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Abstract001

Event Extraction (EE) involves automatically002
identifying and extracting structured informa-003
tion about events from unstructured text, in-004
cluding triggers, event types, and arguments.005
Traditional discriminative models demonstrate006
high precision but often exhibit limited re-007
call, particularly for nuanced or infrequent008
events. Conversely, generative approaches009
leveraging Large Language Models (LLMs)010
provide higher semantic flexibility and recall011
but suffer from hallucinations and inconsistent012
predictions. To address these challenges, we013
propose Agreement-based Reflective Inference014
System (ARIS), a hybrid approach combining a015
Self Mixture of Agents with a discriminative se-016
quence tagger. ARIS explicitly leverages struc-017
tured model consensus, confidence-based filter-018
ing, and an LLM reflective inference module to019
reliably resolve ambiguities and enhance over-020
all event prediction quality. We further inves-021
tigate decomposed instruction fine-tuning for022
enhanced LLM event extraction understanding.023
Experiments demonstrate our approach outper-024
forms existing state-of-the-art event extraction025
methods across three benchmark datasets.026

1 Introduction027

Event Extraction (EE) aims to identify structured028

event information from unstructured textual data,029

including event triggers, event types, and associ-030

ated arguments with their roles (Doddington et al.,031

2004). Effective event extraction underpins crit-032

ical applications in information retrieval, knowl-033

edge graph construction, and automated decision-034

making. Despite considerable advancements, ro-035

bust event extraction remains challenging, primar-036

ily due to linguistic variability, semantic complex-037

ity, and limited generalization to infrequent or pre-038

viously unseen events (Li et al., 2022).039

There are two predominant methodologies in040

EE: discriminative approaches and generative meth-041

ods leveraging LLMs. Discriminative methods, in-042

cluding transformer-based sequence taggers (e.g., 043

RoBERTa) and structured prediction models, offer 044

superior precision and structural consistency due 045

to their explicit token-level training (Zeng et al., 046

2022; Liu et al., 2024). However, these methods 047

often struggle with recall, especially for nuanced 048

or rare events not extensively covered by training 049

datasets. Conversely, generative LLM-based ap- 050

proaches (Zhu et al., 2024; Gao et al., 2024) demon- 051

strate enhanced semantic flexibility and contextual 052

understanding, achieving broader coverage and im- 053

proved recall. Yet, these generative approaches fre- 054

quently produce inconsistent predictions and hallu- 055

cinations due to their inherent stochasticity, result- 056

ing in lower precision in their predictions (Meng 057

et al., 2024). 058

Recently, hybrid multi-agent debate-based meth- 059

ods have emerged, leveraging multiple generative 060

LLM agents to iteratively critique and refine pre- 061

dictions (Chan et al., 2024). Although promising, 062

these debate approaches have critical limitations: 063

they rely on iterative, often unstructured discus- 064

sions without explicit grounding, leading to ampli- 065

fied hallucinations and inconsistent outputs; they 066

lack principled mechanisms for systematically re- 067

solving persistent disagreements; and they intro- 068

duce substantial computational overhead with un- 069

predictable inference times. These shortcomings 070

significantly limit their effectiveness and practical 071

applicability. 072

In this paper, we introduce ARIS (Agreement- 073

based Reflective Inference System), a hybrid event 074

extraction framework explicitly designed to over- 075

come these limitations. ARIS systematically inte- 076

grates the complementary strengths of a generative 077

Self Mixture-of-Agents, which uses multiple LLM 078

instances decoding in parallel to promote output di- 079

versity, with a discriminative sequence tagger that 080

provides essential structural grounding and preci- 081

sion. ARIS introduces the Reflective Agreement 082

mechanism, a structured inference process that ex- 083
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plicitly leverages model consensus and confidence-084

