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Abstract

Adam is the de facto optimization algorithm for training deep neural networks, but
understanding its implicit bias and how it differs from other algorithms, particularly
standard gradient descent (GD), remains limited. We investigate the differences
in the implicit biases of Adam and GD when training one-hidden-layer ReLU
neural networks on a binary classification task using a synthetic data setting with
diverse features. We find that GD exhibits a simplicity bias, resulting in a linear
decision boundary, whereas Adam leverages diverse features, producing a nonlinear
boundary that is closer to the Bayes optimal predictor. We theoretically prove this
for a simple data setting in the infinite width regime by analyzing the population
gradients. Our results offer important insights towards improving the understanding
of Adam, which can aid the design of optimization algorithms with superior
generalization.

1 Introduction

Adaptive optimization algorithms, particularly Adam [Kingma and Ba, 2015], have become ubiquitous
in training deep neural networks due to their faster convergence rates and better performance,
particularly on large language models (LLMs), as compared to (stochastic) gradient descent (SGD)
[Zhang et al., 2019]. Despite its widespread use, the theoretical understanding of how Adam works
and why it often outperforms (S)GD remains limited.

A large body of work on similar aspects of GD analyzes the training dynamics and parameter
convergence of simple models. For instance, Soudry et al. [2017] show that when optimizing
the logistic loss of a linear model for binary classification on linearly separable data, GD updates
converge, in direction, to the max-margin or minimum ℓ2-norm solution. This implicit preference
of an algorithm towards a particular solution in the presence of multiple solutions which attain zero
training error and/or loss is known as its implicit bias. The implicit bias of GD and its variants is
well-studied in the literature [Soudry et al., 2017, Gunasekar et al., 2018, Wu et al., 2021, Ji and
Telgarsky, 2019], for both linear models and other architectures like NNs and attention models (see
Section 5 for a detailed discussion). However, there is limited work investigating the implicit bias of
Adam. Recently, Zhang et al. [2024] showed that in a similar setting as Soudry et al. [2017], Adam
iterates converge in direction, to the minimum ℓ∞-norm solution. This difference in the implicit bias
of the two algorithms for linear models motivates a similar investigation for NNs.

In this work, we aim to characterize the implicit bias of Adam and investigate how it differs from GD
when training one-hidden-layer neural networks (NNs) with ReLU activation on a binary classification
task using synthetic data. Our main contributions are:

• We identify a simple yet informative setting with Gaussian features where GD and Adam exhibit
different implicit biases. The Bayes optimal predictor in this setting has a nonlinear decision
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boundary, and we observe that while GD exhibits simplicity bias, resulting in a linear predictor,
Adam encourages reliance on diverse features, leading to a nonlinear decision boundary.

• We theoretically prove this difference in the implicit bias in the infinite width limit, analyzing
the population gradients and updates. Specifically, one-hidden layer NNs trained with GD
asymptotically converge to a linear predictor, while those trained with Adam with momentum
parameters β1 = β2 = 0 (also known as signGD) converge to piece-wise linear predictors.

• We also analyze a simpler setting with variance → 0, where we show that the decision boundaries
learned with Adam with β1 = β2 ≈ 0 or β1 = β2 ≈ 1 are more nonlinear than the one learned with
GD.

• Empirically, we verify that Adam and GD exhibit different implicit biases across various settings,
with Adam outperforming GD in terms of test accuracy or generalization.

2 Setup

Bayes-opt Adam GD

Figure 1: Illustration of the syn-
thetic dataset considered in this work,
and comparison of the Bayes opti-
mal predictor with the decision bound-
aries learned by one-hidden-layer NNs
trained with Adam and GD.

We consider a binary classification task using a one-hidden
layer neural network with fixed final layer and ReLU ac-
tivation, defined as:

f(W ;x) ∶= a⊺σ(Wx),
where x ∈ Rd denotes the input, W ∈ Rm×d denotes the
trainable parameters, a ∈ {±1}m, and σ(⋅) = max(0, ⋅).
Let S ∶= {(xi, yi)}ni=1 denote the set of train samples. The
model is trained to minimize the empirical risk written as:

L̂(W ) ∶= 1
n

n

∑
i=1

ℓ(−yif(W ;xi)),

where ℓ denotes a decreasing loss function. We consider
two loss functions, namely logistic loss, where ℓ(z) ∶=
log(1 + exp(z)), and correlation or linear loss, where
ℓ(z) ∶= z, for z ∈ R. We focus on the following two update
rules.

Gradient Descent. The updates for GD with step-size η > 0 at iteration t ≥ 0 are written as

Wt+1 =Wt − ηGt, where Gt ∶= ∇W L̂(Wt),
and each row of which is written as:

gj,t = − 1
n

n

∑
i=1

ℓ′i,tyi∇wjf(Wt;xi) = − 1
n

n

∑
i=1

ℓ′i,tajσ
′(w⊺j,txi)(yixi),

where ℓ′i,t denotes ℓ′(−yif(Wt,xi)) for convenience, and σ′(⋅) ∶= 1[⋅ ≥ 0].

Adam. The update rule for the Adam optimizer [Kingma and Ba [2015]] is as follows:

Wt+1 =Wt − ηM̂t ⊙ V̂
○−1/2
t ,

where M̂t = Mt+1

1−βt+1
1
= 1

1−βt+1
1
(β1Mt + (1 − β1)Gt) is the bias-corrected first moment estimate,

and V̂t = Vt+1

1−βt+1
2
= 1

1−βt+1
2
(β2Vt + (1 − β2)Gt ⊙Gt) is the bias-corrected second (raw) moment

estimate. Also, we set the stability constant ϵ = 0, ⊙ and (⋅)○ denote the Hadamard product and
power, respectively, and M0 and V0 are initialized as zeroes. Note that we can write

M̂t =
∑t

τ=0 β
τ
1Gt−τ

∑t
τ=0 β

τ
1

and V̂t =
∑t

τ=0 β
τ
2Gt−τ ⊙Gt−τ

∑t
τ=0 β

τ
2

.

At each optimization step, the descent direction is different from the gradient direction because of
the second (raw) moment in the denominator. Further, the first update step exactly matches the
update of signGD, since M̂0 = G0 and V̂0 = G0 ⊙G0, and hence (M̂0 ⊙ V̂

○−1/2
0 )i,j = (G0)i,j

∣(G0)i,j ∣
=

sign((G0)i,j). Similarly, when the parameters β1 and β2 are set as 0, the Adam updates are the
same as signGD for every t ≥ 0.
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Dataset. Our synthetic dataset is designed to investigate the impact of feature diversity on the
implicit biases of optimization algorithms in NN training. It models two classes with differing feature
distributions to emulate real-world scenarios where feature complexity may vary between classes.
See Fig. 1 for an illustration of the dataset. Concretely, each sample (x, y) is generated as follows:

y ∼ Unif({±1}), ϵ ∼ Unif({±1}) (1)

x1 ∼ N (µ1−µ3

2
+ y µ1+µ3

2
, σ2

x) , x2 ∼N (ϵ (y+12 )µ2, σ
2
y) , xj ∼ N (0, σ2

z),∀j ∈ {3, . . . , d}.

Our dataset construction is inspired by the synthetic "slabs" dataset introduced by Shah et al. [2020].
While their approach utilizes slab features to represent non-linearly separable components, we
consider Gaussian features instead. This modification enhances the realism of the synthetic data and
facilitates a more nuanced analysis of the NN training dynamics.

We first write the Bayes optimal predictor for this dataset as follows.
Proposition 1 (Bayes Optimal Predictor). The optimal predictor for the data in Eq. (1) with d=2 is:

(µ1 + µ3)x1 + σ2
x

σ2
y
µ2x2 = µ2

1−µ
2
3

2
+ µ2

2σ
2
x

2σ2
y
− σ2

x log (0.5 (1 + exp (−
2µ2x2

σ2
y
))) .

Since the NN we consider does not have a bias parameter, we make the following assumption on the
data generating process to make the setting realizable, i.e., ensure that the Bayes optimal predictor
passes through the origin.

Assumption 1 (Realizability). Let µ ∶= µ2, κ ∶= σ2
x

σ2
y
ω ∶= µ1+µ3

κµ
≥ 1. For realizability, µ1 =

µ
2
(κω − 1

ω
) and µ3 = µ

2
(κω + 1

ω
).

