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ABSTRACT

Open-set text classification (OSTC) requires models to correctly classify in-
distribution (ID) samples while reliably rejecting out-of-distribution (OOD) in-
puts—an essential capability for real-world NLP systems. Most OSTC meth-
ods train on ID data under the closed assumption that all outputs belong to the
known label space and then perform OOD detection with the biased representa-
tions, which inherently lack awareness of unknowns and thus yield overconfident
predictions on OOD inputs. In this work, we present UnLLM, an Unknown-
aware Large Language Model for OSTC. Instead of fixing classification to the
entire known label space, we reformulate it into a subset-conditioned text gen-
eration task: the LLM is prompted with sampled subsets of known labels, and
any instance outside the candidate set is explicitly assigned as “unknown”. This
reformulation transforms OOD detection from a post-hoc procedure into an in-
trinsic modeling capability. More importantly, our approach is the first to explic-
itly incorporate the unknown into classification, enabling systematic modeling of
unknowns through a unified representation–logits–inference optimization, which
progressively strengthens the model’s capacity to capture open-set risk. Extensive
experiments across six benchmarks show that UnLLM consistently outperforms
state-of-the-art (SOTA) baselines. Code is available in an anonymous repository:
https://anonymous.4open.science/r/UnLLM-03C2.

1 INTRODUCTION

Text classification is a cornerstone task in natural language processing (NLP), underpinning diverse
applications such as topic categorization (Prakhya et al., 2017), document management (Shu et al.,
2017), and intent recognition (Zhou et al., 2023). Most conventional models, however, operate
under a closed-world assumption (Fei & Liu, 2016), presuming that all classes encountered at in-
ference time are known during training. This unrealistic assumption restricts the applicability of
these models in real-world, dynamic scenarios where encountering OOD instances—is common.
Consequently, the paradigm of OSTC (Prakhya et al., 2017) emerged, necessitating models capable
of accurately classifying ID samples and concurrently identifying OOD samples.

A common approach is to first train a neural network on ID data and then apply post-hoc OOD
detection techniques such as MSP (Hendrycks & Gimpel, 2016) and OpenMax (Bendale & Boult,
2016). More recent efforts fine-tune pretrained language models (PLMs) to establish compact deci-
sion boundaries through contrastive and prototype-based learning, as in ADB (Zhang et al., 2021),
KNNCon (Zhou et al., 2022), and CLAP (Liu et al., 2023). However, these PLM-based methods
following a discriminative paradigm often produce narrowly concentrated embeddings that hinder
OOD detection. To address this issue, LLM-OOD (Liu et al., 2024) introduced a generative fine-
tuning framework that reformulates classification as text generation and leverages final-token repre-
sentations, which yield more distinguishable embeddings, improving OOD separability.

Nevertheless, both discriminative and generative fine-tuning remain confined to the closed-set
paradigm, where models are optimized exclusively on ID labels and lack explicit open-set super-
vision (Scheirer et al., 2012). In computer vision, several methods (e.g., VOS (Du et al., 2022),
NPO (Tao et al., 2023)) attempt to synthesize virtual outliers to regularize decision boundaries. How-
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Figure 1: Illustration of different fine-tuning methods. Representation visualizations show signifi-
cant overlap between ID and OOD (red) in a) and b), whereas c) demonstrates clear separation.

ever, these synthetic outliers cannot be guaranteed to represent true OOD instances—particularly
under sparse ID coverage—introducing label noise and constraining generalization. This limitation
raises a critical question: Is genuine open-set training—where OOD detection is integrated with
guaranteed-correct supervision—fundamentally unattainable?

To explore this question, we first conduct systematic analysis and visualization of the differences
between the two existing paradigms—discriminative and generative fine-tuning—as shown in Fig-
ure 1.a and 1.b. This analysis yields two key insights. First, the generative fine-tuning paradigm
inherently benefits from a broader output space in the LLM’s classification head. This expanded di-
mensionality, combined with the extensive general knowledge acquired during pretraining, enables
the model to learn more generalized and contextually rich representations, thereby improving its
resilience to open-set risk. However, generative fine-tuning still assumes that the label space is iden-
tical to the entire ID label set, restricting the model to optimize final-token representations only over
ID label tokens. The gap between label spaces at training and testing further degrades predictive per-
formance, raising a natural idea: If we explicitly model this gap during training, can we effectively
eliminate such bias? Motivated by this, we are the first to propose an open-set training paradigm
tailored for LLMs. Specifically, by conditioning the LLM on partial subsets of labels, we construct
conditional-OOD samples—instances whose ground-truth labels are deliberately excluded from the
candidate label set. This formulation enables the model to explicitly perceive open-set risk during
training. Unlike prior methods that treat OOD detection as a post-hoc decision process, our ap-
proach opens the LLM head to directly optimize parameters associated with OOD-relevant tokens.
This design allows the model to go beyond implicit uncertainty estimation and explicitly model the
semantic space of the unknown, thereby enhancing its capacity to recognize OOD inputs.

However, this design still faces several key challenges in practice: (1) Distribution gap between
conditional-OOD and real OOD samples: Conditional-OOD samples are constructed from known
classes with clear semantic boundaries. In contrast, real OOD samples often lie near the decision
boundaries between multiple known classes. (2) Misalignment between internal knowledge and
output: Even though “open-set training” can separate ID and OOD samples at the representation
level, standard generative strategies may fail to faithfully reflect the model’s internal knowledge.
(3) Overconfidence in label-similar OODs: LLMs often assign overly confident predictions to OOD
inputs that are semantically close to known labels, leading to erroneous decisions.

To overcome these, we propose UnLLMbased on open-set training paradigm that strengthens the
modeling of the unknown across three tightly connected levels: (1) Representation modeling,
where open-set generative fine-tuning, combined with contrastive learning and orthogonality con-
straints, produces compact ID embeddings and well-separated known/unknown representations,
thereby reducing the distribution gap; (2) Logits calibration, which leverages OOD parameter
calibration to align internal activations with unknown semantics, ensuring consistency between in-
ternal knowledge and probabilistic outputs; and (3) Reflective inference, which employs analogy-
augmented self-reflection during inference to mitigate overconfidence on semantically confusing
OOD cases. Comprehensive experiments conducted across six benchmark datasets demonstrate that
our proposed UnLLM, consistently surpasses SOTA baselines. Additional visualization analyses
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further substantiate our model’s capability to distinctly separate ID and OOD representations, suc-
cessfully addressing the persistent bottleneck posed by “closed-set training” paradigms.

2 RELATED WORKS

Open-Set Text Classification Early OSTC methods relied on maximum softmax probability
(MSP)Hendrycks & Gimpel (2016) to reject uncertain predictions. However, researchers (Ben-
dale & Boult, 2016) argued that MSP merely rejects uncertain predictions, OpenMaxBendale &
Boult (2016) improved over MSP by fitting a Weibull distribution to logits. DOC (Shu et al., 2017)
introduced one-vs-rest sigmoid classifiers to reduce open space risk, while DeepUnk (Lin & Xu,
2019) leveraged large-margin losses for better separation. Nevertheless, they still lack explicit de-
cision boundaries for unknown classes. Recent works exploit PLMs to refine decision boundaries.
ADB (Zhang et al., 2021) proposed adaptive spherical margins, CLAP (Liu et al., 2023) optimized
boundary scaling, and KNNCon (Zhou et al., 2022) combined contrastive training with local out-
lier detection. Researchers (Zhou et al., 2023) noted that PLMs often “overthink” semantic features,
leading to overfitting on ID labels. To address this, they proposed DyEn, which employs confidence-
based early exits to mitigate overfitting. However, the overthinking problem remains fundamentally
unresolved, as it is not explicitly optimized during training.

OOD Detection OOD detection is closely tied to OSTC and has been widely studied. Confidence-
based methods such as MSP (Hendrycks & Gimpel, 2016), OpenMax (Bendale & Boult, 2016),
and Energy (Liu et al., 2020) dominated early research, with extensions incorporating auxiliary
OOD data (Mohseni et al., 2020)—often impractical in real settings. To avoid external supervision,
ODIN (Hsu et al., 2020) introduced input perturbations, while VOS (Du et al., 2022) and NPO (Tao
et al., 2023) synthesized virtual outliers to regularize decision boundaries. However, such synthetic
samples poorly approximate real unknowns, especially under sparse ID coverage, resulting in lim-
ited generalization. Most recently, LLM-OOD (Liu et al., 2024) demonstrated that discriminative
PLMs suffer from low-isotropy embeddings that hinder OOD separation. They proposed a genera-
tive fine-tuning paradigm, reformulating classification as text generation and exploiting token-level
representations, which improved embedding isotropy and OOD detection performance.

Nonetheless, both discriminative and generative approaches still rely on closed-set training with
post-hoc detection, leaving models fundamentally unaware of unknown classes during training.

3 PRELIMINARIES

Problem Definition Following the open-set learning setting (Scheirer et al., 2012), the training
set {(x, y)}Ni with N textual input instances are drawn from a product space Dl = X × Y l, where
X is the input space, and Y l = {1, · · · ,K} is the label space of known classes. During the test
period, some samples might belong to none of the known classes, which can be allocated to one
super unknown class K + 1. These OOD samples are drawn from a product space Du = X × Yu,
where Yu = {K + 1} is the label space of unknown classes. OSTC aims to classify ID inputs into
one of the known classes Y l and identify OOD inputs by assigning them to the unknown classes Yu.

Generative Fine-tuning with LLMs We outline the generative fine-tuning used in LLM-
OOD (Liu et al., 2024), which leverages the inherent generative capabilities of LLMs for text clas-
sification. This approach formulates the classification task as a conditional text generation problem.
Specifically, given an input x, we expand it using a template to streamline output extraction, such
as: “## Input: x. ## Output: y”. Subsequently, we maximize the likelihood of generating the la-
bel tokens y: maxP (y | x) =

∏|y|
i=1 Pθ (yi | x, y<i), where θ represents the parameters, |y| is the

length of the label in tokens, and y<i refers to the tokens preceding the current prediction token yi.

4 METHOD

As illustrated in Figure 2, UnLLM comprises three stages. Stage 1: Open-Set Generative Fine-
tuning: We employ a label-partitioning strategy to generate both ID and pseudo-OOD inputs for
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Figure 2: An illustration of our proposed UnLLM.

generative fine-tuning, allowing the model to develop a K+1-class classifier without relying on ex-
ternal data. This stage integrates contrastive learning to enhance intra-class representation compact-
ness. Additionally, we synthesize a virtual OOD representation plane and apply an orthogonality
constraint loss to enforce a clear separation between ID and OOD representations. Stage 2: OOD
Parameter Calibration: We calibrate the parameter of the K+1-class tokens in the LLM’s Head
guided by validation-set bias. This ensures alignment between the model’s internal representations
and its external outputs. Stage 3: Analogy-Augmented Self-Reflection: To mitigate overconfi-
dence in ambiguous cases, we retrieve relevant examples in the training set during inference to
facilitate analogical reasoning, enabling the model to verify whether a given text is OOD.

