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ABSTRACT

A reliable representation of uncertainty is essential for the application of mod-
ern machine learning methods in safety-critical settings. In this regard, the use
of credal sets (i.e., convex sets of probability distributions) has recently been pro-
posed as a suitable approach to representing epistemic uncertainty. However, as
with other approaches to epistemic uncertainty, training credal predictors is com-
putationally complex and usually involves (re-)training an ensemble of models.
The resulting computational complexity prevents their adoption for complex mod-
els such as foundation models and multi-modal systems. To address this problem,
we propose an efficient method for credal prediction that is grounded in the notion
of relative likelihood and inspired by techniques for the calibration of probabilistic
classifiers. For each class label, our method predicts a range of plausible proba-
bilities in the form of an interval. To produce the lower and upper bounds of
these intervals, we propose a technique that we refer to as decalibration. Exten-
sive experiments show that our method yields credal sets with strong performance
across diverse tasks, including coverage–efficiency evaluation, out-of-distribution
detection, and in-context learning. Notably, we demonstrate credal prediction on
models such as TabPFN and CLIP—architectures for which the construction of
credal sets was previously infeasible.

1 INTRODUCTION

Modern machine learning (ML) is increasingly deployed in domains where decisions carry real con-
sequences, from energy systems (Miele et al., 2023) and weather forecasting (Bülte et al., 2025)
to healthcare (Löhr et al., 2024). In such domains, we need models that not only make accurate
predictions, but also express what they do not know. A useful starting point is the distinction be-
tween aleatoric and epistemic uncertainty (Hüllermeier & Waegeman, 2021). Aleatoric uncertainty
reflects irreducible randomness in the data. Epistemic uncertainty reflects limited knowledge and, in
principle, can be reduced with more or better information. While standard probabilistic predictors
capture the former, representing the latter typically requires higher-order formalism.

Credal sets, i.e., (convex) sets of probability distributions, offer such a view. Instead of committing
to a single predictive distribution, a credal predictor returns a set of plausible distributions, thereby
making epistemic uncertainty explicit (Levi, 1978; Walley, 1991). Credal methods have appealing
semantics but can be computationally demanding: many pipelines rely on ensembles or approximate
posteriors to explore the space of plausible models, which is difficult to justify for large and complex
models such as foundation models, CLIP (Radford et al., 2021) or TabPFN (Hollmann et al., 2022).

We take a different route. Building on a likelihood-based notion of plausibility (Löhr et al., 2025), we
construct credal predictions from a single trained model by decalibration: we systematically perturb
the model’s logits so that the resulting probabilities move away from the maximum-likelihood fit
while staying within a prescribed relative-likelihood budget. For each class, this procedure yields
a plausible probability interval; their product forms a credal set that reflects epistemic uncertainty
without retraining (cf. Figure 1). Intuitively, calibration adjusts probabilities to be more correct,
whereas decalibration explores how far they can be pushed and still remain supported by the data.

In this light, our contributions are as follows. 1 A model-agnostic, post-hoc method for credal
prediction via decalibration, logit perturbations that produce class-wise plausible probability in-
tervals under a relative-likelihood budget, yielding credal sets with the clear semantics “reachable
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Figure 1: Overview of Efficient Credal Prediction through Decalibration. Given a probabilistic
classifier (maximum likelihood estimate), our method decalibrates the predicted distributions by
their logits. The resulting credal set contains the ground-truth distribution, as visualized in the
credal spider plot (see Appendix C for an explanation). Note that we only show the decalibration of
three classes for visualization purposes—in practice, all classes are decalibrated.

without sacrificing more than a chosen fraction of training likelihood.” The procedure requires no
retraining and only logits, enabling use with large pretrained models. 2 Theoretically, we show
the relative-likelihood feasibility set induced by logit shifts is convex (and compact on an identi-
fiability hyperplane); that upper class-wise bounds arise from a single convex optimization; and
that in a one-dimensional, class-specific shift the plausible interval endpoints solve two convex pro-
grams with monotone probabilities, implying nested credal sets as the likelihood budget tightens.
3 Empirically, across benchmarks our credal sets achieve favorable coverage–efficiency trade-offs

and competitive out-of-distribution detection while reducing computational cost by orders of magni-
tude. The method enables credal prediction for previously out-of-reach models such as TabPFN and
CLIP, and we introduce credal spider plots to visualize interval-based sets beyond three classes.

2 CREDAL PREDICTION BASED ON PLAUSIBLE INTERVALS

We assume a supervised classification setting, where X denotes the instance space, and Y =
{1, . . . ,K} the finite set of class labels. Further, we assume that the learner has access to (i.i.d.)
training data Dtrain = {(x(n), y(n))}Nn=1 ⊂ X ×∆K . In this paper, we consider hypotheses of the
form h : X → ∆K , mapping instances x ∈ X to probability distributions over Y; by ∆K we denote
the set of all probability distributions on the label space Y . Our primary concern is predictive uncer-
tainty, i.e., the uncertainty about the predicted label ŷq at a query point xq ∈ X . While probabilistic
predictors X → ∆K , xq 7→ h(xq) = p(· | xq, h) do account for aleatoric uncertainty, they do
not represent epistemic uncertainty about the predicted probability p(· | xq, h). To make this un-
certainty explicit, we move from point predictions in ∆K to sets and consider an uncertainty-aware,
set-valued predictor H : X → K(∆K), where K(∆K) denotes a suitable family of subsets of the
simplex (e.g., nonempty closed convex sets). In this view, the prediction at xq is no longer a single
vector h(xq) ∈ ∆K , but a set H(xq) = Qxq

⊆ ∆K , which we refer to as a credal prediction.

Credal sets have emerged as a compelling representation of (epistemic) uncertainty in contemporary
machine learning research, yet there is no consensus on how to construct them in a principled and
scalable way. We aim for a construction that is (i) statistically well-founded, (ii) semantically trans-
parent, and (iii) computationally feasible for modern large models. Many existing pipelines either
rely on Bayesian posteriors (Caprio et al., 2024a), thus inheriting prior sensitivity and computational
burden, or on ad-hoc ensembling and heuristics that offer weak interpretability (Wang et al., 2025a).
In contrast, following Löhr et al. (2025), we adopt a likelihood-based notion of plausibility that is
prior-free, data-driven, and well established in statistical inference. Concretely, relative (normal-
ized) likelihood provides a scalar measure of model plausibility: a model is considered plausible at
level α ∈ (0, 1] if its likelihood is at least an α-fraction of the maximum likelihood in the model
class. This yields an α-indexed family of plausibility regions in parameter space, whose images
in prediction space induce (class-wise) plausible probability intervals. These intervals serve as the
inputs that generate a credal set in the simplex.
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With respect to our desiderata (i)–(iii), Löhr et al. (2025) already address (i) and (ii): the likelihood
ratio supplies a prior-free, data-driven evidential scale that is standard in statistics, and normalizing
by the maximum likelihood yields nested, interpretable α-cuts. This viewpoint is well established,
likelihood ratios underpin classical confidence regions and tests and admit a clear calibration nar-
rative (e.g., Wilks, 1938; Cox & Hinkley, 1979; Royall, 2017; Edwards, 2018), thereby providing
both principledness and transparency. What remains largely open is (iii): computational feasibility.
For modern large models (foundation models, large language models, and multi-modal systems),
retraining ensembles or running costly Bayesian pipelines is often prohibitive. This work aims to
close this gap by deriving efficient credal predictions while retaining the likelihood-based semantics.
We first fix notation and briefly recall the (relative) likelihood-based construction.

Let L : H → [0,∞) denote the (empirical) likelihood of a hypothesis on Dtrain, and let

γ(h) :=
L(h)

suph∈H L(h)
∈ [0, 1].

Thus γ(h) is the relative likelihood (likelihood ratio) of h with respect to a maximum-likelihood
solution: γ(h) = 1 for any MLE (if it exists) and decreases as the fit worsens; equivalently, log γ(h)
is the log-likelihood gap, and −2 log γ(h) is the usual likelihood-ratio statistic.

For α ∈ (0, 1], define the plausible model set (viz. relative-likelihood α-cut)
Cα := {h ∈ H : γ(h) ≥ α }.

Given x ∈ X , the predictive image of Cα is Qx,α := { p(· | x, h) : h ∈ Cα } ⊆ ∆K . A
convenient class-wise summary of Qx,α is given by the marginal extrema

p
k
(x) := inf

h∈Cα

pk(x, h), pk(x) := sup
h∈Cα

pk(x, h), k = 1, . . . ,K. (1)

We then define the box credal set at x as

□x,α :=
{
p ∈ ∆K : p

k
(x) ≤ pk ≤ pk(x) ∀k

}
. (2)

By construction, Qx,α ⊆ □x,α; thus, the box is a tractable outer approximation that preserves all
classwise extrema. We state a simple, yet illustrative monotonicity property:
Proposition 2.1. If 0 < α2 ≤ α1 ≤ 1, then Cα1 ⊆ Cα2 and Qx,α1 ⊆ Qx,α2 . Thus, for all k,

p
k
(x;α1) ≥ p

k
(x;α2) and pk(x;α1) ≤ pk(x;α2).

If a maximum-likelihood estimator hML ∈ H exists, then Qx,1 = {pk(x, hML)} and
[p

k
(x; 1), pk(x; 1)] = {pk(x, hML)}. As α ↓ 0, Qx,α → {h(x) : L(h) > 0 }, and the inter-

vals expand accordingly to the coordinatewise infima/suprema over that limit set.

Proposition 2.1 shows that increasing the plausibility threshold α yields nested prediction sets
and monotonically tighter classwise intervals. This monotonicity underpins the so-called cover-
age–efficiency trade-off used in our evaluation: larger α typically lowers coverage but improves
efficiency (smaller sets), allowing α to be tuned to the desired operating point. In this vein, it is
natural to evaluate set-valued predictions along two axes, coverage and efficiency.

Coverage. Given a set-valued predictor H , coverage is the probability that the ground-truth condi-
tional distribution p⋆(· | x) is contained in the predicted set:

C(H) = E
[
1{ p⋆(· | x) ∈ H(x) }

]
, (3)

where the expectation is over the marginal of x on X .

Efficiency. To reward informative (i.e., small) sets, we use the complement of the average interval
width across classes (positively oriented: higher is better):

E(H) = 1− E

[
1

K

K∑
k=1

(
pk(x)− p

k
(x)

)]
. (4)

Pragmatically, constructing relative-likelihood α-cuts by training ensembles to hit prescribed likeli-
hood ratios is principled, but computationally heavy, and hypotheses tend to cluster near the MLE
unless α ≈ 1, which is a poor fit for modern large models. To overcome this limitation, we propose
an efficient method for credal prediction that is grounded in the notion of relative likelihood and in-
spired by techniques for the calibration of probabilistic classifiers, which we will call decalibration.

3
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3 EFFICIENT CREDAL PREDICTION THROUGH DECALIBRATION

We propose decalibration as a single-model route to plausibility: starting from the maximum-
likelihood predictor hML, we deliberately distort predicted probabilities, thereby moving from bet-
ter predictions (high likelihood) to worse ones (lower likelihood). However, to keep predictions
plausible, we make sure to remain within a prescribed relative-likelihood budget α ∈ (0, 1]. The
probabilities reachable under this budget induce, for any query x, classwise plausible intervals and
hence a box credal set, without retraining or ensembling. Broadly speaking, we answer the follow-
ing question: to what extent can we decrease or increase the predicted probabilities for a specific
class before reaching a state where predictions become unplausible (have relative likelihood < α)?

