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Abstract

We study best-arm identification (BAI) in the fixed-budget setting. Adaptive allocations
based on upper confidence bounds (UCBs), such as UCBE, are known to work well in BAI.
However, it is well-known that its optimal regret is theoretically dependent on instances,
which we show to be an artifact in many fixed-budget BAI problems. In this paper we
propose an UCB exploration algorithm that is both theoretically and empirically efficient
for the fixed budget BAI problem under a Bayesian setting. The key idea is to learn prior
information, which can enhance the performance of UCB-based BAI algorithm as it has
done in the cumulative regret minimization problem. We establish bounds on the failure
probability and the simple regret for the Bayesian BAI problem, providing upper bounds of
order O(y/K/n), up to logarithmic factors, where n represents the budget and K denotes the
number of arms. Furthermore, we demonstrate through empirical results that our approach
consistently outperforms state-of-the-art baselines.

1 Introduction

We study best-arm identification (BAI) in stochastic multi-armed bandits (Audibert et al., 2010; Karnin
et al., 2013; Even-Dar et al., 2006; Bubeck et al., 2009; Jamieson et al., 2014; Kaufmann et al., 2015). In this
problem, the learning agent sequentially interacts with the environment by pulling arms and receiving their
rewards, which are sampled i.i.d. from their distributions. At the end, the agent must commit to a single
arm. In the standard bandit setting, the agent maximizes its cumulative reward (Lai & Robbins, 1985; Auer
et al., 2002; Lattimore & Szepesvari, 2019). In fixed-budget BAI (Audibert et al., 2010; Karnin et al., 2013;
Jamieson & Talwalkar, 2015; Li et al., 2018), the agent maximizes the probability of choosing the best arm
within a fixed budget. In fixed-confidence BAI, the agent minimizes the budget to attain a target confidence
level for identifying the best arm (Even-Dar et al., 2006; Audibert et al., 2010; Karnin et al., 2013). Here we
focus on fixed-budget BAIL.

Adaptive allocations based on upper confidence bounds (UCBs) are known to work well in fixed-budget BAIL
For example, UCBE (Audibert et al., 2010) is optimal, with failure probability decreasing exponentially up
to logarithmic factors. However, it relies on a plug-in approach of an unknown problem complexity term,
learning to the adaptive variant performing significantly worse (Karnin et al., 2013). As a result, phase-based
algorithms with uniform exploration in each phase, such as successive rejects (SR) (Audibert et al., 2010) and
sequential halving (SH) (Karnin et al., 2013), have been shown to work better in practice. Furthermore, it
should be noted that irrespective of the choice of the algorithms, i.e., UCB-based algorithms or phase-based
algorithms, the optimal regret that decays exponentially are conditioned on the gaps between the maximal
arm and the other arms not being small. If the gaps are small, the regret may decay polynomially instead of
exponentially, as we will demonstrate in the next section.

It is well known that side information, such as the prior distribution of arm means, can improve the statistical
efficiency of the cumulative regret minimization problem Thompson (1933); Chapelle & Li (2011); Zhu &
Kveton (2022). Motivated by this, we propose a novel, theoretically and empirically efficient, and instance-
independent UCB exploration algorithm for identifying the best arm by learning the prior information of
arm means. We consider a Bayesian prior setting on arm means, where arm means are sampled i.i.d. from a
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Gaussian distribution, with mean o and variance o3. The mean pq is shared among the arms. The variance
o2 characterizes the spread of the arms. A lower o3 means that the optimal arm is harder to identify, since
the gaps between the optimal and suboptimal arms are smaller on average. Our study shows that learning
the prior of arm means also improves the performance of the UCB-based BAI algorithm and make it more
practical, as it has done in the cumulative regret minimization problem.

Further, we adopt random effect bandits (Zhu & Kveton, 2022) to learn the prior information. From the
random effect bandits, we obtain the posterior distribution of the arm means, then apply the UCB-based
strategy for Bayesian BAI. The algorithm works as follows. In round ¢ € [n], it pulls the arm with the highest
UCB, observes its reward, and then updates the estimated arm means and their high-probability confidence
intervals. We call it Random effect UCB Ezploration (RUE).

We make several contributions. First, we show that instance-dependence can compromise the optimality of
the UCBE algorithm, which can be considered as an artifact in many BAI problems. Second, we present an
alternative formulation of the BAI problem that incorporates the prior distribution of arm means. Third, we
bound the gap between the maximal arm and the others in probability. This result provides a principled basis
for Bayesian BAI. Fourth, we propose the efficient, practical, and instance-independent UCB exploration
for the BAI problem, the RUE algorithm. Learning the prior information, RUE yields superior best-arm
identification performance compared to state-of-the-art methods in empirical studies. Fifth, we analyze
the failure probability and simple Bayes regret of RUE, and derive their upper bounds of O(\/K /m), up to
logarithmic factors. Here n represents the budget and K denotes the number of arms. Our analysis features
a sharp bound on the prior gap through order statistics, and a careful comparison of the prior gap and
confidence interval for bounding the error probability. Finally, we evaluate RUE empirically on a range of
problems and observe that it outperforms sequential halving and successive rejects in broad domains, even
works better than or similarly to the infeasible UCBE in various domains. All proofs are in the appendix.

