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Figure 1: A comparison between per-prompt optimization-based methods, and our single-stage
generation-based approach with an end-to-end objective. (a) Optimization-based methods di-
rectly initialize a 3D representation model, e.g.3D Gaussian Splatting (GS). This process usually
suffers from slow per-sample optimization (e.g., several hours for a single text). (b) By contrast,
once trained, our approach directly generates 3D content for any unseen text prompt in 77 ms with
a single run of a feed-forward of our generator.

ABSTRACT

Text-to-3D synthesis has recently seen intriguing advances by combining the text-
to-image models with 3D representation methods, e.g., Gaussian Splatting (GS),
via Score Distillation Sampling (SDS). However, a hurdle of existing methods is
the low efficiency, per-prompt optimization for a single 3D object. Therefore, it is
imperative for a paradigm shift from per-prompt optimization to one-stage genera-
tion for any unseen text prompts, which yet remains challenging. A hurdle is how
to directly generate a set of millions of 3D Gaussians to represent a 3D object.
This paper presents BrightDreamer, an end-to-end single-stage approach that can
achieve generalizable and fast (77 ms) text-to-3D generation. Our key idea is to
formulate the generation process as estimating the 3D deformation from an
anchor shape with predefined positions. For this, we first propose a Text-guided
Shape Deformation (TSD) network to predict the deformed shape and its new po-
sitions, used as the centers (one attribute) of 3D Gaussians. To estimate the other
four attributes (i.e., scaling, rotation, opacity, and SH coefficient), we then design
a novel Text-guided Triplane Generator (TTG) to generate a triplane represen-
tation for a 3D object. The center of each Gaussian enables us to transform the
triplane feature into the four attributes. The generated 3D Gaussians can be fi-
nally rendered at 705 frames per second. Extensive experiments demonstrate the
superiority of our method over existing methods. Also, BrightDreamer possesses
a strong semantic understanding capability even for complex text prompts. The
project code is available at http://.

1 INTRODUCTION

Text-to-3D generation has recently received considerable attention in the computer graphics and
vision community owing to its immersive potential across diverse applications, such as virtual reality
and gaming (Li et al., 2023a).
Recently, with the emergence of diffusion models (Ho et al., 2020; Rombach et al., 2022) and neural
rendering techniques (Mildenhall et al., 2021; Kerbl et al., 2023), text-to-3D has witnessed an un-
precedented technical advancement. In particular, pioneering methods, such as DreamFusion (Poole
et al., 2022), LatentNeRF (Metzer et al., 2023), SJC (Wang et al., 2023a), have sparked significant
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Table 1: The comparison of different training paradigms of 3D generative model. “Interpolation”
can reflect the capability of detail control and the continuity of the learned space.

Method Generation Time Training Data Interpolation Text Input Representative
GAN-Based less than 1 second 2D Images ! # GRAF, Pi-GAN, StyleNeRF
Per-Prompt several hours # # ! DreamFusion, LucidDreamer
3D Diffusion several seconds 3D data # ! Latte3D

Single-Stage less than 1 second # ! !
Instant3D (NeRF, lower text richness)
Ours (3D GS, higher text richness)