Thus, the idea is to keep the likelihood semantics but make the search cheap: rather than training
many “plausible” models, we start from the MLE and deliberately push its probabilities toward less
likely configurations, while enforcing a global relative-likelihood budget α, as illustrated in Figure 1.
This turns the classical likelihood-ratio view (“models within an LR ball are plausible”) into a post-
hoc exploration of the model’s output space. As the budget is imposed on the training likelihood,
any probability vector we produce is still supported by the data up to the chosen evidence level.

Operationally, we implement the exploration with simple, low-dimensional transforms of the MLE’s
logits, expressive enough to traverse a wide range of alternative class probabilities yet requiring nei-
ther retraining nor access to the backbone’s gradients. Compared to ensembles that approximate the
same plausibility region by re-optimizing parameters, decalibration is orders of magnitude faster and
model-agnostic, i.e., it works on top of any pretrained classifier. It is particularly suited to inference-
only or API-gated systems, foundation models, LLMs, and multimodal encoders, where parameters
are frozen or proprietary and retraining, fine-tuning, or ensembling is impractical or disallowed. At
the same time, the outputs inherit clear interpretation, “probabilities reachable without losing more
than an α-fraction of likelihood”, and the resulting intervals are nested as α increases.

Among many possible post–hoc maps on probabilities, we instantiate decalibration with a simple
yet expressive family that operates on logits: we add a global bias vector c ∈ RK to every ex-
ample’s logits (both train and test) and then apply softmax. This choice is model–agnostic (no
retraining or gradients), preserves the learned representation, and induces a concave change in train-
ing log–likelihood, which in turn makes the α–plausible set convex. Intuitively, c effects controlled
odds tilts between classes; its softmax invariance under c 7→ c + t1 yields a natural identifiability
hyperplane and keeps optimization well posed as we shall demonstrate now. Formally, consider a
predictor that produces logits z(n) ∈ RK on the training set and logits z(x) ∈ RK for any test point
x. Let c = (c1, . . . , cK)⊤ ∈ RK and define, for each training point n and each class j,

p
(n)
j (c) =

exp
(
z
(n)
j + cj

)∑K
ℓ=1 exp

(
z
(n)
ℓ + cℓ

) , pj(x; c) =
exp

(
zj(x) + cj

)∑K
ℓ=1 exp

(
zℓ(x) + cℓ

) .
Set ∆ℓ(c) =

∑N
n=1

(
log p

(n)

y(n)(c) − log p
(n)

y(n)(0)
)

and F (α) =
{
c ∈ RK : ∆ℓ(c) ≥ logα

}
.

Further, note that ∆ℓ(c+ t1) = ∆ℓ(c) and pj(x; c+ t1) = pj(x; c) for all t ∈ R.

Concretely, this decalibration procedure fixes the family and its feasibility region F (α); what fol-
lows establishes the key structural properties that make the method tractable: smooth concavity of
∆ℓ, convexity/compactness of the feasible set, and a convex–optimization characterization of the
upper credal bound (Proposition 3.1). We then specialize to the one–dimensional slice c = t ek,
yielding endpoint formulas and simple convex programs for the scalar case (Corollary 3.1).
Proposition 3.1. Let H := {c ∈ RK : 1⊤c = 0} be the identifiability hyperplane. Then:

(a) ∆ℓ is C∞ and concave on RK , with ∇∆ℓ(c) =
∑N

n=1

(
ey(n) − p(n)(c)

)
and

∇2∆ℓ(c) = −
N∑

n=1

(
Diag

(
p(n)(c)

)
− p(n)(c) p(n)(c)⊤

)
⪯ 0.

Moreover, ∆ℓ is strictly concave on H provided at least two classes appear in D, namely,
Nj > 0 for at least two j, where Nj = #{n : y(n) = j}. Consequently, F (α) is convex
and translation-invariant along span{1}. The section FH(α) := F (α) ∩ H is nonempty
and compact whenever at least two classes appear.
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(b) For each fixed x and k, the map c 7→ log pk(x; c) = (zk(x) + ck)− log
∑K

ℓ=1 e
zℓ(x)+cℓ is

C∞ and concave on RK with ∇ log pk(x; c) = ek − p(x; c) and

∇2 log pk(x; c) = −
(
Diag

(
p(x; c)

)
− p(x; c) p(x; c)⊤

)
⪯ 0.

In particular, ck 7→ pk(x; c) is strictly increasing (holding cj , j ̸= k, fixed), and cj 7→
pk(x; c) is strictly decreasing for j ̸= k.

(c) The upper credal bound is the value of the convex optimization problem

pk(x) = sup
c∈F (α)

pk(x; c) = sup
c∈F (α)

exp
(
log pk(x; c)

)
= exp

(
sup

c∈F (α)

log pk(x; c)
)
,

and the inner problem supc∈F (α) log pk(x; c) is a concave maximization, i.e., a convex
optimization. An optimizer always exists on FH(α), and is unique modulo addition of
constants along span{1}.

(d) The lower credal bound p
k
(x) = infc∈F (α) pk(x; c) is, in general, not a convex optimiza-

tion problem. Nevertheless, when FH(α) is compact, a minimizer exists and is attained at
an extreme point of the convex set FH(α).

We prove Proposition 3.1 in Appendix A. Proposition 3.1 (a) guarantees that the likelihood-based
feasibility region is a well-posed convex set (compact on the hyperplane H), so optimization over it
is stable. Moreover, (b) shows the test objective inherits the same curvature structure as the training
likelihood. Together these yield (c): the upper credal bound is the value of a single convex program
with a unique optimizer on H , while (d) clarifies that the lower bound is generally nonconvex and
lives on the boundary/extreme points of FH(α). Practically, we compute upper bounds reliably by
convex solvers, and treat lower bounds via boundary exploration or by adopting tractable 1-D slices.

It is also natural to restrict to class-specific biases c = t ek. On this one-dimensional slice the fea-
sibility set becomes an interval and the class-k probability is monotone in t, allowing exact bounds
via interval endpoints, which we show in the following.
Corollary 3.1. Now restrict to shifts of the form c = t ek, t ∈ R and define

∆ℓk(t) := ∆ℓ(t ek), Fk(α) := { t ∈ R : ∆ℓk(t) ≥ logα } = { t : t ek ∈ F (α) }.
Then the following hold:

(a) ∆ℓk is C2 and strictly concave on R. Consequently Fk(α) is a nonempty interval; if
0 < Nk < N , it is compact [t−k , t

+
k ], otherwise it is a closed (possibly half-infinite) interval.

(b) For every fixed x, the map t 7→ pk(x; t ek) is strictly increasing on R.

(c) With t−k = inf Fk(α) and t+k = supFk(α),

p
k
(x) = pk

(
x; t−k ek

)
, pk(x) = pk

(
x; t+k ek

)
.

(d) The endpoints t−k , t
+
k solve the convex programs

min
t∈R

t s.t. −∆ℓk(t) ≤ − logα, min
t∈R

(−t) s.t. −∆ℓk(t) ≤ − logα.

We prove Corollary 3.1 in Appendix A. Algorithmically, the scalar case reduces computing
(p

k
(x), pk(x)) to finding the two endpoints t−k and t+k of the feasible interval, e.g., by bisection

on ∆ℓk(t) = logα; the bounds are then pk(x; t
−
k ek) and pk(x; t

+
k ek). Throughout the empirical

evaluation, we focus on the one-dimensional setting, which admits convexity of the lower and upper
probability bounds. We defer details about the practical computation of the bounds to Appendix B.

4 EMPIRICAL RESULTS

In this section, we empirically evaluate our proposed method with the following research objectives
in mind. First, we assess the quality of the uncertainty representation by standard metrics and show
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Figure 2: Coverage versus Efficiency. Comparison on
CIFAR-10 and CHAOSNLI. The plot highlights the Pareto trade-
off: higher coverage often requires lower efficiency, while Ef-
fCre consistently advances the Pareto front over baselines.
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Figure 3: Out-of-Distribution
Detection. Performance (AU-
ROC, based on epistemic uncer-
tainty) as a function of required
number of models and training
time (in hours).

its strong performance compared to baselines in Section 4.1. Second, we evaluate the method on
common downstream tasks and emphasize the competitive performance—while far more efficient—
when compared to baselines in Section 4.2. Third, we highlight the distinctive advantage of our
method that it can construct uncertainty representations for large architectures such as TabPFN or
CLIP, where retraining is infeasible in Sections 4.3 and 4.4.

Thus, we present scenarios where our method (EffCre, see Appendix B for implementation details)
newly enables the construction of uncertainty representations and, where possible, we compare it
to the following suitable baselines, which represent the current state-of-the-art in credal prediction:
Credal Wrapper (CreWra) (Wang et al., 2025a), Credal Ensembling (CreEns) (Nguyen et al., 2025),
Credal Bayesian Neural Networks (CreBNN) (Caprio et al., 2024a), Credal Interval Net (CreNet)
(Wang et al., 2025b), and Credal Relative Likelihood (CreRL) (Löhr et al., 2025). The code for all
experiments is published in a Github repository1 and the detailed experimental setup can be found
in Appendix D.

4.1 COVERAGE VERSUS EFFICIENCY

We compare our method to the baselines in terms of coverage (3) and efficiency (4). Ideally, a credal
predictor generates sets of a small size (high efficiency) that cover the ground-truth conditional
distribution (high coverage). Moreover, because the relative importance of coverage and efficiency
may vary across applications, methods that allow to trade-off one against the other, depending on
the setting, are favored.

Setup. We train a multilayer perceptron (MLP) on the embeddings of CHAOSNLI and a ResNet18
(He et al., 2016) on CIFAR-10 (Krizhevsky et al., 2009) (Schmarje et al., 2022). The models are
trained with regular labels and evaluated against ground-truth distributions. Such ground-truth dis-
tributions are derived from multiple annotator labels, available through CIFAR-10H (Peterson et al.,
2019) for the CIFAR-10 test set, while CHAOSNLI provides them directly.

Results. We present results for coverage versus the efficiency in Figure 2. The CIFAR-10 dataset
shows that our method Pareto dominates CreRL in the high coverage region, while performing sim-
ilarly in the medium coverage region. In addition, EffCre Pareto dominates the CreBNN, CreWra,
CreNet baselines. For the CHAOSNLI dataset our method performs similarly to CreRL in the high
coverage region and similar to CreEns in the low coverage region. Whereas the aforementioned
baselines can only traverse the low coverage or high coverage regions, our method can traverse
both regions, allowing a user to specify almost any coverage or efficiency value. Furthermore, our
method dominates CreBNN with α = 0.95, whereas it performs similarly to CreNet and CreWra,
again with the caveat that these methods are restricted to the low coverage region. For results on an
additional dataset, we refer to Appendix E.1. Lastly, note that, while in Section 2, we assume α > 0,
in the coverage and efficiency experiments we explicitly use α = 0 as a verification that our method

1https://anonymous.4open.science/r/efficient-credal-prediction/.
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produces sufficiently diverse sets. Broadly speaking, if our method is not able to generate dense
credal sets for α = 0, we cannot expect it to reliably reach the edges of the plausible probability
intervals.

