
DEMIX Layers: Disentangling Domains for Modular Language Modeling

Suchin Gururangan†♢ Mike Lewis♢ Ari Holtzman† Noah A. Smith†♠ Luke Zettlemoyer†♢
†Paul G. Allen School of Computer Science & Engineering, University of Washington

♠Allen Institute for AI
♢Meta AI

Seattle, WA, USA
sg01@cs.washington.edu

Abstract

We introduce a new domain expert mixture
(DEMIX) layer that enables conditioning a lan-
guage model (LM) on the domain of the input
text. A DEMIX layer includes a collection of
expert feedforward networks, each specialized
to a domain, that makes the LM modular: ex-
perts can be mixed, added, or removed after
initial training. Extensive experiments with
autoregressive transformer LMs (up to 1.3B pa-
rameters) show that DEMIX layers reduce test-
time perplexity (especially for out-of-domain
data), increase training efficiency, and enable
rapid adaptation. Mixing experts during infer-
ence, using a parameter-free weighted ensem-
ble, enables better generalization to heteroge-
neous or unseen domains. We also show it is
possible to add experts to adapt to new domains
without forgetting older ones, and remove ex-
perts to restrict access to unwanted domains.
Overall, these results demonstrate benefits of
domain modularity in language models.

1 Introduction

Most language models (LMs) are trained with data
homogeneity: all parameters are updated to min-
imize the loss on all of the data. We refer to this
as dense training. Dense training leaves variation
in the data, or domains, to be implicitly discov-
ered (Aharoni and Goldberg, 2020), assuming that
models will be able to fit all domains equally well.

While dense training is convenient, and densely
trained LMs achieve impressive results (Brown
et al., 2020), the approach has drawbacks with re-
spect to generalization, efficiency, and flexibility.
Even if training data is sourced from many do-
mains, dense training can in practice emphasize
subsets of the data in proportion to their ease of
access (Oren et al., 2019; Fan et al., 2020), limiting
generalization to less prevalent domains. Updat-
ing all parameters of the network gets substantially
more expensive as model size grows (Strubell et al.,
2019), making fine-tuning or domain adaptation

x0

h0

DEmix
Layer

Self
Attn

Github
Code

FFN 1 FFN 2 FFN 3 FFN 4 FFN 5

Medical
Papers

U.S. Court
Opinions

Training

COVID-19
Papers

FFN 1 FFN 2 FFN 3 FFN 4

Inference

Figure 1: Illustration of a DEMIX layer in a single
transformer block. During training, expert feedforward
networks are conditionally activated based on the do-
main (here, document provenance) of the input sequence
(i.e., scientific papers or court opinions). At inference
time, the language model has new modular functions:
domain experts can be mixed to handle heterogeneous
domains (e.g., COVID-19 papers), added to adapt to
novel domains (e.g., Github code), or removed to re-
duce the influence of unwanted domains (e.g., social
media). Image attribution in §A.1.

hard to perform with smaller computational bud-
gets. It is also difficult to adapt to new domains
without forgetting the original data (McCloskey
and Cohen, 1989; Aghajanyan et al., 2021) or to
restrict access to certain domains the LM has been
exposed to during training (e.g., those that contain
hatespeech; Bender et al. 2021), leading to risks of
unwanted behavior (Gehman et al., 2020).

To address these limitations of dense training, we
argue that LMs should be designed with modularity.
We propose a modular LM that has components
specialized to distinct domains in the training data,
and can be customized at inference-time by mixing,

adding, or removing these separated components
as needed. This design principle emphasizes the
ability to rapidly adapt the LM after training, a
need that has been broadly advocated for language
systems (Dinan et al., 2021; Lazaridou et al., 2021).

We introduce modularity into an LM with a new
domain expert (DEMIX) layer that explicitly condi-
tions the LM on the domain of the input text (when
it is known), or estimates the input domain during
inference (when it is not known). A DEMIX layer
is a drop-in substitute for a feedforward layer in
a transformer LM (e.g., GPT-3), creating a spe-
cialized version of the layer (or expert) per domain
(see Figure 1; §3).

This is an example of conditional computation
(Fedus et al., 2021; Lepikhin et al., 2020; Lewis
et al., 2021; Roller et al., 2021). Unlike dense train-
ing, conditional computation activates different pa-
rameters for different inputs. Instead of learning
how to route data to experts, the DEMIX layer rout-
ing mechanism follows from a natural, observable
segmentation of the data.1

We identify domains using coarse provenance
categories (e.g., whether a document is a medi-
cal research paper or a Reddit post; §2). Train-
ing on data from eight different domains, we find
that replacing every feedforward layer in the trans-
former with a DEMIX layer consistently improves
in-domain performance (§4). To improve perfor-
mance in settings in which the target data does
not clearly align with a single domain, we intro-
duce a parameter-free probabilistic approach to dy-
namically estimate a weighted mixture of domains
during inference (§5). We observe that expert mix-
ing provides especially strong performance gains
on novel test-time domains, as well as consistent
performance improvements on test data from the
training domains, which may themselves be het-
erogeneous.

Our results suggest that DEMIX consistently
improves model generalization, especially out-of-
domain, while enabling many new modular capabil-
ities. Because DEMIX forces experts to specialize
to domains, the overall model can be (partially)
disentangled after training. Beyond mixing, we
can add (§6) or remove (§7) domain experts, pre-
dictably changing model behavior at inference time.
Adding experts allows for model adaptation with-
out updating all parameters (hence avoiding forget-

1We perform a detailed comparison of learned and DEMIX
routing in §A.5.

ting), and removing experts allows for simulating
the removal of training domains without additional
training. These results, in aggregate, demonstrate
the considerable benefits of moving away from
treating data homogeneously during language mod-
eling. Our code is publicly available.2

2 Multi-Domain Corpus

To better measure domain modularity, we introduce
a new multi-domain corpus constructed with do-
main provenance that records the original dataset
each document appeared in (Table 1). Defining
domains in this way is intuitive and conveys a great
deal about the type of language that can be expected
in each document. Other accounts of domains (e.g.,
Lucy and Bamman, 2021; Gururangan et al., 2020)
may be studied in future work. While other multi-
domain corpora (Koh et al., 2021; Gao et al., 2020)
cover many more domains, our corpus is restricted
to datasets with more permissive licensing to sup-
port reproducibility.

We divide our data into training and test domains.
The training domains text from eight English cor-
pora (top of Table 1), each of which varies in com-
plexity and coverage, totaling 73.8B whitespace-
separated tokens. Our test (or novel) domains in-
clude eight collections of English text (bottom of
Table 1), which may or may not align with the train-
ing domains. The novel domains allow us to mea-
sure how models generalize to a more challenging
data distribution shift, where domain boundaries
may be less clear.

§A.2 has more details on how these data were
collected. For larger domains, we use an additional
10M tokens for the validation and test sets each.
Smaller domains have 1M tokens in each. To sup-
port future work with the data, we also release an
API to download and preprocess it into a format
compatible with Fairseq (Ott et al., 2019).3

3 DEMIX Layer

3.1 Background: Mixture-of-Experts
Transformers

The transformer architecture interleaves multi-head
self-attention, layer-norms, and feedforward net-
works (Vaswani et al., 2017). Our focus is on the
feedforward component:

ht,ℓ = FFN(ht,ℓ−1), (1)

2github.com/kernelmachine/demix
3github.com/kernelmachine/demix-data

github.com/kernelmachine/demix
github.com/kernelmachine/demix-data

Domain Corpus # Train (Eval.) Tokens

T
R

A
IN

IN
G

1B 30M NewsWire sentences (Chelba et al., 2014) 700M (10M)
CS 1.89M full-text CS papers from S2ORC (Lo et al., 2020) 4.5B (10M)
LEGAL 2.22M U.S. court opinions, 1658 to 2018 (Caselaw Access Project) 10.5B (10M)
MED 3.2M full-text medical papers from S2ORC (Lo et al., 2020) 9.5B (10M)
WEBTEXT† 8M Web documents (Gokaslan and Cohen, 2019) 6.5B (10M)
REALNEWS† 35M articles from REALNEWS (Zellers et al., 2019) 15B (10M)
REDDIT Reddit comments from pushshift.io (Baumgartner et al., 2020) 25B (10M)
REVIEWS† 30M Amazon product reviews (Ni et al., 2019) 2.1B (10M)

Total 73.8B (80M)

Domain Corpus # Train (Eval.) Tokens

N
O

V
E

L

ACL PAPERS 1.5K NLP papers from ACL (Dasigi et al., 2021) 1M (1M)
BREAKING NEWS† 20K latest articles from 400 English news sites (Baly et al., 2018) 11M (1M)
CONTRACTS† 500 commercial legal contracts (Hendrycks et al., 2021) 1.5M (1M)
CORD-19 400K excerpts from COVID-19 research papers (Wang et al., 2020) 60M (10M)
GITHUB 230K public Github repository contents (Github Archive Project) 200M (10M)
GUTENBERG 3.2M copyright-expired books (Project Gutenberg) 3B (10M)
TWEETS† 1M English tweets from 2013-2018 8M (1M)
YELP REVIEWS† 6M Yelp restaurant reviews (Yelp Reviews) 600M (10M)

Table 1: Domains that make up our multi-domain training corpus, including the size of our training and evaluation
(i.e. validation and test) data, in whitespace-separated tokens. † indicates datasets that we (partially) anonymize
(§2). See Appendix §A.2 for more details on how these data were collected.

where ht,ℓ is the vector for the tth token produced
by layer ℓ.