interest in the research community, catalyzing a trend toward developing techniques for creating 3D
assets from texts. The follow-up methods then focus on either quality improvement (Raj et al., 2023;
Shi et al., 2023; Wang et al., 2023b; Liang et al., 2023) or geometry refinement (Chen et al., 2023a;
Lin et al., 2023) or training efficiency (Tang et al., 2023; Yi et al., 2023).
The dominant paradigm of these methods is to randomly initialize a 3D representation model, e.g.,
Neural Radiance Fields (NeRF) (Mildenhall et al., 2021) or Gaussian Splatting (Kerbl et al., 2023),
and optimize such a model to align with a specific text prompt, as depicted in Fig. 1 (a). Unfor-
tunately, these methods suffer from two critical challenges. Firstly, as per-prompt optimization
usually requires several tens of thousands of iterations, this inefficiency brings a considerable ob-
stacle to broader applications. It is significantly different from the mainstream training paradigm
in the field of 2D image generation (Song et al., 2020; Rombach et al., 2022) or 3D-aware image
generation (Schwarz et al., 2020; Chan et al., 2021; Jiang et al., 2023; Or-El et al., 2022; Chan et al.,
2022): a generative model is trained with a collection of text-image pairs or images, and the model
can generate the desired content from any input at the inference stage. We show the main difference
of the different paradigms in 3D generative models in Tab. 1. Secondly, as demonstrated in Fig. 2(a),
existing methods often fail to accurately process the complex texts. For example, the mainstream
methods all fail to generate 3D content that input prompt contains complex interaction between mul-
tiple entities. This limitation arises from the models being trained on a single text prompt, which
results in a degraded capability in comprehensive semantic understanding.
Therefore, it is urgently needed for a paradigm shift from per-prompt optimization to develop a
generic text-to-3D generation framework. Once trained, the generative framework should be able to
generate content from any text prompts in the inference stage, as depicted in Fig. 1(b). Furthermore,
given the scarcity of 3D data in comparison to the abundance of 2D image data, leveraging well-
trained 2D image diffusion models to facilitate the training of 3D generative models presents a more
effective and resource-efficient approach. Previously, some research efforts, e.g., ATT3D (Lorraine
et al., 2023) and Instant3D (Li et al., 2023b), have been made grounded in NeRF representation.
The core insight is to add a large number of texts and take them as conditional inputs to generate
explicit spatial representations, such as triplane (Chan et al., 2022). Nonetheless, in stark contrast to
the volume rendering in NeRF, 3D GS representation for an object usually consists of millions of 3D
Gaussians. Consequently, there exists an inherent and natural difficulty in converting the generation
representations into 3D GS ones in their framework.
In this paper, we propose BrightDreamer, an end-to-end single-stage framework that, for the first
time, can achieve generalizable and fast (77 ms) text-to-3D GS generation. BrightDreamer exhibits
a robust ability for complex semantic understanding (Fig. 2 (a)), and it demonstrates a substantial
capacity for generalization (Fig. 2 (b)). In addition, same as traditional generative models (Good-
fellow et al., 2014), our generator can interpolate between two inputs (Fig. 2 (c)), which enables
users to fully engage their imagination and creativity, expanding the potential for novel and nuanced
design exploration. As stated before, the 3D GS representation of an object usually consists of sev-
eral millions of 3D Gaussians. Consequently, directly generating such an extensive collection, is
impractical. Our key idea is to redefine this generation problem as its equal problem, i.e., 3D shape
deformation. Specifically, we place and fix some anchor positions to form the initial shape. Then, it
can be deformed to the desired shape by giving different input prompts through our designed Text-
guided Shape Deformation (TSD) network (Sec. 3.1). After the deformation, the new positions can
be set to the centers of the 3D Gaussian. Upon establishing the basic shape, we elaborately de-
sign a Text-guided Triplane Generator (TTG) to generate a spatial representation of the 3D object
(Sec. 3.2). Subsequently, we utilize the spatial feature of each center of 3D Gaussian to represent its
whole feature and translate it into the remaining attributes (including scaling, rotation, opacity, and
SH coefficient) through our well-designed Gaussian Decoder (Sec. 3.3). For TTG, grounded on our
re-analysis of the previous convolution-based triplane generation process, we have identified and
solved two primary deficiencies that necessitate rectification. One issue pertains to the spatial inho-
mogeneity observed during the calculation process, as illustrated in Fig. 4. The other issue arises
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(a) Complex Semantic Understanding (b) Generalization Capability
“a man wearing a hat is mowing the lawn” “a slim woman is trying on a dress”
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“Electric luxury SUV, deep purple, spacious, advanced tech” “Electric luxury SUV, light yellow, spacious, advanced tech”

“Vintage pickup, sky blue, rugged appeal, classic functionality” “Electric luxury SUV, light yellow, spacious, advanced tech”

(c) Interpolation between two prompts

Figure 2: DreamGaussian (Tang et al., 2023) and LucidDreamer (Liang et al., 2023) are both op-
timized for a single text. Our result is the direct generation. And for the display of our general-
ization, all the prompts do not appear in our training set. (a) is for showing the complex text
understanding. (b) is for demonstrating our capability of generalization. It is noteworthy that light
purple, deep purple, and light yellow don’t appear in the training set. (c) Interpolation between
two prompts from color and shape perspective.