4.1 REPRESENTATION MODELING: OPEN-SET GENERATIVE FINE-TUNING

Traditional methods often suffer the vulnerability to OOD inputs due to the lack of explicit knowl-
edge of unknowns during training time (Du et al., 2022). To allow LLM to perceive the task of OOD
detection, we reformulate the training objective from maxP(y|x) to maxP(ỹ|x,Yp), where Yp

represents a subset of the Yk and ỹ is a partition-conditional label defined as ỹ = y if y ∈ Yp and
ỹ = K + 1 otherwise. This formulation constructs OOD samples labeled as ỹ = K + 1, allowing
the model to recognize the boundaries of each label and mitigate overfitting on OOD inputs.

Label Partition We introduce a label partition strategy to construct sub-label sets. Specifically,
for a given ID training instance xi, the label set is evenly divided into s partitions, {Yp

i | i ∈ [1, s]},
ensuring that labels in each partition are mutually exclusive. For each label partition Yp

i,j ∈ Yp
i , the

corresponding partition-conditional label is denoted as ỹi,j . Let c1, c2, . . . represent the candidate
labels within Yp

i,j . We construct the following textual input for the model:

You are an expert in text classification.
Text to classify: xi.
Given candidate categories: [NID(c1).Text(c1), NID(c2).Text(c1), . . . , NID(K + 1).Text(K + 1)].
Which category does the text belong to?
Answer: NID(ỹi,j).Text(ỹi,j)

Here, Text(k) is the textual content of label k and NID(·) is a numbering method for consistent label
formatting, as detailed in Appendix A.1.

Generative Fine-tuning We follow the generative fine-tuning (Liu et al., 2024), with the objective
to maximize the likelihood of the label ỹi,j :

Lgen =
∑
i,j

|ỹi,j |∑
k=1

logPθ

(
ỹi,j,k | xi,Yp

i,j , ỹi,j,<k

)
, (1)

where ỹi,j denotes the tokens of NID(ỹi,j), |ỹi,j | is the length of the token sequence, and yi,j,<k

refers to the tokens preceding the current token yi,j,k.
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Contrastive Learning To further model discriminative representations, we utilize contrastive
learning (Zeng et al., 2021) to maximize inter-class variance and minimize intra-class variance.
Specifically, we extract the representations of the ỹi,j tokens at the last layer of LLM as hi,j ∈ Rt×d,
where t is the length of ỹi,j token sequence and d is the embedding size of LLM. We normalize the
hi,j as h̃i,j and define the contrastive loss with Nỹi,j

as the number of examples of ỹi,j :

Lcl =
∑
i,j

− 1

Nỹi,j
− 1

∑
(i,j)̸=(i′,j′),ỹi,j=ỹi′,j′

log
exp(h̃i,j · h̃i′,j′)∑

(i,j)̸=(i′′,j′′) exp(h̃i,j · h̃i′′,j′′)
. (2)

Orthogonality Constraints To sharpen the decision boundaries of ID labels, we construct a vir-
tual OOD subspace by sampling outliers from low-likelihood regions of each class distribution.
Unlike VOS (Du et al., 2022) and NPO (Tao et al., 2023), which directly regularize on such syn-
thetic samples, we note their inherent estimation bias and limited fidelity to real OOD data. Drawing
inspiration from ViM (Wang et al., 2022), we project virtual OOD features onto the principal com-
ponent plane and enforce orthogonality with the ID subspace. This orthogonalization emphasizes
the salient structure of the OOD subspace while suppressing noise.

Specifically, we assume that the representation for each class k ∈ [1,K] follows a class-conditional
Gaussian distribution: Pθ(hi,j | yi,j = k) ∼ N (µk, σ

2
k), where µk ∈ Rt×d and σk ∈ Rt×d. To

estimate µk and σk, we maintain a class-conditional queue Qk. The empirical class mean µ̂k and
variance σ̂2

k are calculated as: µ̂k = 1
|Qk|

∑
hi,j∈Qk

hi,j , σ̂
2
k = 1

|Qk|
∑

hi,j∈Qk
(hi,j − µ̂k)

2.

For each k, we sample virtual outliers vk ∈ Rt×d from the ϵ-likelihood region of the estimated class-
conditional distribution: 1√

2πσ̂2
k

exp(− (vk−µ̂2
k)

2σ̂2
k

) < ϵ, where ϵ is a dynamic value chosen based on

the smallest likelihood in Qk, ensuring that the sampled outliers are located near the boundaries.

The sampled virtual outliers are aggregated to approximate the critical regions near decision bound-
aries. Rather than imposing pairwise constraints, we generalize them into a principal subspace
O ∈ Rtd×e obtained via principal component analysis (PCA), where e is the number of critical
characteristics. ID features are flattened into HID ∈ RNID×td, where NID is the number of ID sam-
ples in the batch. To promote better separation, we minimize Lorth to ensure the orthogonality:

Lorth = ∥HIDO∥2F , (3)

where ∥ · ∥2F denotes the Frobenius norm. The details of PCA are put in Appendix A.2.

Learning Objectives We jointly fine-tune the LLM with a composite loss: L = λclLcl +
λorthLorth + Lgen, where λcl and λorth are the hyperparameters. By jointly optimizing L, the LLM
achieves compact ID intra-class representations while maintaining distinct OOD boundaries.

4.2 LOGITS CALIBRATION: OOD PARAMETER CALIBRATION

After training, the LLM gains an awareness of the OOD detection task and can effectively distin-
guish between ID and OOD representations. However, we observe a misalignment between the
LLM’s internal knowledge (representation space) and its outputs. This discrepancy arises due to the
standard generation method, which relies on token-level probabilities and fails to provide meaning-
ful OOD confidence estimates (Kapoor et al., 2024). Previous studies suggest that the activation
space of many LLMs contains interpretable directions (Li et al., 2024). Motivated by this, we pro-
pose identifying a calibration direction in the activation space and calibrating the OOD token weight,
WK+1 ∈ Rd×t, in the LLM’s output layer to produce calibrated probabilities for K + 1 class.

Calibration Direction Construction First, we evaluate the fine-tuned LLM on the label-
partitioned validation set to identify false ID samples X p, false OOD samples X o, and correctly
predicted samples X r. The corresponding representations are extracted as Hp ∈ R|Xp|×t×d,Ho ∈
R|Xo|×t×d, and Hr ∈ R|X r|×t×d. Next, we derive the average representative vectors for false pos-
itives, false negatives, and correct predictions, denoted as hp ∈ Rt×d, ho ∈ Rt×d and hr ∈ Rt×d.
To ensure the OOD token weight of the LLM head W⊤

K+1 ∈ Rt×d aligns with OOD samples while
being distant from ID samples, we define the calibration direction as ∆h = hp − ho ∈ Rt×d which
indicates how W⊤

K+1 should be adjusted.

5
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Orthogonal Projection To ensure that adjustments do not disrupt correct predictions, we project
∆h onto the orthogonal subspace of the representations derived from true predictions hr. This
orthogonal projection problem has the following closed-form solution (Zhang et al., 2018) as:

∆h⊥ = (hr(hr⊤hr)−1hr⊤)∆h. (4)

To isolate the OOD-specific adjustment direction while preserving the model’s ability to predict
correctly, we subtract ∆h⊥ from ∆h, obtaining the calibration vector: ∆h′ = ∆h−∆h⊥ ∈ Rt×d.

Parameter Calibration Finally, we calibrate W⊤
K+1 by shifting it in the ∆h′ direction: W̃⊤

K+1 =

W⊤
K+1+λv∆h′, where λv is a hyperparameter controlling the calibration magnitude. By calibrating

W⊤
K+1, which represents the OOD mapping function, this approach aligns the model’s internal

knowledge for OOD detection, without additional training.

4.3 REFLECTIVE INFERENCE: ANALOGY-AUGMENTED SELF-REFLECTION

During the inference phase, the fine-tuned LLM processes test samples using the same label partition
strategies. For each test sample, the model sequentially evaluates it against label subsets, stopping
once an ID label is identified. If no ID label is found, the sample is classified as OOD. However, we
observe that LLMs often exhibit overconfidence in their predictions, especially for texts with high
semantic similarity to known labels.

Inspired by analogy-augmented generation (Roth et al., 2024), a strategy that leverages past expe-
riences to address unfamiliar problems, we propose an analogy-augmented self-reflection approach
to address this challenge. Specifically, given an instance xi and its generated label ŷi,j , we retrieve
examples most similar to xi based on embeddings computed by a PLM associated with ŷi,j . These
retrieved examples, denoted as {a1, a2, . . . }, are ranked by similarity as follows:

Sim(xi, a1) ≥ Sim(xi, a2) ≥ . . . , Sim(xi, aj) = Cos(LM(xi),LM(aj)), (5)

where Cos(·, ·) denotes the cosine similarity function and LM(·) represents the embedding function.

The retrieved analogical examples are then feed to the LLM for further reflection as follows:

Recall relevant exemplars of ŷi,j : a1, a2, · · · .
Does the text strictly align with the specified scope? Please start by answering Yes or No.
Answer:

Samples receiving a “No” response are classified as OOD. This analogy-enhanced reflection allows
the LLM to better understand label semantics, reducing biases from superficial semantic similarity.

5 EXPERIMENT

5.1 EXPERIMENTAL SETTINGS

Datasets We evaluated our method on six open-set text classification benchmark datasets: BANK-
ING (Casanueva et al., 2020), CLINC (Larson et al., 2019), StackOverflow (Xu et al., 2015), News-
groups (Schneider, 2003), Reviews (Jindal & Liu, 2008), and THUCNews (Li et al., 2006). In
particular, THUCNews is a Chinese dataset, while the others are English datasets and was randomly
sampled to match the size of other datasets. Detailed descriptions are put in Appendix B.1.

Dataset Split To ensure fair comparison with prior methods, we aligned dataset splits as closely as
possible with existing work. For the BANKING, CLINC, and StackOverflow benchmarks, we di-
rectly used the provided splits in previous studies (Zhou et al., 2023). For Newsgroups and Reviews,
where pre-defined splits are unavailable (Shu et al., 2017), we followed the methodology in prior
work to divide the data; the same procedure was applied to THUCNews. Consistent with (Zhou
et al., 2023), we retained 25%, 50%, or 75% of the classes as ID, while the remaining classes were
treated as OOD. OOD samples were excluded from training and validation, and reserved for testing.
Detailed dataset statistics are reported in Appendix B.2.

6
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Table 1: Performance of various methods across 6 datasets at different ratios. Metrics include K-F1
and N-F1. The best results are highlighted in bold, while the second-best results are underscored.
Each result represents the mean value of four repetitive experiments.