3 Theoretical Analyses

In this section, we aim to theoretically analyze GD and Adam and the differences in the learned
solution arising from the update rules. We study a simple setting to keep the analysis as clean as
possible. Specifically, in this section, we consider the infinite sample and infinite width limit, with
d = 2, fixed outer layer weights, and training with correlation or linear loss. As we will see later in
Section 4, these algorithms learn different solutions even when these assumptions are relaxed.

3.1 Gaussian Data

For correlation loss, we can write the closed form of the population gradient for Gaussian data as
follows.
Proposition 2 (Population Gradient). Consider the data in Eq. (1) with d = 2 and σx = σy = σ. The
population gradient for a certain w is written as:

∇wL̂(W ) = −aE(x,y)∼D[1[w⊺x ≥ 0]yx]

= −aσ
4
(Φ(λµ̄⊺+w̄)λµ̄+ +Φ(λµ̄⊺−w̄)λµ̄− − 2Φ(λµ̄⊺0w̄)λµ̄0 + (ϕ(λµ̄⊺+w̄) + ϕ(λµ̄⊺−w̄) − 2ϕ(λµ̄⊺0w̄)) w̄),

where λ ∶= µ
σ

ω2
+1

2ω
µ̄+ ∶= [ω

2
−1

ω2+1
, 2ω
ω2+1
]
⊺

, µ̄− ∶= [ω
2
−1

ω2+1
,− 2ω

ω2+1
]
⊺

, µ̄0 ∶= [−1,0]⊺, and ϕ and Φ denote
the normal PDF and CDF, respectively.

The proof is included in the Appendix. We first use the above gradient expression to analyze GD
iterates showing that they exhibit simplicity bias and learn a linear predictor.
Theorem 1. (Informal) Consider the data in Eq. (1), neurons initialized such that ak = ±1 with
probability 0.5, small learning rate, and ω > c, µ

σ
≥ c1, where c, c1 are constants. Let wk,∞ ∶=

limt→∞
wk,t

t
and w̄k,∞ ∶= wk,∞

∥wk,∞∥
, for k ∈ [m]. Then, the solution learned by GD is:

w̄k,∞ = ak[1,0]⊺.

The proof is included in the Appendix. Next, we analyze Adam with β1 = β2 = 0 (signGD), and show
that it learns both features resulting in a nonlinear predictor.

3



Theorem 2. (Informal) Consider the data in Eq. (1), neurons initialized such that ak = ±1 with
probability 0.5, small learning rate, ω > c and c1 ≤ µ

σ
≤ c2, where c, c1, c2 are constants. Let

wk,∞ ∶= limt→∞
wk,t

t
and w̄k,∞ ∶= wk,∞

∥wk,∞∥
, for k ∈ [m]. Let θ0 denote the direction of wk,0. Then,

the solution learned by signGD is:

w̄k,∞ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[1,1]⊺ ak > 0, sin θk,0 > 0,
[1,−1]⊺ ak > 0, sin θk,0 < 0,
[1,0]⊺ ak > 0, sin θk,0 = 0,
[−1,0]⊺ ak < 0.

These results characterize the direction in which each neuron converges asymptotically. For GD, all
neurons are in the same direction, with exactly half the neurons in [1,0]⊺ and [−1,0]⊺ directions,
which leads to a linear predictor. In contrast, for Adam (no momentum), there is a fraction of neurons
aligned in the directions 1

√
2
[1,1]⊺ and 1

√
2
[1,−1]⊺ which leads to a piece-wise linear decision

boundary. This can also be seen in Fig. 1, where we consider β1 = β2 ≈ 1 in the finite sample, finite
width setting, with non-zero variance.

Analyzing this setting allows us to conceptually understand how Adam (without momentum) operates
and leads to diverse feature learning, while GD exhibits simplicity bias. Importantly, we make no
assumptions regarding the initialization direction of the neural network parameters, ensuring that
any differences observed between Adam and GD arise solely from the inherent characteristics of the
optimization algorithms themselves.

Next, we show that under some conditions, the piece-wise linear predictor obtains a strictly lower test
error than the linear predictor learned by GD. The proof is included in the Appendix.

Theorem 3. (Informal) Consider the data in Eq. (1) with d = 2 and σx = σy = σ, ω = Θ(1) and
c1ω ≤ µ

σ
≤ c2, where c1, c2 are constants. Consider two predictors,

Linear: ŷ = sign(x1), Piece-wise Linear: ŷ′ = {sign(x1 + x2) x2 ≥ 0,
sign(x1 − x2) x2 < 0.

Then, it holds that E(ŷ′ ≠ y) − E(ŷ ≠ y) < 0.

In the next section, we consider a simplified setting to investigate the effect of setting β1, β2 ≈ 1 for
Adam.

3.2 Toy Data Setting

We consider an extremely simple yet informative setting where σx = σy = 0, which we refer to as the
toy data setting. Specifically, the samples are generated as follows:

y ∼ Unif({±1}), ϵ ∼ Unif({±1}) x1 = µ
2
(yω − 1

ω
) , x2 = ϵy+12 µ. (2)

This setting allows us to characterize the full trajectory of each neuron for the three algorithms. We
now state our main result.

Theorem 4. (Informal) Consider the toy data in Eq. (2), neurons initialized at a small scale, and
c1 < ω < c2, where c1, c2 are constants. Let wk,∞ ∶= limt→∞

wk,t

t
and w̄k,∞ ∶= wk,∞

∥wk,∞∥
, for k ∈ [m]

and p ∶=
tan−1

ω2
−1

2ω
π

. Then, for m→∞, the solutions learned by GD, signGD, and Adam are:

GD Adam (β1 = β2 = 0) or signGD Adam (β1 = β2 ≈ 1)

w̄k,∞ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[1,0]⊺ w.p. 1
4
+ p

2

[−1,0]⊺ w.p. 1
2

1
ω2+1

[ω2 − 1,2ω]⊺ w.p. 1
8
− p

4
1

ω2+1
[ω2 − 1,−2ω]⊺ w.p. 1

8
− p

4

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[1,0]⊺ w.p. p
[−1,0]⊺ w.p. 1

2
1
√
2
[1,1]⊺ w.p. 1

4
− p

2
1
√
2
[1,−1]⊺ w.p. 1

4
− p

2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[1,0]⊺ w.p. p
[−1,0]⊺ w.p. 1

2
1
√
2
[1,1]⊺ w.p. 1

8
− p

4
1
√
2
[1,−1]⊺ w.p. 1

8
− p

4
1

√
s2+1
[s,1]⊺ w.p. 1

8
− p

4
1

√
s2+1
[s,−1]⊺ w.p. 1

8
− p

4
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where s is a constant ∈ [0.72,1], the probabilities are over the neurons, and the sign of the first
element of wk,∞ is the same as sign(ak).

The proof mainly relies on analyzing the updates of each algorithm, so we defer it to the Appendix.

We note that there is a larger difference in the learned predictors in the Gaussian settings compared to
the toy dataset. The main reason is that in the toy dataset, there is a larger region where the gradients
are in the [1,0]⊺ direction, which makes the decision boundary for signGD more linear, as well as
a larger region where the neurons are only active for one of µ+ or µ−, which makes the decision
boundary for GD less linear.

4 Experimental Results

In this section, we present experimental results showing that GD and Adam exhibit different implicit
biases. We consider Adam with momentum parameters β1 = β2 = 0.9999 in this section, although
the results generalize to other values as well. Throughout, we consider a small initialization scale and
fix the outer layer weights. Specifically, wk ∼ N (0, α

√
d
), and ak = ± 1

√
m

for k ∈ [m], where α is a
small constant.

We consider the Gaussian data in Eq. (1) in this section, focusing on two main settings. First, we
consider the population setting which is closer to the setting considered for the theoretical analysis.
Specifically, we use correlation loss and population gradients for the training updates. The second
setting is the finite sample setting, which is closer to practice as we use finite samples and train with
the binary cross-entropy loss.