Shazeer et al. (2017) propose to replace dense
feedforward layers with an ensemble of n experts
FFN1, . . . ,FFNn, assigned weights respectively
by functions g1, . . . , gn:

FFN(ht,ℓ−1) =
n∑

j=1

gj(ht,ℓ−1) · FFNj(ht,ℓ−1)

(2)

The g function routes tokens to different experts,
usually each a separate dense feedforward network.
If g routes to a single expert, then the computa-
tional cost (in floating-point operations; FLOPs)
will be same as a corresponding dense network,
even though it has more than n times as many pa-
rameters.

3.2 DEMIX Routing
Previous approaches learn the weighting functions
g at a token-level, and either assign at most one
(Fedus et al., 2021) or two (Lepikhin et al., 2020)
experts per token. This requires careful load bal-
ancing to encourage the model to use all experts,
motivating work on explicit balancing mechanisms
(Lewis et al., 2021).

Instead of learning g, we use domain metadata
to route data to experts at the document (i.e., se-
quence) level. During training, every token in an

input text is assigned to the same expert based on
the domain label.

Let D denote the set of domain labels (i.e., the
eight labels in Table 1). If we index the experts by
D and d ∈ D is the domain label for the current
training instance, then

gj(ht,ℓ) =

{
1 if j = d
0 otherwise

(3)

We assume that each training document is asso-
ciated with a single domain label. However, we
relax this requirement at inference time (§5), to
model unseen or heterogeneous domains.

We perform a detailed comparison of DEMIX

routing with GSHARD (Lepikhin et al., 2020), a
mixture-of-experts transformer LM with learned
token-level routing, in §A.5. Our results suggest
that learned token-level routing does not enable
modularity, underperforms DEMIX at similar com-
putational budgets (especially on novel domains),
and is much less efficient to train and evaluate.

3.3 DEMIX Architecture
Our design results in one expert in a DEMIX layer
per domain (i.e., eight experts for eight training
domains in our multi-domain corpus).

We replace every feedforward layer in the trans-
former with a separate DEMIX layer, in contrast to
previous work (Fedus et al., 2021; Lepikhin et al.,
2020) that interleaves shared and expert layers.

Parameters per GPU
125M 350M 760M 1.3B

D
E

N
SE

GPUs 32 64 128 128
Total Experts 0 0 0 0
GPUs/expert 0 0 0 0
Total params 125M 350M 760M 1.3B

TFLOPs/update 556 3279 13,637 23,250
TFLOPs/GPU 31 37 45 51

D
E

M
IX

GPUs 32 64 128 128
Total Experts 8 8 8 8
GPUs/expert 4 8 16 16
Total params 512M 1.8B 3.8B 7.0B

TFLOPs/update 556 3279 13,637 23,250
TFLOPs/GPU 31 37 48 55

Table 2: Our specifications for training DENSE and
DEMIX LMs. All models are trained for about 48 hours
on V100 GPUs. DEMIX layers increase the total pa-
rameters of the LM while maintaining (or increasing)
throughput, measured in TFLOPs/GPU. We use the for-
mula described in Narayanan et al. (2021) to calculate
these metrics. See §A.4 for more details.

Preliminary experiments showed that interleaving
led to worse in-domain performance (see §A.6 for
more details). Future work may comprehensively
compare different architectural choices.

Each expert FFNj is a two-layer MLP with the
same dimensions as the original FFN layer of the
transformer. This means that the effective number
of parameters in the overall DEMIX LM increases
(Table 2), without increasing inference runtime.

3.4 DEMIX Training
To train an LM with DEMIX layers, we partition
the GPUs among the domains, so that each GPU
is assigned a single domain (along with its cor-
responding expert). Each mini-batch contains k
sequences from a particular domain, and we send
each mini-batch to its dedicated expert. We use
larger batch sizes with distributed data parallel be-
tween expert parameters on GPUs assigned to the
same domain; we assign n/8 GPUs to each domain
(Table 2).

Compared to dense LMs, DEMIX layers achieve
the same or slightly higher throughput (measured
in TFLOPs/GPU) for the same total FLOPs per up-
date, despite adding significantly more parameters
(Table 2). DEMIX achieves higher throughput be-
cause we while we sync shared parameters across
all GPUs, we only sync expert parameters allocated
to the same domain. Dense models sync all param-
eters across all GPUs. As we increase model size,
DEMix reduces latency costs between GPUs, and
hence, leads to faster training.

3.5 Comparison with Adapters
DEMIX experts are related to adapters (Bapna and
Firat, 2019), which add a small feedforward net-
work into a frozen pretrained LM to enable param-
eter efficient finetuning. In contrast, our focus is on
efficiently training all of the parameters of a mod-
ular LM from scratch, and as such is not directly
comparable to existing adapter schemes. Adapters
could enable more fine-grained control over which
parts of the LM are domain-specific, and may cir-
cumvent the need to train domain-aware LMs from
scratch. However, the shared parameters in the
frozen pretrained LM may limit modularity. We
leave exploring such architectural variants and their
tradeoffs to future work.

4 In-Domain Performance

Our first set of experiments measure in-domain
performance when replacing the feedforward layers
in a transformer LM with DEMIX layers.

4.1 Experimental Setup
Architecture, Input and Hyperparameters We
follow the GPT-3 (Brown et al., 2020) architecture
(small, medium, large, and XL) implemented in
Fairseq (Ott et al., 2019). We use the GPT-2 (Rad-
ford et al., 2019) vocabulary of 50,264 BPE types,
and train with 1,024-token sequences. See §A.7 for
training hyperparameters.

Evaluation We follow previous work by report-
ing performance for a given computational budget
(Lewis et al., 2021). For each model, we report test
perplexity after a single run of 48 hours of train-
ing on differing numbers of NVIDIA V100 32GB
GPUs (Table 2).

4.2 Models
DENSE The first baseline is a dense LM, imple-
mented with distributed data parallel (Li, 2021).
There is no explicit conditioning on domain.

DENSE (balanced) We train dense models on an
equal amount of data from each domain. While
there is still no explicit conditioning on domain,
the gradient updates during training average across
all domains represented in a batch.

+DOMAIN-TOKEN This model is trained identi-
cally to DENSE (balanced), but we prepend a token
to every sequence indicating its domain (during
training and test time). We ignore the domain to-
ken when computing perplexity during evaluation.

Parameters per GPU
125M 350M 760M 1.3B

DENSE 20.6 16.5 14.5 13.8
DENSE (balanced) 19.9 15.8 14.3 13.6

+DOMAIN-TOKEN 19.2 15.9 14.3 13.4
DEMIX (naive) 18.4 15.5 14.2 13.8

DEMIX (cached; §5.4) 17.8 14.7 13.9 13.4

Table 3: Average in-domain test-set perplexity across
the 8 domains in the training data. We discuss the last
row in §5.4. See §A.9 for per-domain results.

DEMIX (naive) We replace every feedforward
layer in the transformer with a DEMIX layer, and
use DEMIX training (§3). Under this naive setting,
the test data domain is known (e.g., the CS expert
is used for CS test data). We relax this assumption
in the next section.

4.3 Results

Table 3 shows test perplexities, averaged across
the eight training domains. Domain balancing is
consistently helpful for dense training. Additional
domain information always helps (i.e., domain to-
kens or DEMIX layers), but the effects are largest
for the smaller models. Overall, domain informa-
tion enables the model to better specialize to dif-
ferent training domains. However, as the model
size grows, the dense baseline improves, catching
up to the DEMIX (naive) model, at least when
considering the average perplexity across domains.

4.4 Domain Hetereogeneity

However, a more complete view of the experiments
with the largest model is shown in Table 4. We see
that even at scale, most training domains benefit
from DEMIX layers in a naive setting (where the
domain label is revealed at test time), but some do
not; WEBTEXT, REALNEWS, and REDDIT fare
worse than the dense baseline. We hypothesize that
dense training is advantageous for hetereogenous
domains. Heterogeneous domains have a higher
overlap with other training domains, and therefore,
benefit from parameter sharing.

Indeed, we observe that experts perform best on
their assigned domain, and the experts assigned to
domains that benefit from dense training perform
relatively well on many training domains (§A.8).
These findings suggest overall that a discrete notion
of domain is too rigid. In the next section, we
soften Equation 3 into a mixture of experts.

1.3B parameters per GPU

Domain DENSE DEMIX DEMIX
(naive) (cached prior; §5.4)

1B 11.8 11.5 11.3
CS 13.5 12.2 12.1

LEGAL 6.8 6.7 6.7
MED 9.5 9.2 9.1

WEBTEXT 13.8 14.6 14.3
REALNEWS 12.5 13.3 13.1

REDDIT 28.4 30.6 28.1
REVIEWS 14.0 12.6 12.5

Average 13.8 13.8 13.4

Table 4: Test perplexity by domain for the largest mod-
els. We discuss the last column in §5.4.