BANKING CLINC StackOverflow Reviews Newsgroups THUCnews
Ratio Backbone Method K-F1 N-F1 K-F1 N-F1 K-F1 N-F1 K-F1 N-F1 K-F1 N-F1 K-F1 N-F1
0.25 CNN DOC 66.40 81.57 75.46 85.63 69.81 83.61 59.59 79.57 66.21 89.59 56.43 82.27

LSTM DeepUnk 70.87 87.74 75.31 91.36 67.10 88.93 45.18 51.59 56.19 71.54 41.40 46.72

BERT ADB 51.07 61.84 59.00 66.67 75.91 88.37 48.27 68.56 28.70 34.02 58.98 62.20
CLAP 58.69 68.21 61.88 72.75 69.75 81.81 54.45 78.20 35.79 47.22 39.23 49.17
KNNCon 65.97 70.63 79.53 87.85 66.83 75.63 53.75 71.26 55.71 60.18 47.91 42.33
DyEn 65.53 73.71 77.16 86.85 60.17 55.88 44.28 42.11 57.74 67.04 43.99 17.90

LLaMA3.1-8B LLM-OOD 65.62 79.91 66.65 67.89 78.54 90.67 60.09 80.68 59.33 76.93 64.17 80.08
EnergyBased 71.07 90.82 83.10 91.46 80.91 94.57 48.21 89.69 60.45 83.35 61.72 92.41
VOS 74.39 89.82 61.79 90.95 62.06 89.64 61.35 89.09 61.28 84.66 54.59 89.72
NPO 73.83 89.73 82.60 90.29 86.01 95.60 54.25 89.78 59.19 85.49 61.06 92.79
UnLLM 75.04 92.02 83.90 93.58 88.65 96.00 62.16 91.94 68.33 91.82 83.63 94.46

0.5 CNN DOC 74.50 77.92 84.10 84.38 77.96 79.57 55.42 67.52 77.86 74.67 46.63 64.58
LSTM DeepUnk 59.75 74.91 69.80 81.54 76.79 81.86 41.86 20.12 69.07 59.93 62.55 24.58

BERT ADB 63.09 56.92 71.14 61.67 83.95 83.41 51.56 49.18 33.99 22.00 76.67 69.88
CLAP 56.04 54.13 67.15 63.94 84.99 85.36 55.00 55.79 50.37 41.19 71.49 62.51
KNNCon 80.35 75.13 82.71 62.30 85.11 83.12 61.31 46.13 77.60 63.58 76.44 48.49
DyEn 78.55 68.34 88.38 82.46 77.06 60.25 60.47 27.64 77.83 62.19 71.79 34.68

LLaMA3.1-8B LLM-OOD 75.06 81.65 78.85 46.07 89.71 89.54 65.55 59.18 77.11 72.95 83.34 78.66
EnergyBased 74.96 82.76 88.39 90.50 89.58 90.57 47.32 74.93 75.39 76.77 80.66 80.41
VOS 78.93 83.94 66.38 80.99 58.88 76.33 61.71 77.04 76.88 74.99 77.78 80.22
NPO 78.70 84.12 91.31 91.53 90.14 90.78 58.23 76.82 78.17 76.73 82.37 79.90
UnLLM 82.74 85.72 93.42 93.00 91.91 92.60 68.81 80.59 83.95 77.20 84.83 80.75

0.75 CNN DOC 78.85 61.25 87.37 72.81 84.90 72.30 53.95 52.53 67.67 57.58 29.77 41.32
LSTM DeepUnk 59.27 54.85 58.57 67.62 82.57 68.93 27.31 11.81 65.95 40.93 70.76 26.25

BERT ADB 72.07 43.48 78.40 51.69 87.65 75.10 47.35 35.55 35.07 17.93 79.59 54.59
CLAP 62.48 40.37 71.19 47.04 88.23 75.98 53.00 42.43 46.16 20.47 72.82 50.93
KNNCon 86.90 61.61 93.91 80.67 89.38 74.55 65.22 49.02 86.36 62.53 90.49 63.10
DyEn 86.79 54.74 93.38 78.02 85.43 54.09 64.24 21.81 85.24 47.06 87.88 28.73

LLaMA3.1-8B LLM-OOD 72.10 62.34 91.96 60.82 88.54 77.79 65.02 38.54 83.29 67.06 89.41 71.94
EnergyBased 76.84 63.80 90.18 79.11 85.94 74.07 30.08 44.55 70.78 56.69 79.41 70.34
VOS 79.68 65.65 84.64 72.68 83.54 67.85 48.83 49.18 75.72 59.23 83.85 74.05
NPO 79.89 65.79 93.24 83.14 90.10 79.22 39.08 46.74 76.68 60.36 78.67 70.35
UnLLM 88.58 72.60 96.94 89.73 92.36 83.08 67.84 56.65 89.06 72.18 93.55 78.11

Baselines We compared UnLLM against mainstream OSTC methods, which have been carefully
discussed in Section 2, including discrimitive training-based baselines: DOC (Shu et al., 2017),
DeepUnk (Lin & Xu, 2019), ADB (Zhang et al., 2021), CLAP (Liu et al., 2023), KnnCon (Zhou
et al., 2022), and DyEn (Zhou et al., 2023). To the best of our knowledge, no prior work has
systematically applied LLMs to OSTC. For a fair comparison, we construct LLM-based baselines
by fine-tuning LLMs on the ID training set and adapting existing OOD detection methods to this
setting. For generative fine-tuning, we employ LLM-OOD (Liu et al., 2024). For discriminative
fine-tuning, we adapt Energy-based scoring (Liu et al., 2020), VOS (Du et al., 2022), and NPO (Tao
et al., 2023), where VOS and NPO leverage virtual OOD distributions to improve detection. More
baseline implement details and OOD detection baselines, which perform less competitively, are
provided in Appendix C.1.

Evaluation Metrics Following the evaluation approach in prior studies (Liu et al., 2023; Zhou
et al., 2023), we treat all OOD classes as the K+1 class. K-F1 and N-F1 represent the macro F1-
scores for ID and OOD classes, respectively, effectively capturing the model’s performance on ID
classification and OOD detection. Aligning with previous works, we also compute F1 and ACC,
provided in Appendix C.1 due to page limitations.

5.2 OVERALL PERFORMANCE

Table 1 presents the performance comparison of our method against baselines across six datasets.
The results clearly indicate that UnLLM achieves substantial and consistent improvements over
SOTA baselines, demonstrating its effectiveness. Specifically, our method improves the K-F1 scores
across all datasets by an average of 4.40%, 2.80%, and 2.55% and the N-F1 scores by 1.63%, 1.53%,
and 5.09% under 25%, 50%, and 75% known class settings, respectively.
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Several key insights can be drawn from the results. First, while UnLLM achieves the best over-
all performance, LLM-based baselines frequently rank second, underscoring the strong potential
of large language models in OOD detection. However, it is noteworthy that generative training
approaches (e.g., LLM-OOD) do not outperform discriminative counterparts (e.g., EnergyBased),
suggesting that prior generative strategies fall short in capturing discriminative decision boundaries.
In contrast, our conditional subset training paradigm enriches sample diversity during optimization,
significantly boosting both classification accuracy and OOD detection ability.

Second, the results on Reviews and Newsgroups reveal that BERT-based methods struggle with
long-text classification, whereas generative LLMs are more adept at modeling complex semantic
structures. This semantic advantage contributes to stronger classification and OOD detection ca-
pabilities. Nevertheless, LLM-based approaches remain vulnerable to overfitting, as they rely on
the conventional K-class classification paradigm. Our method addresses this limitation by explicitly
modeling unknown-class awareness during training through a K+1 classification framework. This
design effectively exploits the representational power of LLMs while aligning training and inference
objectives, yielding both significant and stable performance improvements.

Finally, performance variations across different known class ratios reveal a consistent trend: as
the ratio of known classes increases, K-F1 improves due to the greater availability of ID labels,
facilitating more accurate ID classification. However, N-F1 generally declines, reflecting increased
challenges in OOD detection. This decline occurs because models tend to overfit known labels
as more labeled data becomes available. Notably, our approach maintains strong OOD detection
performance even under highly known-class settings, demonstrating its ability to mitigate overfitting
and maintain stable performance across diverse scenarios.

5.3 RESULTS ON UNLLM VS. LLMS WITH DIFFERENT PROMPTING STRATEGIES

Table 2: Performance comparison on CLINC
dataset across different prompting strategies.

LLaMA3.1-8B Qwen2.5-32B DeepSeek-V3-0324

Ratio Method K-F1 N-F1 K-F1 N-F1 K-F1 N-F1

0.25

Zero-Shot 51.85 59.37 57.65 62.20 58.70 61.90
Few-shot 49.45 63.01 17.52 84.30 58.81 57.87
Cot 55.00 54.43 56.86 56.30 61.03 65.54
Analogy 61.26 88.16 78.46 91.90 81.06 91.80
UnLLM 83.90 93.58 90.00 92.67 – –

0.5

Zero-shot 58.26 43.65 62.93 60.57 68.69 59.42
Few 37.66 63.22 18.62 69.26 70.89 52.36
Cot 63.62 50.88 62.88 48.06 74.93 71.44
Analogy 56.35 76.52 72.87 84.55 83.53 87.60
UnLLM 93.42 93.00 96.63 95.63 – –

0.75

Zero-shot 57.24 31.56 67.00 50.47 75.11 51.93
Few-shot 44.57 34.87 15.39 42.20 75.87 46.00
Cot 65.62 40.10 66.75 37.32 77.44 62.28
Analogy 47.60 50.13 71.27 64.58 83.68 73.61
UnLLM 96.94 89.73 96.58 89.17 – –

We further compared UnLLM with LLMs that
were not fine-tuned, under various prompting
strategies including zero-shot, few-shot, chain-
of-thought (CoT), and analogy-augmented self-
reflection (Analogy) in Section4.3. In par-
ticular, we evaluated three different back-
bones, namely LLaMA3.1-8B, Qwen2.5-32B,
and DeepSeek-V3-0324, where DeepSeek-V3-
0324 is one of SOTA open-source LLMs.

As shown in Table 2, across all ratios, in-
context prompting methods (Zero/Few/CoT)
yield relatively unstable performance. Few-
shot even collapses under certain backbones
(e.g., Qwen2.5-32B at 0.25 and 0.5 ratios),
whereas CoT sometimes provides modest im-
provements but remains inconsistent. Analogy
is generally stronger than other in-context strategies, showing clear gains, highlighting that the de-
signed analogy-augmented inference is an effective complement to prompting. By contrast, Un-
LLM achieves consistently superior K-F1 and N-F1 scores on both LLaMA3.1-8B and Qwen2.5-
32B, regardless of the ratio, and significantly outperforms all prompting-based methods. We do not
fine-tune DeepSeek due to its extremely high GPU requirements. For completeness, we report other
evaluation metrics (ACC, F1) in the Appendix C.2.