2 Exponentially Decaying Bounds in Fixed-budget BAI: An Artifact

Consider a fixed-budget BAI problem having K arms with mean py, k € [K], and a horizon of n rounds (or
budgets). In round t € [n], the agent pulls arm I; € [K] and observes its reward, drawn independently of
the past. At the end of round n, the agent selects an arm J,,. The BAI problem concerns whether the final
recommendation J, is the optimal one or not. For sake of simplicity, we will assume that there is a unique
optimal arm. Let ¢* = arg maxyc [k pr be the optimal arm and p. = -

Some BAT fixed-budget algorithms, such as UCBE and SH, are considered (nearly) optimal since they can
achieve an exponentially decaying failure probability that depends on the instance. However the property
of exponentially decaying failure probability is conditioned. To illustrate this point, we will use UCBE as an
example. (Audibert et al., 2010) defines the problem complexity of the BAI problem

H= Y A7

ke[K]

where Ay = p, — py for k # ¢ and A+ = ming;- g — g, and shows that when the exploration degree is
taken appropriately, the probability of error of UCBE for a K-armed bandit with rewards in [0, 1] satisfies
n—K

€n S 2nK exp |:_18_H:| .

However, the optimality of UCBE depends on H, which relies on Ay. In situations where the gaps are small
(i.e., A < (27Kn~logn)'/?), the upper bound has

K
2nK exp [—77181{} ~ 2nK exp [_BLH} > 2Kn~1/2,

Unfortunately, the small-gap condition Ay < (27Kn~!log n)l/ 2 may not be small in practice. For instance,
in a BAI problem with n = 10000 and K = 3, the small-gap regime is defined by Ay < 0.273 which is not

considered small by any means.
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The presence of the small-gap problem also affects the choice of exploration degree, as the upper bound of
UCBE necessitates the parameter to be less than 25(n — K)/(36H). However, in these scenarios, this bound is
on the order logn, which leads to logarithmic exploration instead of linear exploration in the fixed-budget
BAT problem.

Even when considering the lower bound, the small-gap issue remains prevalent. In (Audibert et al., 2010), it
is demonstrated that for Bernoulli rewards with parameters in [p, 1 — p|, where p € (0,1/2), the probability
of error for UCBE satisfies

5+ 0(1))11

p(1 —p)H>

where H < Hy <log(2K)H (see details in (Audibert et al., 2010)). Consider an example where p = 0.2. In
cases where Ay < ((64n)~ 'K logn)/?, neglecting the contribution of the o(1) term, the lower bound can be

expressed as
[ 5n ] S ( 32n) -
exp |——————| > exp|—— | >n .
p(1—p)H> H

However, it is worth noting that the small-gap condition A;, < ((64n)~ 'K logn)'/? may not be small in
practical scenarios. For instance, in a fixed-budget BAI problem with n = 10000 and K = 20, the small-gap
regime is defined by Ag < 0.017 which may not be considered very small in many fixed-budget BAI problems
either.

€n > exp |:_

Therefore, the exponentially decaying bounds on failure probability can be regarded as an artifact in many
fixed-budget BAI problems.

3 A Bayesian Formulation for Best-Arm ldentification

In this paper we assume that the reward, denoted as r., associated with arm k, is generated from an
(unknown) distribution with a mean p;. We assume that the reward noise, represented as r — g, adheres to
a v2-sub-Gaussian for a constant v > 0. We introduce the assumption of random arm means on the BAI
problem. Specifically, we assume that the mean arm reward py of each arm k € [K] follows the following
model

Pk = Ho + O (1)

where 0, ~ N(0,03) and N(0,03) is a Gaussian distribution with zero mean and variance o3. As a result,
the mean reward of arm k, ug, is a stochastic variable with mean yy and variance o2. Recently, Komiyama
et al. (2021) considers a Baysian BAIT setting where they assume the uniform continuity of the conditional
probability density functions. Different from theirs, we make a parametric perspective on priors uj. Our
model setting has 02 to represent the variability of the arm means. With a lower variance o3, the differences
among the arms are smaller. Therefore, it is harder to learn the optimal arm, as the variability of the arm
means is smaller. The priors yuy, k € [K], are taken into account through (g, o7).

Different from the algorithms that rely on H, in the Bayesian BAI setting p. — px for k # i*, can be arbitrarily
small. Fortunately we can control the probability that the gap p. — py is less than ¢ for any 6 > 0. This is
our key in the Bayesian BAI problem. Define

e«(d) = sup Pr(ps — pi < 9),
ki

for any § > 0. The probability e. represents the likelihood that the optimal arm ¢* is at least J better than
the other arms. In other words, it reflects the probability of obtaining a gap between ¢* and the other arms
that is less than d based on the prior distribution. In the BAI problem, 0 decreases as the numbers of pulls
increases, allowing for control over the probability. This highlights the inherent difficulty of the Bayesian BAI
problem when dealing with the prior distribution of (px)ke[k]-

Theorem 3.1. Assume py, for k € [K|, are independently and identically distributed from N (ug,02). Then
for 6 >0,
e«(0) < ckd/op.
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_ K 2
where cx = 4v/21In K /In (m) + 5=

This theorem provides a principled basis for Bayesian BAI in the following aspect. For any § > 0, the
probability of bounding the gap by ¢ is inversely proportional to the s.d. of arm means, og, and is logarithmic
of the number of arms, K. It means that the effect of increasing K on e, is negligible up to logarithmic
factor.

4 Algorithm

In Section 4.1 we show the Bayesian estimation, and provide a heuristic motivation for why the use of
confidence intervals is applicable to Bayesian BAI. At last we propose a variant of the UCB algorithm in
Section 4.2.

4.1 Estimation

For arm k and round ¢, we denote by Ty ; the number of its pulls by round ¢, and by r¢ 1,...,7 1, the
sequence of its associated rewards.

We use Gaussian likelihood function to design our algorithm. More precisely, suppose that the likelihood
of reward ry q, , at time ¢, given juy, were given by the pdf of Gaussian distribution N (s, 0?), where we
take 02 = §~'? for 0 < § < 1. We emphasize that the Gaussian likelihood model for rewards is only used
above to design the algorithm. The assumptions on the actual reward distribution are the v2-sub-Gaussian
assumption.