5 Mixing Experts at Inference Time

The previous section established that incorporating
DEMIX layers improves LM performance on test
data from known training domains. In practice,
however, text may not come with a domain label,
may straddle multiple domains, or may not belong
to any of the domains constructed at training time.

In these cases, rather than a hard choice among
experts (Equation 3), we propose to treat g1, . . . , gn
as mixture coefficients, transforming the domain
membership of an input text into a matter of proba-
bilistic belief. Unlike previously proposed mixture-
of-experts formulations (Shazeer et al., 2017; Lep-
ikhin et al., 2020), this approach is parameter-free
and computed only at test time.

5.1 Dynamic Domain Mixtures

Consider the probabilistic view of language model-
ing, where we estimate p(xt | x<t). We introduce
a domain variable, Dt, alongside each word. We
assume that this hidden variable depends on the
history, x<t, so that:

p(xt | x<t)=

n∑
j=1

p(xt | x<t, Dt = j) · p(Dt = j | x<t)︸ ︷︷ ︸
gj

(4)

This model is reminiscent of class-based n-gram
LMs (Brown et al., 1992; Saul and Pereira, 1997).

We have already designed the DEMIX LM to
condition on a domain label, giving a form for
p(Xt | x<t, Dt = j). We now further treat
g1, . . . , gn as a posterior probability over domains,
calculated either globally or at each timestep.

x<t

“ The COVID-19 pandemic is
caused by severe acute

respiratory syndrome
coronavirus-2 (SARS-CoV-2)
and has spread worldwide…”

xt

P(Dt |x<t)

Dt

FFN 2 FFN 3 FFN 4FFN 1

Figure 2: Illustration of inference with domain expert
mixing. For a given input text x<t from CORD-19, we
estimate a posterior domain probabilities p(Dt | x<t),
informed by a prior that is either iteratively updated
during inference, or is precomputed and cached on held-
out data. In this example, the model assigns highest
domain probabilities to the medical and news domains.
We use these probabilities in a weighted mixture of
expert outputs to compute the output xt.

To do this, we apply Bayes’ rule:

p(Dt = j | x<t)=
p(x<t | Dt = j) · p(Dt = j)

p(x<t)
(5)

=
p(x<t | Dt = j) · p(Dt = j)∑n

j′=1 p(x<t | Dt = j′) · p(Dt = j′)

(6)

The conditional probabilities of word sequences
given a domain label, as noted above, are already
defined by the DEMIX LM. For the prior over
domain labels, we consider three alternatives:

Uniform Set a uniform prior across domains.

Updating Set the prior at timestep t to be an
exponentially weighted moving average of the pos-
teriors from previous timesteps:

p(Dt = j) ∝
t−1∑
t′=1

λt−t′ · p(Dt′ = j | x<t′) (7)

During evaluation, this moving average is calcu-
lated over the posterior at the end of each sequence.
The decay factor avoids putting too much weight
on calculations made early in the dataset, when
posterior calculations are noisier (§A.10). We per-
formed a small grid search to set the value λ, and
found that λ = 0.3 worked well.

1B C
S

Le
ga

l

M
ed

W
eb

te
xt

R
ea

ln
ew

s

R
ed

di
t

R
ev

ie
w

s

x< 102, 400

1B
CS

Legal
Med

Webtext
Realnews

Reddit
Reviews

D
10

2,
40

0

Training Domains

C
O

R
D

-1
9

G
ith

ub

G
ut

en
be

rg

B
re

ak
in

g
N

ew
s

C
on

tra
ct

s

A
C

L

Tw
ee

ts

Y
el

p

x< 102, 400

1B
CS

Legal
Med

Webtext
Realnews

Reddit
Reviews

D
10

2,
40

0

Novel Domains

0.0

0.5

1.0

P(
D

t|x
<

t)

0.0

0.5

1.0

P(
D

t|x
<

t)

Figure 3: Estimates of posteriors p(Dt | x<t) with
a DEMIX LM (1.3B parameters per GPU), after 100
sequences (i.e., 102,400 tokens) of data in training (top
heatmap) and novel domains (bottom heatmap).

Cached We calculate the posterior over domain
labels from additional data from the test distribu-
tion, and fix the prior to that estimate. We use
100 sequences from the validation set to estimate
the prior, which we found to result in stable poste-
rior probabilities. See §A.10 for more details, and
Figure 2 for an illustration of expert mixing.

5.2 Visualizing Domain Membership

In Figure 3, we plot domain posteriors calculated
using the largest DEMIX LM from §4 and the up-
dating prior, after 100 sequences of validation data.
For training domains, the associated domain label
has the highest probability, but some of the do-
mains are more hetereogeneous than we assumed.
More variation is observed for the novel domains.
However, generally we find the domain posterior
distribution to be sparse; suggesting that after esti-
mating the domain posterior, not all experts need
to be active for test evaluation.

5.3 Experimental Setup

Here, we experiment with the corpus of novel do-
mains (Table 1). We evaluate the three mixture
treatments of DEMIX layers (§5.1) against five

Parameters per GPU
125M 350M 760M 1.3B

DENSE 25.9 21.4 18.4 17.8
DENSE (balanced) 25.3 19.6 18.3 17.1

+DOMAIN-TOKEN 24.8 20.4 18.4 18.0

DEMIX (naive) 28.8 23.8 21.8 21.1
DEMIX (average) 27.2 22.4 21.5 20.1
DEMIX (uniform) 24.5 20.5 19.6 18.7

DEMIX (updating) 21.9 18.7 17.6 17.1
DEMIX (cached) 21.4 18.3 17.4 17.0

Table 5: Average perplexity on novel domains. Mixing
domain experts with a prior estimated using a small
amount of data in the target domain outperforms all
other baselines. See §A.9 for per-domain results.

baselines. No new models are trained for this ex-
periment beyond those used in §4.

DENSE and DENSE (balanced) These are the
basic baselines from §4.

+DOMAIN-TOKEN Here test data is evaluated
using each domain label token, and we choose the
lowest among these perplexity values per test set.

DEMIX (naive) Similar to +DOMAIN-TOKEN,
we evaluate the data separately with each of the
eight experts, and report the lowest among these
perplexity values per test set.

DEMIX (average) At every timestep, we take a
simple average of the eight experts’ predictions.

5.4 Results

Novel Domain Performance Ensembling
DEMIX experts outperforms dense baselines
and using experts individually (i.e., the “naive”
baseline), and caching a prior before evaluation
results in the best average performance (Table 5).
Ensembling DEMIX experts with a cached prior
allows smaller models to match or outperform
much larger dense models. Weighted ensembling
outperforms simple averaging and mixing with
a uniform prior, confirming the importance of
sparsity in the expert mixture. These results
demonstrate that modularity need not come at a
cost to generalization to new domains.4

In-Domain Performance We can also apply the
expert mixture variant of inference (using a cached

4We have separately observed that with expert mixing,
our largest DEMIX LM closely approaches the performance
of GPT-3 Da-Vinci (Brown et al., 2020) on another novel
domain, the LM benchmark PTB (Marcus et al., 1993). See
§A.11 for more details.

prior) to the training domains; see the last line of
Table 3. We see performance improvements across
all training domains for every scale, though the
largest gains come from hetereogeneous domains
(Table 4 and §A.9; across all model sizes, RED-
DIT improves on average 10.7%, WEBTEXT 2.4%,
REALNEWS 1.9%), confirming that domain labels
may not align with the most effective boundaries.

5.5 Summary

As opposed to other token-level routing mecha-
nisms (e.g., Lepikhin et al. 2020), expert mixing in
DEMIX is introduced at test-time and is parameter-
free; it instead makes use of Bayesian inference
with specialized experts to improve generalization.
Expert mixing dynamically increases model capac-
ity at test-time, while avoiding the need to learn
token-level routing patterns during training, which
is expensive and breaks modularity (§A.5).

6 Domain Adaptation with New Experts

Domain adaptation is an important technique to
improve LM performance in new domains that are
rare or unseen during training. A popular technique
for adapting LMs is domain-adaptive pretraining
(DAPT; Gururangan et al. 2020), which involves
continued dense training of the LM on the target
domain. However, DAPT with dense training (or
DENSE-DAPT) is expensive (Strubell et al., 2019)
and may entail forgetting domains learned during
earlier training phases (Aghajanyan et al., 2021),
since it updates all parameters of the LM towards
the target domain. These issues make adapting
large LMs less feasible, especially in domains that
change frequently over time (Luu et al., 2021).

DEMIX layers allow for cheap adaptation with-
out forgetting through a technique we call DEMIX-
DAPT (Figure 4). To adapt to a new domain, we
initialize a new expert in each DEMIX layer us-
ing the parameters of the nearest pretrained expert,
which we identify using domain posteriors from §5.
We then train the added expert on target data, updat-
ing only the new expert parameters. For inference,
we mix experts with a cached prior (§5).