5.4 QUALITATIVE ANALYSIS

Parameter Sensitivity Analysis To assess the impact of λorth, we conduct experiments on the
BANKING dataset across three proportions, varying λorth from 0.1 to 1.0 (Figure 3). The results
indicate that the orthogonal loss effectively improves both ID classification and OOD detection,
with λorth = 0.4 yielding relatively balanced performance across various evaluation metrics and
proportions. Overall, the model demonstrates robustness to this parameter selection, showing that it
not only enhances OOD detection but also benefits ID classification. More sensitivity analyses on
other parameters are provided in Appendix C.3.
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Figure 3: Parameter sensitivity analysis of λorth on the BANKING dataset.

Figure 4: Ablation study on CLINC dataset.

Ablation Study To evaluate the effectiveness
of our proposed modules, we compared Un-
LLMwith several variants: “w/o Lcl” that ex-
cludes Lcl during training, “w/o Lorth” that re-
moves Lorth, “w/o calibration” that eliminates
OOD parameter calibration, and “w/o analogy”
performs infrence without analogy-augmented
self reflection. As shown in Figure 4, Un-
LLM achieves the best performance across all
ratios. Below, we analyze the role and signifi-
cance of each component:

First, removing the contrastive loss leads to a
significant performance drop, particularly when
the ratio is 0.25 or 0.5. This result highlights
the importance of contrastive learning in pro-
moting tighter intra-class clustering, which is
crucial for distinguishing ID and OOD repre-
sentations. Second, as the ratio increases, the impact of orthogonal constraint loss becomes more
pronounced. A higher ratio introduces more labels, increasing the likelihood of overfitting on known
categories. The orthogonal constraint loss effectively mitigates this risk by enhancing the separation
between ID and OOD representations. Finally, OOD parameter calibration and analogy-augmented
self-reflection prove to be indispensable, as their removal results in a substantial performance de-
cline. This finding underscores the importance of addressing knowledge-output misalignment and
overconfidence in semantically similar labels for improving OOD detection. Due to page limitations,
additional ablation study results on other datasets are provided in Appendix C.4.

5.5 CASE STUDY

a) LLM-OOD b) UnLLM

Figure 5: Representation visualization with red
denoting OOD and other colors representing ID.

In this case study, we compare UnLLM with
LLM-OOD on the StackOverflow dataset at a
0.75 known class ratio. Figure 5 presents the
T-SNE visualizations of the learned representa-
tions. Notably, UnLLM significantly enhances
the separation between ID and OOD classes, as
evidenced by the clearer distinction between ID
and OOD. This demonstrates that our method
effectively addresses the “overfitting”, which
brought signicant improvements for OSTC.

6 CONCLUSION

In this work, we proposed UnLLM, for OSTC, addressing key limitations stemming from the ab-
sence of supervised signals for unknown instances during training. First, we introduced an open-set
generative fine-tuning to develop a K+1 classifier. Additionally, we proposed an OOD parameter
calibration method to align the model’s internal cognitiion of the unknown with its outputs. Dur-
ing inference, we integrated an analogy-augmented self-reflection mechanism to mitigate overcon-
fidence. Experimental results across six datasets demonstrate that UnLLM consistently achieves
SOTA performance in OOD detection while maintaining competitive accuracy in ID classification.
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scientific integrity by ensuring transparency, reproducibility, and honest reporting of methods and
limitations, and we disclose any ethical review status (e.g., IRB approval) when applicable. We
further disclose conflicts of interest, respect fairness and non-discrimination, and give proper credit
to prior work while honoring confidentiality and data usage rights.

8 REPRODUCIBILITY STATEMENT

We summarize our efforts below to facilitate reproducible results:

1. Datasets. We use publicly available datasets, which are described in detail in Section 5.1,
Section 5.1, and Appendix B.1.

2. Baselines. The description and hyperparameters of the OOD detection baselines are ex-
plained in Section 5.1 and Appendix B.3.

3. Methodology. Our method is fully documented in Section 4, with the pseudo algorithm
detailed in Algorithm S1 and Algorithm S2. Hyperparameters are specified in Section B.4,
with a thorough ablation study provided in Section 5.4 and Appendix C.4.

4. Open Source. Code and datasets are available in an anonymous repository https://
anonymous.4open.science/r/UnLLM-03C2.
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don’t know. In Raúl Vázquez, Hande Celikkanat, Dennis Ulmer, Jörg Tiedemann, Swabha
Swayamdipta, Wilker Aziz, Barbara Plank, Joris Baan, and Marie-Catherine de Marneffe (eds.),
Proceedings of the 1st Workshop on Uncertainty-Aware NLP (UncertaiNLP 2024), pp. 1–
14, St Julians, Malta, March 2024. Association for Computational Linguistics. URL https:
//aclanthology.org/2024.uncertainlp-1.1.

Stefan Larson, Anish Mahendran, Joseph J. Peper, Christopher Clarke, Andrew Lee, Parker Hill,
Jonathan K. Kummerfeld, Kevin Leach, Michael A. Laurenzano, Lingjia Tang, and Jason Mars.
An evaluation dataset for intent classification and out-of-scope prediction. In Kentaro Inui, Jing
Jiang, Vincent Ng, and Xiaojun Wan (eds.), Proceedings of the 2019 Conference on Empir-
ical Methods in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), pp. 1311–1316, Hong Kong, China, Novem-
ber 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1131. URL
https://aclanthology.org/D19-1131.

Hakyung Lee, Keon-Hee Park, Hoyoon Byun, Jeyoon Yeom, Jihee Kim, Gyeong-Moon Park, and
Kyungwoo Song. CED: Comparing embedding differences for detecting out-of-distribution and
hallucinated text. In Findings of the Association for Computational Linguistics: EMNLP 2024,
2024.

Jingyang Li, Maosong Sun, and Xian Zhang. A comparison and semi-quantitative analysis of words
and character-bigrams as features in Chinese text categorization. In Nicoletta Calzolari, Claire
Cardie, and Pierre Isabelle (eds.), Proceedings of the 21st International Conference on Com-
putational Linguistics and 44th Annual Meeting of the Association for Computational Linguis-
tics, pp. 545–552, Sydney, Australia, July 2006. Association for Computational Linguistics. doi:
10.3115/1220175.1220244. URL https://aclanthology.org/P06-1069.

Junyi Li, Xiaoxue Cheng, Xin Zhao, Jian-Yun Nie, and Ji-Rong Wen. HaluEval: A large-scale hal-
lucination evaluation benchmark for large language models. In Houda Bouamor, Juan Pino, and
Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 6449–6464, Singapore, December 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.emnlp-main.397. URL https://aclanthology.org/2023.
emnlp-main.397.

Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg. Inference-time
intervention: Eliciting truthful answers from a language model. Advances in Neural Information
Processing Systems, 36, 2024.

Ting-En Lin and Hua Xu. Deep unknown intent detection with margin loss. In Anna Korhonen,
David Traum, and Lluı́s Màrquez (eds.), Proceedings of the 57th Annual Meeting of the Associ-
ation for Computational Linguistics, pp. 5491–5496, Florence, Italy, July 2019. Association for
Computational Linguistics. doi: 10.18653/v1/P19-1548. URL https://aclanthology.org/
P19-1548.

Bo Liu, Li-Ming Zhan, Zexin Lu, Yujie Feng, Lei Xue, and Xiao-Ming Wu. How good are
LLMs at out-of-distribution detection? In Nicoletta Calzolari, Min-Yen Kan, Veronique Hoste,
Alessandro Lenci, Sakriani Sakti, and Nianwen Xue (eds.), Proceedings of the 2024 Joint
International Conference on Computational Linguistics, Language Resources and Evaluation
(LREC-COLING 2024), pp. 8211–8222, Torino, Italia, May 2024. ELRA and ICCL. URL
https://aclanthology.org/2024.lrec-main.720.

Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. Energy-based out-of-distribution detec-
tion. Advances in neural information processing systems, 33:21464–21475, 2020.

11

https://aclanthology.org/2024.uncertainlp-1.1
https://aclanthology.org/2024.uncertainlp-1.1
https://aclanthology.org/D19-1131
https://aclanthology.org/P06-1069
https://aclanthology.org/2023.emnlp-main.397
https://aclanthology.org/2023.emnlp-main.397
https://aclanthology.org/P19-1548
https://aclanthology.org/P19-1548
https://aclanthology.org/2024.lrec-main.720


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xiaokang Liu, Jianquan Li, Jingjing Mu, Min Yang, Ruifeng Xu, and Benyou Wang. Effective
open intent classification with k-center contrastive learning and adjustable decision boundary. In
Proceedings of the AAAI Conference on Artificial Intelligence, 2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International
Conference on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkg6RiCqY7.

Sina Mohseni, Mandar Pitale, JBS Yadawa, and Zhangyang Wang. Self-supervised learning for
generalizable out-of-distribution detection. In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pp. 5216–5223, 2020.

Sridhama Prakhya, Vinodini Venkataram, and Jugal Kalita. Open set text classification using CNNs.
In Sivaji Bandyopadhyay (ed.), Proceedings of the 14th International Conference on Natural Lan-
guage Processing (ICON-2017), pp. 466–475, Kolkata, India, December 2017. NLP Association
of India. URL https://aclanthology.org/W17-7557.

K Roth, Rushil Gupta, Simon Halle, and Bang Liu. Pairing analogy-augmented generation with
procedural memory for procedural q&a. arXiv preprint arXiv:2409.01344, 2024.

Walter J Scheirer, Anderson de Rezende Rocha, Archana Sapkota, and Terrance E Boult. Toward
open set recognition. IEEE transactions on pattern analysis and machine intelligence, 35(7):
1757–1772, 2012.

Karl-Michael Schneider. A comparison of event models for naive Bayes anti-spam E-mail filtering.
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A MORE DETAILS OF UNLLM

A.1 LABEL NUMBERING METHODOLOGY

To standardize label formatting, we employ a zero-padded numbering scheme with three digits.
Specifically, the numerical identifier NID(x) for a label x is computed as:NID(x) = str.zfill(x, 3),
where str.zfill(x, i) converts the label x into a zero-padded string of length i. In this work, we set
i = 3. For example, given the label set {1, 2, 3}, the corresponding identifiers are:

ID(1) = str.zfill(1, 3) = “001”,
ID(2) = str.zfill(2, 3) = “002”,
ID(3) = str.zfill(3, 3) = “003”.

(6)

This numbering scheme ensures a consistent label representation, facilitating structured data pro-
cessing and representation extraction.

A.2 PRINCIPAL COMPONENT ANALYSIS FOR OOD SUBSPACE CONSTRUCTION

We formalize the construction of the OOD subspace using PCA. Let the virtual outliers sampled
across all classes form the set V , whose flattened feature embeddings are stacked into the matrix
M ∈ R|V|×td. The covariance matrix is computed as Σneg = M⊤M ∈ Rtd×td. Applying singu-
lar value decomposition (SVD), we obtain Σneg = UΛU⊤, where columns of U are orthogonal
eigenvectors representing the dominant directions of variation in V . Selecting the top e eigenvectors
yields the OOD subspace O = U[:, : e] ∈ Rtd×e. ID features HID ∈ RNID×td are projected onto O,
and the orthogonality loss of the main text penalizes their alignment, thereby promoting a clearer
separation between ID and OOD spaces.