Let the history Hy; = (I, TI/zTQ,/x)fZS' In the context where the prior for uy is given by N (po,03), deriving
the posterior distribution utilized by our algorithm is straightforward:

g He ~ N (i, it ) - (2)
Here, the posterior mean fij ; of py is given by
bkt = (1 — wrt)Tot + Wk tTht (3)

where wy,; = 02 /(02 + T, }0?) and

K -1 K Th e
For= | (L—wi)Tee| Y (L—wie) Y 7hy-
k=1 k=1 j=1
. . 2 . .
The posterior variance 7, is given by
2 2 2

2 Wi 1O (1 —wgy)’o (@)
k,t Tk:}t K 5

Tk,t(l - wk,t)
k=1

The following proposition motivates the use of confidence intervals in Bayesian BAI.

Proposition 4.1. Let Ay = p« — pg. For any sub-optimal arm k # i*, we have, given Ay and H,,

A? A2
Pr(fip, > fixn) < -k ———k 1.
Wi = 1 ’)—e"p[ i 81

Proposition 4.1 shows that the probability of failing to identify the best arm depends on the gap A and
72, for k € [K]. This result shows that the widths of the confidence intervals affect the failure probability.
Motivated by this observation, we design an efficient UCB-based BAI algorithm by using the estimates from
random effect bandits.
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4.2 Random-Effect UCB Exploration

We apply random effect bandits to BAI, and propose a novel UCB-based exploration algorithm, called
Random effect UCB Exploration (RUE). In RUE, the upper confidence bound of arm % in round ¢ is

Ukt = fik,g—1 + 4/ 27'137t_1 logn.

Different from ReUCB (Zhu & Kveton, 2022), which minimizes the cumulative regret and uses the degree of
exploration 2logt, RUE uses the degree of exploration 2logn, since BAI requires high-probability confidence
intervals only at the final round. In round ¢, the algorithm pulls the arm with the highest UCB I; =
arg maxye(x) Uk, and collects the associated reward. Any fixed tie-breaking rule can be used for multiple
maximal.

Algorithm 1 RUE for best-arm identification.

: Initialization: Pull each arm twice

: fort=2K+1,...,ndo

Calculate Uy = fig -1 + ,/27137,&_1 logn

Pull the arm with the highest Uy ; for k € [K]
Collect the reward associated the chosen arm

end for
: Return estimated best arm J,, = arg maxy¢ (k] fik,n

DGR W

In RUE, the priors (ux)re[x] are taken into account through the variances o2 and o2. Various methods for
obtaining consistent estimators of 62 and 62 are available, including the method of moments, maximum
likelihood, and restricted maximum likelihood. See Robinson (1991) for details. One practical implication of
this is that unlike UCBE, our algorithm focuses on learning the prior to implement the algorithm. This feature
of RUE can have surprising practical benefits.

5 Analysis

We first bound the probability that RUE fails to identify the best arm. Let e,, be the probability that RUE
fails to identify the best arm
en = Pr(J, #1%),

which is over both the stochastic rewards and randomness in arm means (i )re[x]- The main novelty in
our analysis is that we control the failure probability of carefully comparing the gap of (ux)rc(x] and the
confidence bounds.

Theorem 5.1. Consider Algorithm 1 in a K-armed bandit with a budget n > 4(K — 1). Denote p =
\/(K(Jg +02) +0y%02)/(K(03 +02) +0}) and H, = (K + o,°0%)0?. Then the failure probability of
Algorithm 1 is

Hy(K —1)logn Hylogn —mK ——em 4]
n < - 5 Kn~mE+L o gy 6@og+e?) )
e =7\ Wk TN K@ k1) " Tam

where v = 2(1 +4p) (2 + 4p)ck and m = (1 + Ko /(03 + 02))(1 + 4p) 20 203.

Following the Bayesian failure probability of RUE in Theorem 5.1, we bound its simple Bayes regret

sty = Elps — pg,],

where the expectation is over stochastic rewards and the randomness in (i )re(x). By applying Theorem 5.1,
we demonstrate in the following theorem that the simple Bayes regret is O(y/K/n), up to logarithmic factors.
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Theorem 5.2. Consider Algorithm 1 in a K-armed bandit with a budget n > 4(K — 1). Under the condition
of Theorem 5.1, the simple Bayes regret of RUE is

2Hy(K —1)logn 2Hylogn CmK R Ter et
< 200+/2log K | Kn~™E+L 4 Kp 5@og+e® :
ST /s\/ e + K K(n—4(K—l)) + 209 og n + Kn 0

where k = 4(1 +4p) (2 + 4p)cx/ITog K .

5.1 Discussion

The parameter ¢ in Theorems 5.1 and 5.2 controls the last term of the bounds. When ¢ = %, the last
term is O(K/n). Hence, Theorems 5.1 and 5.2 state that the upper bounds on the failure probability and
the simple Bayes regret are O~(\/K /n), up to logarithmic factors, respectively. As demonstrated in Section
2, the upper bound on the failure probability of UCBE exhibits an exponential decay that is conditioned on
the value of Agp. When Ay is small, their bound degenerates to a polynomially decay, resulting in a failure
probability of O(K n~1/ 2). In contrast, the bounds provided in Theorems 5.1 and 5.2 are instance-independent,
meaning that they solely depend on the budget n and the bandit class defined by the number of arms and the
variances, denoted as (K, o3, 0?), for which RUE is designed. These bounds are not influenced by the specific
instances within the class, ensuring their independence from the particular characteristics of each instance.
The bound can become significant when o2 is relatively small compared to o2. Nevertheless, o2 characterizes
the variability of the arms’ means uy in relation to ug, thereby permitting very small A,;,. Consequently,
the issue of small-gap does not pose a significant challenge in our algorithm.