Population Setting. We consider d = 2 in this setting and use the closed form of the population
gradient in Proposition 2. Fig. 2 shows the evolution of the decision boundary for one-hidden-layer
NNs trained with GD and Adam as a function of the training epochs. It also shows the trajectory of
the neurons as training progresses. The observed results align with the theoretical analysis: for GD,
the neurons are aligned in a single direction and lead to a linear decision boundary, while for Adam,
the presence of neurons in the [1,1]⊺ and [1,−1]⊺ directions leads to a non-linear decision boundary,
which is closer to the Bayes optimal predictor. Further, the test accuracy of Adam is 0.55% more
than that of GD in this case.

Initialization Epoch 500 Epoch 1000 Epoch 10000 Epoch 20000 Epoch 500 Epoch 1000 Epoch 10000 Epoch 20000

Figure 2: Evolution of the decision boundary and the neurons over time, for GD (left) and Adam
(right) with learning rates 0.1 and 10−4 over 20000 epochs of training a width 100 NN with population
gradients (the samples are plotted for illustration purposes) on the Gaussian data setting (Eq. (1))
with µ = 0.3, ω = 2, σ = 0.1, and α = 0.02. GD leads to a linear decision boundary, with neurons
mostly aligned with the direction [1,0]⊺, while Adam leads to a non-linear decision boundary, with
neurons aligned with three main directions [−1,0]⊺, [1,1]⊺, [1,−1]⊺.

Finite Sample Setting. Fig. 1 compares the decision boundaries learned by Adam and GD in the
finite sample setting, with the Bayes optimal predictor (for the population version of this setting).
We set n = 5000, m = 1000, µ = 0.3, ω = 2, σx = 0.2, σy = 0.15, α = 0.001, and use learning rates
0.1 and 10−4 for GD and Adam, respectively. These results are similar to the population setting and
show that the difference in the implicit bias of Adam and GD is quite robust to the choice of the
training setting. For comparable train loss, the test accuracy of Adam is 0.32% more than that of GD
in this case. We also find that reducing µ increases the accuracy gap: repeating the same experiment
with µ = 0.25 leads to a gap of 0.595%. These results also generalize to settings where d > 2: with
m = 500, d = 20 and µ = 0.25, the gap is 0.203%.
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5 Related Work

Implicit Bias of GD. Since the pioneering studies that identified the implicit bias of linear classifiers
on separable datasets [Soudry et al., 2018], extensive research has been conducted on the implicit bias
of gradient-based methods for linear models, NNs, and even self-attention models. Wang et al. [2024]
shows that GD with momentum exhibits the same implicit bias for linear models trained on separable
data as vanilla GD. Nacson et al. [2019], Ji and Telgarsky [2021], Ji et al. [2021] demonstrate fast
convergence (in direction) of GD-based approaches with adaptive step-sizes to the ℓ2 max-margin
predictor. It has also been shown that multilayer perceptrons (MLPs) trained with exponentially tailed
loss functions on classification tasks, GD or gradient flow converge in direction to the KKT points
of the max-margin problem in both finite [Ji and Telgarsky, 2020, Lyu and Li, 2020] and infinite-
width [Chizat and Bach, 2020] networks. Additionally, Phuong and Lampert [2021], Frei et al. [2022],
Kou et al. [2023] analyze the implicit bias of ReLU and Leaky-ReLU networks trained with GD on
orthogonal data. Other studies focus on the implicit bias to minimize rank in regression tasks using
squared loss [Vardi and Shamir, 2021, Arora et al., 2019, Li et al., 2021]. The recent survey Vardi
[2022] includes a comprehensive review of related work. More recently, Tarzanagh et al. [2023b,a]
studied single-head prompt and self-attention models with fixed linear decoder and characterize the
implicit bias of attention weights trained with GD to asymptotically converge to the solution that
separates the token with the largest similarity with the linear decoder from the rest, for each sample.
Vasudeva et al. [2024] study the self-attention model trained with GD with adaptive step-sizes and
show fast, global convergence under some conditions.

Simplicity Bias of NNs Trained with GD. Kalimeris et al. [2019] conduct a set of experiments
to demonstrate that NNs trained with SGD first learn to make predictions that are highly correlated
with those of the best possible linear predictor for the task, and only later start to use more complex
features to achieve further performance improvement. Shah et al. [2020] created synthetic datasets
and show that in the presence of ‘simple’ and ‘complex’ features (linearly separable vs non-linearly
separable), (two-layer) NNs trained with SGD rely heavily on ‘simple’ features even when they have
equal or even slightly worse predictive power than the ‘complex’ features. They also show that using
SGD leads to learning small-margin and feature-impoverished classifiers, instead of large-margin and
feature-dense classifiers, even on convergence, which contrasts with Kalimeris et al. [2019].

Implicit Bias of Adam and Other Adaptive Algorithms. Wang et al. [2021] shows that homo-
geneous NNs trained with RMSprop or Adam without momentum (signGD) converge to a KKT
point of the ℓ2 max-margin problem, similar to GD, while AdaGrad has a different implicit bias.
Zhang et al. [2024] shows that linear models trained on separable data with Adam converge to the
ℓ∞ max-margin solution. Xie and Li [2024] analyze loss minimization with AdamW and show that
under some conditions, it converges to a KKT point of the ℓ∞-norm constrained loss minimization.

Adam vs. (S)GD. There is also some recent work on understanding when Adam generalizes better
or worse than (S)GD. Particularly, SGD is known to have better generalization for image datasets,
while Adam is known to perform better on language datasets. Zhou et al. [2020] shows that SGD
converges to flatter minima while Adam converges to sharper minima. Zou et al. [2023] study an
image-inspired dataset and show that CNNs trained with GD can generalize better than Adam. Ma
et al. [2023] show that adding noise to lower or higher frequency components of the data can lead to
lower or higher robustness of Adam compared to GD. For language data, Kunstner et al. [2024] show
that the performance of SGD deteriorates under imbalanced classes especially when they constitute a
significant part of the data, whereas Adam is less sensitive and performs better.

6 Conclusion and Future Work

In this work, we investigate the implicit bias of GD and Adam when training one-hidden-layer ReLU
NNs on a binary classification task. The synthetic dataset models settings where different classes
may have different feature distributions, and we find that GD exhibits simplicity bias while Adam
leads to more diverse feature learning. Through theoretical and empirical results, our work adds
to the conceptual understanding of how Adam works. It also poses important directions for future
work. For instance, it would be interesting to extend the theoretical analysis to d > 2 and other loss
functions like cross-entropy.
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Appendix

A Omitted Proofs

The proof for Proposition 1 is as follows.

Proof. The optimal predictor can be found by solving for the following:

1
2
exp (− (x1−µ1)

2

2σ2
x
− (x2−µ2)

2

2σ2
y
) + 1

2
exp (− (x1−µ1)

2

2σ2
x
− (x2+µ2)

2

2σ2
y
) = exp (− (x1+µ3)

2

2σ2
x
− x2

2

2σ2
y
) .

Simplification yields

0.5 (1 + exp (− 2µ2x2

σ2
y
)) = exp (− (µ1+µ3)x1

σ2
x

− µ2x2

σ2
y
+ µ2

1−µ
2
3

2σ2
x
+ µ2

2

2σ2
y
) .

Taking log on both sides and rearranging, we get:

(µ1+µ3)x1

σ2
x

+ µ2x2

σ2
y
= µ2

1−µ
2
3

2σ2
x
+ µ2

2

2σ2
y
− log (0.5 (1 + exp (− 2µ2x2

σ2
y
))) .

For isotropic Gaussians, it simplifies to

(µ1 + µ3)x1 + µ2x2 = µ2
1+µ

2
2−µ

2
3

2
− σ2 log (0.5 (1 + exp (− 2µ2x2

σ2 ))) .

Under realizability, we get

ωx1 + x2 = −σ2

µ
log (0.5 (1 + exp (− 2µx2

σ2 ))) .

A.1 Gaussian Data

We can prove Proposition 2 as follows.

Proof. The population gradient can be simplified as follows.