from the single-vector style control mechanism similar to StyleGAN (Karras et al., 2019), which
complicates the management of relationships between multiple entities.
Our contributions can be summarized as follows: (I) We propose BrightDreamer, the first 3D Gaus-
sian generative framework to achieve generalizable and fast text-to-3D synthesis. (II) We design
the Text-guided Shape Deformation (TSD) network to simplify the difficulty of direct generation of
3D Gaussians. We design the Text-guided Triplane Generator (TTG) to generate the object’s spatial
features and then decode them as the 3D Gaussians. For TTG design, we re-analyze and solve the
existing problems in the mainstream triplane generator, including spatial inhomogeneity and text
understanding problems. (III) Extensive experiments demonstrate that BrightDreamer not only can
understand the complex semantics (while the per-prompt optimization methods fail) but also can
utilize its generalization capability to achieve generation control.

2 RELATED WORKS

Text-to-3D Generation. Existing methods can be grouped into two categories. 1) Optimization-
based methods typically commence with a randomly initialized 3D model, such as NeRF (Milden-
hall et al., 2021), and subsequently employ text-image priors (Radford et al., 2021; Rombach et al.,
2022) to guide and optimize its parameters. After undergoing thousands of iterative refinements, this
predefined 3D model progressively morphs to embody the shape described by the corresponding text
input. DreamField (Jain et al., 2022) represents the inaugural foray into text-to-3D methodology,
utilizing the pre-trained text-image model, CLIP (Radford et al., 2021), as a guiding mechanism for
the optimization process of a predefined NeRF model. DreamFusion (Poole et al., 2022) proposes
the Score Distillation Sampling (SDS) to transfer the prior of the 2D diffusion model (Ho et al.,
2020) into a 3D representation model (Mildenhall et al., 2021; Müller et al., 2022), which achieves
impressive performance and ignites the research enthusiastic for the text-to-3D task. VSD (Wang
et al., 2023b) and ISM (Liang et al., 2023) are devoted to re-designing the SDS loss (Poole et al.,
2022), enabling much more local details of the 3D model. MVDream (Shi et al., 2023) and Perp-
Neg (Armandpour et al., 2023) attempt to solve the Janus problem, i.e., multi-face problem in some
text prompts. 2) Generation-based methods, by contrast, aim to directly generate a 3D model from
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Figure 3: An overview of our BrightDreamer. The details of Spatial Transformer, ResConv Block
and Upsample Block are shown in Fig. 5.

a given text, streamlining the process of text-to-3D generation. ATT3D (Lorraine et al., 2023) is the
first attempt to train a NeRF model with multiple texts. Instant3D (Li et al., 2023b) designs some
modules to map the text input to the EG3D model (Chan et al., 2022) and then use SDS to train
this model. Nonetheless, different from the volume rendering in NeRF, 3D GS representation for an
object usually consists of millions of 3D Gaussians. Therefore, it is inherently difficult to convert the
NeRF representations into 3D GS ones. We propose BrightDreamer, a generic framework that, for
the first time, can achieve fast (77 ms) text-to-3D GS generation. BrightDreamer exhibits a robust
ability for complex semantic understanding (see Fig. 2).
3D Gaussian Splatting (GS). Recently, 3D GS (Kerbl et al., 2023) has become the most popu-
lar 3D representation method of 3D objects or scenes. 3D GS shows a faster rendering speed and
higher application potential than NeRF (Mildenhall et al., 2021). Within a short time, a large num-
ber of methods have been proposed to leverage 3D GS for diverse tasks, e.g., anti-aliasing novel
view synthesis (Yu et al., 2023; Yan et al., 2023b), SLAM (Yan et al., 2023a; Keetha et al., 2023;
Matsuki et al., 2023; Yugay et al., 2023), human reconstruction (Li et al., 2024; Moreau et al., 2023;
Kocabas et al., 2023; Abdal et al., 2023; Li et al., 2023c; Liu et al., 2023), dynamic scene reconstruc-
tion (Luiten et al., 2023; Yang et al., 2023b; Wu et al., 2023; Yang et al., 2023a; Xu et al., 2023),
and 3D content generation (Xu et al., 2024; Chen et al., 2023b; Tang et al., 2023; Yi et al., 2023; Li
et al., 2023d; Liang et al., 2023). Our work is also based on 3D GS; however, we aim to develop a
generic text-to-3D generation framework that can generate 3D Gaussians at a low latency (77 ms).