The error bound analysis shows that the parameter set of bandits (K, 02, 02) provides an alternative measure
of the hardness of the Bayesian BAI task. We characterize the hardness of the task using the quantity
Hy=(K+o4 202)02, which increases as the number of arms K increases, the noise variance o2 increases, or
the variability of the arms’ means o2 decreases.

5.2 Proof Outline

Here we outline the proof. Comprehensive details can be found in the Appendix. Without loss of generality,
we assume arm 1 is the optimal arm, i.e., p;+ = p1. Note that the initial round is 2K + 1, since every arm is
pulled twice in the first 2K rounds. Denote

—_ 9.2
Chi—1 = 27’k7t_1logn.

We define the events that all confidence intervals from round 2K + 1 to round n hold as,
E={Vke[K],te {2K+1,...,n} : |pr — fee] <ncke},
where n = 1/(1 + 4p).
The error probability is decomposed as
Pr(fty, n— fi1n > 0)

=P (10 = 13,) = (0 = 1) > Dy, |E) Pr(E) + Pr (g, 0 — p10,) = (it — 1) > Ay, €) Pr (€)
<Pr (AJn < 77(61,n + CJmn)|5) +Pr (Ej) ’ (5)

From (5), e, is decomposed into two terms. The first term is to compare the prior’s gap with the upper
confidence bounds. The second term is the probability that the confidence intervals do not hold.

Denote g =1+ K7100720'2. Because ¢, can be bounded by cg n: ¢k n < \/Bék,n as shown in Zhu & Kveton
(2022). Thus, we have that

Pr(Ag, <nevn + ca,m) <P (B, < VBl +Es,m))
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Now we investigate to bound
Pr (s < nV/B(Ern + axn)l€)

for any k£ # 1. Denote A, = %1;111 Aj. We define the following event of comparing ¢; , with Ampin:

51 = {él,n S Amin/(\/B(1 + T’))}

We can show that

Pr (Ak < 77\/3(51,n + 5k,n)|g>

B Boga?logn
<Pr (&) =Pr <Amm <1+ n)mw :

Then we investigate T4 ,. We show that
Tin>n—2(K—1)(1+n)??A.2 Bo?logn — 2(K — 1). (6)

min

For decoupling T4 ,, and Apin, we define the following event of controlling the minimum gap:

&y = {Amin >2(1+ n)\/(K —1)Bo2n—1 logn} .
On the event &, (6) follows that

02T+ 02 > 0in/2 —205(K — 1) + o>

[2B0252logn
Pr (Amin < (1 + 77) m|g

280302 logn -
< .

< Bo?logn n BoZlogn
=7 o3n —403(K — 1) + 202 oan/(K —1) )’

where the last step is from applying Theorem 3.1. Therefore, the first term of the decomposition in (5) is
bounded.

Thus, we have that

At last, we investigate the second term of the decomposition in (5). Given our analysis of the algorithm,
it is imperative to note that these models may be entirely unrelated to the actual reward distribution.
Consequently, we cannot make the assumption that the posterior distribution of pr—given the historical
data—is Gaussian, with the posterior mean fix ;. Instead, we opt for a decomposition approach, as detailed
below. Denote 81 = 1+ K102 /(02 + 02). Define the following event:

&y 1= {|fk,t — k| < nv/ 515k,t/2} .
We have that

K n 2= ~ K n
5 o?|Fo.e — puk| _ 1k, 5
Pr(5)<§j§jPr(Tkt‘;§+a’; > 2’”)+§ > Pr(&). (7)
t=1 ’

k=1 k=1t=1

We aim to bound the two terms in (7). Utilizing the properties of sub-Gaussian distributions, it follows that
To,t — Mo is sub-Gaussian. By applying the sub-Gaussian tail inequality, we obtain that

0[P — pk| _ Nl Bro2K logn
P : > L)< _HPor e )
r(Tk,toéw 2 )e"p< <1+4p>202>
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On the other hand, exploiting the sub-Gaussian property of 7+ — i, we have

Brodlogn
(1 +4p)2(20¢ +02) )

Pr (5‘3) < exp (
Therefore, the theorem is proved.

6 Experiments

We conduct two kinds of experiments. In Section 6.1, ug are random, where various settings are considered. In
Section 6.2, u are fixed. Note that our modeling assumptions are violated here. We show these experiments
of fixed py because they are benchmarks established by Audibert et al. (2010) and Karnin et al. (2013).

Our baselines include the state-of-the-art Successive Rejects (SR) (Audibert et al., 2010), Sequential Halving
(SH) (Karnin et al., 2013), and the UCB-exploration (UCBE) (Audibert et al., 2010). UCBE is implemented with
parameter a = 2n/H, since this parameter works the best overall according to Audibert et al. (2010) and
Karnin et al. (2013). We do not report the adaptive variant of UCBE because it performs much worse than
UCBE; even worse than SH (Karnin et al., 2013). Note UCBE is infeasible since it requires the knowledge of a
problem complexity parameter H, which depends on gaps. Additionally, we assess the two-stage algorithm
proposed by Komiyama et al. (2021), but it does not perform well in our experiments (see Figure S.1 in the
Appendix). Consequently, we exclude their method from our comparison.

6.1 Random

For random i, we have the following three setups:

(R1) Gaussian rewards with mean y; and variance o2 = 1, where py, ~ U(0,0.5) for k € [K].

(R2) The same py as R1, but the rewards are Bernoulli rewards with means pu.

(R3) Bernoulli rewards with py ~ U4(0,0.5) for k € [K].

These setups allow us to explore how the performance of RUE compare against benchmarks under various
distributions of noise and reward means.