6.1 Experimental Setup

We compare DEMIX-DAPT to DENSE-DAPT on
the novel domains. We report test perplexity after
adapting to each domain for 1 hour with 8 NVIDIA
V100 32GB GPUs, tracking validation perplexity
every 10 minutes for early stopping. We adapt to

3. Adapt new expert, freezing all other parameters

x<t

1. Calculate Domain Posteriors

2. Copy “closest” expert

FFN 1 FFN 2 FFN 3 FFN 4 FFN 5

FFN 1 FFN 2 FFN 3 FFN 4 FFN 5

P(Dt |x<t)

Dt

COVID-19
Papers

COVID-19
Papers

Figure 4: Illustration of DEMIX-DAPT. First, we es-
timate domain posteriors on a held out sample of the
target domain (e.g., CORD-19). We then initialize a
new expert with the parameters of the most likely ex-
pert under the domain posterior distribution. Finally,
we adapt the parameters of the new expert to the target
domain, keeping all other parameters in the LM frozen.

each novel domain with the same hyperparame-
ters as §4, except with a 10x smaller learning rate.
DEMIX-DAPT updates about 10% of the total pa-
rameters in the DEMIX LM, while DENSE-DAPT
updates all parameters of the dense LM.

6.2 Results

Adding One Expert We display examples of
DEMIX-DAPT and DENSE-DAPT on a single do-
main in Figure 5. As DENSE-DAPT proceeds, its
performance on the training domains progressively
worsens (see §A.12 for results with larger LMs). In
contrast, DEMIX-DAPT reduces perplexity on the
novel domain without forgetting.

Adding Eight Experts We find that adding all
eight experts adapted to novel domains to the
DEMIX model from §4 significantly reduces per-
plexity on novel and previously seen domains (Ta-
ble 6) while also helping in-domain for smaller

10

20

30

D
en

se
-D

A
P

T
P

P
L

CORD-19

20

30

40
Gutenberg

0 30 60
Minutes of DAPT

10

20

30

D
E

M
ix

-D
A

P
T

P
P

L

0 30 60
Minutes of DAPT

20

30

40

Training Domains Target Domain

Figure 5: Adapting an LM (125M parameters per GPU)
to CORD-19 or GUTENBERG. Top row: with DENSE-
DAPT, average perplexity on all training domains de-
grades. Bottom row: DEMIX-DAPT avoids forgetting
while achieving close (for GUTENBERG) or better (for
CORD-19) performance on the target domain.

Parameters per GPU
Domains # Experts 125M 350M 760M 1.3B

TRAINING
8 17.8 14.7 13.9 13.4
16 17.7 14.6 13.7 13.4

NOVEL
8 21.4 18.3 17.4 17.0
16 16.0 14.0 13.5 12.5

Table 6: Average perplexity in training and novel do-
mains before and after adding 8 experts adapted to the
novel domains (via DEMIX-DAPT). Adding experts
reduces perplexity on novel and training domains.

models (perhaps surprisingly, given the fact that
their domain experts are frozen). For example,
across all model sizes, on average, we see a 2.4%
reduction on MED, 1.8% reduction on REALNEWS,
and 2% reduction on REDDIT (see §A.9 for details).

7 Removing Experts

Dense LMs are also prone to unexpected behavior
when deployed. For example, they may generate
hatespeech (Gehman et al., 2020), which is unde-
sirable for user-facing tasks (Xu et al., 2020).

We argue that dense training contributes to un-
expected model behavior, as domains are learned
diffusely over the parameter space, and it is diffi-
cult to restrict the model’s access to certain training
domains during inference. Some mechanisms have
been introduced to steer a dense model towards
(Keskar et al., 2019; Dathathri et al., 2020) and
away (Welleck et al., 2019) from certain behaviors,
but they tend to be expensive or require retrain-
ing the model with a different objective, which

125M Parameters per GPU

Domain +EXPERT –EXPERT –DOMAIN

1B 13.7 25.5 30.4
CS 15.7 22.4 25.4
LEGAL 8.9 20.9 22.7
MED 12.4 18.6 21.9
WEBTEXT 20.9 27.3 25.4
REALNEWS 18.9 26.7 25.0
REDDIT 34.4 47.8 51.3
REVIEWS 20.5 39.0 43.0

Average 18.2 28.5 30.6

Table 7: Removing a domain expert (–EXPERT) de-
grades perplexity on the corresponding domain, ap-
proaching the performance of an LM that has not been
exposed to that domain (–DOMAIN). Here we bold the
worst performing model for each domain.

becomes less feasible as the LM grows in size.
DEMIX layers offer a simple mechanism for

cheap, lightweight control of large LMs: since do-
main experts specialize (§A.8), experts assigned to
unwanted domains can be disabled at test-time.5

7.1 Experimental Setup
Does disabling an expert simulate a model that has
not been exposed to a particular training domain?
To answer this question, we compare three settings:
+EXPERT, a DEMIX LM with all experts active,
–EXPERT, a DEMIX LM with a domain expert
deactivated, and –DOMAIN, a DEMIX LM trained
from scratch without a particular domain.6

For all settings, we use a DEMIX LM (125M
parameters per GPU) from §4 and expert mixing
with a cached prior (§5) for inference.

7.2 Results
Removing a domain expert harms model perfor-
mance on the associated domain, in most cases ap-
proaching the performance of a model that has not
been exposed to data from that domain (Table 7).
In some cases (e.g., WEBTEXT and REALNEWS),
–EXPERT even underperforms –DOMAIN. This
leads us to conjecture that most domain-specific
learning happens within the DEMIX layer.

Our preliminary analysis here suggests that
DEMIX enables LMs with removable parts, for
quick adaptation to situations in which a particu-
lar training domain is unwanted for inference. We

5Removing an expert offers no guarantee of having fully
forgotten content from the removed domain, since there are
shared parameters in the model.

6We replace the removed domain with GUTENBERG, since
our cluster allocates training jobs via 8-GPU nodes.

leave further exploration of this mechanism and its
potential for LM control to future work.

8 Related Work

Document metadata has been used to improve topic
models (Mimno and McCallum, 2012), adapt RNN-
based LMs (Jaech and Ostendorf, 2018), learn doc-
ument representations (Card et al., 2018), and im-
prove text generation control (Zellers et al., 2019;
Keskar et al., 2019). Other inference-time methods
(Dathathri et al., 2020; Liu et al., 2021) may be
used to steer text generation with DEMIX experts.

Future work may explore applying DEMIX to
multilingual settings, as multilingual models ben-
efit from language-specific parameters (Fan et al.,
2020; Pfeiffer et al., 2020; Chau et al., 2020).

DEMIX-DAPT is related to model expansion
techniques in reinforcement learning or vision
(Rusu et al., 2016; Draelos et al., 2017) and
adapters for pretrained LMs (Houlsby et al., 2019;
Pfeiffer et al., 2020).

Multi-domain models have been studied in ma-
chine translation (Pham et al., 2021) and supervised
settings (Wright and Augenstein, 2020), and with
smaller dense LMs (Maronikolakis and Schütze,
2021). Previous studies have shown the importance
of considering domains when adapting LMs (Ram-
poni and Plank, 2020; Gururangan et al., 2020).
Our study establishes the importance of consider-
ing domains when training LMs from scratch.

9 Conclusion

We introduce DEMIX layers, which provide modu-
larity to an LM at inference time, addressing lim-
itations of dense training by providing a rapidly
adaptable system. DEMIX layers experts can be
mixed to handle heterogeneous or unseen domains,
added to iteratively incorporate new domains, and
removed to restrict unwanted domains. Future
work may combine domain and token-level routing,
discover domains automatically with unsupervised
learning, or scale the number of training domains.

Acknowledgments

The authors thank Shruti Bhosale, Tim Dettmers,
Emily Dinan, Doug Downey, Margaret Li, Myle
Ott, Ofir Press, and Swabha Swayamdipta, for help-
ful comments. At UW, this work was partially sup-
ported by NSF grant 1562364, the Office of Naval
Research under MURI grant N00014-18-1-2670,
and an Amazon research award.

Ethical Considerations

While DEMIX offers new opportunities to reduce
the influence of unwanted training domains (e.g.,
those that contain hatespeech) at inference time,
shared parameters in the LM may prevent the
model from fully forgetting the unwanted domain
after expert removal. Therefore, DEMIX LMs may
still be prone to producing harmful generations
when deployed, and further research is required to
understand the bounds on the probability of toxic
degeneration after expert removal.

While we partially anonymize our corpus with
simple regexes, it is difficult to guarantee that sen-
sitive information is not exposed in large datasets.
To protect data authors and subjects, we do not
publicly release our models or data, although we
provide instructions and code to replicate them to
support reproducibility.

References
Armen Aghajanyan, Akshat Shrivastava, Anchit Gupta,

Naman Goyal, Luke Zettlemoyer, and Sonal Gupta.
2021. Better fine-tuning by reducing representational
collapse. In 9th International Conference on Learn-
ing Representations, ICLR 2021, Virtual Event, Aus-
tria, May 3-7, 2021. OpenReview.net.

Roee Aharoni and Yoav Goldberg. 2020. Unsupervised
domain clusters in pretrained language models. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 7747–
7763, Online. Association for Computational Lin-
guistics.

Ramy Baly, Georgi Karadzhov, Dimitar Alexandrov,
James Glass, and Preslav Nakov. 2018. Predict-
ing factuality of reporting and bias of news media
sources. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 3528–3539, Brussels, Belgium. Association
for Computational Linguistics.

