as 52.76% 502

EM and 61.49% CodeBLEU with gpt-3.5-turbo, 503

and 49.49% EM and 58.48% CodeBLEU with 504

DeepSeek-Coder. Compared to the baseline strate- 505

gies like Gold-Only, RepoBench-L2H/H2L, and 506

RepoCoder, REPOHYPER’s strategies (both L2H 507

and H2L) demonstrate superior performance. The 508

comparison between L2H (Low-to-High relevance) 509

and H2L (High-to-Low relevance) within REPOHY- 510

PER indicates that prioritizing snippets from low to 511

high relevance (L2H) offers a significant advantage 512

over the reverse, particularly highlighting the high 513

performance of REPOHYPER-L2H strategy. 514

6 Ablation Study 515

6.1 Hyper-parameters Sensitivity and Effects 516

We evaluated various graph-based semantic search 517

strategies, including Exhausted, Pattern, and the 518

baseline kNN search, each with different hyper- 519

parameters. Table 3 reveals that while Exhausted 520

Search achieves high hit rates, Pattern Search of- 521

fers a more efficient solution, reaching up to 73% 522

hit rates by exploring only 28% of the nodes, com- 523

pared to 36.7% needed by Exhausted Search for 524

similar outcomes. This efficiency highlights Pat- 525

tern Search’s ability to identify relevant sub-graphs 526

more efficiently, enhancing precision with less com- 527

putational resources. Moreover, both Exhausted 528

and Pattern Search strategies significantly outper- 529

form the kNN baseline in hit rates, while maintain- 530
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Search Algorithm Parameter Combination Hit/Coverage

Hits Coverage

Exhausted Search

D=4, M=1000, K=3 80% 40%
D=4, M=200, K=4 78% 44%
D=4, M=10000, K=1 72% 40.4%
D=2, M=10000, K=1 34% 10%
D=2, M=10000, K=2 47% 16%
D=2, M=10000, K=8 73% 36%

Pattern Search

D=4, M=1000, K=3 73% 28%
D=4, M=200, K=4 70% 29%
D=4, M=10000, K=1 65% 31%
D=2, M=10000, K=1 62% 14%
D=2, M=10000, K=2 51% 8%
D=2, M=10000, K=8 68% 21%

kNN D=M=1, K=0.35*|G| 53% 35%

Table 3: Sensitivity Analysis. D : maximum depth; M
: maximum number of nodes; K : in kNN algorithm.
During expansion, the search algorithm will expand
K nodes to Coverage % of the number nodes of the
repolevel semantic graph, then extract explored node
into a sub-graph. There’s a Hits % probability that
there’s an optimal context in this sub-graph. In kNN
baseline, we use K=35% of size of the original graph.

ing smaller, more focused sub-graphs for quicker531

inference and reduced noise. These results empha-532

size the importance of choosing the right search533

strategy and hyperparameter tuning to balance534

search thoroughness and prediction efficiency.535

6.2 Retrieved Nodes Analysis536

REPOHYPER aims to retrieve both semantically537

similar code contexts and program-semantic related538

contexts like Sibling (Sib) or Import of Parent Class539

(ImpParCls). In this study, we validated REPO-540

HYPER’retrieval capability across various context541

types identified in RepoBench-R’s Hard subset,542

adhering to a classification scheme from prior re-543

search. We excluded rare context types due to their544

minimal representation in the dataset and focused545

our experiment on 100 instances for each context546

type under the XF-R setting, using the acc@5 met-547

ric for evaluation.548

Results in Figure 3 show that our model excels549

in retrieving contexts tied to global program seman-550

tics, e.g., Class Hierarchy, underscoring its effec-551

tiveness. However, it underperforms in retrieving552

contexts with similar names, likely due to the lim-553

ited number of anchors used during the kNN search554

phase. Adjusting the number of anchors might im-555

prove retrieval of similar snippets but could impact556

other context types’ retrieval efficiency.557

6.3 Ablation Study558

Several meaningful observations can be drawn559

from Table 4: without Link Predictor, Pattern560

Sim
N

ParC
ls

ChiC
ls Sib

Im
pS

ib

Im
pS

im
N

Im
pP

arC
ls

0

0.2

0.4

0.6

0.8

1

Context Types

R
et

ri
ev

al
Pe

rf
or

m
an

ce
A

cc
@

5 RepoHyper Similarity-based Search

Figure 3: Retrieval performance comparison between
REPOHYPER and Similarity-based Semantic Search
across different context types. We use kNN search
within our RSG with UniXCoder encoder for encoding,
this method is denoted as Similarity-based Semantic
Search and REPOHYPER with same encoder. Please see
Appendix A.4 for more details on Context Types.