We report the performance for K = 20. Due to the randomness of py, the gaps and the difficulty of BAI
varies. Therefore, we conduct our experiments on 50 sampled pu1,...,ux. For each set, we evaluate the
performance of RUE and state-of-the-art algorithms, and then report the average performance. Like the case
of fixed ui, we also set a = 2 through three random setups.

The maximum budgets are set to NV = 5000 for R1 and R2, and to N = 12000 for R3. We choose these
values based on the median complexity terms in our experiments, which are H ~ 2000 for R1 and R2, and
H =~ 5500 for R3. Then we study various budget settings n € {N/4, N/2, N}, so that we can show how the
performance varies when the budget is less than H and double of H.

In Figure 1, we report the average performance over 50 experiments, and also boxplots of the relative
performance of the baselines SR, SH, and UCBE with respect to RUE. We observe that RUE dominates other
methods in all three setups, and even works better than UCBE. For example, for the case of n = N/2 in R3,
the error probabilities of RUE are smaller 23%, 24%, and 31%, respectively, than UCBE, SH, and SR. These
results shows the flexibility of RUE across various distributions of reward noise and across various distributions
of reward means.

6.2 Fixed ui

Like Karnin et al. (2013), we study six different experimental setups to comprehensively assess the RUE’s
performance:

(F1) One group of suboptimal arms: u = 0.45 for k > 2.

(F2) Two groups of suboptimal arms: puj = 0.45 for k = 2,...,8 and pj = 0.3 otherwise.

(F3) Three groups of suboptimal arms: p =0.48 for k =2,...,5, up, = 0.4 for k=6,...,13 and pp = 0.3
otherwise.
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Figure 1: Random p. Upper panel: the average performance among 50 experiments. The bars denote the
standard error of the mean among 50 experiments. The lower panel: the error difference of the performance
of the baselines, SR, SH, and UCBE, respectively, with respect to that of RUE among all 50 experiments.

(F4) Arithmetic: The suboptimality of the arms form an arithmetic series where ps = 0.5 — 1/(5K) and
UK = 0.25.

(F5) Geometic: The suboptimality of the arms form an geometric series where ps = 0.5 — 1/(5K) and
MK = 0.25.

(F6) One real competitor: pe = 0.5 —1/(10K) and pg = 0.45 for k=3,..., K.

In all setups, the reward distributions are Bernoulli and the mean reward of the best arm is 0.5. The number
of arms is K = 20. We also examine K € {40,80} in Figure S.2 of Appendix, to show how RUE scales with K.

We set 2[H| as the maximal budget for matching the hardness and for the limit of resources. Then we study
various budget settings n € {[H/2],[H],2[H]}, so that we can show the performance when the budget is
less or more than H. In RUE, we plug in the estimators of the variances 02 and 03 as in Zhu & Kveton (2022).

Figure 2 shows results for our six problems. We have the following observations. First, RUE consistently
outperforms SH and SR in all problems (except for the n = [H/2], [H| of F1, where it’s a little worse than
SR). Take F2 as an example. For the budget [H/2], [H], and 2[H]}, the error probabilities of RUE are
smaller 10%, 20%, and 66%, respectively, than SH. Second, comparing to the infeasible UCBE, RUE outperforms
it in F3,F5-F6, performs similarly to it in F4, and performs worse than it in F1 and F2. Third, comparing
with various K € {40, 80} in Figure S.2 of Appendix, we observe that the outperformance of RUE grows as K
increases. In summary, the observations suggest that RUE is expected to work well in various domains.

7 Related Work

Bubeck et al. (2009) showed that algorithms with at most logarithmic cumulative regret, such as UCB1 Auer
et al. (2002), are not suitable for BAI; and proposed to explore more aggressively using O(y/n) confidence
intervals. Motivated by it, Audibert et al. (2010) considered the fixed budget setting, where UCBE and
successive rejects are proposed for BAI. UCBE and its adaptive version have O(y/n) confidence intervals. In
comparison, our work shows that a UCB-based algorithm with O(y/logn) confidence intervals performs well
in BAI On the other hand, the infeasible UCBE algorithm depends on the unknown gap, while the estimated
gap makes the adaptive UCBE less efficient. Our algorithm does not rely on the actual or estimated gaps.
Karnin et al. (2013) proposed sequential halving, which is popular in hyperparameter optimization (Jamieson
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Figure 2: Fixed pj. All standard errors are less than 0.016 and not reported. Each experiment is with
budgets H/2, H, and 2H (labels of the x axis). The dotted lines denote error probabilities 0 and 0.2, just for
visual clarity.

& Talwalkar, 2015; Li et al., 2018). Different from the method, this work focuses on efficient exploration
based on upper confidence bounds.

Fixed-confidence setting was introduced by Even-Dar et al. (2006), who proposed successive elimination for
BAI Mannor & Tsitsiklis (2004) derived tight distribution-dependent lower bounds for several variants of
successive elimination, Jamieson et al. (2014) proposed 1il-UCB; Tanczos et al. (2017) extended lil-UCB to
the KL-based confidence bounds (Garivier & Cappe, 2001; Kaufmann & Kalyanakrishnan, 2013), and Shang
et al. (2020) adjusted TTTS Russo (2020) for fixed-confidence guarantees. In comparison, we focus on the
fixed-budget setting.

Zhu & Kveton (2022) proposed random effect bandits for cumulative regret minimization. Our work can be
viewed as an extension of Zhu & Kveton (2022) to best-arm identification. We show that the prior information
is helpful to develop an efficient, practical UCB exploration algorithm for the Bayesian BAI problem.