Ankur Bapna and Orhan Firat. 2019. Non-parametric
adaptation for neural machine translation. In Pro-
ceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers), pages 1921–1931, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Jason Baumgartner, Savvas Zannettou, Brian Keegan,
Megan Squire, and Jeremy Blackburn. 2020. The
pushshift reddit dataset.

Emily M. Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the

dangers of stochastic parrots: Can language mod-
els be too big? In Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and Trans-
parency, FAccT ’21, page 610–623, New York, NY,
USA. Association for Computing Machinery.

Peter F. Brown, Vincent J. Della Pietra, Peter V. deS-
ouza, Jenifer C. Lai, and Robert L. Mercer. 1992.
Class-based n-gram models of natural language.
Computational Linguistics, 18(4):467–480.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners.

Dallas Card, Chenhao Tan, and Noah A. Smith. 2018.
Neural models for documents with metadata. Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers).

Caselaw Access Project. Caselaw access project.

Ethan C. Chau, Lucy H. Lin, and Noah A. Smith. 2020.
Parsing with multilingual BERT, a small corpus, and
a small treebank. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1324–1334, Online. Association for Computational
Linguistics.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, Phillipp Koehn, and Tony Robinson.
2014. One billion word benchmark for measuring
progress in statistical language modeling.

Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan,
Noah A. Smith, and Matt Gardner. 2021. A dataset
of information-seeking questions and answers an-
chored in research papers. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 4599–4610, On-
line. Association for Computational Linguistics.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane
Hung, Eric Frank, Piero Molino, Jason Yosinski, and
Rosanne Liu. 2020. Plug and play language models:
A simple approach to controlled text generation. In
8th International Conference on Learning Represen-
tations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net.

Emily Dinan, Gavin Abercrombie, A. Stevie Bergman,
Shannon Spruit, Dirk Hovy, Y-Lan Boureau, and
Verena Rieser. 2021. Anticipating safety issues in
e2e conversational ai: Framework and tooling.

https://openreview.net/forum?id=OQ08SN70M1V
https://openreview.net/forum?id=OQ08SN70M1V
https://doi.org/10.18653/v1/2020.acl-main.692
https://doi.org/10.18653/v1/2020.acl-main.692
https://doi.org/10.18653/v1/D18-1389
https://doi.org/10.18653/v1/D18-1389
https://doi.org/10.18653/v1/D18-1389
https://doi.org/10.18653/v1/N19-1191
https://doi.org/10.18653/v1/N19-1191
http://arxiv.org/abs/2001.08435
http://arxiv.org/abs/2001.08435
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://aclanthology.org/J92-4003
http://arxiv.org/abs/2005.14165
https://doi.org/10.18653/v1/p18-1189
https://case.law/
https://doi.org/10.18653/v1/2020.findings-emnlp.118
https://doi.org/10.18653/v1/2020.findings-emnlp.118
http://arxiv.org/abs/1312.3005
http://arxiv.org/abs/1312.3005
https://doi.org/10.18653/v1/2021.naacl-main.365
https://doi.org/10.18653/v1/2021.naacl-main.365
https://doi.org/10.18653/v1/2021.naacl-main.365
https://openreview.net/forum?id=H1edEyBKDS
https://openreview.net/forum?id=H1edEyBKDS
http://arxiv.org/abs/2107.03451
http://arxiv.org/abs/2107.03451

T. Draelos, N. Miner, Christopher C. Lamb, Jonathan A.
Cox, Craig M. Vineyard, Kristofor D. Carlson,
William M. Severa, C. James, and J. Aimone. 2017.
Neurogenesis deep learning: Extending deep net-
works to accommodate new classes. 2017 Interna-
tional Joint Conference on Neural Networks (IJCNN),
pages 526–533.

Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi
Ma, Ahmed El-Kishky, Siddharth Goyal, Man-
deep Baines, Onur Celebi, Guillaume Wenzek,
Vishrav Chaudhary, Naman Goyal, Tom Birch, Vi-
taliy Liptchinsky, Sergey Edunov, Edouard Grave,
Michael Auli, and Armand Joulin. 2020. Beyond
english-centric multilingual machine translation.

William Fedus, Barret Zoph, and Noam Shazeer. 2021.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn
Presser, and Connor Leahy. 2020. The pile: An
800gb dataset of diverse text for language modeling.

Samuel Gehman, Suchin Gururangan, Maarten Sap,
Yejin Choi, and Noah A. Smith. 2020. RealToxi-
cityPrompts: Evaluating neural toxic degeneration
in language models. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
3356–3369, Online. Association for Computational
Linguistics.

Github Archive Project. Github archive project.

Aaron Gokaslan and Vanya Cohen. 2019. Openwebtext
corpus.

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
8342–8360, Online. Association for Computational
Linguistics.

Dan Hendrycks, Collin Burns, Anya Chen, and Spencer
Ball. 2021. Cuad: An expert-annotated nlp dataset
for legal contract review.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp.

Aaron Jaech and Mari Ostendorf. 2018. Low-rank rnn
adaptation for context-aware language modeling.

Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney,
Caiming Xiong, and Richard Socher. 2019. Ctrl: A
conditional transformer language model for control-
lable generation.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Pang Wei Koh, Shiori Sagawa, Henrik Mark-
lund, Sang Michael Xie, Marvin Zhang, Akshay
Balsubramani, Weihua Hu, Michihiro Yasunaga,
Richard Lanas Phillips, Irena Gao, Tony Lee, Etienne
David, Ian Stavness, Wei Guo, Berton Earnshaw, Im-
ran Haque, Sara M Beery, Jure Leskovec, Anshul
Kundaje, Emma Pierson, Sergey Levine, Chelsea
Finn, and Percy Liang. 2021. WILDS: A benchmark
of in-the-wild distribution shifts. In Proceedings of
the 38th International Conference on Machine Learn-
ing, volume 139 of Proceedings of Machine Learning
Research, pages 5637–5664. PMLR.

Angeliki Lazaridou, Adhiguna Kuncoro, Elena Gri-
bovskaya, Devang Agrawal, Adam Liska, Tayfun
Terzi, Mai Gimenez, Cyprien de Masson d’Autume,
Sebastian Ruder, Dani Yogatama, Kris Cao, Tomas
Kocisky, Susannah Young, and Phil Blunsom. 2021.
Pitfalls of static language modelling.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu,
Dehao Chen, Orhan Firat, Yanping Huang, Maxim
Krikun, Noam Shazeer, and Zhifeng Chen. 2020.
Gshard: Scaling giant models with conditional com-
putation and automatic sharding.

Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman
Goyal, and Luke Zettlemoyer. 2021. Base layers:
Simplifying training of large, sparse models. In
Proceedings of the 38th International Conference
on Machine Learning, volume 139 of Proceedings
of Machine Learning Research, pages 6265–6274.
PMLR.

Shen Li. 2021. Getting started with distributed data
parallel.

Alisa Liu, Maarten Sap, Ximing Lu, Swabha
Swayamdipta, Chandra Bhagavatula, Noah A. Smith,
and Yejin Choi. 2021. Dexperts: Decoding-time con-
trolled text generation with experts and anti-experts.

Kyle Lo, Lucy Lu Wang, Mark Neumann, Rodney Kin-
ney, and Daniel Weld. 2020. S2ORC: The semantic
scholar open research corpus. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 4969–4983, Online. Asso-
ciation for Computational Linguistics.

Li Lucy and David Bamman. 2021. Characterizing
English Variation across Social Media Communities
with BERT. Transactions of the Association for Com-
putational Linguistics, 9:538–556.

Kelvin Luu, Daniel Khashabi, Suchin Gururangan, Kar-
ishma Mandyam, and Noah A. Smith. 2021. Time
waits for no one! analysis and challenges of temporal
misalignment. In Proc. of NAACL.

https://ieeexplore.ieee.org/document/7965898
https://ieeexplore.ieee.org/document/7965898
http://arxiv.org/abs/2010.11125
http://arxiv.org/abs/2010.11125
http://arxiv.org/abs/2101.03961
http://arxiv.org/abs/2101.03961
http://arxiv.org/abs/2101.00027
http://arxiv.org/abs/2101.00027
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://cloud.google.com/blog/topics/public-datasets/github-on-bigquery-analyze-all-the-open-source-code
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2020.acl-main.740
http://arxiv.org/abs/2103.06268
http://arxiv.org/abs/2103.06268
http://arxiv.org/abs/1902.00751
http://arxiv.org/abs/1710.02603
http://arxiv.org/abs/1710.02603
http://arxiv.org/abs/1909.05858
http://arxiv.org/abs/1909.05858
http://arxiv.org/abs/1909.05858
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://wilds.stanford.edu/
https://wilds.stanford.edu/
http://arxiv.org/abs/2102.01951
http://arxiv.org/abs/2006.16668
http://arxiv.org/abs/2006.16668
https://proceedings.mlr.press/v139/lewis21a.html
https://proceedings.mlr.press/v139/lewis21a.html
https://pytorch.org/tutorials/intermediate/ddp_tutorial.html
https://pytorch.org/tutorials/intermediate/ddp_tutorial.html
http://arxiv.org/abs/2105.03023
http://arxiv.org/abs/2105.03023
https://doi.org/10.18653/v1/2020.acl-main.447
https://doi.org/10.18653/v1/2020.acl-main.447
https://doi.org/10.1162/tacl_a_00383
https://doi.org/10.1162/tacl_a_00383
https://doi.org/10.1162/tacl_a_00383

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn Treebank. Computational
Linguistics, 19(2):313–330.