3 METHOD

Overview. The objective of BrightDreamer is to directly generate 3D Gaussians in response to text
prompts. After training, BrightDreamer is capable of generating the 3D Gaussians with a remark-
ably low generation latency (about 77ms). And, the generated 3D Gaussians can be rendered at
an impressive inference speed of over 700 frames per second. 3D Gaussians can be defined by five
attributes, namely the center p′, scaling S, rotation R, opacity α, and SH coefficient SH . To directly
generate 3D Gaussians, our key idea is two-fold: 1) Defining anchor positions, i.e., predefined po-
sitions, to estimate the center of 3D Gaussians; 2) Building implicit spatial representation, which
can be decomposed to estimate the other four attributes of 3D Gaussians.
Intuitively, we propose BrightDreamer, and an overview is depicted in Fig. 3. Given a text prompt
as input, we transform it to a 77 × 1024 embedding through the frozen CLIP text encoder. Next,
the TSD network (Sec. 3.1) transforms the fixed anchor positions to the desired shape with text
guidance. The new positions are used as the centers of 3D Gaussians. We then design the TTG
(Sec. 3.2) to separately generate three feature planes to construct the implicit spatial representation.
Based on the centers of Gaussians, we can obtain their spatial features, which are then transferred
to the other attributes through the Gaussian Decoder (Sec. 3.3). Finally, we render 3D Gaussians to
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2D images and use the SDS Loss (Poole et al., 2022) to optimize the whole framework. We now
describe our BrightDreamer in detail.

3.1 TEXT-GUIDED SHAPE DEFORMATION (TSD)
The goal of TSD is to obtain the center (one attribute) of each 3D Gaussian. Considering that
directly outputting a huge number of center coordinates is extremely difficult, we overcome this
hurdle by deforming the anchor positions instead of generating them.
Anchor Position. The anchor position is predefined in this paper, which is a fixed coordinate. It
serves as one of the inputs for the TSD. Specifically, we place the anchor positions on the vertices of
a 3D grid, as represented by the gray points in Fig. 3. Then, we design the TSD network to predict
their deviation to deform the initialized shape of the 3D grid, guided by the text prompt input.
Network Design. As shown in Fig. 3 (a), the inputs of TSD are text prompts and anchor positions.
Firstly, the text prompts are encoded as the text embedding by an off-the-shelf text encoder, e.g.,
CLIP (Radford et al., 2021) or T5 (Raffel et al., 2020). Considering the possibility of the com-
plex input sentence, it remains non-trivial how to bridge each position and word in the sentence.
The cross-attention (Vaswani et al., 2017) can quantify the correlation degree between each point
and each word within a sentence. We then employ the cross-attention to design a module to ob-
tain the deviation from the anchor position. It consists of the Layer Normalization (Ba et al., 2016),
Multi-Head Attention, Feed-Forward Network, and shortcut connection (Vaswani et al., 2017). Con-
sequently, certain positions, correlating more closely with corresponding words in the sentence, are
assigned with higher attention scores. This process enables the aggregation of features that more
accurately reflect the characteristics of the corresponding words. The detailed computation process
is formulated as follows:

output = FFN(softmax(
WQ(p)WK(y)√

d
) ·WV (y)), (1)

where p ∈ R3 is the 3D coordinate of the anchor position, y ∈ R77×1024 is the text embedding of the
input prompt, 77 and 1024 are the sentence length and the embedding dimension, WQ(·), WK(·)
and WV (·) are the query, key, value transformation function, d is the feature dimension, score
represent the attention score between words and points, h is the intermediate feature, FFN(·) is the
feed-forward network. The output of the TSD network is the offset ∆ ∈ R3 of the anchor positions.
To ensure the stability of the training, we control the maximum extent to which a point can deviate
from the anchor position. Specifically, given the degree of freedom β ∈ R, we use the following
equation to adjust the range of output into interval (−β, β):

∆ = 2 · β · sigmoid(output)− β. (2)
Finally, we have the deformed position p′ ∈ R3, i.e.centers of 3D Gaussian, corresponding to input
prompt, formulated as follows:

p′ = p+∆. (3)