Models Easy Hard

(1) kNN 60.15 40.74
(2) w/ Exhausted Search 62.35 42.88
(3) w/ Pattern Search 64.23 44.50
(4) w/ E.S+Link Predictor 68.10 47.15
(5) w/ P.S+Link Predictor 69.12 47.83
(6) w/ P.S+Re-ranking 67.43 44.48

Table 4: Ablation study in the code retrieval task, we use
Repobench-R testset with two Easy and Hard subsets.
Acc@3 is used as the main metric. Exhausted Search
is denoted as E.S, Pattern Search is denoted as P.S. For
a combination with kNN and expansion strategy, we
simply re-rank inside extracted sub-graph using cosine
similarity between query and nodes in sub-graph.

Search offers better accuracy than Exhausted 561

Search. This is likely due to the fact that Exhausted 562

Search has to include more nodes to obtain similar 563

hits rate making the later re-ranking more difficult 564

because of the noisy context nodes. 565

7 Conclusion 566

In this paper, we introduced REPOHYPER, a 567

novel framework aimed at enhancing repository- 568

level code completion by addressing its complex 569

challenges. REPOHYPER advances this domain 570

through three key components: the Repo-level Se- 571

mantic Graph (RSG), Search-then-Expand Strate- 572

gies, and a Link Predictor, collectively improving 573

the accuracy and relevance of code suggestions. 574

With extensive evaluation, REPOHYPER show su- 575

periority in Repo-level Code Completion. 576

8



8 Limitations577

This section outlines the limitations of our study,578

which we hope will serve as a catalyst for further579

research in this field:580

Firstly, our Pattern Expansion strategy within581

the Repobench-R training set involves collecting582

the most frequent path types from kNN searched583

nodes to the nearest target nodes, which are then584

incorporated into the path type set P and used as585

filters for BFS. During this process, we manually586

select path types for exploration, which may not be587

optimal and could vary across different program-588

ming languages. A potential solution to this issue589

is the design of a learnable algorithm for navigating590

in RSG, as suggested by (Moon et al., 2019).591

Secondly, our experiments on repository-level592

tasks were conducted using only the RepoBench593

dataset. Although, RepoBench is a well-designed594

benchmark with a sufficiently large sample size595

to statistically validate the effectiveness of our ap-596

proach, the generalizability of our findings would597

be strengthened by performing detailed analyses on598

additional repository-level code completion bench-599

marks, such as those presented in (Ding et al., 2023;600

Liu et al., 2023b).601

Lastly, our experiments rely on both public and602

proprietary large-scale CodeLLMs, which necessi-603

tate significant computational resources and con-604

tribute to carbon emissions, as highlighted by (Pat-605

terson et al., 2021). Moreover, the predictions gen-606

erated by these models may not always align with607

user intentions, a concern that is further discussed608

in (Chen et al., 2021b). Addressing these issues is609

crucial for developing more environmentally sus-610

tainable and user-aligned CodeLLMs in the future.611
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A Appendix846

A.1 Building RSG847

In this section, we present details on how to build848

nodes and relations of Repo-level Semantic Graph.849

Firstly, we use Tree-sitter 5 to parse functions, 850

methods, classes out of Python files. After parsing 851

these entities, we removed these entities from each 852

file so the remaining codes in the file is not func- 853

tion or class. This ensures import statements and 854

other statements (like main file) will be remained. 855

In order to create Import Relations between script 856

nodes and the imported nodes (functions, classes), 857

we use built-in Abstract Syntax Tree (AST) module 858

of Python to parse import statements, then identify 859

which module in parsed entities is imported into 860

the script node. For Invoke Relations, we use PyCG 861
6 to generate the call graph of the repository. Since, 862