Antonios Maronikolakis and Hinrich Schütze. 2021.
Multidomain pretrained language models for green
NLP. In Proceedings of the Second Workshop on Do-
main Adaptation for NLP, pages 1–8, Kyiv, Ukraine.
Association for Computational Linguistics.

M. McCloskey and N. Cohen. 1989. Catastrophic in-
terference in connectionist networks: The sequential
learning problem. Psychology of Learning and Moti-
vation, 24:109–165.

David Mimno and Andrew McCallum. 2012. Topic
models conditioned on arbitrary features with
dirichlet-multinomial regression.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper,
Patrick LeGresley, Mostofa Patwary, Vijay Anand
Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti,
Julie Bernauer, Bryan Catanzaro, Amar Phanishayee,
and Matei Zaharia. 2021. Efficient large-scale lan-
guage model training on gpu clusters using megatron-
lm.

Jianmo Ni, Jiacheng Li, and Julian McAuley. 2019.
Justifying recommendations using distantly-labeled
reviews and fine-grained aspects. In Proceedings
of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 188–197, Hong
Kong, China. Association for Computational Lin-
guistics.

Yonatan Oren, Shiori Sagawa, Tatsunori Hashimoto, and
Percy Liang. 2019. Distributionally robust language
modeling. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
4227–4237, Hong Kong, China. Association for Com-
putational Linguistics.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics (Demonstrations),
pages 48–53, Minneapolis, Minnesota. Association
for Computational Linguistics.

Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Se-
bastian Ruder. 2020. MAD-X: An Adapter-Based
Framework for Multi-Task Cross-Lingual Transfer.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7654–7673, Online. Association for Computa-
tional Linguistics.

MinhQuang Pham, Josep Maria Crego, and François
Yvon. 2021. Revisiting multi-domain machine trans-
lation. Transactions of the Association for Computa-
tional Linguistics, 9:17–35.

Project Gutenberg. Project gutenberg.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Alan Ramponi and Barbara Plank. 2020. Neural unsu-
pervised domain adaptation in NLP—A survey. In
Proceedings of the 28th International Conference
on Computational Linguistics, pages 6838–6855,
Barcelona, Spain (Online). International Committee
on Computational Linguistics.

Stephen Roller, Sainbayar Sukhbaatar, Arthur Szlam,
and Jason Weston. 2021. Hash layers for large sparse
models.

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Des-
jardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell.
2016. Progressive neural networks.

Lawrence Saul and Fernando Pereira. 1997. Aggre-
gate and mixed-order Markov models for statistical
language processing. In Second Conference on Em-
pirical Methods in Natural Language Processing.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc V. Le, Geoffrey E. Hinton, and
Jeff Dean. 2017. Outrageously large neural networks:
The sparsely-gated mixture-of-experts layer. In 5th
International Conference on Learning Representa-
tions, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in NLP. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 3645–3650, Florence, Italy. Asso-
ciation for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Lucy Lu Wang, Kyle Lo, Yoganand Chandrasekhar,
Russell Reas, Jiangjiang Yang, Doug Burdick, Dar-
rin Eide, Kathryn Funk, Yannis Katsis, Rodney Kin-
ney, Yunyao Li, Ziyang Liu, William Merrill, Paul
Mooney, Dewey Murdick, Devvret Rishi, Jerry Shee-
han, Zhihong Shen, Brandon Stilson, Alex Wade,
Kuansan Wang, Nancy Xin Ru Wang, Chris Wilhelm,
Boya Xie, Douglas Raymond, Daniel S. Weld, Oren
Etzioni, and Sebastian Kohlmeier. 2020. Cord-19:
The covid-19 open research dataset.

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Di-
nan, Kyunghyun Cho, and Jason Weston. 2019. Neu-
ral text generation with unlikelihood training.

https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://aclanthology.org/2021.adaptnlp-1.1
https://aclanthology.org/2021.adaptnlp-1.1
https://www.sciencedirect.com/science/article/abs/pii/S0079742108605368
https://www.sciencedirect.com/science/article/abs/pii/S0079742108605368
https://www.sciencedirect.com/science/article/abs/pii/S0079742108605368
http://arxiv.org/abs/1206.3278
http://arxiv.org/abs/1206.3278
http://arxiv.org/abs/1206.3278
http://arxiv.org/abs/2104.04473
http://arxiv.org/abs/2104.04473
http://arxiv.org/abs/2104.04473
https://doi.org/10.18653/v1/D19-1018
https://doi.org/10.18653/v1/D19-1018
https://doi.org/10.18653/v1/D19-1432
https://doi.org/10.18653/v1/D19-1432
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.1162/tacl_a_00351
https://doi.org/10.1162/tacl_a_00351
www.gutenberg.org
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://www.aclweb.org/anthology/2020.coling-main.603
https://www.aclweb.org/anthology/2020.coling-main.603
http://arxiv.org/abs/2106.04426
http://arxiv.org/abs/2106.04426
http://arxiv.org/abs/1606.04671
https://www.aclweb.org/anthology/W97-0309
https://www.aclweb.org/anthology/W97-0309
https://www.aclweb.org/anthology/W97-0309
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://arxiv.org/abs/2004.10706
http://arxiv.org/abs/2004.10706
http://arxiv.org/abs/1908.04319
http://arxiv.org/abs/1908.04319

Dustin Wright and Isabelle Augenstein. 2020. Trans-
former based multi-source domain adaptation. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7963–7974, Online. Association for Computa-
tional Linguistics.

Jing Xu, Da Ju, Margaret Li, Y-Lan Boureau, Jason
Weston, and Emily Dinan. 2020. Recipes for safety
in open-domain chatbots.

Yelp Reviews. Yelp reviews.

Rowan Zellers, Ari Holtzman, Hannah Rashkin,
Yonatan Bisk, Ali Farhadi, Franziska Roesner, and
Yejin Choi. 2019. Defending against neural fake
news. In NeurIPS.

https://doi.org/10.18653/v1/2020.emnlp-main.639
https://doi.org/10.18653/v1/2020.emnlp-main.639
http://arxiv.org/abs/2010.07079
http://arxiv.org/abs/2010.07079
https://www.yelp.com/dataset
http://papers.nips.cc/paper/9106-defending-against-neural-fake-news.pdf
http://papers.nips.cc/paper/9106-defending-against-neural-fake-news.pdf

A Appendix

A.1 Image Attribution

Images retrieved from emojipedia.org or
istockphoto.com.

A.2 Collecting Domains

All datasets are fair use for research purposes ac-
cording to their original licenses. For most do-
mains, we use the associated sources, listed in Ta-
ble 1, without modification. REDDIT was extracted
and obtained by a third party and made available on
pushshift.io, and was anonymized by Xu et al.
(2020); we use their version. For GUTENBERG,
we use the scraping tool provided in https://

github.com/aparrish/gutenberg-dammit. For
BREAKING NEWS, we identify a list of fac-
tually reliable English news sources, using the
list curated by Baly et al. (2018). Specifi-
cally, we filter on "high" factuality in the data
provided in this repository: https://github.

com/ramybaly/News-Media-Reliability. We
then use Newspaper3K (https://newspaper.
readthedocs.io/en/latest/) to scrape the lat-
est 1000 articles from each site. After drop-
ping duplicates, we arrive at about 20K articles
from 400 news sources. We provide download-
ing links and general instructions at github.com/
kernelmachine/demix-data.

A.3 Dataset Anonymization

To anonymize certain datasets, we apply a suite
of regexes that aim to identify common patterns
of user-identifiable data and substitute them with
dummy tokens. We display anonymization regexes
and associated dummy tokens in Table 8.

A.4 Calculating TFLOPs/GPU

We use the formula presented in Narayanan
et al. (2021) to calculate TFLOPs/GPU
and TFLOPs/update. The spreadsheet
that contains the calculations and for-
mula can be accessed here: https:

//docs.google.com/spreadsheets/d/1NO-Lz_

VqZGF2fpJTFxtXyjhmaoYi6qnz50Xr8W8hgGw/

edit?usp=sharing.

A.5 Gshard Comparison

Here we describe empirical comparisons between
DEMIX and GSHARD, the token-level mixture
of experts transformer proposed by Lepikhin et al.
(2020). As opposed to DEMIX, which uses domain

labels to route data to experts, GSHARD learns
a token-level routing mechanism during training.
Each token in every other layer is sent to two of k
experts, and this routing is updated via backpropa-
gation.

As GSHARD is emblematic of an learned routing
procedure, we are generally interested if GSHARD

naturally learns to specialize experts to domains,
whether its experts are modular, and how GSHARD

LM generally performs compared to DEMIX and
DENSE models on our multi-domain corpus.