3.2 TEXT-GUIDED TRIPLANE GENERATOR (TTG)
Upon determining the centers of the 3D Gaussians, we need to obtain the other four attributes.
To efficiently assign features to each Gaussian, the objective of TTG is to generate an implicit
spatial representation in space, represented by the triplane. Therefore, we design a novel and
highly efficient triplane generator, whose input is also the text prompts.
One challenge is that the previous triplane generation approaches, such as EG3D (Chan et al., 2022)
and Instant3D (Li et al., 2023b), exhibit the problem of spatial inhomogeneity, as shown in Fig. 4.
Since they directly segment a feature map into three feature maps along the channel dimension, only
a few areas are computed together. For example, the position (0, 0) in the 2D space is unfolded to (0,
0, :), (0, :, 0), and (:, 0, 0), denoted by blue color in Fig. 4. Taking 1× 1 Conv as an example, only
these three areas are calculated together. On the contrary, (0, 0, :) is hardly possible to be calculated
with (0, :, 1), because they do not appear at the same pixel in the 2D feature map. The same applies
to the 3 × 3 Conv. This means that only a few areas share the same spatial information, while the
others do not, thus causing spatial inhomogeneity. For this, a simple yet effective way is to apply
three generators (without sharing weights).
Another challenge is that given the complex prompts, squeezing a sentence into a single style
feature vector to apply AdaIN (Karras et al., 2019; 2020; 2021) could result in a loss of local de-
tails. Therefore, we need a more fine-grained generation method guided by the word level, thus
can retain more information of text encoder trained on large-scale dataset. Naturally, calculating
cross-attention between the pixels of the feature map and words in the sentence is a better choice.
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(a) Convolution kernel at (0,0) (b) Convolution kernel at (0,1) (c) Convolution kernel at (0,2)

Figure 4: The visualization of expanding 2D convolution kernel (cyan area) to 3D and its mov-
ing process in previous convolutional triplane generator (Chan et al., 2022). We use 1 × 1
convolutional kernel as an example. Only several positions are interacted, which leads to spatial
inhomogeneous.

To address these two challenges, we design the Text-guided Triplane Generator (TTG), as shown
in Fig. 3 (b). Our TTG is designed with the inspiration from the spatial transformer block and
residual convolutional block in Stable Diffusion (Rombach et al., 2022). Considering the increased
computational demand associated with pixel-wise self-attention in the feature map of (Rombach
et al., 2022), we do not incorporate this layer into our network. Instead, we find that interleaved
convolutional layers can sufficiently facilitate the interaction within the feature map. The detailed
designs are shown in Fig. 5. For the whole pipeline, we first initialize a 2D input query according
to its 2D trigonometric function position encoding. Three ResConv Blocks and Spatial Transformer
blocks are stacked to assemble the prompt word features at low resolution through cross-attention.
We then gradually increase the resolution of the feature map through the stacks of ResConv Blocks,
Spatial Transformer blocks, and Upsample Block by five times, as depicted in Fig. 3 (b). Finally,
we use a Conv layer to output the plane feature. We describe the design of the Spatial Transformer
block, ResConv block, and Upsample block in detail.

Q

Feature Map

Flatten

Multi-Head
Attention

Multi-Head
Attention

Norm

Add & Norm

Feed 
Forward

Add & Norm

Add & Norm

Text
Embedding

K,V

K,V

Norm

SiLU

Conv3x3

Norm

SiLU

Conv3x3

Feature Map

Add

Feature Map

Interpolate

Conv3x3

(a) Spatial Transformer 
Block

(b) Residual Convolutional
Block

(c) Upsample Block

Figure 5: A detailed illustration of specific
blocks. (a) Spatial Transformer Block. (b) Resid-
ual Convolutional Block. (c) Upsample Bock.