4.2 OUT-OF-DISTRIBUTION DETECTION

Besides coverage and efficiency, out-of-distribution detection is a commonly used proxy to evaluate
the quality of credal predictions. Modern machine learning systems should be able to detect whether
the data they receive is in-distribution (ID) or out-of-distribution (OOD) as strong performance on
this task is an indication of a good epistemic uncertainty representation. So far, many approaches
have been unable to provide epistemic uncertainty representation due to prohibitive computational
costs; our method directly addresses this. To demonstrate this, we analyze the trade-off between the
training time and performance, in terms of AUROC, for our method and compare it to baselines.

Setup. We train a ResNet18 on CIFAR-10, which serves as the ID data and introduce it to several
other datasets that serve as the OOD data. Epistemic uncertainty is quantified based on a commonly-
used measure from Abellán et al. (2006),

EU(Qx) := S(Qx)− S(Qx), (5)

where S(Qx) = supp(·|x)∈Qx
S(p(· | x)) , and S(Qx) defined analogously, are the upper and lower

Shannon entropy2, respectively.

Results. We report the OOD detection results alongside training time in Figure 3 and provide
additional results and hyperparameter ablations in Appendix F.1. Since any approach requires at
least one trained model (e.g., an MLE predictor), our method EffCre comes with no extra training
cost, as it can be applied post-hoc in a highly efficient manner. Although the baselines achieve
slightly higher AUROC scores on the OOD task, they rely on ensembles of models, which demand
a substantial number of members (e.g., 10 models) and therefore significantly increase training
time. While CreWra, CreEns, CreNet, and CreBNN require full training of each ensemble member,
CreRL is slightly more efficient due to its early-stopping criterion. However, our approach EffCre
is substantially more efficient compared to all baselines, enabling the application even to large-scale
models.

4.3 IN-CONTEXT LEARNING WITH TABPFN
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Figure 4: EffCre used with TabPFN.
Top: Coverage versus efficiency perfor-
mance all multi-class TABARENA datasets.
Bottom: Active In-Context Learning perfor-
mance versus the random baseline.

To highlight the ability of our method to be applied
in a post-hoc manner, requiring only logits, we apply
it to a foundation model for tabular data. TabPFN
(Hollmann et al., 2025) is a prior-fitted transformer,
trained on a large number of synthetic datasets. It
uses in-context learning, based on all training data
and additional exemplary instances, to make predic-
tions, while not requiring any gradient-based chang-
ing of its weights. Therefore, the baselines used in
the experiments in Sections 4.1 and 4.2 cannot be ap-
plied as they require training (an ensemble), which,
besides being challenging due to computational cost,
also requires the original training data, which we do
not have access to.

Setup Coverage Versus Efficiency. To illustrate
the proper uncertainty representation generated by
using our method on top of TabPFN, we compute
the coverage and efficiency of the predicted credal
sets by applying it to all multi-class datasets3 from
the TABARENA benchmark (Erickson et al., 2025).
Since these datasets do not provide ground-truth

2Shannon entropy: S(p(· | x)) = −
∑K

k=1 pk(x) log pk(x) with 0 log 0 = 0 by definition.
3The datasets included in TabArena v0.1. This collection may be subject to change.
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Figure 5: Credal Prediction with CLIP. Examples from CIFAR-10H with high epistemic uncer-
tainty (left) and high aleatoric uncertainty (right) as predicted by applying our method on CLIP.

conditional distributions, we propose a simple way to create semi-synthetic ground-truth distribu-
tions to allow evaluation by coverage and efficiency. Details about this experiment and the process
of creating such distributions can be found in Appendix E.3 and Appendix D.5, respectively.

Results Coverage Versus Efficiency. We show the coverage and efficiency results in Figure 4,
confirming that uncertainty representations obtained by applying our method to TabPFN provide
small sets that often include the ground-truth distribution.

In addition, we perform active in-context learning, which has become an important task in the con-
text of foundation models since labeling represents the limiting factor to leveraging pre-trained mod-
els effectively. Ideally, a model—equipped with a reliable (epistemic) uncertainty representation—is
able to sample informative instances, which, when used for in-context learning, improve the perfor-
mance more than a random sample of instances would.

Setup Active Learning. Specifically, we quantify epistemic uncertainty using (5) and addition-
ally use a measure based on zero-one-loss, which has been show to perform well on similar tasks
(Hofman et al., 2024). Concretely,

EU(Qx) = max
p(·|x), p′(·|x)∈Qx

max
k

pk(x)− pargmax
k

p′
k(x)

(x). (6)

We perform this task for a number of TABARENA datasets using α = 0.8. For more details regarding
the experimental setup and additional results, we refer to Appendix E.3.

Results Active Learning. We present the results in Figure 4. This highlights the ability of our
method to represent its epistemic uncertainty well, in order to sample the most informative instances
accordingly. An ablation on α in the active in-context learning setting can be found in Appendix F.2.

4.4 ZERO-SHOT CLASSIFICATION WITH CLIP-BASED MODELS
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Figure 6: EffCre used with CLIP-based
models. We demonstrate the performance of
EffCre by applying it to CLIP, SigLIP, and
SigLIP-2 without retraining—something
that can’t be done by the baselines.

We demonstrate the flexibility of our method by
creating credal sets for vision–language models
(VLMs), including CLIP (Radford et al., 2021),
SigLIP (Zhai et al., 2023), SigLIP-2 (Tschan-
nen et al., 2025), and BiomedCLIP (Zhang et al.,
2024).

Setup Coverage Versus Efficiency. To demonstrate
the proper uncertainty representation generated by
using our method on top of CLIP-based models—
something that is computationally prohibitive for
the baselines—we compute the coverage and effi-
ciency of the predicted credal sets by applying it to
CIFAR-10, using CIFAR-10H as ground-truth distri-
butions. Therefore, we turn the models into zero-
shot classifiers by reformulating the label set into
natural-language templates and comparing the resulting text embeddings with image embeddings
(see Appendix D.6 for details and performance results).
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Results Coverage Versus Efficiency. Figure 6 shows performance on the coverage-efficiency trade-
off, with our method performing well, being able to reach regions with high coverage and high
efficiency for CLIP, SigLIP, and SigLIP-2.

To further highlight the usefulness of our method, we compare the predicted credal sets to human
uncertainty patterns. To visualize credal sets beyond three classes, we propose credal spider plots
where each axis corresponds to a class and intervals mark upper and lower probabilities (see Ap-
pendix C for a detailed guide). Profiles such as MLE predictions or ground-truth distributions can
be overlaid for direct comparison.

Setup Qualitative Evaluation. For the visual evaluation, we apply our method on top of CLIP-
based models and predict credal sets for CIFAR-10 while using CIFAR-10H to reference ground-truth
distributions. We sort and present instances from CIFAR-10-H’s test split based on the aleatoric and
epistemic uncertainties represented by the predicted credal sets of the CLIP-based models.

Results Qualitative Evaluation. Figure 5 presents two instances from CIFAR-10-H’s test split: the
left image is misclassified by the MLE due to the unusual context of the ship being out of water in
a dock. Our method reflects the resulting epistemic uncertainty with plausible intervals across all
classes and higher probability intervals for class ship, truck, and automobile. The right image shows
an animal in an ambiguous pose: the ground-truth distribution splits mass between dog and cat,
representing aleatoric uncertainty. Our method represents this uncertainty well, covering the true
distribution even though the MLE misclassifies the image as cat. Additional multilingual examples
and further results are shown in Appendix E.4.

5 RELATED WORK

Credal sets originate in imprecise-probability literature (Levi, 1978; Walley, 1991). In machine
learning, credal sets offer an appealing way to represent epistemic uncertainty, motivating work on
(credal) uncertainty quantification (Hüllermeier et al., 2022; Sale et al., 2023; Hofman et al., 2024;
Chau et al., 2025a), calibration (Jürgens et al., 2025; Chau et al., 2025b), self-supervision (Lienen
& Hüllermeier, 2021), and learning theory (Caprio et al., 2024b). A consensus on construction has
not emerged, current practice spans a variety of designs that trade theoretical guarantees against
practicality in different ways. Some methods use conformal prediction to obtain credal sets with
finite-sample validity guarantees (Javanmardi et al., 2024). Others form sets by aggregating multiple
predictors, whether standard deep ensembles (Wang et al., 2025a; Nguyen et al., 2025), interval-
head networks trained with tailored losses (Wang et al., 2025b), or Bayesian ensembles built from
posterior samples (Caprio et al., 2024a). Recently, Löhr et al. (2025) adopted a relative-likelihood
criterion (Birnbaum, 1962; Antonucci et al., 2012; Senge et al., 2014) to form credal sets in machine
learning settings.

Ensemble training underpins much of the prior work, but for large model architectures, retraining—
even once—is rarely feasible. This, in turn, has led to lightweight alternatives for representing
uncertainty. One line of work focuses on single forward pass methods to estimate uncertainty (van
Amersfoort et al., 2020; Mukhoti et al., 2023), e.g., via distance-based features (Liu et al., 2020)
or evidential Dirichlet heads (Sensoy et al., 2018; Amini et al., 2020), though recently evidential
variants were criticized (Bengs et al., 2023; Jürgens et al., 2024). In contrast, approximate Bayesian
inference techniques such as Laplace approximations (Daxberger et al., 2021; Weber et al., 2025)
and variational last-layer or sub-ensemble approaches (Valdenegro-Toro, 2019; Kristiadi et al., 2020;
Harrison et al., 2024) reduce cost by training only limited parts of the network. Similarly, others
compress ensembles by sharing parameters (Durasov et al., 2021; Laurent et al., 2023) or by distill-
ing ensemble knowledge into a single model (Malinin et al., 2020; Penso et al., 2022). Another line
of work focuses on large models such as diffusion or language models and explores low-rank adap-
tation to efficiently build ensembles for uncertainty quantification (Berry et al., 2024; Yang et al.,
2024; Wang et al., 2024). Yet, computationally efficient methods for credal prediction remain absent
from the literature.
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6 DISCUSSION

We presented a post-hoc, model-agnostic method for credal prediction that captures epistemic un-
certainty as class-wise plausible probability intervals derived from relative likelihood. The key idea,
decalibration, perturbs a trained model’s logits under a global likelihood-ratio budget, thereby ex-
ploring less-likely yet still plausible predictions without retraining. We formally analyze decalibra-
tion and show that the logit-shift feasibility set is convex (compact on an identifiability hyperplane).
In the one-logit (class-specific) case, each interval endpoint is obtained by solving a small convex
program, readily handled by off-the-shelf optimizers. Empirically, our method matches or surpasses
baselines on coverage–efficiency and is competitive for OOD detection, while cutting computation
by orders of magnitude. Because it is post-hoc and needs only logits, we apply it to large pretrained
models—including TabPFN and CLIP—for which ensemble retraining is impractical.

Limitations and Future Work. We primarily deploy the one-logit (class-specific) variant of our
logit-shift family. The fully coupled case remains open; upper bounds still reduce to a convex
program, whereas lower bounds are non-convex. Developing reliable relaxations, certificates, or
approximation schemes, and clarifying their statistical trade-offs, is a promising direction. Open-
vocabulary, multimodal models such as CLIP raise additional challenges. Because the label set is
chosen at inference time, uncertainty should reflect not only prediction but also label selection and
prompt choice. Designing credal formalisms and evaluation protocols for this setting is an important
avenue for future work.