PyCG only works for Python3 repositories, and Re- 863

poBench contains a lot of Python2 repositories, we 864

use Automated Python 2 to 3 code translation tool 865

2to3 7 to translate these repositories into Python3, 866

then apply PyCG to produce call graph. Ownership 867

and Encapsulate relationships are straightforward 868

to generate since the Tree-sitter allows us to iden- 869

tify which method belongs to which class exactly 870

and we also parse functions, classes from each 871

file then we also know which function, class be- 872

longs to which file exactly. For Class Hierarchy 873

Relations, since Python is a language that needs to 874

specify parent class in the implementation of the 875

inherited class, we can use Tree-sitter to parse this 876

parent class in declaration fields of the inherited 877

class, then we can produce a class hierarchy edge 878

between parent and child class. 879

A.2 Gold Snippet Definition 880

In the training set of RepoBench-R, for each sam- 881

ple, every snippet parsed from import statements 882

is treated as a potential candidate for next-line pre- 883

diction, for example, we have definitions of two 884

following imported functions: add and minus as the 885

snippets and the gold snippet is the optimal context 886

for prediction, here which is "add" from src import 887

add, minus nextline: add(1,2). 888

A.3 Pattern Search 889

In Repository Semantic Graph (RSG), there are 890

three types of nodes: function (method), class, and 891

script. The edges between these nodes represent 892

five different relationships: import (1), invoke (2), 893

ownership (3), encapsulate (4), and hierarchy (5). 894

A path type is defined by the sequence of edge types 895

along that path in the RSG. For example, let’s con- 896

5https://tree-sitter.github.io/tree-sitter/
6https://github.com/vitsalis/PyCG
7https://docs.python.org/3/library/2to3.html
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sider a node Vj identified by the k-nearest neighbor897