E[1[w⊺jx ≥ 0]yx] = E(x∣w⊺x ≥ 0, y = 1, ϵ = 1)Pr[y = 1]Pr[ϵ = 1∣y = 1]Pr[w⊺x ≥ 0∣y = 1, ϵ = 1]
+ E(x∣w⊺jx ≥ 0, y = 1, ϵ = −1)Pr[y = 1]Pr[ϵ = −1∣y = 1]Pr[w

⊺x ≥ 0∣y = 1, ϵ = −1]
+ E(−x∣w⊺jx ≥ 0, y = −1)Pr[y = −1]Pr[w

⊺
jx ≥ 0∣y = −1]

= 1

4
(Pr[w⊺jx ≥ 0∣y = 1, ϵ = 1]E(x∣w

⊺
jx ≥ 0, y = 1, ϵ = 1) +Pr[w

⊺
jx ≥ 0∣y = 1, ϵ = −1]

E(x∣w⊺jx ≥ 0, y = 1, ϵ = −1) − 2Pr[w
⊺
jx ≥ 0∣y = −1]E(x∣w

⊺
jx ≥ 0, y = −1)).

The conditional expectation E(x′∣w⊺x′ ≥ 0) can be simplified as follows. Let µ′ ∶= E(x′). Since we
can write x′ = w̄⊺x′w̄ + w̄⊺⊥x′w̄⊥ =∶ x′∥ +x

′
⊥, we have

E(x′∣w⊺x′ ≥ 0) = E(x′∥∣w
⊺x′ ≥ 0) + E(x′⊥∣w⊺x′ ≥ 0)

= E(w̄⊺x′w̄∣w⊺x′ ≥ 0) + E(x′⊥)

= w

∥w∥2
E(w⊺x′∣w⊺x′ ≥ 0) + E(x′) − E(x′∥)

= µ′ − w̄⊺µ′w̄ + w

∥w∥2
E(w⊺x′∣w⊺x′ ≥ 0).

Using a result on the mean of truncated normal distribution from Burkardt [2023], and that for a
given w, w⊺x′ is a Gaussian random variable, we have,

E(w⊺x′∣w⊺x′ ≥ 0) = µw + σw

ϕ(−µw

σw
)

1 −Φ(−µw

σw
)
,
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where µw ∶=w⊺µ′, σw ∶= σ∥w∥. Then, we have

E(x′∣w⊺x′ ≥ 0) = µ′ + σ
ϕ(−µw

σw
)

1 −Φ(−µw

σw
)
w̄.

Since d = 2, using the above, we can write the population gradient −ajE[1[w⊺jx ≥ 0]yx] as:

−0.25aj(p+(µ+ + σΓ(µ+, w̄j)w̄j) + p−(µ− + σΓ(µ−, w̄j)w̄j) − 2p0(µ0 + σΓ(µ0, w̄j)w̄j)),

where p+ ∶= Pr[w⊺jx ≥ 0∣y = 1, ϵ = 1] = Φ(µ
⊺
+w̄

σ
), p− ∶= Pr[w⊺jx ≥ 0∣y = 1, ϵ = −1] = Φ(µ

⊺
−w̄

σ
),

p0 ∶= Pr[w⊺jx ≥ 0∣y = −1] = Φ(µ
⊺
0w̄

σ
), and Γ(µ, w̄) ∶=

ϕ(−
µ⊺w̄
σ
)

1−Φ(−
µ⊺w̄
σ
)

=
ϕ(

µ⊺w̄
σ
)

Φ(
µ⊺w̄
σ
)

(using the facts

that for any z, ϕ(−z) = ϕ(z) and 1 −Φ(−z) = Φ(z)). Simplifying the expression then finishes the
proof.

Next, we can prove Theorem 1 as follows. Let ω ≥ 2 and λ0 ∶= µ
σ
≥ 0.8.

Proof. For neuron j ∈ [m], let θj,t denote the angle between wj,t and the x-axis at iteration t ≥ 0.
Let w̄∗GD ∶= [1,0]⊺. Then, cos θt = w̄⊺t w̄∗GD. We want to see if θt tends to 0 with time. Specifically,
given θ ∈ [−π,π], we want to show that ad cos θt

dt
> 0. We have:

ad cos θt
dt
= a ˙̄w⊺t w̄

∗
GD = a

ẇ⊺t
∥wt∥
(I − w̄tw̄

⊺
t )w̄∗GD

= a2σ
4∥wt∥

(λ(ω
2
−1)

ω2+1
(Φ(λµ̄⊺+w̄t) +Φ(λµ̄⊺−w̄t)) + 2λΦ(λµ̄⊺0w̄t) + wt,1

∥wt∥
(ϕ(λµ̄⊺+w̄t) + ϕ(λµ̄⊺−w̄t) − 2ϕ(λµ̄⊺0w̄t))

− wt,1

∥wt∥
(λ(Φ(λµ̄⊺+w̄t)µ̄⊺+w̄t +Φ(λµ̄⊺−w̄t)µ̄⊺−w̄t − 2Φ(λµ̄⊺0w̄t)µ̄⊺0w̄t) + (ϕ(λµ̄⊺+w̄t) + ϕ(λµ̄⊺−w̄t) − 2ϕ(λµ̄⊺0w̄t))) )

= a2σλ
4∥wt∥

( (ω
2
−1)

ω2+1

w2
t,2

∥wt∥2
(Φ(λµ̄⊺+w̄t) +Φ(λµ̄⊺−w̄t)) − 2ω

ω2+1

wt,1wt,2

∥wt∥2
(Φ(λµ̄⊺+w̄t) −Φ(λµ̄⊺−w̄t)) + 2

w2
t,2

∥wt∥2
Φ(λµ̄⊺0w̄t))

= a2σλ
4∥wt∥

( (ω
2
−1)

ω2+1
sin2 θt (Φ(λµ̄⊺+w̄t) +Φ(λµ̄⊺−w̄t)) − 2ω

ω2+1
cos θt sin θt (Φ(λµ̄⊺+w̄t) −Φ(λµ̄⊺−w̄t)) + 2 sin2 θtΦ(λµ̄⊺0w̄t)).

The first and third terms are always positive, so the sign depends on the second term. We note that
the derivative is 0 when wt,2 = 0, i.e., θt = 0. This indicates that once wt reaches this point, it stays
there. Also, using MVT, we can write:

Φ (λ((ω
2
−1)wt,1+2ωwt,2)

∥wt∥(ω2+1)
) −Φ (λ((ω

2
−1)wt,1−2ωwt,2)

∥wt∥(ω2+1)
) = ϕ(c) 4λω sin θt

(ω2+1)
,

for some c ∈ [λ((ω
2
−1)wt,1−2ωwt,2)

∥wt∥(ω2+1)
,
λ((ω2

−1)wt,1+2ωwt,2)

∥wt∥(ω2+1)
]. Clearly, ϕ(c) ≤ ϕ(λ). The second term is

lower bounded by − 8λω2

(ω2+1)2
ϕ(λ) sin2 θt cos θt. We now consider two cases:

Case 1: θt ∈ [−π,−π/2] or θt ∈ [π/2, π]: In this case, cos θt < 0, so the second term, and hence the
derivative, is positive.

Case 2: θt ∈ [−π/2, π/2]: In this case, cos θt > 0, so the second term is negative, and we have to
compare its magnitude to the other terms. Using Φ(λµ̄⊺+w̄t) +Φ(λµ̄⊺−w̄t) ≥ 1 and µ̄⊺0w̄t ≥ −1, we
have:

ad cos θt
dt
≥ a2σλ sin2 θt

4∥wt∥
( (ω

2
−1)

ω2+1
− 8ω2λ
(ω2+1)2

cos θtϕ(λ) + 2Φ(−λ)).

Since cos θt ≤ 1 and Φ(−λ) > 0, the RHS is positive when ω2
−1

4ω
≥ µ

σ
ϕ(λ).

Let E(λ0, ω) ∶= ω2
−1

4ω
− λ0ϕ(λ0

ω2
+1

2ω
).

dE
dλ0
= −ϕ(λ0

ω2
+1

2ω
) + (λ0

ω2
+1

2ω
)
2
ϕ(λ0

ω2
+1

2ω
) ≥ 0,

when λ0 ≥ 2ω
ω2+1

. The RHS is a decreasing function of ω for ω ≥ 2. The condition becomes λ0 ≥ 0.8.

dE
dω
= 1

4
+ 1

4ω2 + λ3
0
ω2
+1

2ω
( 1
2
− 1

2ω2 )ϕ(λ0
ω2
+1

2ω
) = ω2

+1
4ω2 (1 + λ3

0
ω4
−1
ω

ϕ(λ0
ω2
+1

2ω
)) ≥ 0.
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Since E is an increasing function of both ω and λ, and we can numerically verify that E(0.8,2) > 0,
the result is true for all ω ≥ 2 and λ0 ≥ 0.8.