Experimental Setup We aim to make minimal
changes to the overall architecture of the model,
to focus on the differences afforded by token-level
routing (vs. DEMIX routing). As such, we keep all
architecture and computational budgets the same
as our DEMIX and DENSE baselines (we gener-
ally display results for the 125M, 350M, and 760M
parameter LMs). We only add the GSHARD rout-
ing procedure to every other layer, which involves
routing each token to the top-2 experts of that layer.
This additionally necessitates a load balancing loss
to prevent only a minority of experts from being
used (Lepikhin et al., 2020). All GSHARD experts
are of the same size as our DEMIX experts, i.e.,
each expert is a two layer MLP with the same di-
mensions as the original feedforward layer of the
transformer. We display hyperparameters used to
train GSHARD in §A.7.

Model Scale In DEMIX, we always add the same
number of experts as the number of training do-
mains (in our case — eight experts), and use extra
computation to increase the batch size for each ex-
pert. Our GSHARD implementation, on the other
hand, allocates one expert per GPU. This means
that GSHARD adds many more experts to the sys-
tem, which results in a substantially larger increase
in model size (Table 9). Unlike DEMIX, GSHARD

results in an increase in FLOP count relative to
the DENSE model, due to a variety of additional
computation during training, like load balancing
and routing to two experts for every token, which
DEMIX does not need.

Training efficiency However, unlike DEMIX,
which increases model size while maintaining or
improving GPU throughput, GSHARD in fact re-
duces GPU throughput during training (Table 9).
This is due to the necessity of expensive all-to-all
operations in GSHARD which mediate communica-
tion between experts on different GPUs that are ac-

emojipedia.org
istockphoto.com
pushshift.io
https://github.com/aparrish/gutenberg-dammit
https://github.com/aparrish/gutenberg-dammit
https://github.com/ramybaly/News-Media-Reliability
https://github.com/ramybaly/News-Media-Reliability
https://newspaper.readthedocs.io/en/latest/
https://newspaper.readthedocs.io/en/latest/
github.com/kernelmachine/demix-data
github.com/kernelmachine/demix-data
https://docs.google.com/spreadsheets/d/1NO-Lz_VqZGF2fpJTFxtXyjhmaoYi6qnz50Xr8W8hgGw/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1NO-Lz_VqZGF2fpJTFxtXyjhmaoYi6qnz50Xr8W8hgGw/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1NO-Lz_VqZGF2fpJTFxtXyjhmaoYi6qnz50Xr8W8hgGw/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1NO-Lz_VqZGF2fpJTFxtXyjhmaoYi6qnz50Xr8W8hgGw/edit?usp=sharing

Category Link to Regex Dummy Token

Email https://regex101.com/r/ZqsF9x/1 <EMAIL>
DART https://regex101.com/r/0tQ6EN/1 <DART>
FB User ID https://regex101.com/r/GZl5EZ/1 <FB_USERID>
Phone Number https://regex101.com/r/YrDpPD/1 <PHONE_NUMBER>
Credit Card Number https://regex101.com/r/9NTO6W/1 <CREDIT_CARD_NUMBER>
Social Security Number https://regex101.com/r/V5GPNL/1 <SSN>
User handles https://regex101.com/r/vpey04/1 <USER>

Table 8: Anonymization schema. We anonymize text using the regexes provided in the above links for the categories
listed.

Parameters per GPU
125M 350M 760M 1.3B

D
E

N
SE

GPUs 32 64 128 128
Total Experts 0 0 0 0
GPUs/expert 0 0 0 0
Total params 125M 350M 760M 1.3B

TFLOPs/update 556 3279 13,637 23,250
TFLOPs/GPU 31 37 45 51

D
E

M
IX

GPUs 32 64 128 128
Total Experts 8 8 8 8
GPUs/expert 4 8 16 16
Total params 512M 1.8B 3.8B 7.0B

TFLOPs/update 556 3279 13,637 23,250
TFLOPs/GPU 31 37 48 55

G
SH

A
R

D GPUs 32 64 128 128
Total Experts 32 64 128 128
GPUs/expert 1 1 1 1
Total params 1B 6.7B 29.5B 52.5B

TFLOPs/update 675 4120 17,400 30,000
TFLOPs/GPU 15 16 19 13

Table 9: Our specifications for training DENSE, DEMIX,
and GSHARD LMs. All models are trained for about 48
hours on V100 GPUs. DEMIX layers increase the total
parameters of the LM while maintaining (or increasing)
throughput, measured in TFLOPs/GPU. We use the for-
mula described in Narayanan et al. (2021) to calculate
these metrics. See §A.4 for more details.

tivated for different tokens of the same document.7

These all-to-all operations are bottlenecked by the
quality of GPU communication channels on the
cluster. We also found that additional inefficiencies
are introduced via GSHARD’s load balancing, since
some experts are not used at test time. DEMIX has
no load balancing or all-to-all communication. It
uses all experts to maximum efficiency, because
we simply assign GPUs to domains for our routing
protocol.

Evaluation efficiency Another benefit to
DEMIX is that its experts specialize to their
domain, and only a sparse subset of them are

7https://images.nvidia.com/events/
sc15/pdfs/NCCL-Woolley.pdf

Parameters per GPU
125M 350M 760M 1.3B

DENSE (balanced) 19.9 15.8 14.3 13.6
DEMIX 17.8 14.7 13.9 13.4

GSHARD 17.2 14.3 14.2 12.7

Table 10: Average in-domain test-set perplexity across
the 8 domains in the training data. We discuss the last
row in §5.4. See §A.9 for per-domain results.

Parameters per GPU
125M 350M 760M 1.3B

DENSE (balanced) 25.9 21.4 18.4 17.8
DEMIX 21.4 18.3 17.4 17.0

GSHARD 24.0 19.5 18.9 17.2

Table 11: Average perplexity on novel domains. Mixing
domain experts with a prior estimated using a small
amount of data in the target domain outperforms all
other baselines. See §A.9 for per-domain results.

activated at test time. Does token-level routing
via GSHARD also result in a modular model? We
explore this question by computing the average
gating probabilities in the GSHARD router across
all experts for all test data in each domain. We
generally find that gating probabilities in GSHARD

have high entropy across experts regardless of
domain, suggesting that the token-level routing
procedure does not in fact result in modularity
out-of-the-box and all experts are needed for all
input texts (Figure 6). As we increase computa-
tional budget, this issue is exacerbated; we need
128 GPUs to evaluate on the test data for the final
model. Whereas with DEMIX, we only need 8
GPUs to compute the domain posterior on a subset
of the validation data. Moreover, because the
domain posterior is usually sparse, one can use an
even smaller number of GPUs for evaluating on
test data, loading only those experts with non-zero
probabilities.

https://regex101.com/r/ZqsF9x/1
https://regex101.com/r/0tQ6EN/1
https://regex101.com/r/GZl5EZ/1
https://regex101.com/r/YrDpPD/1
https://regex101.com/r/9NTO6W/1
https://regex101.com/r/V5GPNL/1
https://regex101.com/r/vpey04/1
https://images.nvidia.com/events/sc15/pdfs/NCCL-Woolley.pdf
https://images.nvidia.com/events/sc15/pdfs/NCCL-Woolley.pdf

0
3
6
9

12
15
18
21
24
27
30

Layer 1 Layer 3 Layer 5

1B C
S

Le
ga

l
M

ed
W

eb
te

xt
R

ea
ln

ew
s

R
ed

di
t

R
ev

ie
w

s

0
3
6
9

12
15
18
21
24
27
30

Layer 7

1B C
S

Le
ga

l
M

ed
W

eb
te

xt
R

ea
ln

ew
s

R
ed

di
t

R
ev

ie
w

s

Layer 9

1B C
S

Le
ga

l
M

ed
W

eb
te

xt
R

ea
ln

ew
s

R
ed

di
t

R
ev

ie
w

s

Layer 11

0.00

0.02

0.04

0.06

0.00

0.02

0.04

0.06

0.00

0.02

0.04

0.06

0.00

0.02

0.04

0.06

0.00

0.02

0.04

0.06

0.00

0.02

0.04

0.06

Figure 6: Average gating probabilities across domains (x-axis) for each expert (y-axis) in the expert layers of a
GSHARD LM with 125M parameters per GPU. We observe high entropy of gating probabilities across experts and
domains in each expert layer, with similar results in larger models.

Model performance As noted earlier, our
GShard implementation substantially increases the
effective parameter count of the model relative to
DEMIX (Table 9). While this expansion of model
size by GShard translates to better in-domain per-
formance than DEMix for the 32 and 64 GPU set-
tings, we observe the DEMix LMs consistently out-
perform GShard on the novel domains regardless
of computational budget (Table 11). Surprisingly,
GSHARD underperforms DEMIX even in-domain
for the 760M parameter model (Table 10), despite
being 4x larger in effective parameter count (Ta-
ble 9). This suggests that domain-modularity is an
important mechanism to improve model general-
ization, in addition to model size. We believe there
is a rich area of future work to investigate how to
combine token- and domain-level routing, to real-
ize the benefits of increasing parameter count while
maintaining domain modularity at scale.

Summary Our results suggest that while
GSHARD is an effective method for substantially in-
creasing model size under a fixed budget, it comes
with large costs to training and evaluation effi-
ciency, does not result in a modular LM. The lack
of modularity also implies that GSHARD suffers
from similar downstream issues as DENSE mod-
els, e.g., forgetting after adaptation and lack of
lightweight controllability, though we leave a close
exploration of those phenomena to future work.
Overall, DEMIX LMs are substantially simpler and
more efficient for training and evaluation, and even

outperform GSHARD (especially out of domain)
despite being substantially smaller, suggesting the
importance of domain modularity as an alternative
mechanism to model scaling for improving gener-
alization in LMs.