A.3 EXAMPLES FOR LLM INPUTS

To better help readers understand the prompt, we give two specific instances for LLM training and
inference with self-reflection as follows:
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Training Instance

You are an expert in text classification with a focus on Out-of-Distribution (OOD)
detection.

Your task is to accurately classify a given piece of text into one of the provided
categories only if it strictly matches the meaning and scope of the category definition.
If the text does not match any category definition, it should be identified as “Out-of-
Distribution (OOD)”

Text to Classify:
Typed FP: Tuple Arguments and Curriable Arguments.

Questions: Given the candidate categories: [“000.It is OOD”, “002.haskell”, “003.ma-
gento”, “005.apache”], which category does the text belong to?

Answer: 002.haskell.

Self-Reflection Inference Instance

You are an expert in text classification with a focus on Out-of-Distribution (OOD)
detection.

Your task is to accurately classify a given piece of text into one of the provided
categories only if it strictly matches the meaning and scope of the category definition.
If the text does not match any category definition, it should be identified as “Out-of-
Distribution (OOD)”

Text to Classify:
Think someone has took money out with my card. What shall I do?

Questions: Given the candidate categories: [“012.top up reverted”, “010.declined
card payment”, “019.compromised card”, “018.cash withdrawal charge”, “011.reverted
card payment?”, “000.It is OOD”, “007.failed transfer”, “008.edit personal details”,
“005.card arrival”, “016.card not working”, “002.balance not updated after cheque or
cash deposit”], which category does the text belong to?

Answer: 019.compromised card..

Recall relevant exemplars of 019.compromised card.: [“I sees some suspicious spending
on my credit card that I don’t recall I had made. What should I do?”, “Someone might be
using my card. What should I do?”, ...]
Does the text strictly align with the specified scope of 019.compromised card.? Please
start by answering Yes or No.
Answer: No.

A.4 ALGORITHM PSEUDOCODE

In this paper, we designed a novel method to implement the OSTC. In order to make our algorithm
procedure easier to understand, the pseudocode for the fine-tuning pipeline of open-set generative
fine-tuning is available in Algorithm S1 and the inference pipeline with analogy-augmented self-
reflection is provided in Algorithm S2.
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Algorithm S1 LLM Fine-Tuning Procedure

Require: Pre-trained LLM, Training set {(xi, yi)}Ni=1, Number of partitions s, Hyperparameters
λcl, λorth

1: Initialize model parameters θ
2: for each batch {(xi, yi)}i∈B do
3: for each training instance xi in the batch do
4: Partition label set Y into s mutually exclusive subsets {Yp

i,j}sj=1

5: for each label partition Yp
i,j do

6: Generate partition-conditional label ỹi,j
7: Compute generative loss Lgen (Eq. 1)
8: Extract representation hi,j

9: end for
10: end for
11: Compute contrastive loss Lcl (Eq. 2)
12: Estimate class-conditional distribution parameters µ̂k, σ̂2

k
13: Sample virtual outliers vk from low-likelihood regions
14: Compute orthogonality constraint loss Lorth
15: end for
16: Optimize LLM parameters θ using composite loss L
17: return Fine-tuned LLM

Algorithm S2 LLM Inference Procedure

Require: Fine-tuned LLM, Test instance xi

1: Partition label set Y into s mutually exclusive subsets {Yp
i,j}sj=1

2: for each label partition Yp
i,j do

3: Construct textual input with candidate labels
4: Generate predicted label ŷi,j
5: if ŷi,j ̸= K + 1 then
6: return ŷi,j (ID prediction)
7: end if
8: end for
9: Retrieve analogical examples {a1, a2, . . . } based on similarity

10: Perform analogy-augmented self-reflection
11: If response is ”No”, classify as K + 1
12: return ŷi,j (ID prediction)

Table S1: Statistics of datasets. ∥∥ denotes the total number of instances. Length indicates the
average length of each instance in the dataset.

Dataset N ∥Train∥ ∥Val∥ ∥Test∥ Length

BANKING 77 9,003 1,000 3,078 11.77
CLINC 150 17,995 2,250 2,250 8.31
StackOverflow 20 11,996 1,998 5,991 8.34
Reviews 50 29,823 4,942 14,794 143.04
Newsgroups 20 11,291 1880 5,657 306.75
THUCNews 14 25,200 2,800 5,600 7.15

B MORE DETAILS ON EXPERIMENTAL SETTINGS

B.1 DATASET DESCRIPTION

To verify the effectiveness and universality of our proposed method, we conducted exhaustive ex-
periments on six widely used text classification datasets. These datasets are summarized as:

• Newsgroups (Schneider, 2003) consists of 18,828 documents partitioned evenly across 20 mutu-
ally exclusive classes.
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Table S2: Dataset Splits and Statistics. ∥∥ denotes the total number of instances.

Ratio 0.25 0.50 0.75

Dataset ∥Train∥ ∥Val∥ ∥Test∥ ∥Train∥ ∥Val∥ ∥Test∥ ∥Train∥ ∥Val∥ ∥Test∥
BANKING 2,222 247 3,078 4,592 511 3,078 6,784 755 3,078
CLINC 4,439 555 2,250 8,996 1,125 2,250 13,436 1,680 2,250
StackOverflow 2,998 499 5,991 5,999 999 5,991 8,998 1,499 5,991
Reviews 7,176 1,192 14,794 14,935 2,465 14,794 22,649 3,750 14,794
Newsgroups 2,835 472 5,657 5,876 979 5,657 8,578 1,427 5,657
THUCNews 5,400 600 5,600 12,600 1,400 5,600 19,800 2,200 5,600

• Reviews (Jindal & Liu, 2008) consists of 50 classes of products or domains, each with 1,000
review documents.

• CLINC (Larson et al., 2019) is a very popular dataset, which encompasses a broad range of
intents, totaling 150 across 10 domains. The entire dataset consists of 22500 in-domain samples
and 1200 Out-of-domain samples.

• BANKING (Casanueva et al., 2020) is a kind of dataset about the banking business, with 77
categories. The data is characterized by the imbalance of samples in different categories. The
training set, validation set, and test set contain 9003, 1000, and 3080 samples respectively.

• StackOverflow (Xu et al., 2015) is a dataset about programming languages released by Kag-
gle.com. The dataset is subdivided into 20 categories and has 2 samples. The number of samples
in the training set, validation set, and test set is 12000, 2000, and 6000 respectively.

• THUCNews (Li et al., 2006) is a Chinese news text dataset, with 10 categories: finance, real
estate, stocks, education, technology, society, politics, sports, games, and entertainment.

These datasets are only for scientific research and are available for all members of the NLP research
community. We have adhered to the typical method of utilizing these resources.

B.2 MORE DETAILS ON DATASET SPLIT

We present the dataset split statistics across different training ratios in Table S2. The training and
validation sets contain only ID samples, while the test set includes both ID and OOD samples.

B.3 MORE DETAILS ON BASELINES

We categorize the baselines into three groups: backbone-specific classification models, OOD de-
tection methods, and confidence calibration methods. The former rely on model-specific training
objectives, while the latter two are model-agnostic techniques that can be applied on top of different
backbones (CNN, LSTM, PLMs, and LLMs).

Backbone-specific methods.

• DOC (Shu et al., 2017): A CNN-based classifier replacing softmax with one-vs-rest sig-
moid outputs to reduce open-space risk.

• DeepUnk (Lin & Xu, 2019): An LSTM-based model that learns deep intent features using
large-margin cosine loss.

• ADB (Zhang et al., 2021): A BERT-based method that learns adaptive spherical decision
boundaries for open intent detection.

• CLAP (Liu et al., 2023): A BERT-based method that inflates and shrinks decision bound-
aries to balance ID/OOD separation.

• KNNCon (Zhou et al., 2022): A BERT-based method that leverages KNN-based con-
trastive learning during training and applies LOF for OOD scoring.

• DyEn (Zhou et al., 2023): A BERT-based method that dynamically ensembles internal
classifiers and uses early exits to mitigate PLM overthinking.
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• LLM-OOD (Liu et al., 2024): An LLM-based method that reformulates classification as
text generation, leveraging LLM fine-tuning to produce more isotropic embeddings for
OOD detection.

OOD detection methods (model-agnostic). These methods provide scoring mechanisms that can
be applied on top of different backbones:

• OpenMax (Bendale & Boult, 2016): Fits Weibull distributions to logits to estimate open-
set probabilities.

• Energy (Liu et al., 2020): Uses energy-based confidence scoring to mitigate overconfi-
dence.

• VOS (Du et al., 2022): Generates virtual Gaussian-based outliers for decision boundary
regularization.

• NPO (Tao et al., 2023): Improves on VOS by synthesizing non-parametric outliers without
distributional assumptions.

• ViM (Wang et al., 2022): Computes virtual logit margins to enhance ID/OOD separation.
• SHE (Burns & Fukai, 2023): Extends Hopfield networks with higher-order (setwise)

connections encoded via a simplicial complex, increasing memory storage capacity and
strengthening attractor dynamics; also instantiated with continuous Hopfield networks, sug-
gesting potential improvements to Transformer attention.

Confidence calibration methods (model-agnostic). These methods aim to improve the reliability
of predictive probabilities and can be applied on top of different backbones:

• Temperature Scaling (Guo et al., 2017): A simple yet effective post-hoc calibration tech-
nique that rescales logits with a single temperature parameter to alleviate overconfidence.

• LogitNorm (Wei et al., 2022): A training-time regularization method that normalizes logits
across samples, encouraging more consistent confidence estimates and improving model
calibration.

Implementation details. All backbone-specific methods are reproduced strictly following the pa-
rameter settings reported in their original papers. For OOD detection methods and confidence cal-
ibration methods, we implement them within a unified framework to ensure consistency across
backbones. It is worth noting that most of these methods were originally developed in the com-
puter vision community and have not been directly applied to open-set text classification (OSTC).
Therefore, we adapt their formulations to the OSTC setting and re-implement them based on the
pytorch ood1 library for a fair comparison. For these these methods, we first fine-tuned BERT or
LLM on the training set and classify samples with an OOD score exceeding a predefined threshold
as OOD. Following prior work (Zeng et al., 2021), we set this threshold to 0.5.