based filtering to select high-confidence event pre-085

dictions, while employing reflective inference to086

resolve ambiguities systematically. Crucially, our087

reflective inference module relies on an LLM ex-088

plicitly trained to understand the complete event089

extraction chain (trigger identification, trigger clas-090

sification, argument identification, and argument091

classification) through decomposed instruction fine-092

tuning, significantly enhancing the accuracy and093

reliability of reflective reasoning.094

Our contributions are as follows:095

• We propose ARIS, a hybrid event extraction096

framework that systematically integrates gen-097

erative flexibility and discriminative precision,098

explicitly addressing the limitations inherent099

to existing debate-based and standalone gen-100

erative approaches.101

• We introduce Reflective Agreement, a novel102

structured reflective inference mechanism103

that leverages explicit model agreement,104

confidence-based filtering, and contextual re-105

flective reasoning to robustly resolve ambigu-106

ous predictions.107

• We demonstrate empirically that ARIS108

achieves state-of-the-art performance across109

three event extraction benchmarks, consis-110

tently surpassing discriminative, generative,111

and existing hybrid debate-based methods.112

Beyond empirical results, ARIS advances the-113

oretical understanding by providing new in-114

sights into structured reflective reasoning and115

hybrid model integration for complex NLP116

tasks.117

2 Related Work118

Event Extraction with LLMs LLMs have119

emerged as promising tools for Event Extraction120

tasks, offering strengths in contextual understand-121

ing and handling linguistic variation. Several122

studies have investigated zero-shot and few-shot123

prompting approaches for Event Extraction with124

LLMs (Chen et al., 2024). More sophisticated125

prompting frameworks like the Debate as Optimiza-126

tion (DAO) (Wang and Huang, 2024) employ mul-127

tiple agent roles to iteratively refine event extrac-128

tion predictions through structured debate. Other129

researchers have explored hybrid approaches com-130

bining task-specific models with LLMs. LC4EE131

(Zhu et al., 2024) uses task-specific models for132

initial Event Extraction, then employs manually 133

defined rules to guide an LLM in verifying and 134

correcting the output. Recent work has begun ex- 135

ploring fine-tuning approaches, with studies incor- 136

porating textual descriptions of event types into in- 137

struction tuning datasets (Srivastava et al., 2025) or 138

combining Supervised Fine-Tuning with reinforce- 139

ment learning (Gao et al., 2024). However, signif- 140

icant limitations persist across these approaches. 141

Prompting-only methods typically underperform 142

supervised fine-tuning of smaller discriminative 143

models, such as RoBERTa-based models. Hybrid 144

approaches rely on manual rule creation, which 145

limit scalability. Importantly, there is also limited 146

work on systematically designing instruction tun- 147

ing datasets that address the distinct challenges of 148

event extraction’s core subtasks: trigger identifica- 149

tion, trigger classification, argument identification, 150

and argument classification. Consequently, many 151

LLM-based methods still fail to outperform super- 152

vised fine-tuning of task-specific models. 153

LLM Instruction Fine-Tuning Instruction fine- 154

tuning has emerged as a powerful approach for 155

enhancing language models’ capabilities on spe- 156

cific tasks. Recent advancements have focused on 157

structuring the fine-tuning process to improve rea- 158

soning abilities and handle complex tasks more 159

effectively. Chain-of-Thought (CoT) fine-tuning 160

has gained significant attention, where instruction 161

datasets are augmented with reasoning rationales. 162

This enables the models to learn reasoning capabil- 163

ities (Kim et al., 2023; Zelikman et al., 2022; Ho 164

et al., 2023). Compositional Fine-Tuning addresses 165

complex tasks by explicitly breaking them down 166

into simpler component subtasks (Bursztyn et al., 167

2022). Rather than using end-to-end learning, CFT 168

fine-tunes models on a set of component tasks, as 169

well as the end-to-end task, enabling them to learn 170