Next, we prove Theorem 2 as follows. Let ω ≥ 2 and 0.8 ≤ λ0 ≤ 1.5.

Proof. For signGD, we can analyze the gradient expression for any w:

∇wL̂(W ) = −aσ
4
(Φ(λµ̄⊺+w̄)λµ̄+ +Φ(λµ̄⊺−w̄)λµ̄− − 2Φ(λµ̄⊺0w̄)λµ̄0 + (ϕ(λµ̄⊺+w̄) + ϕ(λµ̄⊺−w̄) − 2ϕ(λµ̄⊺0w̄)) w̄).

Specifically, the gradient is in the direction [±1,0]⊺ only when [0,1]⊺∇wL̂(W ) = 0. We have:

[0,1]⊺∇wL̂(W ) = −aσ
4
( 2ωλ
ω2+1

(Φ(λµ̄⊺+w̄) −Φ(λµ̄⊺−w̄)) + sin θ(ϕ(λµ̄⊺+w̄) + ϕ(λµ̄⊺−w̄) − 2ϕ(λµ̄⊺0w̄)))

= −aσ sin θ
4
(2 ( 2ωλ

ω2+1
)2 ϕ(c) + ϕ(λµ̄⊺+w̄) + ϕ(λµ̄⊺−w̄) − 2ϕ(λµ̄⊺0w̄)),

where c ∈ [λµ̄⊺−w̄, λµ̄⊺+w̄]. Consider the expression in the parenthesis. Assuming ω2
−1

2ω
≥ 1, we have:

2 ( 2ωλ
ω2+1
)2 ϕ(c) + ϕ(λµ̄⊺+w̄) + ϕ(λµ̄⊺−w̄) − 2ϕ(λµ̄⊺0w̄) ≥ 2 ((( 2ωλ

ω2+1
)2 + 1)ϕ( 2ωλ

ω2+1
) − ϕ(0))

= 2 (((µ
σ
)2 + 1)ϕ(µ

σ
) − ϕ(0)) > 0,

whenever µ
σ
≤ 1.5 (we can check this numerically, and use the fact that ϕ(z) is a decreasing function

of z ≥ 0).

Thus, the gradient is only in the [±1,0]⊺ direction when sin θ = 0, i.e., when w is in that direction.

Next, we can check if there are neurons in the [0,±1]⊺ direction. We have:

[1,0]∇wL̂(W ) = −aσ
4
(2λω2

−1
ω2+1

(Φ(λµ̄⊺+w̄) +Φ(λµ̄⊺−w̄)) + 2λΦ(λµ̄⊺0w̄) + cos θ(ϕ(λµ̄⊺+w̄) + ϕ(λµ̄⊺−w̄) − 2ϕ(λµ̄⊺0w̄))).

The expression in the parenthesis is positive as long as λω2
−1

ω2+1
+ 0.5λ ≥ 0.4, or 3ω2

−1
1.6ω

≥ σ
µ

. Let
E(λ0, ω) = λ0 − 1.6ω

3ω2−1
. We can show that it is an increasing function of both λ0 and ω. Since

E(0.8,2) > 0, the result holds for all ω ≥ 2 and λ0 ≥ 0.8.

Based on these calculations, the updates are along [±1,±1]⊺ directions, depending on the sign of a
and sin θ. Specifically, we have the following cases for θt and θt+1 at any t:

sign(sin θt) sign(a) sign([0,1]⊺∇wL̂(W )) sign(sin θt+1)
+ve +ve +ve +ve
+ve -ve -ve -ve
-ve +ve -ve -ve
-ve -ve +ve +ve

This shows that whenever a > 0, the updates for neurons in the first/second or third/fourth quadrant
are along [1,1]⊺ or [1,−1]⊺, respectively. However, when a < 0, the updates for neurons in the
first/second or third/fourth quadrants alternate between [−1,±1]⊺ and [−1,∓1]⊺. As a result, at even
iterations, these neurons are close to the [−1,0]⊺ direction (but may not be exactly aligned due to the
initialization). However, in the limit t→∞, these neurons converge in this direction.

Next, we prove Theorem 3 as follows. Let d = 2 for simplicity, ω ∈ [2,4] and λ0 ∈ [2ω/3,5].

Linear: ŷ = sign(ax1 + bx2). Piece-wise Linear: ŷ′ = {sign(ax1 + bx2) x2 ≥ 0,
sign(ax1 − bx2) x2 < 0.

.

Proof.

E(ŷ ≠ y) = 1
4

⎡⎢⎢⎢⎢⎣
Φ
⎛
⎝
−

µ(
a
2
(κω−

1
ω
)+b)

σy

√
a2κ+b2

⎞
⎠
+Φ
⎛
⎝
−

µ(
a
2
(κω−

1
ω
)−b)

σy

√
a2κ+b2

⎞
⎠

⎤⎥⎥⎥⎥⎦
+ 1

2
Φ
⎛
⎝
−

µ
a
2
(κω+

1
ω
)

√
κσy

⎞
⎠
.
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When a = 1, b = 0, we get:

E(ŷ ≠ y) = 1
2
Φ
⎛
⎝
−

µ(κω−
1
ω
)

2σy
√
κ

⎞
⎠
+ 1

2
Φ
⎛
⎝
−

µ(κω+
1
ω
)

2σy
√
κ

⎞
⎠
.

For isotropic Gaussians, we get:

E(ŷ ≠ y) = 1
2
Φ (−µ

σ
ω2
−1

2ω
) + 1

2
Φ (−µ

σ
ω2
+1

2ω
) .

Considering the non-isotropic case, we have:

E(ŷ′ ≠ y) < 1
2
Φ(− µ

√
κ+1σy

κω2
−1+2ω
2ω

) +Φ (− µ
√
κσy

κω2
+1

2ω
)

Ô⇒ E(ŷ′ ≠ y) − E(ŷ ≠ y) < 1
2
Φ(− µ

√
κ+1σy

κω2
−1+2ω
2ω

) + 1
2
Φ (− µ

√
κσy

κω2
+1

2ω
) − 1

2
Φ (− µ

√
κσy

κω2
−1

2ω
)

= 1
2
(Φ(− µ

√
κ+1σy

κω2
−1+2ω
2ω

) +Φ ( µ
√
κσy

κω2
−1

2ω
) −Φ ( µ

√
κσy

κω2
+1

2ω
))

For the isotropic case, define E(λ0, ω) ∶= Φ(−λ0
ω2
−1+2ω

2
√
2ω
) +Φ(λ0

ω2
−1

2ω
) −Φ(λ0

ω2
+1

2ω
). We have:

E(λ0, ω) ≤
ϕ(λ0

ω2
−1+2ω

2
√
2ω

)

λ0
ω2
−1+2ω

2
√
2ω

− λ0

ω
ϕ(λ0

ω2
+1

2ω
)

We can analyze the first derivatives:

dE
dω
= λ0

2ω2 (−ω2
+1
√
2
ϕ(λ0

ω2
−1+2ω

2
√
2ω
) + (ω2 + 1)ϕ(λ0

ω2
−1

2ω
) − (ω2 − 1)ϕ(λ0

ω2
+1

2ω
))

= λ0(ω
2
+1)

2ω2 ϕ(λ0
ω2
+1

2ω
) (1 − 1

√
2
exp (− λ2

0

8ω2 ( (ω
2
−1+2ω)2

2
− (ω2 − 1)2)) − ω2

−1
ω2+1

exp (−λ2
0((ω

2
+1)2−(ω2

−1)2)

8ω2 ))

= λ0(ω
2
+1)

2ω2 ϕ(λ0
ω2
−1

2ω
) (1 − 1

√
2
exp (− λ2

0

16ω2 (−ω4 + 4ω3 + 6ω2 − 4ω − 1)) − ω2
−1

ω2+1
exp (−λ2

0

2
))

The sign of the derivative depends on the expression inside the parenthesis. Second and third term
have similar behaviour when ∣ω2 − 1∣ < ∣ω

2
−1+2ω
√
2
∣, which is true for 1 ≤ ω ≤ 5. They are a decreasing

function of λ0. Since ω ∈ [2,4] and λ0 ≥ 2ω/3, then the derivative is positive because

1 − 1
√
2
exp (− 1

36
(−ω4 + 4ω3 + 6ω2 − 4ω − 1)) − ω2

−1
ω2+1

exp (− 2ω2

9
)

> 1 − 1
√
2
exp (− 1

36
(3.732)) − 0.8824 exp (− 8

9
) > 0.