B.4 MORE IMPLEMENT DETAILS

Implement Details For a fair comparison, we used bert-base-uncased2 and bert-base-chinese3 as
backbones for discriminative language models on English and Chinese datasets, respectively, and
LLaMA3.1-8B-Instruct4 as the backbone for generative models. For BERT (Devlin, 2018), we
applied a full-parameter fine-tuning method for training. For LLaMA (Touvron et al., 2023), we
employed QLoRA (Dettmers et al., 2024) to minimize additional parameter requirements during
training. We adopted AdamW optimizer (Loshchilov & Hutter, 2019) and set learning rate as 1e-4,
the training batch size as 16, the epochs 3, label partition number s as 2, and virtual OOD subspace
dimension e as 20. All experiments were conducted on a machine equipped with 8 NVIDIA A100
GPUs (each with 40GB memory). The training was performed for 3 epochs for LLM-based methods
and 20 epochs for non-LLM-based methods. Unless otherwise stated, training is conducted with a

1https://github.com/kkirchheim/pytorch-ood
2https://huggingface.co/google-bert/bert-base-uncased
3https://huggingface.co/google-bert/bert-base-chinese
4https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
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(a) Ablation study on BANKING dataset. (b) Ablation study on StackOverflow dataset.

Figure S1: Ablation study on BANKING and StackOverflow datasets.

learning rate of 5 × 10−5, a batch size of 16 for training, and a batch size of 32 for evaluation. For
LLM training, we utilized a parameter-efficient fine-tuning (PEFT) method to minimize additional
parameter requirements. Specifically, we employed the QLoRA technique (Dettmers et al., 2024),
which freezes the weights of pre-trained LLMs and integrates trainable low-rank decomposition
matrices into each Transformer layer. During fine-tuning, the model predicted answers using only
the class label tokens to compute the auto-regressive loss. During inference, we utilized the BERT
pooler layer as the PLM embedding function in Eq 5.

C MORE DETAILS ON EXPERIMENTAL RESULTS

C.1 MORE DETAILS FOR OVERALL PERFORMANCE

Beyond the main text, we additionally compare a suite of BERT-based OOD detection baselines and
confidence calibration methods (Temperature Scaling, LogitNorm) while temperature scaling and
logit normalization are effective for probability calibration.

As shown in Tables S3-S4, model-agnostic OOD scoring helps BERT in open-set metrics but still
trails end-to-end OOD-aware training, while calibration methods (Temperature Scaling, LogitNorm)
primarily improve reliability of confidences with limited impact on OSTC accuracy/F1. This rein-
forces the need for an OOD-aware pipeline such as UnLLMfor robust OSTC.

C.2 MORE DETAILS OF RESULTS ON UNLLM VS. LLMS WITH DIFFERENT PROMPTING
STRATEGIES

In the main text we focused primarily on open-set metrics (K-F1, N-F1). In this appendix, we
additionally report the full results on ACC and F1 for all prompting strategies (zero-shot, few-shot,
CoT, Analogy) across different LLM backbones and ratios, so that comparisons are fully aligned
(see Table S5).

C.3 MORE DETAILS FOR PARAMETER SENSITIVITY ANALYSIS

Besides λorth, we also conducted parameter sensitive analysis of λcl, and |Vk|.

The Influence of λcl We analyzed the impact of λcl on model performance by varying it from
0.1 to 1.0 (Figure S2a). Results show that contrastive loss is effective for both ID classification
and OOD detection, with the balanced performance at λcl = 0.8, enhancing ID-OOD separation.
However, higher λcl values harm performance, as orthogonal loss compresses ID representations,
weakening intra-ID classification. This highlights the necessity of balancing generative and con-
trastive objectives for optimal results.
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Table S3: Performance of various methods across 6 datasets at different ratios. Metrics include ACC
and F1. The best results are highlighted in bold, while the second-best results are underscored. Each
result represents the mean value of four repetitive experiments.

BANKING CLINC StackOverflow Reviews Newsgroups THUCnews
Ratio Backbone Method ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

CNN DOC 74.70 67.44 80.23 74.82 77.06 68.42 71.31 59.03 85.26 68.65 73.57 56.29
LSTM DeepUnk 82.20 71.71 87.36 75.74 83.22 70.75 47.92 45.60 64.86 58.91 43.86 42.73

0.25 BERT OpenMax 59.02 33.72 64.28 33.89 32.49 43.30 31.52 38.26 32.79 40.22 49.33 48.16
Energy 60.16 57.43 74.04 71.63 60.63 62.30 38.82 42.20 61.71 58.97 39.67 45.92
VOS 38.76 37.03 51.14 54.04 75.58 67.88 73.16 51.57 49.71 49.74 68.12 62.12
ViM 52.66 52.26 60.73 61.24 54.36 56.72 57.95 50.19 42.53 46.78 75.46 68.55
SHE 43.03 52.45 48.68 55.93 36.38 45.59 39.33 43.33 39.81 46.21 51.02 48.89
TemperatureScaling 50.80 37.45 53.50 53.62 40.68 48.92 48.88 43.08 34.70 40.26 37.72 39.99
LogitNorm 70.35 21.71 74.30 45.92 51.44 55.78 57.92 39.50 45.60 44.40 22.32 28.31
NPO 42.87 37.31 56.00 56.45 76.44 67.03 74.98 49.07 51.82 50.80 68.54 62.99
ADB 54.58 51.61 60.22 59.20 83.12 77.99 58.16 49.83 29.59 29.59 55.86 59.79
CLAP 60.64 59.17 65.14 62.17 75.37 71.76 68.82 56.28 39.70 37.69 44.12 41.72
KNNCon 65.87 66.21 83.65 79.75 69.59 68.30 62.97 55.10 56.32 56.45 42.44 46.51
DyEn 67.84 65.94 82.12 77.41 52.79 59.46 41.06 44.12 61.98 59.29 28.22 37.47

LLaMA LLM-OOD 73.97 66.33 65.66 66.68 86.65 80.56 80.03 61.60 69.86 62.26 73.83 68.15
OpenMax 84.14 64.24 89.38 80.16 33.31 39.94 26.55 38.05 35.35 42.10 22.13 26.62
EnergyBased 86.02 72.05 88.93 83.32 91.60 83.19 83.19 51.40 76.17 64.27 87.25 69.39
VOS 85.08 75.16 85.54 62.55 83.98 66.65 82.95 63.49 77.76 65.17 83.31 63.37
ViM 78.83 50.82 86.50 72.91 89.13 75.26 78.05 62.37 73.99 67.21 87.61 75.96
SHE 58.68 52.11 75.83 67.76 40.83 44.28 48.91 47.99 46.69 51.05 22.32 27.12
TemperatureScaling 45.24 50.57 45.49 54.15 38.96 43.71 44.69 45.53 37.11 43.55 50.14 46.05
LogitNorm 71.73 66.34 82.84 78.28 48.41 49.53 49.26 47.19 30.31 38.87 45.87 43.36
NPO 84.87 74.63 82.74 82.81 93.29 87.61 83.56 56.98 78.55 63.57 87.83 68.99
UnLLM 87.86 75.89 90.58 84.16 94.00 89.87 86.98 64.44 86.75 72.24 91.66 86.34

CNN DOC 75.94 74.79 84.00 84.23 78.17 77.86 61.84 56.25 75.97 77.46 58.97 49.16
LSTM DeepUnk 67.67 60.14 76.36 69.96 79.65 77.26 34.80 40.87 65.53 68.28 50.01 57.81

0.5 BERT OpenMax 57.42 44.16 62.53 53.81 55.47 66.38 45.84 54.83 56.52 64.78 58.78 69.58
Energy 72.24 78.13 79.83 85.74 72.68 77.56 48.49 59.02 68.49 74.57 62.78 69.61
VOS 54.17 51.20 63.82 72.31 84.27 84.17 65.61 50.14 62.64 64.39 68.18 75.49
ViM 63.17 65.92 67.61 77.34 79.53 81.96 64.77 62.27 61.36 67.84 74.81 79.10
SHE 61.54 72.65 65.99 78.58 63.91 72.32 54.08 61.99 58.56 68.15 61.32 70.52
TemperatureScaling 58.54 47.39 67.26 68.39 65.43 72.50 58.33 57.27 54.38 59.03 54.67 66.95
LogitNorm 55.60 38.39 62.53 36.82 77.16 79.38 59.54 42.46 54.24 44.33 58.68 69.59
NPO 56.14 44.04 58.90 70.84 85.38 84.92 66.23 51.12 61.70 56.13 67.66 75.16
ADB 59.13 62.93 65.75 71.02 83.66 84.54 48.38 51.47 28.96 32.90 72.89 75.82
CLAP 53.55 55.99 64.31 67.11 84.72 85.02 53.91 55.03 46.07 49.54 66.28 70.37
KNNCon 76.54 80.21 73.10 82.44 83.54 84.93 54.47 60.73 71.38 76.33 66.41 72.95
DyEn 72.69 78.29 84.34 88.30 68.47 75.53 47.78 59.21 71.16 76.40 58.97 67.15

LLaMA LLM-OOD 79.39 75.23 64.92 78.42 89.43 89.70 61.80 65.29 75.51 76.74 80.88 82.80
OpenMax 72.41 64.22 86.94 85.34 70.52 75.89 44.53 57.89 67.18 73.15 53.87 66.12
EnergyBased 79.78 75.16 89.76 88.42 90.06 89.67 67.44 48.38 75.98 75.52 82.00 80.25
VOS 81.74 79.06 76.67 66.57 70.74 60.47 71.93 62.30 75.80 76.71 78.97 78.08
ViM 66.11 49.26 83.52 78.36 88.41 87.23 68.54 67.68 77.60 78.94 81.59 82.60
SHE 66.38 69.64 79.90 84.85 77.48 80.72 54.37 62.08 66.26 72.36 57.25 67.79
TemperatureScaling 60.52 72.17 64.57 78.09 62.80 70.27 55.38 62.82 58.03 66.79 57.63 68.66
LogitNorm 80.96 80.90 90.34 91.92 69.74 75.18 66.30 66.48 61.72 69.38 61.81 71.21
NPO 81.86 78.84 91.31 91.31 90.38 90.20 71.20 58.95 77.16 78.04 81.04 80.15
UnLLM 84.57 82.82 92.96 93.42 92.20 91.97 76.32 69.26 80.35 83.34 82.49 84.32

CNN DOC 73.33 78.68 83.24 87.30 81.40 84.55 55.78 54.17 67.51 68.08 36.87 27.97
LSTM DeepUnk 60.50 59.22 63.92 58.65 77.96 81.72 29.48 26.82 63.44 64.13 63.08 67.05