(kNN) search, and a target node Vtarget representing898

the “gold snippet" (e.g., a method called by Vj).899

There can be multiple paths from Vj to Vtarget. One900

such path could be: Vj (method) → (owned by) V1901

(class) → (encapsulated in) V2 (script) → (import)902

Vtarget This path has a type of (ownership, encapsu-903

late, import), represented by the edge types (3, 4,904

1). However, since there are multiple paths from Vj905

to Vtarget, including all the nodes produced by these906

paths might introduce irrelevant contexts into the907

subgraph. For example, Vj can reach Vtarget through908

a more useful path like: Vj (method) → (owned by)909

V1 → (owns) V3 (method) → (call) Vtarget This path910

is more useful because V3 (method) can provide911

hints on how to call Vtarget, whereas the previous912

path included V2 (script), which is a longer context913

and less useful for understanding how to use Vtarget.914

In the training set of RepoBench-R, for each sam-915

ple, we have a gold snippet and an in-file context.916

We first use kNN search to find the k most simi-917

lar context nodes to the in-file context. Then, we918

perform an exhaustive search from these identified919

nodes to collect all possible paths leading to the920

gold snippet. For example, in sample 1, we might921

collect paths of types (3, 4, 1) and (1, 2, 3), while922

in sample 2, we might find paths of types (3, 4,923

1) and (2, 4). The most frequent path type in the924

training set is (3, 4, 1), which appears twice in this925

example.926

A.4 Context Types in Retrieved Node Analysis927

We follow definitions of different contex types in928

(Shrivastava et al., 2022) :929

• Parent Class (ParCls): code snippet taken930

from the parent class of the class that is having931

the target prediction line inside.932

• Child Class (ChiCls): code snippet taken from933

the child class of the class that is having the934

target prediction line inside.935

• Sibling (Sib): any code snippet in the files936

that are in the same directory as the current937

file (the file contains current target prediction938

line)939

• Similar Name (SimN): take code snippet from940

files, functions, classes (objects) that have941

a similar name as the completing function,942

class or file. Similar names are determined943

by splitting the file name based on underscore944

or camel- case formatting and then matching 945

parts of the filename. If one or more parts 946

matches, two objects are considered to have 947

similar names. 948

• Import Sibling (ImpSib): take code from the 949

import objects (classes, functions) in the sib- 950

ling files. 951

• Import Similar Name (ImpSimN): take code 952

snippet from the import files used in the simi- 953

lar name files. 954

• Import Parent Class (ImpParCls): any code 955

snippet from the import objects used in the 956

parent class files. This implies the case when 957

the child class is likely to re-use imported 958

objects of its parent class. 959

A.5 RepoBench Benchmark Statistics 960

A.6 Rerank as Link Prediction 961

After extracting the subgraph using the k-nearest 962

neighbor (kNN) search and expansion strategy, it is 963

crucial to incorporate the query node, representing 964

the in-file context, into the subgraph. To enable 965

meaningful message passing between the query 966

node and the extracted subgraph nodes, we need to 967

establish edges connecting the query node to the 968

subgraph. Fortuitously, in most cases, the query 969

node (in-file context) already possesses certain con- 970

nections to other nodes within the subgraph. For in- 971

stance, the in-file context might invoke some func- 972

tions that are represented as nodes in the subgraph 973

for the task of next line prediction. By including the 974

query node and its existing connections to the sub- 975

graph, the message passing network can effectively 976

leverage the in-file context information during the 977

link prediction process, consequently leading to 978

more accurate and relevant code completion sug- 979

gestions. This integration of the query node into the 980

subgraph allows for a comprehensive understand- 981

ing of the code context, facilitating the message 982

passing network to make informed predictions. By 983

considering both the subgraph extracted from the 984

repository and the in-file context, the model can 985

capture the relevant relationships and dependen- 986

cies, resulting in code completion suggestions that 987

are tailored to the specific code context at hand. 988

A.7 Samples 989

In this section, we present some samples in which 990

the similarity-based retrieval method failed at and 991
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Lang. Task Subset XF-F XF-R IF Mean Candidates Mean Tokens

Python

RepoBench-R Easy 12,000 6,000 - 6.7 -
Hard 12,000 6,000 - 17.8 -

RepoBench-C 2k 12,000 5,000 7,000 - 1,035
8k 18,000 7,500 10,500 - 3,967

RepoBench-P 10,867 4,652 6,399 24 44,028

Language Task XF-F XF-R IF

Python Code Retrieval 175,199 86,180 -
Code Completion 349,023 179,137 214,825

Table 5: (Top) Test data overview for RepoBench dataset for Python in 3 different tasks; (Bottom) Training data for
RepoBench for Python

# ... (imports omitted for brevity)
from scapy.fields import ByteField 
from scapy.layers.gssapi import GSSAPI_BLOB

class SMB2_Error_Response(_SMB2_Payload):
Command = -1
__slots__ = ["NTStatus"] # extra info
name = "SMB2 Error Response"
fields_desc = [

XLEShortField("StructureSize", 0x09),
ByteField("ErrorContextCount", 0),

class GSSAPI_BLOB(ASN1_Packet):
 ASN1_codec = ASN1_Codecs.BER
 ASN1_root = ASN1F_GSSAPI_APPLICATION(
 ASN1F_OID("MechType", "1.3.6.1.5.5.2"),
 ASN1F_PACKET(
  "innerToken",
  None,
  None,
  next_cls_cb=lambda pkt:   
 _GSSAPI_OIDS.get(pkt.MechType.val, conf.raw_layer)))

RepoHyper

Similar-based

scapy/layers/smb2.py

class _SMB2_Payload(Packet):
...

scapy/layers/smb2.py

class ByteField(Field[int, int]):
 def __init__(self, name, default):
 ...

Se
ar

ch
Ex

pa
nd

 a
nd

 L
in

k

Direct sim
ilar search

Current In-file 
Context

class SMB2_Read_Request(_SMB2_Payload, _NTLMPayloadPacket):
...
fields_desc = [
XLEShortField("StructureSize", 0x31),
ByteField("Padding", 0x00),

Figure 4: Sample ID 1430 in repository secdev/scapy

why, we use the UniXCoder as the main en-992

coder. These samples are collected in RepoBench-993

R Cross-File First subset.994
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