Spatial Transformer Block. As Fig. 5 (a)
shows, the Spatial Transformer Block com-
prises two multi-head cross-attention modules
and a feed-forward network (Vaswani et al.,
2017). The process is initiated by flattening
the 2D feature map into a 1D structure, thereby
transforming the dimensions from (H,W,C)
to (H × W,C), with each pixel’s feature con-
sidered as the input query embedding. Sub-
sequent to this transformation, the features
undergo normalization via Layer Normaliza-
tion (Ba et al., 2016). The normalized features
serve as queries, while the text embeddings act
as keys and values in the computation of the
cross-attention feature. This cross-modality at-
tention mechanism is designed to align the fea-
ture map with the corresponding words in the
input sentence. Following the application of
two cross-attention modules, the features are
further refined through a feed-forward network.
This sequence of operations also incorporates
the use of skip connections, mirroring the orig-
inal transformer architecture (Vaswani et al.,
2017), to facilitate effective feature processing
and integration.
ResConv Block. As illustrated in Fig. 5 (b), the Residual Convolutional Block consists of a sequence
of components: a Layer Normalization layer, followed by the application of the SiLU activation
function (Elfwing et al., 2018), and 3×3 convolutional layers. Then a skip connection is established
between input and output.
Upsample Block. As depicted in Fig. 5 (c), the Upsample Block begins with the interpolation of
the feature map, enlarging it by a factor of 2×. Following this upscaling, the enlarged feature map
is further processed through a 3× 3 convolutional layer.
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3.3 3D GAUSSIANS DECODER

It aims to obtain the other four attributes of 3D Gaussian for achieving the generation. Upon gen-
erating the triplane, comprised of the three feature planes πxy , πxz , πyz , we can obtain the feature
vector F ∈ R32 of each Gaussian based on its center p′. Subsequently, the feature vector needs to
be converted into additional attributes of 3D Gaussian, including opacity α ∈ R, scaling S ∈ R3,
rotation R ∈ R4, and SH coefficient.
Specifically, we first project the 3D coordinate onto the three planes, X-Y, X-Z, and Y-Z. Based on
the projected 2D coordinates, we can derive the features Fxy , Fxz , Fyz according to the interpo-
lation with their four vertex in the 2D feature maps. To ensure that the gradient back-propagation
is evenly distributed across all three planes, we utilize an averaging operation to aggregate these
features, thereby obtaining the 3D Gaussian’s feature F . Given that the attributes of 3D Gaussian
can be categorized into two groups, i.e., shape and color, we develop two distinct transformation
modules Fshape and Fcolor. Each module is a lightweight, two-layer Multi-Layer Perceptron (MLP)
network. To enhance the gradient back-propagation to the TSD, the center of 3D Gaussian p′ is
additionally inputted into both modules:

α, S,R = Fshape(F , p′), SH = Fcolor(F , p′). (4)
In the training process, we observe the scaling S is not a stable variation, and the memory consump-
tion of 3D Gaussian rendering is extremely sensitive to it. Therefore, we use the following equation
to control it to interval (a, b):

S = (b− a) · sigmoid(S) + a. (5)
Upon obtaining all attributes of 3D Gaussian, our generation process is completed. We can render it
from arbitrary view direction to 2D images.

3.4 OPTIMIZATION

Our training commences with the selection of B prompts from the training set. These prompts are
then fed into our 3D Gaussians generator, which is tasked with generating the corresponding 3D
GS representation of the objects. Following this, we proceed to randomly sample C view directions
to render C 2D images. The B × C rendered images are supervised through the Score Distilla-
tion Sampling (SDS) loss function (Poole et al., 2022), as Eq. 6 shows, in conjunction with the
Perp-Neg (Armandpour et al., 2023). In this way, our generator can gradually construct a mapping
relationship between text and 3D.

∇θLSDS(ϕ,x = gθ(prompt)) ≜ Et,ϵ

[
w(t) (ϵ̂ϕ (zt; y, t)− ϵ)

∂x

∂θ

]
, (6)

where prompt is the input prompt of the generator, θ denotes the trainable parameters of 3D Gaus-
sians generator, ϕ denotes the parameters of denoising network, x is the generated image by process
gθ(·), w(t) is the weighting function with time step t in the denoising schedule, ϵ is the random
noise, zt = x + ϵ, y is the adjusted text according to the sampling view direction, ϵ̂ϕ(·) is the
predicted noise.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