0.75 BERT OpenMax 55.86 57.50 65.84 69.09 70.95 76.60 52.83 58.36 69.72 74.05 73.60 79.20
Energy 77.04 85.27 87.74 92.70 83.49 86.82 56.99 63.34 78.21 82.83 80.27 83.37
VOS 56.00 58.05 75.57 80.31 82.94 86.62 50.66 48.46 66.26 69.15 81.04 84.53
ViM 69.60 74.58 79.64 86.61 84.50 87.40 57.34 58.67 72.96 76.94 83.94 86.55
SHE 74.58 84.04 83.48 90.85 78.97 83.56 59.89 65.81 75.97 80.89 77.54 82.37
TemperatureScaling 53.86 53.40 74.07 79.85 78.08 82.70 53.15 54.93 63.08 65.45 73.37 79.00
LogitNorm 39.48 28.06 43.88 31.32 79.90 84.04 45.34 39.24 54.84 50.82 76.27 81.22
NPO 55.22 56.15 75.80 82.62 84.21 87.22 50.80 48.85 65.88 69.06 81.89 84.83
ADB 65.28 71.57 71.90 78.17 83.73 86.87 43.81 47.05 30.83 34.00 72.59 77.51
CLAP 57.02 62.10 65.13 70.98 84.43 87.46 50.33 52.73 40.82 44.55 66.10 70.83
KNNCon 80.19 86.46 90.17 93.80 85.20 88.46 60.64 64.80 80.80 84.87 85.39 88.14
DyEn 79.13 86.24 89.16 93.25 78.52 83.47 57.12 63.15 78.26 82.85 79.94 82.95

LLaMA LLM-OOD 70.27 71.93 84.69 91.68 85.72 87.92 58.24 64.34 79.48 82.27 85.02 87.96
OpenMax 65.94 70.63 83.21 87.25 82.59 87.09 55.72 62.13 77.61 81.13 70.41 76.52
EnergyBased 72.70 76.62 87.20 90.08 82.45 85.20 41.59 31.92 67.04 69.90 77.12 79.48
VOS 75.25 79.44 81.33 84.53 78.79 82.56 51.85 48.84 71.13 74.69 80.52 82.96
ViM 41.23 31.52 63.62 62.56 76.23 78.81 59.10 59.30 75.99 79.11 83.80 85.18
SHE 63.39 70.09 84.17 87.73 82.14 86.49 60.74 60.06 73.47 77.95 75.06 79.74
TemperatureScaling 75.76 84.08 81.20 90.07 78.56 84.34 60.57 65.72 74.08 79.06 74.27 79.60
LogitNorm 74.01 77.31 91.48 94.11 84.29 88.41 60.16 62.01 76.90 81.06 76.13 81.07
NPO 75.43 79.64 90.48 93.15 86.87 89.42 46.11 39.27 72.34 75.66 76.20 77.92
UnLLM 84.54 88.31 94.87 96.88 89.68 91.78 62.16 67.48 85.38 88.00 90.26 92.26
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Table S4: Performance of various methods across 6 datasets at different ratios. Metrics include K-F1
and N-F1. The best results are highlighted in bold, while the second-best results are underscored.
Each result represents the mean value of four repetitive experiments.

BANKING CLINC StackOverflow Reviews Newsgroups THUCnews
Ratio Backbone Method K-F1 N-F1 K-F1 N-F1 K-F1 N-F1 K-F1 N-F1 K-F1 N-F1 K-F1 N-F1

CNN DOC 66.40 81.57 75.46 85.63 69.81 83.61 59.59 79.57 66.21 89.59 56.43 82.27
LSTM DeepUnk 70.87 87.74 75.31 91.36 67.10 88.93 45.18 51.59 56.19 71.54 41.40 46.72

0.25 BERT OpenMax 32.05 65.29 32.89 70.50 47.87 20.46 39.48 23.55 44.18 20.41 47.18 51.10
Energy 57.00 65.69 71.41 79.53 61.59 65.84 42.54 38.12 57.43 66.66 48.26 38.90
VOS 36.72 42.86 54.07 53.21 65.03 82.17 49.03 82.08 48.99 53.49 57.58 75.74
ViM 51.95 58.11 61.13 65.44 56.58 57.45 49.05 63.86 48.03 40.52 64.06 82.02
SHE 53.10 40.21 56.13 48.53 48.92 28.95 43.72 38.71 48.58 34.37 46.60 55.77
TemperatureScaling 36.24 60.34 53.52 57.35 51.01 38.50 41.98 56.37 42.68 28.16 41.06 36.77
LogitNorm 18.57 81.24 44.94 82.25 55.88 55.25 37.08 68.51 43.79 47.43 35.85 5.68
NPO 36.70 48.96 56.38 59.09 63.90 82.72 46.18 83.70 49.83 55.63 58.57 76.24
ADB 51.07 61.84 59.00 66.67 75.91 88.37 48.27 68.56 28.70 34.02 58.98 62.20
CLAP 58.69 68.21 61.88 72.75 69.75 81.81 54.45 78.20 35.79 47.22 39.23 49.17
KNNCon 65.97 70.63 79.53 87.85 66.83 75.63 53.75 71.26 55.71 60.18 47.91 42.33
DyEn 65.53 73.71 77.16 86.85 60.17 55.88 44.28 42.11 57.74 67.04 43.99 17.90

LLaMA LLM-OOD 65.62 79.91 66.65 67.89 78.54 90.67 60.09 80.68 59.33 76.93 64.17 80.08
OpenMax 62.89 89.85 79.82 92.38 43.70 21.13 40.07 13.76 45.31 26.08 33.06 7.29
EnergyBased 71.07 90.82 83.10 91.46 80.91 94.57 48.21 89.69 60.45 83.35 61.72 92.41
VOS 74.39 89.82 61.79 90.95 62.06 89.64 61.35 89.09 61.28 84.66 54.59 89.72
ViM 48.95 86.32 72.41 91.10 71.67 93.18 60.41 86.38 64.53 80.61 70.41 92.62
SHE 51.41 65.38 67.38 81.77 45.82 36.60 47.52 53.54 51.84 47.08 33.53 7.91
TemperatureScaling 50.89 44.40 54.43 43.52 45.94 32.58 45.33 47.91 46.18 30.43 42.49 56.73
LogitNorm 65.73 77.89 78.04 87.29 49.79 48.24 46.59 54.46 43.48 15.87 42.66 45.48
NPO 73.83 89.73 82.60 90.29 86.01 95.60 54.25 89.78 59.19 85.49 61.06 92.79
UnLLM 75.04 92.02 83.90 93.58 88.65 96.00 62.16 91.94 68.33 91.82 83.63 94.46

CNN DOC 74.50 77.92 84.10 84.38 77.96 79.57 55.42 67.52 77.86 74.67 46.63 64.58
LSTM DeepUnk 59.75 74.91 69.80 81.54 76.79 81.86 41.86 20.12 69.07 59.93 62.55 24.58

0.5 BERT OpenMax 43.75 59.95 53.68 63.20 70.21 28.10 56.02 25.16 68.00 32.49 74.31 36.53
Energy 78.40 68.00 85.88 75.78 78.59 67.28 60.22 29.17 76.34 56.83 73.23 44.34
VOS 51.11 54.45 72.59 51.59 84.12 84.71 49.23 72.85 65.17 56.54 77.79 59.34
ViM 66.06 60.41 77.62 56.46 82.45 77.03 62.07 67.11 70.06 45.74 80.42 69.88
SHE 73.35 46.27 78.96 50.20 74.45 50.95 62.72 43.72 71.87 30.95 74.51 42.59
TemperatureScaling 46.96 63.64 68.45 63.35 74.06 56.95 57.14 60.47 61.01 39.22 72.74 26.41
LogitNorm 37.74 63.08 36.37 70.60 79.72 76.01 41.48 67.04 43.52 52.43 74.08 38.14
NPO 43.58 61.90 71.23 41.63 84.82 85.99 50.23 73.42 55.76 59.82 77.56 58.33
ADB 63.09 56.92 71.14 61.67 83.95 83.41 51.56 49.18 33.99 22.00 76.67 69.88
CLAP 56.04 54.13 67.15 63.94 84.99 85.36 55.00 55.79 50.37 41.19 71.49 62.51
KNNCon 80.35 75.13 82.71 62.30 85.11 83.12 61.31 46.13 77.60 63.58 76.44 48.49
DyEn 78.55 68.34 88.38 82.46 77.06 60.25 60.47 27.64 77.83 62.19 71.79 34.68

LLaMA LLM-OOD 75.06 81.65 78.85 46.07 89.71 89.54 65.55 59.18 77.11 72.95 83.34 78.66
OpenMax 63.87 77.49 85.31 88.05 77.94 55.37 59.56 16.11 74.99 54.82 72.34 22.59
EnergyBased 74.96 82.76 88.39 90.50 89.58 90.57 47.32 74.93 75.39 76.77 82.11 80.26
VOS 78.93 83.94 66.38 80.99 58.88 76.33 61.71 77.04 76.88 74.99 77.78 80.22
ViM 48.61 73.91 78.26 85.71 87.01 89.37 67.51 72.05 79.14 76.92 84.09 80.21
SHE 69.77 64.48 84.96 76.58 81.49 72.99 62.94 40.44 74.07 55.31 72.65 33.80
TemperatureScaling 72.90 44.64 78.51 46.01 72.79 45.06 63.47 46.54 70.23 32.41 73.52 34.69
LogitNorm 80.88 82.01 91.95 89.94 76.84 58.60 66.44 67.40 72.05 42.74 74.94 45.14
NPO 78.70 84.12 91.31 91.53 90.14 90.78 58.23 76.82 78.17 76.73 82.37 79.90
UnLLM 82.74 85.72 93.42 93.00 91.91 92.60 68.81 80.59 83.95 77.20 84.83 80.75

CNN DOC 78.85 61.25 87.37 72.81 84.90 72.30 53.95 52.53 67.67 57.58 29.77 41.32
LSTM DeepUnk 59.27 54.85 58.57 67.62 82.57 68.93 27.31 11.81 65.95 40.93 70.76 26.25

0.75 BERT OpenMax 57.82 39.45 69.22 53.91 79.52 32.82 59.38 19.81 77.22 26.52 83.38 37.46
Energy 85.93 47.26 92.87 73.63 87.99 69.29 64.52 18.80 85.25 46.46 88.15 30.87
VOS 58.38 39.45 80.51 58.20 87.59 72.19 48.49 47.16 70.65 46.54 86.14 68.39
ViM 75.04 48.39 86.89 54.43 88.27 74.36 58.90 50.25 78.88 47.80 87.76 74.51
SHE 84.96 31.57 91.15 56.93 85.43 55.57 66.51 38.91 84.06 33.25 85.32 52.86
TemperatureScaling 53.62 40.88 80.09 52.40 84.23 59.70 55.19 45.08 67.31 37.62 82.57 43.38
LogitNorm 27.83 40.80 31.19 45.15 85.28 65.41 39.12 43.79 51.27 44.17 83.83 55.11
NPO 56.45 39.05 82.92 49.72 88.02 75.09 48.89 47.05 70.67 44.89 86.14 71.73
ADB 72.07 43.48 78.40 51.69 87.65 75.10 47.35 35.55 35.07 17.93 79.59 54.59
CLAP 62.48 40.37 71.19 47.04 88.23 75.98 53.00 42.43 46.16 20.47 72.82 50.93
KNNCon 86.90 61.61 93.91 80.67 89.38 74.55 65.22 49.02 86.36 62.53 90.49 63.10
DyEn 86.79 54.74 93.38 78.02 85.43 54.09 64.24 21.81 85.24 47.06 87.88 28.73

LLaMA LLM-OOD 72.10 62.34 91.96 60.82 88.54 77.79 65.02 38.54 83.29 67.06 89.41 71.94
OpenMax 70.88 56.18 87.37 73.66 88.69 63.09 63.49 10.57 83.14 51.02 81.39 27.75
EnergyBased 76.84 63.80 90.18 79.11 85.94 74.07 31.57 44.87 70.78 56.69 80.33 71.01
VOS 79.68 65.65 84.64 72.68 83.54 67.85 48.83 49.18 75.72 59.23 83.85 74.05
ViM 31.27 45.94 62.59 58.71 79.51 68.31 59.37 56.56 80.12 63.99 86.40 78.06
SHE 70.70 35.08 87.87 71.67 88.19 60.97 67.09 55.85 79.80 50.14 82.78 49.35
TemperatureScaling 84.85 39.79 90.47 45.20 87.03 43.91 66.34 42.15 81.98 35.29 82.94 46.18
LogitNorm 77.53 64.82 94.20 84.11 89.83 67.13 62.29 51.37 82.70 56.41 83.73 54.42
NPO 79.89 65.79 93.24 83.14 90.10 79.22 39.08 46.74 76.68 60.36 78.67 70.35
UnLLM 88.58 72.60 96.94 89.73 92.36 83.08 67.84 56.65 89.06 72.18 93.55 78.11
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Table S5: Performance comparison on CLINC dataset across different prompting strategies.