Reproducibility Statement. We are committed to ensuring the reproducibility of our results. To
this end, we provide our code in the following Github repo https://anonymous.4open.
science/r/efficient-credal-prediction/. The theoretical results in Section 3 are
accompanied by proofs in Appendix A and, where necessary, the assumptions have been discussed.
The full experimental setup, used to produce the results presented in Section 4 and Appendices E
and F, is provided in Appendix D. In particular, we discuss details about datasets, including the
transformation performed on the input to models and the creation of (semi-synthetic) ground truth
distributions in Appendices D.2 and D.5. The models we use, and our implementation of them, are
discussed in detail in Appendix D.1. We elaborate on the implementation of all baselines in Ap-
pendix D.3 and details regarding the practical implementation of our method, that are not discussed
in the main paper, are provided in Appendix B.
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Nicolò Cesa-Bianchi, and Roman Garnett (eds.), Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018,
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ORGANIZATION OF THE APPENDIX

We structure the appendix as follows: Appendix A provides a proof for Proposition 2.1 and Propo-
sition 3.1, followed by a detailed description of our implementation in Appendix B. Appendix C
describes the newly introduced credal spider plots in detail, before we give details about the differ-
ent setups of our experiments in Appendix D. We finish with additional results in Appendix E and
two ablation studies in Appendix F.
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A PROOFS

Proof of Proposition 2.1. Write γ(h) = L(h)/ supg∈H L(g) ∈ [0, 1], Cα = {h ∈ H : γ(h) ≥ α},
and Qx,α = {p(· | x, h) : h ∈ Cα}. If 0 < α2 ≤ α1 ≤ 1 and h ∈ Cα1 , then γ(h) ≥ α1 ≥ α2, hence
h ∈ Cα2 . Thus Cα1 ⊆ Cα2 and, by applying the prediction map, Qx,α1 ⊆ Qx,α2 . Consequently,
for each class k, p

k
(x;α1) = infh∈Cα1

pk(x, h) ≥ infh∈Cα2
pk(x, h) = p

k
(x;α2), and similarly

pk(x;α1) = suph∈Cα1
pk(x, h) ≤ pk(x;α2).

If an MLE hML exist, then γ(hML) = 1 and C1 is the set of MLEs. In particular, if the (predictive)
MLE is unique at x (e.g., the MLE is unique, or all MLEs agree at x), then

Qx,1 = { p(· | x, hML) } and [p
k
(x; 1), pk(x; 1)] = { pk(x, hML) }.

As α ↓ 0, the sets Cα increase to {h ∈ H : L(h) > 0}, hence Qx,α ↑ { p(· | x, h) : L(h) > 0 }.
For an increasing family of sets, coordinate-wise infima over Qx,α decrease to the infimum over the
union, and suprema increase to the supremum. Therefore,

p
k
(x;α) ↓ inf

{h:L(h)>0}
pk(x, h), pk(x;α) ↑ sup

{h:L(h)>0}
pk(x, h),

as claimed. This completes the proof.

Proof of Proposition 3.1. (a) For each n, define ϕn(c) := log p
(n)

y(n)(c). Then

ϕn(c) = ⟨ey(n) , c⟩ − log

K∑
ℓ=1

exp
(
z
(n)
ℓ + cℓ

)
+ const(z(n)),

hence ϕn is C∞. Direct differentiation yields

∇ϕn(c) = ey(n) − p(n)(c), ∇2ϕn(c) = −
(
Diag

(
p(n)(c)

)
− p(n)(c) p(n)(c)⊤

)
⪯ 0,

so each ϕn is concave, and thus ∆ℓ(c) =
∑

n ϕn(c)−
∑

n ϕn(0) is C∞ and concave. The Hessian
matrices in the sum are positive semi-definite with nullspace containing span{1}, since

(
Diag(p)−

pp⊤
)
1 = 0; therefore ∇2∆ℓ(c) ≺ 0 on H provided at least two classes appear. Concavity implies

that every level-set {c : ∆ℓ(c) ≥ τ} is convex. Non-emptiness follows from ∆ℓ(0) = 0 ≥ logα.

To see compactness of FH(α) when at least two classes appear, fix d ∈ H \{0} and consider c = td
with t → ∞. Then

∆ℓ(td) =

N∑
n=1

(
⟨ey(n) , td⟩ − log

K∑
ℓ=1

ez
(n)
ℓ +tdℓ

)
+ const = t

K∑
j=1

Njdj −
N∑

n=1

log

K∑
ℓ=1

ez
(n)
ℓ +tdℓ + const.

As t → ∞, log
∑

ℓ e
z
(n)
ℓ +tdℓ = tmaxℓ dℓ +O(1), hence

∆ℓ(td) = t
( K∑

j=1

Njdj −N max
ℓ

dℓ

)
+O(1).

Because d ∈ H and at least two dℓ differ, we have
∑

j Njdj < N maxℓ dℓ. Thus ∆ℓ(td) → −∞
along every ray in H , proving coercivity on H , and hence compactness of FH(α).

(b) Follows by differentiating

log pk(x; c) = (zk(x) + ck)− log

K∑
ℓ=1

ezℓ(x)+cℓ .

The gradient and Hessian are as stated, and negative semi-definiteness of the Hessian shows con-
cavity. The coordinate-wise monotonicity is immediate from ∂ log pk/∂ci = δik −pi(x; c) together
with pi(x; c) ∈ (0, 1).
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(c) Since log pk(x; ·) is concave and F (α) is convex, supc∈F (α) log pk(x; c) is a concave maxi-
mization, i.e., a convex optimization problem. Existence of an optimizer on FH(α) follows from
compactness; invariance along span{1} yields uniqueness only modulo translations by 1. The
equality between sup pk and exp(sup log pk) follows from strict monotonicity of the exponential.

(d) Because log pk(x; ·) is concave, minimizing pk is equivalent to minimizing a concave func-
tion, which is not a convex optimization problem in general. Nevertheless, on the compact convex
set FH(α), a minimizer exists and is attained at an extreme point by standard results on concave
functions over convex compact sets.

This completes the proof.

Proof of Corollary 3.1. Fix k ∈ {1, . . . ,K} and restrict the multivariate objects of Proposition 3.1
to the affine line c = t ek, t ∈ R.

(a) Since ∆ℓ(·) is concave on RK by Proposition 3.1(a), its restriction t 7→ ∆ℓk(t) is concave on R;
non-emptiness follows from ∆ℓk(0) = 0 ≥ logα. Moreover, if 0 < Nk < N , then ∆ℓk(t) → −∞
as t → +∞ (terms with y(n) ̸= k decay like −t) and as t → −∞ (terms with y(n) = k decay like
t), so Fk(α) is a compact interval [t−k , t

+
k ]. If Nk ∈ {0, N}, the same tail check shows Fk(α) is a

closed (possibly half-infinite) interval.

(b) From Proposition 3.1(b), ∇ log pk(x; c) = ek − p(x; c). Along the line c = t ek,

d

dt
log pk

(
x; t

)
=

(
ek − p(x; t ek)

)⊤
ek = 1− pk

(
x; t

)
,

hence d
dtpk(x; t) = pk(x; t)

(
1− pk(x; t)

)
> 0. Thus t 7→ pk(x; t) is strictly increasing.

(c) Since Fk(α) is an interval and t 7→ pk(x; t) is strictly increasing, the infimum/supremum over
Fk(α) are attained at the endpoints:

p
k
(x) = pk

(
x; t−k

)
, pk(x) = pk

(
x; t+k

)
.

(d) The feasible set can be written as {t ∈ R : −∆ℓk(t) ≤ − logα}, where −∆ℓk is convex.
Minimizing t (resp. −t) over this convex set is a convex program whose optimizer is exactly the left
(resp. right) endpoint t−k (resp. t+k ). In the half-infinite cases Nk ∈ {0, N} the same conclusions
hold with the appropriate limits t−k = −∞, t+k = +∞ (so pk(x; t

−
k ) = 0 or pk(x; t+k ) = 1).

This completes the proof.
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B IMPLEMENTATION DETAILS

In this section, we provide a detailed description of how our method EffCre is practically imple-
mented, including the optimization procedure, the evaluation of probability intervals, and the steps
taken to ensure computational efficiency.

As discussed in Section 3, given the logits of the MLE, our method essentially solves two con-
vex optimization problems per class to determine the boundaries—namely, the lower and upper
probabilities—of a plausible interval according to the relative likelihood constraint. Specifically, for
each class logit of the MLE, we add a value to the logit to perturb the resulting probability, thereby
deriving a bound for the plausible probability interval as a result of the optimization. In practice, we
use the minimize function from SciPy (Virtanen et al., 2020) to optimize this value, with the rela-
tive likelihood threshold as a constraint, an initial solution of 0, and bounds set to (−10000, 10000).
Roughly speaking, each optimization produces a constant that is added to a single class logit, giving
the lower (or upper) bound of the plausible probability interval for that class. As a result, applying
our method to a dataset requires solving 2K convex optimization problems for each value of α.

The constants obtained by our method, EffCre, can then be used to evaluate our method on test data
instances, thus, constructing probability intervals, and thereby credal sets. Each interval bound is
directly associated with a specific relative likelihood, which served as the constraint during the opti-
mization. For models we trained ourselves, we use the training dataset to evaluate the log-likelihood
and compare it with that of the maximum likelihood estimator (MLE) predictor to compute the rela-
tive likelihood, as described in Section 2. When the original training data is unavailable, we instead
use a subset of the target dataset to compute the relative likelihood budget. For example, in the case
of CLIP, we do not have access to the original training data, which spans many benchmark dataset
in addition to a large sample of images from the internet. Since we want to make credal predictions
for CIFAR-10, we use the respective train split of CIFAR-10 to compute the (relative) log-likelihoods
in order to solve the optimization problem described above. Credal predictions are then made using
the respective test split of the dataset.

In general, our setup allows for straightforward computation of alpha-cuts once results for
multiple alpha values have been obtained, a task made feasible by the efficiency of our
method. The implementation is simple and intuitive; for further clarity, we refer to the
function classwise adding optim logit in the code https://anonymous.4open.
science/r/efficient-credal-prediction/.
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C GUIDE ON INTERPRETING CREDAL SPIDER PLOTS

So far, the quantitative evaluation of credal sets has mainly been restricted to the three class setting,
due to the inability to visualize credal sets in a (K−1)-simplex for K > 3. As many machine learn-
ing problems involve more then three classes and as a visual representation of the output of models
can give useful insight, it is important to be able to have such a visual representation. To enable this,
we propose credal spider plots—these plots offer an intuitive way to evaluate the interval-based
credal sets. Given an instance that we want to evaluate, we plot the different classes as variables
in the spider diagram and generate bars, starting at the lower probability and ending at the upper
probability, for each class, which represent the (plausible) probability intervals. The ground-truth
distributions is then plotted as multiple dots (depending on the number of classes with non-zero
probability mass) on the radii corresponding to the given probability mass of a class. As our method
relies on the maximum likelihood estimate (MLE), we additionally plot the MLE in a similar way.