A.6 Interleaving Experiments

We hypothesize that shared layers may serve as a
bottleneck to find shared features between domains,
and may impact performance adversely when train-
ing domains are highly different from one another.
Indeed, preliminary experiments suggest that in-
terleaving expert layers causes large performance
hits in the most distinct domains, i.e., those with
lower vocabulary overlap with other domains in the
corpus.

A.7 Hyperparameter Assignments

We display hyperparameter assignments for LM
pretraining in Tables 14, 15, 16, and 17. We set
the total number of training steps based on this al-
located runtime, set 8% of these steps to be warm-
up, and use the Adam optimizer (Kingma and Ba,
2015) with a polynomial learning rate decay. Learn-
ing rates are tuned for each model separately over
{0.0001, 0.0003, 0.0005}, taking the fastest learn-
ing rate that avoids divergence. Each worker pro-
cesses two sequences of length 1,024, and gradients
are accumulated over 8 updates. We clip gradients
if their L2 norm exceeds 0.1. These settings are
inspired by Lewis et al. (2021).

1B

Le
ga

l

C
S

M
ed

W
eb

te
xt

R
ea

ln
ew

s

R
ed

di
t

R
ev

ie
w

s

Domain

1B

Legal

CS

Med

Webtext

Realnews

Reddit

Reviews

E
xp

er
t

1x

2x

4x

6x

8x

pe
rp

le
xi

ty
 in

cr
ea

se

Figure 7: Heatmap of expert performance ratios, using
the largest DEMIX LM (1.3B parameters per GPU).
The diagonal indicates that expert specialization to their
own domain. While some experts (e.g., 1B, MED) do
not transfer well to most domains in the training corpus,
WEBTEXT and REALNEWS experts transfer much bet-
ter, confirming the heterogeneity of those domains.

DENSE (1.3B params per GPU) 29.4
DEMIX (cached; 1.3B params per GPU) 21.8

GPT-3 Da-Vinci 20.5

Table 12: Zero-shot perplexity on the Penn TreeBank
Corpus (Marcus et al., 1993), comparing our largest
DENSE and DEMIX baselines with GPT-3 Da-Vinci,
the largest Brown et al. (2020). Our largest DEMIX LM
gains a large boost in performance over DENSE baseline,
approaching the performance of GPT-3 Da-Vinci with
a fraction of the compute budget.

A.8 Expert Performance Ratios

We display a heatmap of expert performance ratios,
using the largest DEMIX LM (1.3B parameters
per GPU) in Figure 7. These results suggest that
experts specialize to their domain, and that lever-
aging the outputs of multiple experts (especially
those specialized to hetereogeneous domains) at
test time would lead to better language modeling
performance.

A.9 Per-Domain Results

We display the rest of the per-domain test re-
sults in the spreadsheets at the following link:
https://docs.google.com/spreadsheets/d/

1yNMZGSPAvhTi3JttLamiCULaOIGTJ4QGEOajO3b5kt8/

edit?usp=sharing

A.10 Domain Posterior Calculations

We track calculated domain posteriors over se-
quences of development data in Figure 8 (training
domains) and Figure 9 (novel domains). The do-
main posteriors are noisier for earlier sequences,

Parameters
125M 350M 760M 1.3B

DENSE-
DAPT

T +70.1% +21.4% +16.7% +20.6%
N –55.1% –46.6% –38.3% –44.4%

Table 13: Average change in perplexity in training (T)
and novel (N) domains after DENSE-DAPT. Negative
values indicate better performance relative to the origi-
nal DENSE LM. While average perplexity in the novel
domains decreases more for DENSE-DAPT, this comes
at the cost of a significant deterioration in performance
in training domains.

stabilizing usually after around 50 sequences. For
all experiments, we conservatively use 100 se-
quences of data to compute the domain posterior,
though one may be able to accurately calcuate the
domain posterior for some domains with less data.

A.11 GPT-3 Da-Vinci Comparison
We conduct an experiment comparing our largest
DEMIX LM with GPT-3 Da-Vinci from Brown
et al. (2020), using the zero-shot language model-
ing evaluation they report: Penn TreeBank (Marcus
et al. 1993; Table 12). We observe that the largest
DEMIX LM achieves competitive results with the
GPT-3 Da-Vinci result with a fraction of the com-
putation, and gives large performance boosts on
this benchmark over our other DENSE baselines.
These results further suggest the importance of do-
main modularity as a mechanism to improve gener-
alization performance, in addition to model scaling.

A.12 Perplexity Changes after DENSE-DAPT
In Table 13, we display the average perplexity
change after performing DENSE-DAPT on a new
domain. We observe that across all model sizes,
DENSE-DAPT improves performance in the novel
domain, at the cost of a large performance hit in
the training domains.

https://docs.google.com/spreadsheets/d/1yNMZGSPAvhTi3JttLamiCULaOIGTJ4QGEOajO3b5kt8/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1yNMZGSPAvhTi3JttLamiCULaOIGTJ4QGEOajO3b5kt8/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1yNMZGSPAvhTi3JttLamiCULaOIGTJ4QGEOajO3b5kt8/edit?usp=sharing

0.00

0.25

0.50

0.75

1.00

P
(D

 |
X

)

Med RealNews Reddit OpenWebText

0 25 50 75 100
number of blocks

0.00

0.25

0.50

0.75

1.00

P
(D

 |
X

)

Reviews

0 25 50 75 100
number of blocks

CS

0 25 50 75 100
number of blocks

Legal

0 25 50 75 100
number of blocks

1B

1b openwebtext realnews reviews cs legal med reddit

Figure 8: Calculated domain posteriors for 8 training domains.

0.00

0.25

0.50

0.75

1.00

P
(D

 |
X

)

CORD-19 Github Gutenberg Breaking News

0 25 50 75 100
number of blocks

0.00

0.25

0.50

0.75

1.00

P
(D

 |
X

)

Legal Contracts

0 25 50 75 100
number of blocks

ACL Papers

0 25 50 75 100
number of blocks

Tweets

0 25 50 75 100
number of blocks

Yelp Reviews

1b openwebtext realnews reviews cs legal med reddit

Figure 9: Calculated domain posteriors for 8 novel domains.

Computing Infrastructure 32 Volta 32GB GPUs

Hyperparameter Assignment

architecture GPT-3 small

tokens per sample 1024

batch size 2

number of workers 2

learning rate [5e–4, 3e–4, 1e–4]

clip norm 0.1

gradient acculumation steps 8

number of steps 300,000

save interval updates 6,000

validation interval 3,000

number of warmup steps 24,000

learning rate scheduler polynomial decay

learning rate optimizer Adam

Adam beta weights (0.9, 0.95)

Adam epsilon 10e-8

weight decay 0.1

Table 14: Hyperparameters for pretraining the LM with 125M parameters per GPU. All hyperparameters are the
same for DEMIX and DENSE training.

Computing Infrastructure 64 Volta 32GB GPUs

Hyperparameter Assignment

architecture GPT-3 medium

tokens per sample 1024

batch size 2

number of workers 2

learning rate [5e–4, 3e–4, 1e–4]

clip norm 0.1

gradient acculumation steps 8

number of steps 120,000

save interval updates 3,000

validation interval 2,000

number of warmup steps 9,600

learning rate scheduler polynomial decay

learning rate optimizer Adam

Adam beta weights (0.9, 0.95)

Adam epsilon 10e-8

weight decay 0.1

Table 15: Hyperparameters for pretraining the LM with 350M parameters per GPU. All hyperparameters are the
same for DEMIX and DENSE training.

Computing Infrastructure 128 Volta 32GB GPUs

Hyperparameter Assignment

architecture GPT-3 large

tokens per sample 1024

batch size 2

number of workers 2

learning rate [5e–4, 3e–4, 1e–4]

clip norm 0.1

gradient acculumation steps 8

number of steps 65,000

save interval updates 2,000

validation interval 1,000

number of warmup steps 5,200

learning rate scheduler polynomial decay

learning rate optimizer Adam

Adam beta weights (0.9, 0.95)

Adam epsilon 10e-8

weight decay 0.1

Table 16: Hyperparameters for pretraining the LM with 760M parameters per GPU. All hyperparameters are the
same for DEMIX and DENSE training.

Computing Infrastructure 128 Volta 32GB GPUs

Hyperparameter Assignment

architecture GPT-3 XL

tokens per sample 1024

batch size 2

number of workers 2

learning rate [5e–4, 3e–4, 1e–4]

clip norm 0.1

gradient acculumation steps 8

number of steps 50000

save interval updates 2,000

validation interval 500

number of warmup steps 4000

learning rate scheduler polynomial decay

learning rate optimizer Adam

Adam beta weights (0.9, 0.95)

Adam epsilon 10e-8

weight decay 0.1

Table 17: Hyperparameters for pretraining the LM with 1.3B parameters per GPU. All hyperparameters are the
same for DEMIX and DENSE training.