Backbone Method 0.25 0.5 0.75

ACC F1 K-F1 N-F1 ACC F1 K-F1 N-F1 ACC F1 K-F1 N-F1

LLaMA3.1-8B

Zero-Shot 53.05 52.04 51.85 59.37 50.42 58.07 58.26 43.65 54.38 57.01 57.24 31.56
Few-shot 55.40 49.81 49.45 63.01 54.24 38.00 37.66 63.22 45.18 44.48 44.57 34.87
Cot 50.60 54.99 55.00 54.43 57.09 63.45 63.62 50.88 62.64 65.40 65.62 40.10
Analogy 61.97 81.96 61.26 88.16 56.61 69.78 56.35 76.52 47.62 52.04 47.60 50.13

Qwen2.5-32B

Zero-Shot 56.11 57.77 57.65 62.20 61.17 62.90 62.93 60.57 65.26 66.85 67.00 50.47
Few-shot 74.32 19.27 17.52 84.30 55.40 19.29 18.62 69.26 34.25 15.63 15.39 42.20
Cot 52.42 56.84 56.86 56.30 56.86 62.68 62.88 48.06 62.91 66.49 66.75 37.32
Analogy 78.81 88.22 78.46 91.90 73.02 81.38 72.87 84.55 71.21 72.09 71.27 64.58

DeepSeek-V3-0324

Zero-Shot 57.11 60.33 58.70 61.90 64.53 69.47 68.69 59.42 71.42 75.57 75.11 51.93
Few-shot 54.71 60.33 58.81 57.87 62.74 71.58 70.89 52.36 71.56 76.27 75.87 46.00
Cot 60.71 62.75 61.03 65.54 73.24 75.87 74.93 71.44 75.91 77.99 77.44 62.28
Analogy 81.35 88.10 81.06 91.80 83.59 86.01 83.53 87.60 83.59 82.05 83.68 73.61

LLaMa3.1-8B UnLLM 90.58 84.16 83.90 93.58 92.96 93.42 93.42 93.00 94.87 96.88 96.94 89.73
Qwen2.5-7B UnLLM 87.82 80.59 80.29 91.88 88.80 93.88 93.96 87.76 94.44 96.37 96.42 90.54
Qwen2.5-32B UnLLM 89.42 90.07 90.00 92.67 95.51 96.62 96.63 95.63 94.13 96.51 96.58 89.17
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(a) Parameter sensitivity analysis of λcl on the
BANKING dataset.
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(b) Parameter sensitivity analysis of |Vk| on the
BANKING dataset.

Figure S2: Ablation study on different datasets.

The Influence of |Vk| We examined the impact of the number of virtual outliers per class |Vk| in
Figure S2b, where we vary |Vk| across {10, 20, 30, 40, 50}. In general, a larger |Vk| is advantageous
as it allows for a more accurate estimation of Gaussian distribution parameters. However, in many
cases, the model struggles to sample a sufficient number of negative instances within the designated
low-confidence region, leading to a decline in performance. Consequently, we set the queue size
to 20 in our experiments. Nevertheless, in some cases, a smaller queue size is necessary due to the
limited number of instances available for certain classes.

C.4 MORE DETAILS FOR ABLATION STUDIES

In addition to the ablation study on the CLINC dataset, we also conduct the same experiments on
the StackOverflow and BANKING datasets. The results, summarized in Figure S1a and Figure S1b,
are consistent with our previous observations, further validating the effectiveness of the modules.

C.5 RESULTS ON UNLLM VS. HALLUCINATION DETECTION METHODS

Another line of research that appears related to OSTC is hallucination detection in LLMs. The
relevance lies in their shared focus on uncertainty estimation—both tasks aim to identify model
outputs that deviate from expected or reliable content. However, a fundamental distinction exists:
hallucination detection primarily targets generation-based inconsistencies, often evaluating factual
correctness in open-ended text generation, whereas OSTC is a classification task that jointly models
in-distribution classification and OOD detection. Accurate class prediction is a prerequisite for
OSTC, which necessitates a different kind of uncertainty modeling that is sensitive to categorical
decision boundaries rather than semantic fidelity in free-form generation.

Despite these differences, we include hallucination detection baselines in our evaluation for com-
pleteness. Specifically, we implemented representative scoring functions from LLM-Check (Srira-
manan et al., 2024) (e.g., Attention Score, Hidden State Score), CED score (Lee et al., 2024), and
HaluEval (Li et al., 2023) (e.g., Chain-of-Thought Consistency) on our fine-tuned LLM and evalu-
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Table S6: Performance Comparison vs. hallucination detection methods

Ratio Method BANKING CLINC StackOverflow

ACC F1 K-F1 N-F1 ACC F1 K-F1 N-F1 ACC F1 K-F1 N-F1

0.25

LLM-Check (Attn Score) 71.09 15.54 14.33 82.74 61.8 26.4 36.45 74.56 74.98 14.61 0.33 85.69
LLM-Check (Hidden Score) 69.82 16.55 15.78 81.8 69.46 15.41 16.66 81.45 75.00 14.72 0.44 85.7
CED Score 59.23 5.04 1.38 74.45 58.31 2.34 0.41 73.64 67.5 13.64 0.25 80.59
HaluEval (COT) 50.63 49.81 52.09 56.32 50.60 54.99 55.00 54.43 52.74 55.41 55.39 55.53
UnLLM 87.86 75.89 75.04 92.02 90.58 84.16 83.90 93.58 94.00 89.87 88.65 96.00

0.5

LLM-Check (Attn Score) 50.16 16.78 16.6 64.68 50.89 19.84 20.70 64.57 49.91 6.17 0.12 66.57
LLM-Check (Hidden Score) 51.04 13.07 11.98 66.17 48.76 15.77 16.33 63.15 49.91 6.17 0.12 66.57
CED Score 45.61 2.07 0.47 62.64 39.16 1.02 0.29 56.24 44.52 5.65 0.05 61.63
HaluEval (COT) 51.58 51.79 53.21 49.53 57.09 63.45 63.62 50.88 69.06 75.02 76.45 60.75
UnLLM 84.57 82.82 82.74 85.72 92.96 93.42 93.42 93.00 92.20 91.97 91.91 92.60

0.75

LLM-Check (Attn Score) 31.84 21.25 21.37 40.01 29.6 14.67 14.58 39.94 25.11 2.75 0.25 40.05
LLM-Check (Hidden Score) 28.40 10.94 10.50 40.34 31.20 22.14 22.93 37.53 25.09 2.75 0.25 40.02
CED Score 22.32 1.67 1.07 36.23 24.04 0.34 0.00 38.77 18.69 2.01 0.04 31.48
HaluEval (COT) 56.87 61.78 63.4 31.56 62.64 65.40 65.62 40.10 80.52 84.27 85.73 62.42
UnLLM 84.54 88.31 88.58 72.60 94.87 96.88 96.94 89.73 89.68 91.78 92.36 83.08

ated them under the OSTC setting. Experimental results in Table S6 confirm that these methods are
inadequate in OSTC scenarios: although some baselines can achieve up to 80% of our method’s per-
formance on N-F1, their K-F1 scores remain significantly lower. This gap highlights the difficulty
of balancing classification accuracy and OOD detection, which is the unique objective and core
challenge of OSTC. Moreover, these hallucination baselines fail to consider knowledge injection
and decision boundary formation during fine-tuning, both of which are crucial for OOD detection in
classification tasks.

D TIME COMPLEXITY AND COMPUTATIONAL OVERHEAD

We provide a detailed analysis of the time complexity and practical overhead for each of the stages.

Stage 1: Open-Set Generative Fine-tuning. This stage introduces both contrastive learning and
orthogonality constraints (implemented via PCA-Lowrank). The overall training complexity is
O(N ·L·T ·d2), where N is the number of training instances, L is the number of Transformer layers,
T is the average input length, and d is the hidden size. Importantly, the additional modules operate
only on the final-token representations already computed for the generative loss. Thus, their con-
tribution is limited to light-weight vector operations, which incur negligible extra overhead beyond
standard generative training.

Stage 2: OOD Parameter Calibration. This step is a post-training adjustment that aligns the OOD
token embeddings with the model’s hidden space. It involves only a single forward pass over the
validation set to extract hidden states, followed by mean pooling and orthogonal projection. Since
no gradient updates or iterative optimization are required, the computational cost is minimal and
practically negligible compared to Stage 1.

Stage 3: Analogy-Augmented Self-Reflection. During inference, our method incorporates
analogy-based prompting and lightweight reflection. With KV Cache and FlashAttention, the per-
layer decoding complexity is reduced from quadratic O((K+O)2) to near-linear O(L ·d · (K ·O+
O2)), where K and O denote input and output sequence lengths, respectively. The analogy prompt
adds less than 20% to the total input length, while the model generates only a short “Yes/No” out-
put. In practice, on the CLINC dataset (2,205 samples), inference using a single NVIDIA A100
GPU with 5-thread parallelism took 8m:59s without analogy, versus 10m:46s with analogy—an
increase of only ∼20% latency.

E THE USE OF LARGE LANGUAGE MODELS STATEMENT

The authors use Large Language Models (LLMs) as an assistive tool in the preparation of this
manuscript, in accordance with the ICLR 2026 policy. We use LLMs to proofread, check grammar,
and refine the language in the manuscript for improved clarity and readability.
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