Recently, Bayesian BAI has received attention. Russo (2020) proposed Bayesian algorithms, top-two variants
of Thompson sampling (TTTS), that are tailored to identifying the best arm. His analysis focused on the
frequentist consistency and rate of convergence of the posterior distribution. Shang et al. (2020) followed his
work and proposed a variant of TTTS for justifying its use for fixed-confidence guarantees. Different from
theirs, we propose a variant of UCB exploration by using the prior information and show its efficiency by
analyzing the error probability and the simple Bayes regret. Komiyama et al. (2021) derived a lower bound
for this setting and a two-phase algorithm that matches it. However, empirically their algorithm works badly
as shown in Appendix.

8 Conclusions

We introduce a formulation of the Bayesian fixed-budget BAI problem by modeling the arm means, and
propose RUE, an efficient, instance-independent UCB exploration for fixed-budget BAI. We empirically show
that RUE outperforms SH and SR in broad domains, even works better than or similarly to the infeasible UCBE
in various domains. We derive O(y/K/n) bounds on its Bayesian failure probability and simple Bayes regret.

10
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Nevertheless, an inherent limitation of this study is the absence of a corresponding lower bound, as obtaining
one for fixed-budget BAI is a challenging task Qin (2022). Another limitation is that the analysis in this
paper only focuses on the Gaussian settings. Nevertheless, RUE does not assume any distributional form,
since the setting in (1) does not assume any particular distribution, but only assumes that the first- and
second-order moments of p are bounded. Moreover, our empirical results show that RUE works well in broad
domains where the Gaussian assumptions are violated. Therefore, an interesting question is to provide the
bound on the failure probability under sub-Gaussian settings.

In our analysis, we assume that 02 and o7 are known. However, in practice, we substitute these parameters
with their estimates. Investigating the effect of this substitution in the Bayesian setting is extremely
challenging since we need to integrate the error probability over the posterior of these parameters. We leave
this challenging problem as a future direction for research. Nevertheless, we expect this effect to be small
since the agent’s estimates of these parameters should converge to their true values as the agent gathers more
data.
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Appendix

A Proof of Theorem 3.1

First we provide the following lemma, which provides a basic tool for bounding the gap p. — pg. Then we
show that the probability e, depends on o2 and In K by following Lemma .1.

Lemma .1. Assume Xy, for k=1,..., K, are independent and identically distributed from N(0,1). Denote
Xy =2 X(2) = - X(k) the non-increasing re-ordering of X1, ..., Xk. Then there exists a constant C' > 0,
such that for all integers K > 2 and for a > 0,

Pr(Xg) — X < a) < C(lnK)*?a.

Proof. Denote n(a) = Pr(X 1) — X2y < ). Let ®(z) and f(z) be the cumulative distribution function and
the density function, respectively, of X;. From the joint distribution of (X(1y, X(2)) (Fact 2 in the Appendix),
we have that

n(e) = K(K —1) /0< . ®(22) 72 f(22) f(21)dwoday
=K(K - 1)/ O (22) 572 f (22) f(x2 + 2)dxadz
0<z<a;z2€R

— K(K - 1)/  B) (@) B + ) — Bl

K [ @+ a)dd(as) ! — (K — 1)/ 4 (5)
z2€R r2€ER
—K-K D (z0) " f (2 + a)dwy — (K — 1)
xo€ER
=1-K ®(22) " f(w2 + @)dws.
zo€ER
It follows that
n'(a) = -K B(z0)E L f (0 + a)das.
x2€ER

Fix ¢ > 0 (which will be choosen later on). For any integer K > 2, let ax > 0 be the unique solution to the
equation

ai/Q _ cK
are hK’
Set
T (a) = —K @(xQ)K_lf'(a:Q + a)dxo;
Ta>aK
Tr(a) = —K CD(xg)K_lf'(xg + a)dxs.
ro<lax

We can now write
' (@) = Ti(a) + Ta().

For the term T (), by noting that f/(x2 + ) < 0 for all z5 > 0 and ®(z2) < 1, we have

Ti(a) < —-K ' (z2+ a)dz
T2>aK

=Kf(ax +a) < Kf(ag) = \/%e—ai/g

13
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For the term T5(«), we have

ro<lax

|To(a)| < K sup @(@)Kﬁl/ |f (22 + o)|dxs
z2<ak

< ch(aK)K—l/ | (2)|das = %@(amff—l.
x2E€R ™

Using the classical estimate

1 t 2
) <1 — e 12,
()= Vort?+1

we obtain

2K
") < e—ai/2+ ®(q )KL
77( )—m \/% (K)

K—-1
< K e_ai/Q " 2K (1 _ 1 ax e‘“%{/Q) '
~V2r V2r Vorma¥k +1

. _ 2
By our choice of ax, we have e %x/2 = %7 hence

axlnK = 2K ( 1 a% 1111{)1"‘1
J’,i —
eV 2w V2 V2r a3 +1 cK

For K large enough such that ¢K/In K > /e, we have a%(eai > e and thus ag > 1. Then

n'(a) <

cK

a2 /2 a2 /2
=age"K/'" > e"K/%,
mK K =

It follows that for K large enough, we have

K
1<ag < 21n(c )

In K

Consequently, for K large enough and a > 0,

o) < K [ (CK)+ 2K (1 1 mK)K‘l
« —— n — .
g eV In K V2 2V2r cK

Using the elementary inequality: for any = > 1,

(1— %)w =exp(zIn(l —1/x)) = exp(*xziﬂfk/k) <e ™,
k=1

we obtain that, for any integer K > 2,

(K—1)InK
2V27ncK 2V27ncK

2K (1 1 an>K_1_ 2K (1 1 1nK> WK
V27 2271 cK ez 2271 cK

2K _E-hmnk 2 1——1 41
< e 2V2mcK —= ——— K 2V2wc | 2KV2we
o V2

1 1 1 2 1—

1
< K 3Vime T avare — — K 4Vzwe,

ﬁ‘w
3
)
3

Now let us take 1

427

C =
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We obtain that, for K large enough,