Next we compute the derivative wrt λ0. dE
dλ0
= − 17

5
√
2
ϕ(λ0

17

5
√
2
) + 12

5
ϕ(λ0

12
5
) − 13

5
ϕ(λ0

13
5
)

dE
dλ0
= −ω2

−1+2ω

2
√
2ω

ϕ(λ0
ω2
−1+2ω

2
√
2ω
) + ω2

−1
2ω

ϕ(λ0
ω2
−1

2ω
) − ω2

+1
2ω

ϕ(λ0
ω2
+1

2ω
)

= ω2
−1

2ω
ϕ(λ0

ω2
−1

2ω
) (1 − ω2

−1+2ω
√
2(ω2−1)

exp (− λ2
0

16ω2 (−ω4 + 4ω3 + 6ω2 − 4ω − 1)) − ω2
+1

ω2−1
exp (−λ2

0

2
)) .

For a fixed ω ∈ [2,4], this is an increasing function of λ0. This implies that E first decreases upto
some λ0 = λ̄0, and then starts increasing.

Numerically, E(5,4) ≤ 0, implying E(λ0, ω) ≤ 0 for all ω ∈ [2,4], λ0 ∈ [2ω/3,5].

A.2 Toy Data

We can write the Bayes’ optimal predictor in the toy setting as follows. We consider three datapoints
(x, y): ([−µ3,0]⊺,−1), ([µ1, µ2]⊺,1) and ([µ1,−µ2]⊺,1), where µ1, µ2, µ3 > 0. The optimal
predictor can be found by solving the following:

min(
√
(x1 − µ1)2 + (x2 − µ2)2,

√
(x1 − µ1)2 + (x2 + µ2)2) =

√
(x1 + µ3)2 + x2

2.

12



Solving this gives a piecewise linear function:

(µ1 + µ3)x1 + µ2x2 = µ2
1+µ

2
2−µ

2
3

2
, x2 > 0

(µ1 + µ3)x1 − µ2x2 = µ2
1+µ

2
2−µ

2
3

2
, x2 ≤ 0.

In the realizable setting, this is:

ωx1 + x2 = 0, x2 > 0
ωx1 − x2 = 0, x2 ≤ 0.

We now restate Theorem 4 for convenience, followed by the proof.

Theorem 5. Consider ∥wk∥ ≤ ηµ
8ω(ω2−1)

(((3ω2+1)(ω2−1)−4ω2) ∧ (4ω2−(ω2−1)2) ∧ 8ω
µ
(2ω+1−

ω2)) and 1+ 2
√
3
< ω2 < 3+2

√
2. Let w̄k,∞ ∶=

limt→∞

wk,t

t

∥limt→∞

wk,t

t
∥
, for neuron k ∈ [m] and p ∶=

tan−1
ω2
−1

2ω
π

.

Then, for m→∞, the solutions learned by GD, signGD, and Adam are:

GD Adam (β1 = β2 = 0) or signGD Adam (β1 = β2 ≈ 1)

w̄k,∞ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[1,0]⊺ w.p. 1
4
+ p

2

[−1,0]⊺ w.p. 1
2

1
ω2+1

[ω2 − 1,2ω]⊺ w.p. 1
8
− p

4
1

ω2+1
[ω2 − 1,−2ω]⊺ w.p. 1

8
− p

4

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[1,0]⊺ w.p. p
[−1,0]⊺ w.p. 1

2
1
√
2
[1,1]⊺ w.p. 1

4
− p

2
1
√
2
[1,−1]⊺ w.p. 1

4
− p

2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[1,0]⊺ w.p. p
[−1,0]⊺ w.p. 1

2
1
√
2
[1,1]⊺ w.p. 1

8
− p

4
1
√
2
[1,−1]⊺ w.p. 1

8
− p

4
1

√
s2+1
[s,1]⊺ w.p. 1

8
− p

4
1

√
s2+1
[s,−1]⊺ w.p. 1

8
− p

4

where s is a constant between 0.72 and 1. In each case, the sign of the first element of wk,∞ is the
same as sign(ak).

Proof. Let z ∶= (x, y), and z1 ∶= −µ
2
[ω + 1

ω
,0], z2 ∶= µ

2
[ω − 1

ω
,2], z3 ∶= µ

2
[ω − 1

ω
,−2]. Define three

sets S1, S2, S3 as S1 ∶= {z ∈ S ∶ x1 < 0}, S2 ∶= {z ∈ S ∶ x2 > 0}, S3 ∶= {z ∈ S ∶ x2 < 0}.
First iteration. We first analyze the gradients at the first iteration. Consider different cases where
w⊺k,0x ≥ 0 depending on different samples x. Table 1 lists the population gradients depending on
which samples contribute to the gradient. See Fig. 3 for an illustration. Note that θ = tan−1 µ2

µ1
=

tan−1 2ω
ω2−1

, and π
2
− θ = tan−1 ω2

−1
2ω

.

Set S s.t. w⊺k,0x > 0 Pop. Gradient Ez∼D[yx∣x ∈ S] Prob. of such wk

S2 ∪ S3
1
2
[µ1,0]⊺

tan−1
ω2
−1

2ω
π

S2
1
4
[µ1, µ2]⊺

π
2
−tan−1

ω2
−1

2ω
2π

S1 ∪ S2
1
4
[µ1 + 2µ3, µ2]⊺

π
2
−tan−1

ω2
−1

2ω
2π

S1
1
2
[µ3,0]⊺

tan−1
ω2
−1

2ω
π

S3 ∪ S1
1
4
[µ1 + 2µ3,−µ2]⊺

π
2
−tan−1

ω2
−1

2ω
2π

S3
1
4
[µ1,−µ2]⊺

π
2
−tan−1

ω2
−1

2ω
2π

Table 1: Population gradients and corresponding proba-
bilities depending on the region of initialization of the
neurons.

π
2 −θ θ

θ

μ1
μ3

μ2

S1 ∪ S2
S2

S2

S1

S1

S1 ∪ S3
S3

S3

S2 ∪ S3

S2 ∪ S3π
2 −θ

Figure 3: An illustration of the toy
dataset and the set S such that w⊺k,0x >
0 depending on the region of initializa-
tion.
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Using the population gradients in Table 1, the updates for the different algorithms, are written as:

GD: wk,1 =wk,0 +
akηµ

4

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ω
2
−1
ω

,0]⊺ w.p.
tan−1

ω2
−1

2ω
π

[ω
2
+1
ω

,0]⊺ w.p.
tan−1

ω2
−1

2ω
π

[ω
2
−1

2ω
,1] w.p. 1

4
−

tan−1
ω2
−1

2ω
2π

[ω
2
−1

2ω
,−1] w.p. 1

4
−

tan−1
ω2
−1

2ω
2π

[ 3ω
2
+1

2ω
,1]⊺ w.p. 1

4
−

tan−1
ω2
−1

2ω
2π

[ 3ω
2
+1

2ω
,−1]⊺ w.p. 1

4
−

tan−1
ω2
−1

2ω
2π

,

signGD/Adam: wk,1 =wk,0 + akη

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

[1,0]⊺ w.p. 2
tan−1

ω2
−1

2ω
π

[1,1]⊺ w.p. 1
2
−

tan−1
ω2
−1

2ω
π

[1,−1]⊺ w.p. 1
2
−

tan−1
ω2
−1

2ω
π

.

Second iteration. Next, we use these updates to analyze the second iteration. Tables 2 to 4 include the
updates at the second iteration for GD, signGD and Adam, respectively, where we use the conditions
on ω and the (small) initialization scale. Specifically, the small initialization scale helps ensure that
the gradient and the corresponding updated neuron are in the same region (in terms of which samples
contribute to the gradient for the next iteration). Using the condition on ω, the updates in rows 5 and
7 of Table 2 remain in the direction of the points z2 and z3, respectively, whereas those in rows 9
and 11 get along the direction of [1,0]⊺.