In Section 4.4, we sort instances in descending order by the aleatoric and epistemic uncertainty
associated with the predicted credal set using measures by Abellán et al. (2006) that have been
proposed on the basis of a number of suitable axioms. Specifically,

S(Qx)︸ ︷︷ ︸
TU(Qx))

= S(Qx)︸ ︷︷ ︸
AU(Qx))

+(S(Qx)− S(Qx))︸ ︷︷ ︸
EU(Qx))

(7)

Therefore, maximum aleatoric uncertainty (lower entropy) will manifest itself in the credal spider
plot for K classes as having intervals that include 1/K for all K classes. The maximum epistemic
uncertainty (difference upper and lower entropy) is obtained by having similar plausible intervals as
for aleatoric uncertainty, but additionally, the plausible interval for (at least) one class should admit a
probability of 1. Besides, this instance-wise coverage and efficiency can also easily be observed from
the credal spider plot by evaluating whether the ground-truth point fall into the plausible intervals
and by considering the average length of the aforementioned intervals, respectively.

CIFAR10 label: deer
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Figure 7: Example credal spider plots for CLIP, SigLIP, and SigLIP-2. used for illustration
purposes. The credal spider plots includes the maximum likelihood estimate, the plausible intervals,
and the ground-truth distribution.
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D EXPERIMENTAL SETUP

D.1 MODELS

Multilayer Perceptron We train multilayer perceptron on the ChaosNLI dataset. The model con-
sists of four linear layers with dimensions [768− 256− 64− 16− 3], employing ReLU activations
for all hidden layers, while the output layer uses a Softmax function to produce probability distribu-
tions from the logits. For training, we adopt hyperparameters similar to those identified as optimal
in Javanmardi et al. (2024) (see Table 1).

ResNet18 For experiments on CIFAR-10, we employ the ResNet-18 implementation and train-
ing configuration from https://github.com/kuangliu/pytorch-cifar. This variant
is tailored to CIFAR-10 and is trained entirely from scratch, without ImageNet pretraining.

TabPFN TabPFN (Tabular Prior-data Fitted Network) (Hollmann et al., 2022) is a transformer-
based foundation model developed for supervised classification and regression tasks on small to
medium-sized tabular datasets, typically up to 10, 000 samples and 500 features. Pre-trained on
approximately 130 million synthetic datasets generated via structural causal models, TabPFN learns
to approximate Bayesian inference through a single forward pass, eliminating the need for task-
specific tuning. It adeptly handles numerical and categorical features, missing values, and outliers.
We use TabPFN for all experiments with tabular data as presented in Section 4.3. The model
is publicly accessible under a custom license based on Apache 2.0, which includes an enhanced
attribution requirement.

CLIP CLIP (Contrastive Language–Image Pretraining) (Radford et al., 2021) is a multimodal
neural network that learns visual concepts from natural language supervision. Trained on 400 mil-
lion image-text pairs sourced from the internet, CLIP can understand images in the context of nat-
ural language prompts, enabling zero-shot classification across various tasks without task-specific
tuning. It employs a vision transformer architecture to process images and a causal language model
to process text, aligning both modalities in a shared embedding space. This design allows CLIP
to generalize to a wide range of visual tasks by interpreting textual descriptions directly. We em-
ploy CLIP to assess our method’s performance in zero-shot classification tasks, demonstrating its
applicability to large-scale models without the need for task-specific training. The model is publicly
available under the MIT License, permitting both academic and commercial use.

SigLIP SigLIP (Sigmoid Loss for Language-Image Pretraining) (Zhai et al., 2023) is a multi-
modal vision-language model that enhances the CLIP framework by employing a pairwise sigmoid
loss function instead of the traditional softmax loss. This modification allows for more efficient
scaling to larger batch sizes while maintaining or improving performance at smaller batch sizes.
SigLIP utilizes separate image and text encoders to generate representations for both modalities,
aligning them in a shared embedding space. The model has demonstrated superior performance in
zero-shot image classification tasks compared to CLIP, achieving an ImageNet zero-shot accuracy
of 84.5% with a batch size of 32, 000. Same as for CLIP, we demonstrate with SigLIP the ability
to construct credal sets based on large-scale models. SigLIP is publicly available under the Apache
2.0 license, facilitating research and application in various domains.

SigLIP-2 SigLIP-2 (Sigmoid Loss for Language-Image Pretraining 2) (Tschannen et al., 2025)
is a multilingual vision-language encoder. Building upon the original SigLIP, SigLIP-2 in-
tegrates advanced pretraining techniques—including captioning-based pretraining, self-supervised
losses (self-distillation and masked prediction), and online data curation—to enhance semantic un-
derstanding, localization, and dense feature extraction. The model demonstrates improved perfor-
mance in zero-shot classification, image-text retrieval, and transfer tasks, particularly when extract-
ing visual representations for Vision-Language Models. Notably, SigLIP-2 introduces a dynamic
resolution variant, NaFlex, which supports multiple resolutions and preserves the native aspect ratio,
making it suitable for applications sensitive to image dimensions. We use SigLIP-2 in a similar
fashion as SigLIP and CLIP for large-scale experiments. The model is publicly available under
the Apache 2.0 license, facilitating research and application across various domains.
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BiomedCLIP BiomedCLIP (Zhang et al., 2024) is a multimodal biomedical foundation model,
pretrained on the PMC-15M dataset—a collection of 15 million figure-caption pairs extracted from
over 4.4 million scientific articles in PubMed Central. Utilizing PubMedBERT as the text encoder
and Vision Transformer as the image encoder, BiomedCLIP is tailored for biomedical vision-
language processing through domain-specific adaptations. It has demonstrated state-of-the-art per-
formance across various biomedical tasks, including cross-modal retrieval, image classification, and
visual question answering, outperforming previous models such as BioViL in radiology-specific
tasks like RSNA pneumonia detection. The model is publicly available under the Apache 2.0 li-
cense, facilitating research and application in the biomedical domain.

Hyperparameters For certain experiments in our empirical evaluation, we use pre-trained (foun-
dation) models, which do not require training and thus do not need hyperparameter specifications.
In contrast, for the coverage-efficiency experiments on CIFAR-10, ChaosNLI, and QualityMRI, we
train models from scratch using a dataset-specific set of hyperparameters, summarized in Table 1.
Multiple configurations were evaluated, and the best-performing setup was selected individually for
each dataset. To ensure comparability, all methods—our approach as well as the baselines—share
the same hyperparameter settings within a given dataset. The only exception is CreBNN, which,
when trained with the Adam optimizer (Kingma & Ba, 2015), requires a KL-divergence penalty of
1e − 7 and weight decay set to zero. When instead using SGD combined with a cosine annealing
learning rate schedule (Loshchilov & Hutter, 2017), CreBNN additionally needs a momentum of
0.9 to achieve stable training.

Table 1: Hyperparameters used for each dataset.

Hyperparameter ChaosNLI CIFAR-10 QualityMRI
Model FCNet ResNet18 ResNet18
Epochs 300 200 200
Learning rate 0.01 0.1 0.01
Weight decay 0.0 0.0005 0.0005
Optimizer Adam SGD SGD
Ensemble members 20 20 20
LR scheduler - CosineAnnealing CosineAnnealing

D.2 DATASETS

ChaosNLI ChaosNLI, introduced by Nie et al. (2020), is a large-scale dataset created to inves-
tigate human disagreement in natural language inference (NLI). It includes 100 annotations per
example for 3, 113 instances from SNLI and MNLI, as well as 1, 532 examples from the αNLI
dataset, totaling around 464, 500 annotations. In line with Javanmardi et al. (2024), we focus only
on the SNLI and MNLI portions, which we refer to simply as ChaosNLI for convenience. Each entry
provides rich metadata, including a unique identifier, the count of labels assigned by annotators, the
majority label, the full label distribution, the distribution’s entropy, the original text, and the original
label from the source dataset. ChaosNLI facilitates detailed study of variability in human judgments,
highlighting examples where disagreement is high and illustrating the limitations of treating the ma-
jority label as definitive ground truth. The dataset is publicly accessible under the CC BY-NC 4.0
License. For our experiments, we use the precomputed 768-dimensional embeddings, available at
https://github.com/alireza-javanmardi/conformal-credal-sets, with fur-
ther details on their generation provided by Javanmardi et al. (2024).

QualityMRI Introduced by Obuchowicz et al. (2020), the QualityMRI dataset is part of the Data-
Centric Image Classification (DCIC) Benchmark, which studies the role of dataset quality in shaping
model performance. It consists of 310 magnetic resonance images that cover different quality levels,
providing a resource for assessing MRI image quality. The dataset is distributed under the Creative
Commons BY-SA 4.0 License.

CIFAR-10 CIFAR-10, introduced by Krizhevsky et al. (2009) and Geoffrey Hinton in 2009, is a
widely adopted benchmark in machine learning and computer vision. It consists of 60, 000 color
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images with a resolution of 32× 32 pixels, evenly divided among 10 classes: airplane, automobile,
bird, cat, deer, dog, frog, horse, ship, and truck. The dataset is split into 50, 000 training images
and 10, 000 test images, organized into five training batches and a single test batch, each containing
10, 000 images. CIFAR-10 is publicly available and has been extensively used for training and
evaluating machine learning models. While the original dataset does not explicitly define a license,
versions distributed through platforms such as TensorFlow datasets are provided under the Creative
Commons Attribution 4.0 License.

CIFAR-10H CIFAR-10H provides human-generated soft labels for the 10, 000 images in the
CIFAR-10 test set, reflecting the variability in human judgments for image classification. Intro-
duced by Peterson et al. (2019), the dataset contains 511, 400 annotations from 2, 571 workers on
Amazon Mechanical Turk, with each image receiving around 51 labels. Each annotation assigns an
image to one of the ten CIFAR-10 classes, allowing the creation of a probability distribution over
labels for every image. CIFAR-10H is publicly available under the Creative Commons BY-NC-SA
4.0 License.

CIFAR-100 CIFAR-100, introduced by Krizhevsky et al. (2009), consists of 60, 000 color images
at a resolution of 32 × 32 pixels, organized into 100 classes with 600 images per class. Each im-
age carries both a “fine” label, indicating its specific class, and a “coarse” label corresponding to
one of 20 broader superclasses. The dataset is divided into 50, 000 training images and 10, 000 test
images. CIFAR-100 is derived from the Tiny Images dataset and is widely used for benchmarking
image classification models. While the original dataset does not define a license, versions distributed
through platforms such as TensorFlow Datasets are available under the Creative Commons Attribu-
tion 4.0 License.

SVHN The SVHN dataset, introduced by Netzer et al. (2011), contains over 600, 000 32 × 32
RGB images of digits (0–9) extracted from real-world house numbers in Google Street View. It is
organized into three subsets: 73, 257 images for training, 26, 032 for testing, and an additional set
of 531, 131 images for extended training. SVHN is intended for digit recognition tasks and requires
minimal preprocessing. Although the original dataset does not specify a license, versions distributed
through platforms like TensorFlow Datasets are available under the Creative Commons Attribution
4.0 License.

Places365 Places365, introduced by Zhou et al. (2018), is a large-scale dataset for scene recog-
nition, comprising 1.8 million training images spanning 365 scene categories. The validation set
contains 50 images per category, while the test set includes 900 images per category. An expanded
variant, Places365-Challenge-2016, incorporates an additional 6.2 million images and 69 new scene
categories, bringing the total to 8 million images across 434 categories. Although the original dataset
does not specify a license, versions distributed through platforms such as TensorFlow Datasets are
available under the Creative Commons Attribution 4.0 License.

FMNIST Fashion-MNIST (FMNIST), introduced by Xiao et al. (2017), contains 70, 000
grayscale images of Zalando products, each sized 28 × 28 pixels and categorized into 10 classes,
including T-shirt/top, Trouser, and Sneaker. The dataset is divided into 60, 000 training images and
10, 000 test images, and it is commonly used as a modern replacement for the original MNIST
dataset in machine learning benchmarks. FMNIST is publicly released under the MIT License.