All our experiments are conducted on a server with 8 GPUs with 80GB memory. Our codebase
is constructed on the PyTorch framework (Paszke et al., 2019) with Automatic Mixed Precision
Training (AMP). And we introduce the Gradient Checkpointing technology (Chen et al., 2016) to
save the GPU memory. We use the Adam optimizer (Kingma & Ba, 2014) to update the parameters
of our generator with a constant learning rate of 5 × 10−5, β1 of 0.9 and β2 of 0.99. We train our
generator using the images rendered at 512×512 resolution by original rasterization of 3D Gaussian
Splatting (Kerbl et al., 2023) and use the DeepFloyd IF (Stablility, 2023) UNet to calculate the SDS
Loss (Eq. 6). The prompt batch size is set to 64 in total and the camera batch size is set to 4. We
set the freedom β (Eq. 2) to 0.2, and the range of scaling (a, b) (Eq. 5) to (−9,−3). The anchor
position is placed as a 643 3D grid, and the resolution of the generated triplane is 256 × 256. We
use the following three sets of prompts to train a single model.
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“ Vintage station wagon, cobalt blue, space-efficient design, economical ”

“ Muscle car, silver moon, hot hatch performance ”

“ Muscle car, silver moon, hot hatch performance ”

“ A handsome man wearing a leather jacket is riding a motorcycle ”

“ A stylish woman in a long dress is climbing a mountain ”

“ A glamorous woman in a cocktail dress is dancing at a fancy party ”

Figure 6: Generation Demonstration. All prompts do not appear in the training set.

4.2 DATASETS

Vehicles. We construct a vehicle’s prompts set using ChatGPT1 to generate a description
about car details, e.g., "vintage convertible, cherry red, chrome bumpers,
white-wall tires". There are 3,026 prompts containing 1,856 unique words in total.
Daily Life. This dataset is constructed by Instant3D (Li et al., 2023b). They use the ChatGPT1 to
generate more than 17, 000 prompts containing 3, 135 unique words.
Animals. This prompt set is introduced by Instant3D (Li et al., 2023b). And the struc-
ture is "a {species} sitting {item} and wearing {gadget} and wearing a
{hat}". There are 3, 150 prompts in total.

4.3 DEMONSTRATION OF BRIGHTDREAMER

To show the quality and view consistency, we show some results in Fig. 6. All prompts don’t appear
in the training set. We also show much more results in supplementary material.
Generalizability. Furthermore, we find that even some unseen words can also be understood
correctly. For example, the word “banana” is not in our training set, but our BrightDreamer can also
understand its color. We discuss this phenomenon in Sec. D.

Table 2: The generation latency (millisecond) and
rendering speed (FPS, Frames Per Second).

Device Generation Latency Rendering Speed
RTX 3090 24GB 79 ms 698 FPS
A800 80GB 77 ms 705 FPS

Inference Latency and Rendering Speed. In
Tab. 2, we show the inference latency on a sin-
gle A800 GPU and a single RTX3090 GPU.
BrightDreamer can generate a 3D GS repre-
sentation for any text prompt in less than 0.1
seconds, showing a large margin improvement,
compared to optimization-based methods, which need several hours to optimize for a single prompt.
The generated 3D Gaussians can be rendered at over 700 FPS speed.

4.4 COMPARISON WITH OTHER METHODS

For effective evaluation, our experiment setting is that none of the test prompts are present in the
training set while those of the per-prompt optimization methods (Poole et al., 2022; Wang et al.,

1https://chat.openai.com/
2https://github.com/threestudio-project/threestudio
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“Classic truck, apple 
red, fun drive, retro 

appeal”

“Luxury roadster, sky blue, 
unmatched elegance, 

superior driving experience”

“Racing sedan, silver mist, 
clean energy propulsion, 

advanced safety”

“Family minivan, shiny 
golden, large capacity, 

economical”

“Compact hatchback, 
forest green, efficient use 
of space, city-friendly”
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Figure 7: Vehicle generation comparison. All prompts don’t appear in the training set. The result
of Dreamfusion is reproduced by ThreeStudio2.

“a woman wearing a 
backpack is climbing a 

mountain”
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“an elderly and fat 
woman is trimming her 

plants”

“a man wearing a 
baseball cap is playing 

video games”

“a woman wearing a 
long dress is playing 

with a dog”

“a rabbit sitting on a 
stone and wearing a tie”

Figure 8: Comparison for daily life and animal. All prompts don’t appear in the training set.