4(wk,1 −wk,0)/(ηµ) Prob. Set S s.t. w⊺k,1x > 0 4sign(ak)Ez∼D[1[w⊺k,1x ≥ 0]yx]/µ

[ω
2
−1
ω

,0]⊺
tan−1

ω2
−1

2ω
2π

S2 ∪ S3 [ω
2
−1
ω

,0]⊺

−[ω
2
−1
ω

,0]⊺
tan−1

ω2
−1

2ω
2π

S1 −[ω
2
+1
ω

,0]⊺

[ω
2
+1
ω

,0]⊺
tan−1

ω2
−1

2ω
2π

S2 ∪ S3 [ω
2
−1
ω

,0]⊺

−[ω
2
+1
ω

,0]⊺
tan−1

ω2
−1

2ω
2π

S1 −[ω
2
+1
ω

,0]⊺

[ω
2
−1

2ω
,1]

π
2
−tan−1

ω2
−1

2ω
4π

S2 [ω
2
−1

2ω
,1]⊺

− [ω
2
−1

2ω
,1]

π
2
−tan−1

ω2
−1

2ω
4π

S1 −[ω
2
+1
ω

,0]⊺

[ω
2
−1

2ω
,−1]

π
2
−tan−1

ω2
−1

2ω
4π

S3 [ω
2
−1

2ω
,−1]⊺

− [ω
2
−1

2ω
,−1]

π
2
−tan−1

ω2
−1

2ω
4π

S1 −[ω
2
+1
ω

,0]⊺

[ 3ω
2
+1

2ω
,1]⊺

π
2
−tan−1

ω2
−1

2ω
4π

S2 ∪ S3 [ω
2
−1
ω

,0]⊺

−[ 3ω
2
+1

2ω
,1]⊺

π
2
−tan−1

ω2
−1

2ω
4π

S1 −[ω
2
+1
ω

,0]⊺

[ 3ω
2
+1

2ω
,−1]⊺

π
2
−tan−1

ω2
−1

2ω
4π

S2 ∪ S3 [ω
2
−1
ω

,0]⊺

−[ 3ω
2
+1

2ω
,−1]⊺

π
2
−tan−1

ω2
−1

2ω
4π

S1 −[ω
2
+1
ω

,0]⊺
Table 2: Population gradients at the second iteration for GD.
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Based on the updates in Table 2, we can write the GD iterate at any time t > 1 as:

wk,t =wk,1 + ηµ(t−1)
4

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ω
2
−1
ω

,0]
⊺

w.p. 1
4
+

tan−1
ω2
−1

2ω
2π

− [ω
2
−1
ω

,0]
⊺

w.p. 1
2

[ω
2
−1

2ω
,1]
⊺

w.p. 1
8
−

tan−1
ω2
−1

2ω
4π

[ω
2
−1

2ω
,−1]

⊺

w.p. 1
8
−

tan−1
ω2
−1

2ω
4π

.

wk,1 −wk,0 Prob. 4Ez∼D[1[w⊺k,1x ≥ 0]yx]/µ wk,2 −wk,1

η[1,0]⊺
tan−1

ω2
−1

2ω
π

[ω
2
−1
ω

,0]⊺ η[1,0]⊺

−η[1,0]⊺
tan−1

ω2
−1

2ω
π

[ω
2
+1
ω

,0]⊺ −η[1,0]⊺

η[1,1]⊺
π
2
−tan−1

ω2
−1

2ω
2π

[ω
2
−1

2ω
,1]⊺ η[1,1]⊺

−η[1,1]⊺
π
2
−tan−1

ω2
−1

2ω
2π

[ω
2
+1
ω

,0]⊺ −η[1,0]⊺

η[1,−1]⊺
π
2
−tan−1

ω2
−1

2ω
2π

[ω
2
−1

2ω
,−1]⊺ η[1,−1]⊺

−η[1,−1]⊺
π
2
−tan−1

ω2
−1

2ω
2π

[ω
2
+1
ω

,0]⊺ −η[1,0]⊺
Table 3: Population gradients at the second iteration for SignGD (Adam, β1 = β2 = 0).

Based on the updates in Table 3, we can write the signGD iterate at any time t as:

wk,t =wk,0 + ηt

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[1,0]⊺ w.p.
tan−1

ω2
−1

2ω
π

−[1,0]⊺ w.p.
tan−1

ω2
−1

2ω
π

[1,1]⊺ w.p. 1
4
−

tan−1
ω2
−1

2ω
2π

[1,−1]⊺ w.p. 1
4
−

tan−1
ω2
−1

2ω
2π

−[1,1/t]⊺ w.p. 1
4
−

tan−1
ω2
−1

2ω
2π

−[1,−1/t]⊺ w.p. 1
4
−

tan−1
ω2
−1

2ω
2π

.
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wk,1 −wk,0 4gk,0/(ηµ) Prob. 4Ez∼D[1[w⊺k,1x ≥ 0]yx]/µ wk,2 −wk,1

η[1,0]⊺ [ω
2
−1
ω

,0]⊺
tan−1

ω2
−1

2ω
2π

[ω
2
−1
ω

,0]⊺ η[1,0]⊺

−η[1,0]⊺ −[ω
2
−1
ω

,0]⊺
tan−1

ω2
−1

2ω
2π

[ω
2
+1
ω

,0]⊺ −η[ 1
√
2

2ω2
√
(ω2−1)2+(ω2+1)2

,0]⊺

η[1,0]⊺ [ω
2
+1
ω

,0]⊺
tan−1

ω2
−1

2ω
2π

[ω
2
−1
ω

,0]⊺ η[ 1
√
2

2ω2
√
(ω2+1)2+(ω2−1)2

,0]⊺

−η[1,0]⊺ −[ω
2
+1
ω

,0]⊺
tan−1

ω2
−1

2ω
2π

[ω
2
+1
ω

,0]⊺ −η[1,0]⊺

η[1,1]⊺ [ω
2
−1

2ω
,1]

π
2
−tan−1

ω2
−1

2ω
4π

[ω
2
−1

2ω
,1]⊺ η[1,1]⊺

−η[1,1]⊺ − [ω
2
−1

2ω
,1]

π
2
−tan−1

ω2
−1

2ω
4π

[ω
2
+1
ω

,0]⊺ − η
√
2
[ (ω2

−1)/2+(ω2
+1)

√
((ω2−1)/2)2+(ω2+1)2

,1]⊺

η[1,−1]⊺ [ω
2
−1

2ω
,−1]

π
2
−tan−1

ω2
−1

2ω
4π

[ω
2
−1

2ω
,−1]⊺ η[1,−1]⊺

−η[1,−1]⊺ − [ω
2
−1

2ω
,−1]

π
2
−tan−1

ω2
−1

2ω
4π

[ω
2
+1
ω

,0]⊺ − η
√
2
[ (ω2

−1)/2+(ω2
+1)

√
((ω2−1)/2)2+(ω2+1)2

,−1]⊺

η[1,1]⊺ [ 3ω
2
+1

2ω
,1]⊺

π
2
−tan−1

ω2
−1

2ω
4π

[ω
2
−1

2ω
,1]⊺ η[ 1

√
2

4ω2
√
(3ω2+1)2+(ω2−1)2

,1]⊺

−η[1,1]⊺ −[ 3ω
2
+1

2ω
,1]⊺

π
2
−tan−1

ω2
−1

2ω
4π

[ω
2
+1
ω

,0]⊺ − η
√
2
[1 2.5ω2

+1.5
√
((3ω2+1)/2)2+(ω2+1)2

,1]⊺

η[1,−1]⊺ [ 3ω
2
+1

2ω
,−1]⊺

π
2
−tan−1

ω2
−1

2ω
4π

[ω
2
−1

2ω
,−1]⊺ η[ 1

√
2

4ω2
√
(3ω2+1)2+(ω2−1)2

,−1]⊺

−η[1,−1]⊺ −[ 3ω
2
+1

2ω
,−1]⊺

π
2
−tan−1

ω2
−1

2ω
4π

[ω
2
+1
ω

,0]⊺ − η
√
2
[ 2.5ω2

+1.5
√
((3ω2+1)/2)2+(ω2+1)2

,−1]⊺

Table 4: Population gradients at the second iteration for Adam, β1 = β2 ≈ 1.