ImageNet ImageNet, introduced by Deng et al. (2009), is a large-scale image dataset structured
according to the WordNet hierarchy, comprising over 14 million images spanning more than 20, 000
categories. Its ILSVRC subset, commonly referred to as ImageNet-1K, contains 1, 281, 167 training
images, 50, 000 validation images, and 100, 000 test images across 1, 000 classes. The dataset is
freely accessible to researchers for non-commercial purposes.

TabArena Benchmark Data TabArena (Erickson et al., 2025) is a continuously maintained
benchmarking system designed for evaluating tabular machine learning models. It comprises 51
manually curated datasets representing real-world tabular tasks, including both classification and
regression problems. Each dataset has been evaluated across 9 to 30 different splits, ensuring ro-
bust performance assessments. The datasets encompass a diverse range of domains, such as finance,
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healthcare, and e-commerce, providing a comprehensive foundation for benchmarking various ma-
chine learning models. This diversity ensures that evaluations reflect the complexities and nuances
found in real-world tabular data scenarios. We use 7 different datasets with IDs 46906, 46930,
46941, 46958, 46960, 46963, 46980 from the benchmark to validate our method in different ex-
periments. Each of the datasets contains a classification task with 2 or more classes and a number
of instances between 898 and 12, 684. The datasets are publicly accessible and released under the
Apache 2.0 license, ensuring permissive use and redistribution for research purposes.

D.3 BASELINES

Below, we provide detailed descriptions of the baseline implementations used in this paper, relying
on the implementations provided by Löhr et al. (2025).

Credal Prediction based on Relative Likelihood (CreRL) The implementation of Credal Pre-
diction based on Relative Likelihood (Löhr et al., 2025) is provided in https://github.com/
timoverse/credal-prediction-relative-likelihood. We use the provided code
to perform all experiments involving CreRL. Similar to our method, the CreRL defines plausibility
in terms of the relative likelihood of a model. One significant difference is that, while CreRL tries
to find sufficiently diverse hypotheses that satisfy the relative likelihood criterion, therefore having
to train an ensemble of model, we directly obtain the plausible probability intervals by varying the
logits of the maximum likelihood estimate.

Credal Wrapper (CreWra) The Credal Wrapper (Wang et al., 2025a) was initially implemented
in TensorFlow, but then reimplemented in PyTorch to ensure compatibility with other baselines. It
follows a standard ensemble learning approach, training multiple models independently. Like our
method, the Credal Wrapper constructs credal sets using class-wise upper and lower probability
bounds, making it well-aligned with our implementation.

Credal Ensembling (CreEnsα) Our implementation adheres closely to the specifications outlined
in Nguyen et al. (2025). The method extends standard ensemble training, adapting the inference
stage by ranking predictions according to a distance metric and including only the top α% of closest
predictions when forming the credal sets. In our experiments, we employ the Euclidean distance
and test multiple α values.

Credal Deep Ensembles (CreNet) Since the official Credal Deep Ensembles implementation was
provided only in TensorFlow, it was reimplemented by Löhr et al. (2025) in PyTorch to integrate
seamlessly with other baselines. The version maintains the key design choices of the original, espe-
cially regarding the architecture and loss function. In particular, the models’ final linear layers are
replaced with a head that outputs 2 × classes values corresponding to upper and lower probability
bounds, followed by batch normalization and the custom IntSoftmax activation. The loss function
applies standard cross-entropy to the upper bounds, while for the lower bounds, gradients are prop-
agated only for the δ% of samples exhibiting the largest errors, in line with Wang et al. (2025b). For
our experiments, we adopt δ = 0.5 as recommended in the original work.

Credal Bayesian Deep Learning (CreBNN) The method proposed by Caprio et al. (2024a) was
reimplemented by Löhr et al. (2025) using only the high-level description from the original work.
The ensemble consists of Bayesian neural networks (BNNs), each trained via variational inference
with distinct priors: the prior means µ are drawn from [−1, 1] and the standard deviations σ from
[0.1, 2], ensuring a diverse prior set. At inference time, we sample once from each BNN to generate
a finite collection of probability distributions, and the credal set is defined as the convex hull of these
samples.

Evidential Deep Learning Our implementation of Evidential Deep Learning follows (Sensoy
et al., 2018) as closely as possible. We use a single model and include a SoftPlus activation function
after the last layer to ensure the output is non-negative. We use the Type II Maximum Likelihood as
a loss function and the KL-divergence as a regularization term as described in (Sensoy et al., 2018).
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The regularization term is scaled by λi = min(1, i/10) at epoch i as also done in the original work.
At inference time, the model predicts the evidence for each class, which can then be used to compute
the parameters of the corresponding Dirichlet distribution.

Deep Deterministic Uncertainty For the Deep Deterministic Uncertainty method (Mukhoti
et al., 2023), we used the original implementation provided in https://github.com/
omegafragger/DDU. This approach uses a single model to reason about uncertainty. In the
original paper, the authors apply additional techniques—including spectral normalization and resid-
ual connections—to encourage more regularized embeddings in feature-space. For our compari-
son, we omit these techniques to ensure a fair comparison, as integrating such modifications into
a pre-trained model would require re-training the model. Thus, we rely on the identical, trained
ResNet18, which is also used for the other experiments. At inference time, epistemic uncertainty
can be quantified through density estimation in feature-space: a normal distribution is fit to the em-
beddings of training data for each class, and epistemic uncertainty is computed on the basis of the
likelihood of new embeddings under this distribution.

D.4 COMPUTE RESOURCES

All experiments in this work were conducted using the computing resources listed in Table 2, with
an estimated total GPU usage of approximately 820 hours.

Table 2: Specifications of Computing Resources

Component Specification
CPU AMD EPYC MILAN 7413 Processor, 24C/48T 2.65GHz 128MB L3 Cache
GPU 2 × NVIDIA A40 (48 GB GDDR each)
RAM 128 GB (4x 32GB) DDR4-3200MHz ECC DIMM
Storage 2 × 480GB Samsung Datacenter SSD PM893

D.5 GENERATING SEMI-SYNTHETIC GROUND-TRUTH DISTRIBUTIONS

Due to a lack of ground-truth distributions, the evaluation of credal predictors remains non-trivial.
While a number of datasets have a (test) set that includes multiple human annotations—such as the
ones used in this work—most of the commonly-used benchmarking datasets do not provide these.
Therefore, we use a simple method to generate semi-synthetic datasets that include (conditional)
ground-truth distributions. The general idea is as follows: given a training set Dtrain, we either train a
model or retrieve a strong model from a model hub. The trained or retrieved model is then considered
to be the ground-truth model h∗ and ground-truth distributions may be generated by collecting the
predicted distributions p(· | x, h∗) based on instances from the Dtrain or Dtest. The model that is to
be evaluated (in terms of coverage and efficiency) is then trained on the same instances x ∈ Dtrain,
but the labels are sampled from p(· | x, h∗). Thereafter, the model can be evaluated using the test
set.

For example, in Section 4.3, we train a RandomForest with the default parameters from scikit-
learn (Pedregosa et al., 2011) with the exception of maximum depth; this is set to 5 to prevent
the predicted distributions too ”peaked”. The RandomForest is assumed to be the ground-truth
model h∗ and it’s prediction for an instance x is taken to be the ground-truth conditional distribution
p(· | x, h∗). The TabPFN model is then trained on the same instances x, but the labels y are
realizations sampled from the distribution p(· | x, h∗). The model is then evaluated on the test set,
for which the ground-truth distributions are also generated by the RandomForest h∗.

We refer to this as semi-synthetic, because, while the generated distribution is not (necessarily) the
ground-truth, under the assumption that the used model is sufficiently well-trained, they should be
”close” to the ground-truth.
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D.6 TURNING CLIP-BASED MODELS INTO ZERO-SHOT CLASSIFIERS

To demonstrate the usefulness and flexibility of our method for producing credal sets for any black-
box model structure without the need for retraining, we apply it to multi-modal CLIP-based models.
Contrastive Language–Image Pretraining (CLIP) (Radford et al., 2021) introduced a mechanism to
pre-train models that share embeddings across two modalities. The training data consists of a large
corpus of images and their corresponding descriptions (e.g., captions or alternative text from web-
sites). The central idea is to align each image with its textual description: images and their captions
should be close in the embedding space, while mismatched pairs should be far apart. To achieve this,
two modality-specific encoders are trained to produce embeddings of equal dimension, from which a
similarity score (e.g., cosine similarity) is computed. Captions that accurately describe an image re-
ceive high similarity scores, whereas unrelated captions receive low scores. This training paradigm
and model architecture have since been refined by subsequent works, yielding better-performing or
more specialized models. For example, BiomedCLIP (Zhang et al., 2024), trained on biomedical
data from PubMed, achieves superior performance on medical tasks. Similarly, the SigLIP (Zhai
et al., 2023) and SigLIP-2 (Tschannen et al., 2025) families adapt the training procedure and ex-
tend the datasets to include multilingual text sources, resulting in improved performance on general
tasks (Zhai et al., 2023; Tschannen et al., 2025).

Zero-Shot Prediction. Zero-shot image classification with CLIP-based models proceeds by refor-
mulating the label set into natural-language templates. For each candidate class, a short descriptive
text is created (e.g., the template “a photo of a [label]” yields “a photo of a dog” or “a photo of a
cat”). These textual descriptions are embedded by the text encoder, while the input image is embed-
ded by the image encoder. The similarity between the image embedding and each text embedding
is then computed, typically using cosine similarity. The resulting similarity values can be treated
as logits, where the highest-scoring label determines the predicted class. Importantly, this formu-
lation also makes it straightforward to restrict classification to any subset of labels without training
a new classifier, since one can simply retain and compare the logits corresponding to the labels
of interest. This procedure enables CLIP-based models to serve as flexible, task-agnostic classi-
fiers without requiring any additional training, and has proven effective across diverse downstream
domains (Radford et al., 2021; Zhang et al., 2024; Zhai et al., 2023; Tschannen et al., 2025).

Templates for Multi-Lingual Datasets. Zero-shot classification can be extended to multi-lingual
datasets by translating labels into the target language and constructing corresponding templates. For
example, in our experiments we used the English template “This is a photo of a [label]” alongside a
Swahili template “Hii ni picha ya [label]”, allowing classification in either language. Models such
as SigLIP-2 (Tschannen et al., 2025), trained on multilingual data, further improve robustness in
this setting.

Model Performance. To illustrate the effectiveness of different CLIP-based models in our setting,
we report their zero-shot classification accuracy on CIFAR-10, ImageNet, and DermMNIST (see
Table 3). The results show that while standard CLIP performs strongly on general-purpose datasets,
specialized variants such as BiomedCLIP yield improved performance on domain-specific tasks,
and recent multilingual models like SigLIP and SigLIP-2 further enhance accuracy on broad
benchmarks.

Table 3: Zero-shot classification accuracy (%) of CLIP-based models on CIFAR-10 (EN = English,
SW = Swahili, FR = French, ZH = Chinese), ImageNet, and DermaMNIST.