2023b; Tang et al., 2023; Liang et al., 2023; Chen et al., 2023b) are not. This setting highlights the
generalization capability of our one-stage generation.
Qualitative comparison. In Fig. 7, we show the comparison results. Note that other methods
need training different models for different prompts. In contrast, our method can directly infer one-
time for a single prompt and all the test prompts do not appear in our training prompt set. Due to
the car generation limitations remaining in Stable Diffusion, we use DeepFloydIF denoising UNet
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(c) w/o Coordinate Shortcut(b) w/o Triplane Generator Division(a) Complete Design

Figure 9: The key components in our design. All the models are trained to 10, 000 iterations with
the same configuration. (a) Our completion design. (b) Replace the three separate generators with a
single generator. (c) Don’t input the coordinate to Fshape and Fcolor.

in Eq. 6. However, it can only provide the 64 × 64 supervision, so there remains some unfair-
ness. We first compare with SoTA NeRF optimization methods, dreamfusion (Poole et al., 2022)
and ProlificDreamer (Wang et al., 2023b). Their generation result is extremely unreasonable and
chaotic, which shows the difficulty when working on relatively complex prompts. Though Dream-
Gaussian’s training is relatively fast, 5 minutes, the generation result is still relatively bad. Since
LucidDreamer (Liang et al., 2023) and GSGEN (Chen et al., 2023b) introduce the Point-E (Nichol
et al., 2022) as their prior or supervision, they can generate the correct shape of a vehicle. However,
LucidDreamer has abnormal light spots, which cause unreal sensing. Our method can deal with
arbitrary text prompts in 77 ms, which shows an extremely strong application value. Importantly,
you can scale up to check the second two columns in Fig. 7. Looking through the window at the
seats inside, there is an irregular phenomenon in the seat of GSGEN and LucidDreamer. But ours
looks reasonable, which shows that joint training can make the network have a stronger capability
of semantic understanding.
In Fig. 8, we compare our method to Instant3D (Li et al., 2023b) and other per-prompt optimization
methods based on daily life and animal datasets. Though ProlificDreamer (Wang et al., 2023b) and
LucidDreamer (Liang et al., 2023) improve the original SDS loss, which allows them can get more
details in the generated content, the consistency to the prompt is damaged a lot.

Table 3: Human Preference.

DreamFusion ProlificDreamer Instant3D LucidDreamer Ours
4.8% 16.2% 29.5% 5.7% 43.8%

Quantitative Comparison. As
shown in Tab. 3, we provide the per-
centage numerical comparison of hu-
man preference choice. We present
participants with five rendered videos along with the corresponding text prompts generated by five
baseline models, allowing them to select their preferred option for each case. Most of the users
expressed a preference for the content generated by our model.

4.5 ABLATION STUDIES

In Fig. 9, we demonstrate the influence of our network design for training. Compared between
Fig. 9 (a) and Fig. 9 (b), our divided triplane generator can reduce the degree of chaos in the space
significantly, which shows the necessity of our division. As Fig. 9 (a) and Fig. 9 (c) demonstrate, it
is necessary to pass the coordinate into the Fshape and Fcolor. This design can construct a gradient
pathway toward the TSD Network, ensuring more accurate shape formulation.

5 CONCLUSION

In this paper, we introduced the first text-driven 3D Gaussians generative framework, Bright-
Dreamer, capable of generating 3D Gaussians within a remarkably low latency of 77ms. To address
the challenge of directly generating a vast quantity of Gaussians, millions of them, we innovatively
deform anchor positions and use the new positions as the centers of 3D Gaussians, in response to
the input prompt. This approach effectively circumvented the obstacle of generating a large num-
ber of positions. Regarding network architecture, we thoroughly reevaluated the triplane generation
process and introduced an improved alternative strategy. Our largest contribution is poised to sig-
nificantly advance the field of generalized 3D generation, offering a novel and efficient pathway to
creating 3D assets from text prompts immediately. Extensive experiments prove that our Bright-
Dreamer has a strong complex semantic understanding capability and strong generalization ability.
Future work. First, the spatial resolution of the generated 3D model is relatively low, resulting in a
lack of fine-grained detail. Second, the range of supported scene types could be further expanded to
enhance the model’s versatility. To achieve these two targets, integrating higher-resolution diffusion
models and expanding the dataset with additional text prompts are promising research directions.
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