This clearly implies the desired result. O

Denote (1) > fi(2) > - - li(k) the non-increasing re-ordering of 1, ..., ux. We have
e«(0) = Pr (M(l) — H2) < 5)
=Pr (U()_l(u(l) — ,u(z)) < 0'0_1(5) .
Then the theorem is a direct result of Lemma .1.
B Proof of Proposition 4.1

Let v be the midpoint between py and p;«. Then given Ay and H,,,

Pr(fig,n > flixn) = Pr(flic n > 0)Pr(fik,n > flie nlflis n > v)
+ Pr(fiic n < 0)Pr(fign > flix n|flic n < v)
< Pr(fign > v) + Pr(fi-n <)
= Pr(fe,n — i > Ak/2) + Pr(fis n — pix < —Ap/2)
< oxp [ A2/(872,)] +oxp [~AZ/(872 )],

where the last step is a direct result of the Gaussian tail bound shown in Appendix F.

C Proof of Theorem 5.1

Without loss of generality, we assume arm 1 is the optimal arm, i.e., g;» = p1. Note that the initial round is
2K + 1, since every arm is pulled twice in the first 2K rounds. Denote

_ Jo.2
Chit—1 = ZTk’tillogn.

We define the events that all confidence intervals from round 2K + 1 to round n hold as,
E={Vke |K],t € {2K +1,...,n}: |px — fuee| < nckn},
where n = 1/(1 + 4p).

The error probability is decomposed as

Pr(fig,,n = f1n > 0) = Pr((fts,,n — 1) — (A1 — 1) > Ay, |€) Pr(€)
+ Pr ((ﬂJnn —pg,) = (fap — p1) > AJ"|(§) Pr (5)
<Pr(Ay, <nlcin+csn)l€)+Pr(€), (S.1)

From (S.1), e, is decomposed into two terms. The first term is to compare the prior’s gap with the upper
confidence bounds. The second term is the probability that the confidence intervals do not hold.

15
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At first, we focus on investigating the first term of the decomposition in (S.1). Denote

_ 20202 logn
L= 220 8T K. 5.2
chn = | ZAZEN e 1 52)

Denote 8 =1+ K~ 'oy2%0% and 1 = 1 + K02 /(02 + 0?). Noting that &, just relies on its corresponding
Tk.n, using ¢, instead of ¢y, breaks the dependence of arm k on other arms. Because ¢, can be bounded
by ¢k ni Ckn < V/BCkn as shown in Zhu & Kveton (2022). Thus, we have that

Pr(Ay, <nlcin+ci,n)) <Pr (A.]n <nV/B(En + 5Jn,n)> . (S.3)

Now we bound Pr (A, < nv/B(E1,n + Gk,n)|E) for any k # 1. Denote Apin = %1;111 Ay. We define the following

event of comparing ¢ , with Apin:

1= {e1n < Amin/ (VB + 1))}
We have that
Pr (A < n/B(@nn+ )€
<Pr (Ak < 0Amin/ (1 + 1) + 1y Ber.nlE1, 5) +Pr (£1]€)

< Pr(Ax <n(1+0)V/Beynlr, €) +Pr(€1)€). (S4)

We shall show Ay > n(1 4 n)y/Békrn given € and & when 7 satisfies 2n(1 +7)+/B/81 +n1— 1 < 0. In the
following we take n = 1/(1 + 4p). Lemma .2 shows that on the event £ the following result holds:

Ap > (1= n)\/Biére — (1 +n)\/Bér g,
implying that, on the events £ and &,
Ap > (1= n)v/Bire/2 = 0(1+0)\/ B,

where the second inequality is from 7 satisfying 2n(1 +n)\/B/61 +n — 1 < 0. Thus, (S.4) follows that

_ 2521
Pr Ay < nV/Blern +nn)E) < Pr(&1)€) = Pr (Amm <@+ n),/fmw) . (85)

Now we investigate 77 ,. Lemma .2 shows that on the event & for k # 1,
Tir < 242021 +n)%Bo? logn.
It follows that

Tin=n—=Y Tin>n-2K-1)1+n)?A.7 B0 logn — 2(K — 1). (S.6)
k#£1

For decoupling T4 ,, and Ay, we define the following event of controlling the minimum gap:

52 = {Amin Z 2(1 + W)\/(K - 1)&0’2”71 IOgTL} .
On the event &, (S.6) follows that

0eT1p+0? > 0gn/2 —205(K — 1) + o>
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Thus, we have that

<(1+7) 28002 lognlg
Anin Tl,nO'(Q)‘i‘U?

2B0302logn -
=Pr (
+ Pr

280202 logn
min < 1
* n)\/ogn/Z —203(K — 1) + 02

(Amln < 1+ 77 \/2(1 - 1)Ba2n*1 logn>

280202 logn 4B02logn

where the last step is from Lemma .1.

At last, we investigate the second term of the decomposition in (S.1). Define the following event:

&y 1= {|fk,t — il < ﬂmék,t/Q} .

From (2), we have that

K
Pr(€ ZZPY (|for,t — o] > mciot)
k=1 t=1
K
:ZZPr \02/(Tkt00 +o )(Tot—ﬂk)+wkt(7“kt—ﬂk)| >77th)
k=11t=1
K
ZZ [Pr( 2)(Ti08 + 02)|Fo, — pl > ny/Bié, t/2) + Pr (53)] (S-8)
k=1 t=1

where the last inequality is from wy; < 1 and ¢k ,, > /518, as shown in Zhu & Kveton (2022).