the end-to-end task more effectively. 171

LLM Inference Time Improvement Advanced 172

inference strategies significantly enhance LLM per- 173

formance without requiring model parameter up- 174

dates. Chain-of-Thought prompting (Wei et al., 175

2022) enables LLMs to break down complex prob- 176

lems into intermediate reasoning steps, improv- 177

ing performance on tasks requiring compositional 178

reasoning. Tree of Thoughts (Yao et al., 2023) 179

extends this approach by allowing models to ex- 180

plore multiple reasoning paths simultaneously, eval- 181

uating alternatives and backtracking when nec- 182

essary. Retrieval-Augmented Generation (Lewis 183

2



Figure 1: Overview of the proposed ARIS framework illustrating the Reflective Agreement process. ARIS
systematically integrates predictions from a discriminative sequence tagger and a generative Self Mixture of Agents.
Event triggers and arguments are extracted by each model with associated positions and confidence scores. The
framework identifies consented predictions, filters out low-confidence disagreements, and employs a reflective
inference module to resolve remaining ambiguities, ultimately producing robust, accurate, and structurally grounded
event extraction results.

et al., 2020) incorporates external knowledge re-184

trieval to improve factuality and reduce hallucina-185

tion. Recent work has also explored self-correction186

mechanisms for LLMs, where LLMs can iteratively187

self-correct their outputs through interaction with188

external tools (Gou et al., 2024), or use episodic189

memory buffers to improve decision-making in sub-190

sequent attempts (Shinn et al., 2023).191

Mixture of Agents (MoA) (Wang et al., 2025) is192

an ensemble approach that combines predictions193

from multiple different LLMs to improve perfor-194

mance through complementary strengths of diverse195

models. Self Mixture of Agents (Self-MoA) (Li196

et al., 2025) extends this concept by using mul-197

tiple instances of the same model with different198

sampling parameters to generate diverse outputs.199

While these approaches have shown promise in200

general language generation tasks, their systematic201

application to structured prediction tasks like event202

extraction remains underexplored.203

Our work builds upon these advances in LLM204

fine-tuning and self-correction mechanisms, specif-205

ically addressing the challenges of Event Extrac-206

tion by developing a decomposed instruction fine-207

tuning approach combined with a structured self-208

reflection module that enables effective reasoning209

about event structures. Additionally, we are the210

first to systematically apply Self-MoA to event211

extraction, leveraging multiple instances of the212

same LLM to generate diverse candidate events213

that are then refined through agreement detection 214

and confidence-based filtering with a discrimina- 215

tive sequence tagger. 216

3 Methodology 217

ARIS aims to enhance event extraction by inte- 218

grating generative and discriminative approaches 219

through structured model consensus and reflective 220

reasoning. As illustrated in Figure 1, ARIS initi- 221

ates with an explicit fine-tuning phase to equip 222

an LLM with specialized capabilities for event 223

subtasks, including trigger identification, event 224

classification, and argument extraction. Follow- 225

ing fine-tuning, ARIS implements a Self Mixture 226

of Agents (Self-MoA), leveraging the fine-tuned 227

LLM to generate diverse candidate events. Con- 228

currently, a discriminative sequence tagging model 229

independently predicts events. To consolidate pre- 230

dictions, ARIS employs structured consensus de- 231

tection and confidence-based filtering, selectively 232

retaining high-confidence agreements while dis- 233

carding uncertain disagreements. To systematically 234

address remaining ambiguities, ARIS utilizes a re- 235

flective inference module that capitalizes on the 236

fine-tuned LLM’s contextual reasoning capabilities. 237

The subsequent sections detail the implementation 238

and interactions of these key components. The de- 239

tailed procedure of our approach is formalized as 240

Algorithm 1, which can be found in Appendix E. 241
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3.1 Self Mixture of Agents for Event242