Model CIFAR-10 ImageNet DermaMNIST
EN SW FR ZH

CLIP 88.97% 9.11% 85.97% 33.73% 57.14% 24.74%
SigLIP 92.17% 15.33% 84.05% 91.28% 72.83% 8.28%
SigLIP2 93.91% 10.21% 92.21% 93.85% 69.87% 11.67%
BiomedCLIP – – – – – 45.89%
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E ADDITIONAL EXPERIMENTAL RESULTS

E.1 COVERAGE VERSUS EFFICIENCY

In addition to the datasets provided in Section 4.1, we present an additional comparison to the base-
lines in the form of the QUALITYMRI dataset. Figure 8 shows that our approach Pareto dominates the
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Figure 8: Coverage versus Efficiency. Our method, EffCre, is compared to baselines on
QUALITYMRI.

CreRL method, while having a similar coverage and efficiency to CreBNN for α = 0.4. However,
our method allows a trade-off between coverage and efficiency beyond that, allowing the explo-
ration of regions with a better efficiency or better coverage. Our method is Pareto incomparable to
the CreEns, because CreEns does not reach the high coverage region (while having higher efficiency,
whereas our method does (while having lower efficiency). It should be noted that reaching the high
coverage area, as our method does, is especially important in medical settings, as is the case for the
QualityMRI dataset.

E.2 OUT-OF-DISTRIBUTION DETECTION

Table 4: Training and inference time in seconds for
models trained on CIFAR10. Mean with standard de-
viation over three runs. Computed based on ensembles
with 10 members.

Method Training time Inference time

EffCre 2136.33± 1.70 1.50± 0.02
CreRL 12675.84± 412.68 11.46± 0.12
CreWra 21363.34± 33.99 11.44± 0.19
CreEns 21363.34± 33.99 11.44± 0.23
CreNet 24996.65± 180.12 11.41± 0.18
CreBNN 29796.67± 12.94 12.74± 1.1

For this experiment, we trained a
ResNet18 on CIFAR-10, which
serves as the in-distribution dataset.
At evaluation time, we consider both
the in-distribution data and five out-of-
distribution datasets to compute epistemic
uncertainty values with our method.
These values are then used to separate
ID from OOD samples, with performance
measured via AUROC. In addition to the
results in Section 4.2, Table 5 reports
AUROC scores across different α values
for our method, and Table 4 states the
corresponding training and inference
times for each method. Furthermore, Appendix F.1 presents an ablation study on the effect of the
ensemble size for OOD detection performance.
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Table 5: Out-of-Distribution Detection.

Method SVHN Places365 CIFAR-100 FMNIST ImageNet

EffCre0.0 0.478±0.006 0.478±0.005 0.480±0.005 0.486±0.002 0.481±0.002

EffCre0.2 0.474±0.003 0.474±0.001 0.473±0.002 0.474±0.002 0.473±0.003

EffCre0.4 0.303±0.100 0.389±0.072 0.335±0.040 0.325±0.057 0.338±0.035

EffCre0.6 0.415±0.010 0.428±0.007 0.440±0.017 0.404±0.024 0.435±0.008

EffCre0.8 0.744±0.009 0.721±0.009 0.720±0.007 0.733±0.012 0.700±0.008

EffCre0.9 0.854±0.005 0.827±0.006 0.822±0.004 0.860±0.005 0.796±0.005

EffCre0.95 0.885±0.003 0.862±0.005 0.854±0.003 0.907±0.002 0.826±0.004

EffCre1.0 0.894±0.015 0.886±0.008 0.868±0.005 0.933±0.010 0.844±0.006

CreRL0.95 0.917±0.013 0.910±0.001 0.901±0.000 0.945±0.004 0.878±0.002

CreWra 0.957±0.003 0.916±0.001 0.916±0.000 0.952±0.000 0.890±0.001

CreEns0.0 0.955±0.001 0.913±0.000 0.914±0.001 0.949±0.001 0.888±0.000

CreBNN 0.907±0.006 0.885±0.002 0.880±0.002 0.935±0.002 0.859±0.002

CreNet 0.943±0.003 0.918±0.000 0.912±0.000 0.951±0.002 0.884±0.001

In the main paper, we focused exclusively on comparing credal predictors in order to ensure a con-
sistent evaluation of methods within a single framework (that of credal predictors). This allows us
to isolate the effect of the credal predictor from the influence of other factors such as the uncertainty
measure or the base model. Here, we additionally compare our method to other methods that allow
for uncertainty quantification with a single model. In particular, we compare EffCre to evidential
deep learning (EDL) (Sensoy et al., 2018) and deep deterministic uncertainty (DDU) quantifica-
tion (Mukhoti et al., 2023). For evidential deep learning, the epistemic uncertainty quantification is
computed by

EU =
K

S
,

where K is the number of classes and S =
∑K

k=1(zk + 1) denotes the sum of the predicted pa-
rameters of the Dirichlet distribution for an input for x. Deep deterministic uncertainty quantifies
epistemic uncertainty on the basis of the likelihood of the embedding of an input

EU =

K∑
k=1

q(e | k)q(k),

where q represents the density function of a normal distribution. The implementation details are
described in Appendix D.3. The results are presented in Table 6. When compared to EDL, our

Table 6: Out-of-Distribution Detection.

Method SVHN Places365 CIFAR-100 FMNIST ImageNet

EDL 0.938±0.010 0.889±0.001 0.887±0.001 0.940±0.005 0.866±0.001

DDU 0.973±0.001 0.969±0.001 0.873±0.002 0.892±0.010 0.969±0.000

method (EffCre1.0) performs on par with EDL on Places365, while being slightly outperformed on
the remaining datasets. However, it is important to emphasize that EDL requires re-training the
model with a specific activation and loss function, hence it cannot be applied directly in standard
settings, specifically if the training data is not available. In contrast, our method can be applied
without re-training, making it compatible with a broader range of settings such as the ones using
TabPFN and CLIP presented in the manuscript. Our method outperforms DDU on FMNIST,
while being weaker on other datasets. Moreover, while DDU is also a post-training method, it
requires access to the embeddings generated by the model, whereas our method does not. EffCre,
by operating on logits, can be applied on top of black-box models, which enables it to be directly
applied in more general settings, such as large language models, which form an interesting direction
for future work. Overall, there is no clear winner across the evaluated methods, and drawing
definitive conclusions remains challenging. Besides the stark differences in the working of the
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Figure 9: Active In-Context Learning with TabPFN. Performance on TabArena datasets 46963,
and 46930 versus the random baseline.

methods, the OOD detection task itself comes with numerous caveats (Li et al., 2025), meaning that
performance on this task can only be taken as a proxy of the quality of the epistemic uncertainty
representation.

Additionally, although these methods also rely on a single (re-trained) model, they differ
from the other (credal) approaches in that they do not produce credal sets. We consider this
distinction to be particularly important, as the credal set predictors quantify a fundamentally
different form of epistemic uncertainty than DDU. Indeed, the credal set represents an epistemic
uncertainty with respect to the predicted probability distribution, which will directly affect the
subsequent decision-making. DDU, however, quantifies a form of epistemic uncertainty about the
“familiarity” of an input, derived from its density relative to the training data. It is not immediately
clear how this should influence the decision-making process that follows.

E.3 IN-CONTEXT LEARNING WITH TABPFN

We compute coverage and efficiency for our method used with TabPFN with all multi-class
TABARENA datasets. As discussed in Section 4.3, the datasets do not come with ground-truth dis-
tributions. Therefore, we constuct semi-synthethic distributions that serve as the ground-truth. In
Appendix D.5, we give a detailed explanation of our approach. Note that we consider the resulting
distributions to only be a proxy of the “true” ground-truth distributions. In addition to computing
the coverage and efficiency, we perform active in-context learning. In Section 4.3 and the results
that will follow, this is done by first splitting the data, in a stratified manner, to have a 0.3 test split.
The remaining 0.7 split is then split into an initial training set and the sampling pool, again stratified,
such that the initial training set contains 2K instances, where K is the number of classes. At every
iteration, the predictor is “allowed” to sample 2K instances from the pool, based on its epistemic
uncertainty, which is a common setup in active learning (Nguyen et al., 2019; Margraf et al., 2024).
This is done until the pool is exhausted—and, hence, until the performance converges to what would
be obtained with a traditional train-test split. The goal is thus, to select at every iteration samples
that are most informative, i.e. the samples that will give the greatest performance increase at that it-
eration. In addition to the results in Section 4.3, we present active in-context learning results for two
additional TABARENA datasets: 46963 and 46930. Figure 9 shows the results for our method using
epistemic uncertainty sampling based on (5) and (6) compared to the random baseline. Conform the
results presented in Section 4.3, our method applied to TABPFN provides a valuable advantage over
the random baseline in terms of accuracy.
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E.4 ZERO-SHOT CLASSIFICATION WITH CLIP-BASED MODELS

Extending on the examples shown in Section 4.4, we create additional credal spider plots for CLIP-
based models in Figures 10 to 12. Figure 11 highlights challenging natural images with high uncer-
tainty in CLIP, Figure 12 examines medical images from DERMAMNIST, and Figure 10 analyzes
cross-lingual predictions on CIFAR-10. Together, these visualizations complement the quantitative
results reported in Table 3 by showcasing how credal spider plots reveal distinct uncertainty patterns
that align with the models’ performance across domains.
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Figure 10: Credal spider plots for an image of a bird with CLIP, SigLIP, and SigLIP-2 across
different languages. In English, all models confidently predict the image as bird. In French,
SigLIP-2 maintains the correct maximum likelihood prediction but shows increased uncertainty
toward cat. In Chinese, CLIP exhibits high uncertainty across all classes, indicating difficulties in
this language, whereas SigLIP and SigLIP-2 remain as confident as in English. In Swahili, all
models struggle and display high uncertainty across all classes; notably, bird and airplane share
the same word in Swahili, complicating the prediction. These examples align well with models’
performances across the different languages (see Table 3).
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Figure 11: Comparison of credal sets for CLIP, SigLIP, and SigLIP-2 on observations with
high uncertainty with CLIP. Observation (a) shows a swimming deer, where the MLE is ship.
High uncertainty is spread across ship, two sky-related classes (airplane, bird), the amphibi-
ous frog, and the correct class deer. Both SigLIP models exhibit similar patterns with even
greater uncertainty. Observation (b) depicts a dark image of a frog misclassified as ship, with
high uncertainty again on that class; both SigLIP models additionally assign probability to cat.
Observation (c) is a challenging deer image, where annotators themselves showed high disagree-
ment. CLIP is confident it is either deer or horse, while SigLIP favors bird or frog, and
SigLIP-2 remains certain it is an animal but not which. Observation (d) illustrates a case where
human annotators are nearly evenly split between cat and dog, and the uncertainties of all three
models capture this ambiguity.
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Figure 12: Comparison of credal sets for BiomedCLIP and CLIP on DERMAMNIST for a
melanocytic nevi (a) and a melanoma (b). While BiomedCLIP demonstrates higher overall per-
formance than CLIP (see Table 3), it misclassifies the melanoma with high confidence and low
uncertainty, which could be dangerous if applied in medical contexts. Interestingly, CLIP classifies
the melanoma correctly, albeit with greater uncertainty. Both models predict the melanocytic nevi
correctly, though BiomedCLIP shows increased uncertainty toward the related melanoma class,
suggesting a more challenging case.
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F ABLATIONS

This section contains additional ablation experiments.