We shall investigate Pr (02/(Tk7t08 +0%)|Fo.t — pk| > n\/ﬂlém/Z) and Pr (53) respectively. From the prop-
erties of sub-Gaussian, 7y ; — o is sub-Gaussian with the parameters

D (= wid) T (o8 + 12 Tia) 2 K~ of +17/2),
k=1

K
v =: [Z(l — Wit )Tt

k=1

where the inequality is from the Cauchy—Schwarz inequality and 7} ; > 2. It follows that

_ . 28103 (Ty no2 + 0%)K logn
P ( 2/(T o2 2 _ > /By, 2) < _ 0\Lk,n00
r\o /( k,t0¢ +o )lro,t Mk' n Blck,t/ = exp 4(1 + 4p)20_2(0_8 + 1/2/2)

Bro2 K logn
< _ .

where the first step is from the sub-Gaussian tail inequality and the second step is from T} ; > 2 and 02 > v/

On the other hand, we have

- 2Ty 1n?Bro20d logn Biologn
Pr (&) < — : < —
r(?’)e"p< 12(Tesog +02) ) = P\ T80+ 492003 +0%) )
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where the first step is from the sub-Gaussian tail inequality and noticing 0? = v/?/d, and the last step is from
Tyt > 2. Denote m = B1(1 + 4p) 20203, we have

_ _L%_._l
Pr(€) < Kn Kt 4 Kn 2757 (S.10)

Therefore, combing (S.5), (S.7), and (S.8), the theorem is proved.

D Proof of Theorem 5.2

Let pu(1) = max{puy, k € [K]} and pi(x) = min{pg, k € [K]}. We have that
sty = Y Pr(Jn = K)E (i — g, | Jn = k]

ki
<enE [y = p(r)] < 2001/210g Ken,

where the first inequality is from pj, > pk), and the last step is due to the fact of E [,u(l) — u(K)] <
200+v/2log K. Combing Theorem 5.1, the proof is concluded.

E Lemmas
Lemma .2. On the event £, We have the following two results: for k # 1,
Tt <2+ 2A.2(1 +1)*Bo?logn (S.11)
(L= m)V/Bréwe < (14 n)V/Bére + A (S.12)
Proof. (S.11) is obviously true at time ¢ = 2K + 1. We assume that it holds at time ¢t > 2K + 1. If I, # k,
then T} 441 = T,¢, thus it still holds. If 1,4, = k, it means that fiy; + cx+ > 11+ + c1,.. Note that on £, we

have that
b +cie > pa, and f s+ cpe < pp+ (L4 0)cke.

They follows
(1 + W)CkJ, > Ag.

Thus, T+ < QA,;Z(I +n)%Bo? logn holds due to T,?)t < Bodo?/(Tk 0% + %) shown in Lemma .3. By using
Tit4+1 =Tkt + 1, we prove (S.11).

(S.12) is obviously true at the initial time ¢ = 2K + 1. We assume that it holds at time ¢ > 2K + 1. If
Ii11 # 1, then T 441 = T4, thus it still holds. If I;4, = 1, it means that

P + ey < [l +cige

Note that on £, we have that

fag+cre <pr+ (1 +n)cry, and fige + cp > e+ (1 —1)cke.

They follow
(L=m)eks < (L+m)ers + Ag.

Since c ¢ > v/B1¢k, and ¢ < \/Bél,t shown in Lemma .3, we have that

(1= n)v/Bréns < (L+m)y/Bére + A
By using Tj ¢+1 = Tk+ + 1, we prove (S.12). O
Lemma .3. (Lemmas 1 & 5 in Zhu & Kveton (2022))
2 2 2 2

N —(1+ K03 (0} +0%) <y < —0F

__Jo7 00 14+ K 152572,
Ty105 + 02 Tk,t0(2)+a2( + 70")
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F Some Properties

Fact 1 (Gaussian tail bound) Let X be a Gaussian random variable, i.e., X ~ N(0,0?), then for all a > 0,
o2
Pr(X > a) <exp (_W> .

Fact 2 (Joint distribution of ordered statistics) Denote F'(z) = P(X < z) and f(z) as its density. Let
Xy > X@@) > - > X(k). For x1 > x5, the density of (X(1), X(2)) is

p(w2, 1) = n(n — 1) F(22)" " f(22) f (z1).

Fact 3 (Some results on Gaussian)

exp(—t?/2) <1—®(t) =Pr(X > t) < exp(—t?/2).

1
tV/2r
Pr(Xg) < t) = [@()]" + n[l — D(6))[®(1)]" .

t
Vort?+1

G More Results of Experiments

Performance of the two-stage algorithm We show the empirical studies of the two-stage algorithm. For
overall checking the performance, we check it under various ¢ = 0.1,0.2,...,0.9, we report their performance
under Setup F4 in Figure S.1. The figure shows the Two-Stage algorithm is bad under various gq.

@
e - T o ©O e}
z 2o B3y L 2 70 ° o0
2| I = =T
S 831 - -~ T T 5 B
&° & o o o~ LT
s | o N
= E o
o o
o o |
o. T T T T T d T T T T T T T T T
0.1 0.3 0.5 0.7 0.9 0.2 0.4 0.6 0.8 1
q q
(a) Fixed Setup F4 (b) Random Setup R2

Figure S.1: The error probability of the Two-Stage algorithm with various ¢ values, averaged over 1000
independent executions (results in standard deviations of less than 0.016).

Impact of arm number K. We ran the experiments with n = 20,40, 80 arms in order to examine how the
performance of each algorithm scales as the number of arms grow. We report the result on the arithmetic
setting (Setup F4) in Figure S.2, where K = 40 and 80 are shown. Comparing various K, the benefit of using
RUE increases as K increases.
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Figure S.2: The error probability of the different algorithms in Setup F4 with more arms, 40 and 80 arms (left
and right subfigures respectively). The results are averaged over 1000 independent executions (all standard
errors are less than 0.016 and not reported). For K = 80, we set N = 400000 as the maximal budget for the
limit of resources when 2H is too big.
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