Based on the updates in Table 4, we can write the Adam iterate at any time t as follows:

wk,t =wk,0 + η
t

∑
τ=1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[1,0]⊺ w.p.
tan−1

ω2
−1

2ω
2π

1
√
τ
[− ω2

−1+(τ−1)(ω2
+1)

√
(ω2−1)2+(τ−1)(ω2+1)2

,0]
⊺

w.p.
tan−1

ω2
−1

2ω
2π

1
√
τ
[ ω2

+1+(τ−1)(ω2
−1)

√
(ω2+1)2+(τ−1)(ω2−1)2

,0]
⊺

w.p.
tan−1

ω2
−1

2ω
2π

[−1,0]⊺ w.p.
tan−1

ω2
−1

2ω
2π

[1,1]⊺ w.p. 1
8
−

tan−1
ω2
−1

2ω
4π

−1
√
τ
[ (ω2

−1)/2+(τ−1)(ω2
+1)

√
((ω2−1)/2)2+(τ−1)(ω2+1)2

,1]
⊺

w.p. 1
8
−

tan−1
ω2
−1

2ω
4π

[1,−1]⊺ w.p. 1
8
−

tan−1
ω2
−1

2ω
4π

−1
√
τ
[ (ω2

−1)/2+(τ−1)(ω2
+1)

√
((ω2−1)/2)2+(τ−1)(ω2+1)2

,−1]
⊺

w.p. 1
8
−

tan−1
ω2
−1

2ω
4π

[ 1
√
τ

3ω2
+1+(τ−1)(ω2

−1)
√
(3ω2+1)2+(τ−1)(ω2−1)2

,1]
⊺

w.p. 1
8
−

tan−1
ω2
−1

2ω
4π

−1
√
τ
[ (3ω2

+1)/2+(τ−1)(ω2
+1)

√
((3ω2+1)/2)2+(τ−1)(ω2+1)2

,1]
⊺

w.p. 1
8
−

tan−1
ω2
−1

2ω
4π

[ 1
√
τ

3ω2
+1+(τ−1)(ω2

−1)
√
(3ω2+1)2+(τ−1)(ω2−1)2

,−1]
⊺

w.p. 1
8
−

tan−1
ω2
−1

2ω
4π

−1
√
τ
[ (3ω2

+1)/2+(τ−1)(ω2
+1)

√
((3ω2+1)/2)2+(τ−1)(ω2+1)2

,−1]
⊺

w.p. 1
8
−

tan−1
ω2
−1

2ω
4π

t→∞ iterations. Based on the analysis above, we can compute limt→∞
wk,t

t
for each algorithm.

For GD, we have:

lim
t→∞

wk,t

t
= akηµ

2
(ω − sign(ak)

ω
) [1,0]⊺.
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For Adam with β = 0 or signGD, we have:

lim
t→∞

wk,t

t
= η

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[1,0]⊺ w.p.
tan−1

ω2
−1

2ω
π

[−1,0]⊺ w.p. 1
2

[1,1]⊺ w.p. 1
4
−

tan−1
ω2
−1

2ω
2π

[1,−1]⊺ w.p. 1
4
−

tan−1
ω2
−1

2ω
2π

.

For Adam with β ≈ 1, using the results in Appendix B, we have:

lim
t→∞

wk,t

t
= η

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[1,0]⊺ w.p.
tan−1

ω2
−1

2ω
2π

[−m1,0]⊺ w.p.
tan−1

ω2
−1

2ω
2π

[m2,0]⊺ w.p.
tan−1

ω2
−1

2ω
2π

[−1,0]⊺ w.p.
tan−1

ω2
−1

2ω
2π

[1,1]⊺ w.p. 1
8
−

tan−1
ω2
−1

2ω
4π

[1,−1]⊺ w.p. 1
8
−

tan−1
ω2
−1

2ω
4π

[−m3,0]⊺ w.p. 1
4
−

tan−1
ω2
−1

2ω
2π

[m4,1]⊺ w.p. 1
8
−

tan−1
ω2
−1

2ω
4π

[m4,−1]⊺ w.p. 1
8
−

tan−1
ω2
−1

2ω
4π

[−m5,0]⊺ w.p. 1
4
−

tan−1
ω2
−1

2ω
2π

,

where m1, . . . ,m5 are constants that satisfy 0.935 ≤ m1 ≤ 1, 0.923 ≤ m2 ≤ 1, 0.84 ≤ m3 ≤ 1,
0.72 ≤ m4 ≤ 1, 0.98 ≤ m5 ≤ 1. Taking s = m4 and normalizing each direction then finishes the
proof.

B Auxiliary Results

Lemma 1. Given a constant r > 0 and function fr(x) = x−1+r
x(x−1+r2)

, where x ≥ 1, it holds that
f ′r(x) ≥ 0 when x ≥ 1+r. Further, when x ∈N, the minima occurs at either x = 1+ ⌊r⌋ or x = 2+ ⌊r⌋,
and it holds that:

min( ⌊r⌋+r
√
(1+⌊r⌋)(⌊r⌋+r2)

, 1+⌊r⌋+r
√
(2+⌊r⌋)(1+⌊r⌋+r2)

) ≤ fr(x) ≤ 1.

The result can be obtained by examining the derivative of fr(x) with respect to x, so we omit the
proof.

Further, given r1 ∶= ω2
−1

ω2+1
, r2 ∶= ω2

+1
ω2−1

= 1/r1, r3 ∶= 0.5r1, r4 ∶= 3ω2
+1

ω2−1
, r5 ∶= 0.5 3ω2

+1
ω2+1

, and ω ≥ 1+
√
5

2
,

it holds that:

0.4472 ≤ r1 < 1, 1 ≤ r2 < 2.236, 0.2236 ≤ r3 < 0.5, 3 ≤ r4 ≤ 5.4721, 1.2236 ≤ r5 ≤ 1.5.

Alternately, for a specific value of ω, we can compute these exactly. For instance, when ω = 2,
r1 = 0.6, r2 ≈ 1.6667, r3 = 0.3, r4 ≈ 4.3333, r5 = 1.3.
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Also, we can simplify the lower bound on fr(x) as follows:

c(r) ∶=min( ⌊r⌋+r
√
(1+⌊r⌋)(⌊r⌋+r2)

, 1+⌊r⌋+r
√
(2+⌊r⌋)(1+⌊r⌋+r2)

) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1+r
√

2(1+r2)
, 0 < r < 1

2+r
√

3(2+r2)
, 1 < r < 2

3+r
√

4(3+r2)
, 2 < r < 2

√
3

4+r
√

5(4+r2)
, 2
√
3 < r < 4

5+r
√

6(5+r2)
, 4 < r < 5

6+r
√

7(6+r2)
, 5 < r < 6

.

We can use this to obtain the exact lower bounds for the aforementioned intervals:

min
r

c(r) ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.9354, 0.4472 ≤ r < 1,
0.9238, 1 ≤ r < 2.236,
0.8443, 0.2236 ≤ r < 0.5,
0.7240, 3 ≤ r ≤ 5.4721,
0.9802, 1.2236 ≤ r ≤ 1.5.

When ω = 2, c(r1) ≈ 0.9713, c(r2) ≈ 0.9681, c(r3) ≈ 0.8803, c(r4) ≈ 0.7808, c(r5) ≈ 0.9936.

Lemma 2. The sum f(x) ∶= ∑x
τ=1

1
√
τ

satisfies 2
√
x − 2 ≤ f(x) ≤ 2

√
x − 1.

Proof. To establish the bounds for f(x), we can compare the sum to the corresponding integral. We
have:

f(x) =
x

∑
τ=1

1√
τ
≥ ∫

x+1

1

1√
n
dn = 2

√
x + 1 − 2,

f(x) =
x

∑
τ=1

1√
τ
≤ 1 + ∫

x

1

1√
n
dn = 1 + 2

√
x − 2 = 2

√
x − 1.

Combining both inequalities and using Using the fact that
√
x + 1 ≥

√
x finishes the proof.
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