F.1 NUMBER OF ENSEMBLE MEMBERS IN OUT-OF-DISTRIBUTION DETECTION

We provide an additional ablation study on the impact of the ensemble size on out-of-distribution
performance. Table 7 and Figure 13 demonstrate once more the efficiency of our approach: it
requires only a single trained model. In contrast, ensemble-based baselines typically rely on at least
five members and benefit from larger ensembles to improve performance.

Table 7: Ablation of different numbers of trained ensemble members for Out-of-Distribution De-
tection.

Method Members SVHN Places365 CIFAR-
100

FMNIST ImageNet

EffCre0.95 1 0.885±0.003 0.862±0.005 0.854±0.003 0.907±0.002 0.826±0.004

CreRL0.95 5 0.917±0.012 0.894±0.002 0.885±0.002 0.928±0.004 0.863±0.002

CreWra 5 0.943±0.006 0.904±0.001 0.905±0.001 0.939±0.001 0.879±0.001

CreEns0.0 5 0.938±0.007 0.898±0.001 0.900±0.001 0.929±0.001 0.874±0.001

CreBNN 5 0.843±0.006 0.829±0.006 0.831±0.007 0.851±0.007 0.809±0.007

CreNet 5 0.938±0.003 0.908±0.001 0.900±0.001 0.941±0.003 0.871±0.002

CreRL0.95 10 0.921±0.010 0.905±0.002 0.896±0.001 0.940±0.002 0.872±0.002

CreWra 10 0.953±0.004 0.911±0.001 0.912±0.000 0.948±0.001 0.886±0.001

CreEns0.0 10 0.949±0.001 0.907±0.001 0.909±0.002 0.941±0.002 0.883±0.001

CreBNN 10 0.880±0.009 0.856±0.002 0.859±0.002 0.886±0.001 0.838±0.001

CreNet 10 0.944±0.001 0.915±0.001 0.908±0.001 0.949±0.001 0.881±0.001

CreRL0.95 20 0.917±0.013 0.910±0.001 0.901±0.000 0.945±0.004 0.878±0.002

CreWra 20 0.957±0.003 0.916±0.001 0.916±0.000 0.952±0.000 0.890±0.001

CreEns0.0 20 0.955±0.001 0.913±0.000 0.914±0.001 0.949±0.001 0.888±0.000

CreBNN 20 0.907±0.006 0.885±0.002 0.880±0.002 0.935±0.002 0.859±0.002

CreNet 20 0.943±0.003 0.918±0.000 0.912±0.000 0.951±0.002 0.884±0.001

F.2 α-VALUES FOR ACTIVE IN-CONTEXT LEARNING

We provide an additional ablation on the effect that the α-value has on the performance of our
method in active in-context learning. We evaluate runs for values α ∈ {0.2, 0.4, 0.6, 0.8, 0.9, 0.95}.
In Figure 14, we provide the results for the TabArena datasets with OpenML (Bischl et al., 2025)
id 46941, 46963, and 46930. For the sake of legibility, we only consider the zero-one-loss-based
epistemic uncertainty measure (6).

We observe that higher α values consistently improve performance across all three datasets until
the performance converges at α = 0.8. In particular, lower α values result in larger predicted
sets with high epistemic uncertainty, which reduces the meaningful separation between instances.
Consequently, the optimal order for selecting instances during active learning is lost when α is small,
explaining the drop in performance.

F.3 ACCURACY AND EXPECTED CALIBRATION SCORE EVALUATION FOR SINGLE MODELS

If we have to commit to a precise probabilistic prediction, a natural choice is to use the maximum
likelihood estimate, which is a theoretically well-established approach. If, additionally, a class-
wise prediction is sought, the argmax class can be predicted. To provide a sense of the quality of
the underlying models trained for our experiments, we report standard supervised-learning metrics,
namely accuracy and expected calibration error, for each individual model in Table 8 based on
the original CIFAR-10 test set. This serves as a sanity check to ensure a fair comparison with the
baselines. For our experiments with TabPFN and CLIP models we use the pre-trained models.
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Figure 13: Out-of-distribution detection performance (based on AUROC score) as a function of
ensemble size. CIFAR-10 is the in-distribution data while various datasets are used as OOD data.
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Figure 14: Active In-Context Learning with TabPFN. Performance on TabArena datasets 46941,
46963, 46930 for different values of α.
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Method Model CIFAR10 ChaosNLI QualityMRI
ECE Acc ECE Acc ECE Acc

EffCre 1 0.04± 0.00 0.93± 0.00 0.04± 0.01 0.61± 0.01 0.30± 0.05 0.49± 0.05

CreRL0.8

1 0.04± 0.00 0.94± 0.00 0.09± 0.03 0.60± 0.02 0.33± 0.09 0.48± 0.04
2 0.06± 0.01 0.87± 0.01 0.13± 0.01 0.57± 0.01 0.35± 0.08 0.50± 0.05
3 0.06± 0.00 0.87± 0.00 0.10± 0.01 0.56± 0.01 0.37± 0.10 0.51± 0.02
4 0.06± 0.00 0.88± 0.00 0.09± 0.01 0.58± 0.01 0.30± 0.09 0.49± 0.03
5 0.06± 0.00 0.89± 0.00 0.12± 0.01 0.60± 0.00 0.38± 0.09 0.48± 0.04
6 0.06± 0.00 0.89± 0.00 0.10± 0.01 0.57± 0.01 0.30± 0.08 0.49± 0.07
7 0.06± 0.01 0.88± 0.01 0.09± 0.01 0.59± 0.02 0.34± 0.04 0.51± 0.04
8 0.06± 0.01 0.90± 0.00 0.11± 0.01 0.60± 0.01 0.33± 0.09 0.49± 0.04
9 0.06± 0.00 0.90± 0.01 0.09± 0.01 0.59± 0.00 0.35± 0.10 0.47± 0.03
10 0.06± 0.00 0.91± 0.00 0.09± 0.01 0.39± 0.01 0.38± 0.09 0.49± 0.04

CreWra

1 0.03± 0.00 0.94± 0.00 0.12± 0.02 0.60± 0.01 0.39± 0.02 0.48± 0.03
2 0.03± 0.00 0.95± 0.00 0.11± 0.01 0.60± 0.01 0.39± 0.02 0.51± 0.04
3 0.03± 0.00 0.94± 0.00 0.12± 0.02 0.59± 0.01 0.38± 0.02 0.48± 0.03
4 0.03± 0.00 0.94± 0.00 0.15± 0.01 0.57± 0.02 0.34± 0.01 0.49± 0.02
5 0.03± 0.00 0.94± 0.00 0.13± 0.01 0.55± 0.01 0.37± 0.03 0.46± 0.01
6 0.03± 0.00 0.94± 0.00 0.10± 0.01 0.59± 0.02 0.38± 0.04 0.48± 0.04
7 0.03± 0.00 0.94± 0.00 0.12± 0.01 0.59± 0.01 0.39± 0.02 0.46± 0.05
8 0.03± 0.00 0.94± 0.00 0.13± 0.01 0.59± 0.01 0.34± 0.01 0.51± 0.06
9 0.03± 0.00 0.94± 0.00 0.12± 0.02 0.58± 0.01 0.33± 0.02 0.48± 0.04
10 0.03± 0.00 0.94± 0.00 0.10± 0.01 0.58± 0.02 0.34± 0.04 0.47± 0.04

CreEns

1 0.03± 0.00 0.94± 0.00 0.12± 0.02 0.60± 0.02 0.34± 0.04 0.47± 0.04
2 0.03± 0.00 0.94± 0.00 0.10± 0.02 0.60± 0.01 0.32± 0.01 0.48± 0.02
3 0.03± 0.00 0.94± 0.00 0.11± 0.02 0.60± 0.00 0.34± 0.04 0.47± 0.04
4 0.03± 0.00 0.94± 0.00 0.14± 0.01 0.57± 0.02 0.38± 0.04 0.48± 0.04
5 0.03± 0.00 0.94± 0.00 0.07± 0.03 0.59± 0.08 0.31± 0.02 0.46± 0.03
6 0.03± 0.00 0.94± 0.00 0.12± 0.03 0.58± 0.01 0.33± 0.02 0.48± 0.04
7 0.03± 0.00 0.94± 0.00 0.09± 0.03 0.59± 0.01 0.34± 0.01 0.49± 0.02
8 0.03± 0.00 0.94± 0.00 0.12± 0.03 0.59± 0.01 0.39± 0.02 0.51± 0.04
9 0.03± 0.00 0.94± 0.00 0.10± 0.01 0.59± 0.01 0.37± 0.02 0.47± 0.03
10 0.03± 0.00 0.94± 0.00 0.11± 0.04 0.59± 0.01 0.38± 0.04 0.48± 0.04

CreNet

1 0.04± 0.01 0.93± 0.00 0.11± 0.02 0.59± 0.01 0.41± 0.02 0.47± 0.02
2 0.03± 0.00 0.95± 0.00 0.11± 0.02 0.59± 0.01 0.39± 0.02 0.50± 0.04
3 0.02± 0.00 0.95± 0.01 0.11± 0.02 0.59± 0.01 0.38± 0.03 0.48± 0.03
4 0.03± 0.00 0.94± 0.00 0.15± 0.01 0.57± 0.02 0.34± 0.01 0.49± 0.02
5 0.03± 0.00 0.93± 0.00 0.13± 0.01 0.55± 0.01 0.37± 0.03 0.46± 0.01
6 0.03± 0.00 0.94± 0.00 0.10± 0.01 0.57± 0.02 0.38± 0.04 0.48± 0.05
7 0.03± 0.00 0.92± 0.01 0.12± 0.01 0.59± 0.01 0.39± 0.02 0.47± 0.03
8 0.02± 0.01 0.94± 0.00 0.13± 0.01 0.59± 0.00 0.34± 0.01 0.51± 0.06
9 0.03± 0.00 0.94± 0.02 0.12± 0.02 0.58± 0.01 0.33± 0.02 0.48± 0.04
10 0.03± 0.01 0.94± 0.00 0.10± 0.01 0.58± 0.02 0.34± 0.04 0.48± 0.03

CreBNN

1 0.64± 0.00 0.87± 0.00 0.10± 0.04 0.49± 0.07 0.15± 0.14 0.54± 0.11
2 0.64± 0.01 0.87± 0.02 0.09± 0.03 0.49± 0.07 0.15± 0.14 0.54± 0.11
3 0.65± 0.00 0.88± 0.01 0.10± 0.05 0.49± 0.08 0.15± 0.04 0.54± 0.11
4 0.65± 0.01 0.88± 0.01 0.07± 0.00 0.44± 0.00 0.17± 0.12 0.54± 0.11
5 0.65± 0.00 0.88± 0.00 0.07± 0.00 0.44± 0.00 0.24± 0.13 0.54± 0.12
6 0.65± 0.01 0.88± 0.01 0.13± 0.05 0.55± 0.08 0.28± 0.14 0.46± 0.11
7 0.64± 0.00 0.87± 0.00 0.11± 0.03 0.53± 0.06 0.14± 0.15 0.44± 0.09
8 0.63± 0.01 0.86± 0.02 0.13± 0.04 0.55± 0.07 0.19± 0.07 0.53± 0.13
9 0.63± 0.01 0.85± 0.04 0.12± 0.05 0.53± 0.07 0.19± 0.07 0.51± 0.11
10 0.63± 0.00 0.86± 0.01 0.12± 0.04 0.54± 0.07 0.17± 0.12 0.52± 0.12

Table 8: Comparison of ECE and accuracy of single models per method across datasets.
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