Extraction243

We formalize our approach with the following no-244

tation. Let A = {A1, A2, . . . , An} be the Self245

Mixture of Agents, where each agent Ai is an LLM246

with temperature Ti.247

Event Decomposed Fine-Tuning. To enhance248

the LLM’s base understanding of the event extrac-249

tion task, we develop a decomposed instruction250

fine-tuning dataset to explicitly guide the LLM to251

master distinct subtasks inherent to event extrac-252

tion.253

Given an event extraction dataset Devent =254

{(xi, yi)}Ni=1 (input texts xi and corresponding255

event annotations yi), we convert it into a de-256

composed instructional dataset Ddecomp structured257

around three primary subtasks:258

First, we create holistic event structure model-259

ing instructions that supervise complete event con-260

struction. These include full-structure construction261

tasks requiring the model to output a complete list262

of events in the passage (with triggers, types, and263

arguments with roles), and role-ablated construc-264

tion variants that systematically mask one argument265

role per instance, requiring the model to infer the266

remainder while maintaining structural coherence.267

Second, we develop trigger-focused reasoning268

instructions that isolate the foundational stages of269

event extraction: trigger detection focuses solely on270

identifying trigger spans; type classification assigns271

event types to known triggers (both individually272

and in batches); trigger discrimination provides273

binary classification supervision for distinguishing274

triggers from non-triggers; and joint trigger-type275

prediction unifies detection and classification into276

a single structured output.277

Third, we create argument-level inference in-278

structions that target post-trigger prediction. Ar-279

gument extraction requires identifying argument280

spans for known triggers, role assignment classi-281

fies the role of each known argument, and joint282

argument-role prediction unifies extraction and283

classification into a single coherent operation.284

We fine-tune the initial LLM M init
LLM on the de-285

composed dataset Ddecomp, where the model first286

learns atomic subtasks (trigger identification, argu-287

ment extraction) before progressing to intermediate288

compositional tasks (joint trigger-type prediction,289

role assignment) and finally to full event structure290

generation. Further details on this dataset construc-291

tion can be found in Appendix F.292

3.2 Hybrid Event Aggregation 293

Let S be a pretrained sequence tagger (e.g., a 294

fine-tuned transformer such as RoBERTa) trained 295

for event extraction. For an input document x 296

(sentence or article), we define Gx as the space 297

of possible valid event spans in x. Each LLM 298

agent Ai produces event extraction predictions 299

EAi(x;Ti) ⊂ Gx. Simultaneously, the sequence 300

tagger produces its own set of event predictions 301

ES(x) ⊂ Gx. Initially, the predictions from all 302

individual LLM agents are aggregated to create a 303

preliminary combined prediction set Eraw
SMoA(x) = 304⋃n

i=1EAi(x;Ti). 305

Since the LLM agents generate multiple indepen- 306

dent predictions through the self mixture of agents 307

approach, these parallel predictions may identify 308

the same trigger multiple times or reference non- 309

existent spans due to hallucination. To ensure accu- 310

rate alignment between model predictions and the 311

source text, we apply a rule-based cleanup mech- 312

anism that consists of two sequential steps: span 313

validation and positional sorting. 314

We first filter out predictions that reference 315

non-existent text spans. Let Stext(x) = 316

{s1, s2, . . . , sm} be the set of all possible con- 317

tiguous text spans present in the input document 318

x. We retain only predictions whose spans ex- 319

ist in the source text, creating Evalid
SMoA(x) which 320

contains only events e from Eraw
SMoA(x) where 321

span(e) ∈ Stext(x). 322

We sort the valid predictions by their textual po- 323

sitions to establish a canonical ordering, producing 324

ESMoA(x) = sort(Evalid
SMoA(x), by position in x). 325

The resulting cleaned prediction set ESMoA(x) 326

serves as the foundation for subsequent agreement 327

detection and disagreement handling steps. 328

3.3 Consensus Detection 329

We identify consensus predictions as events jointly 330

extracted by both the Self-MoA and sequence tag- 331

ger, defined as Econ(x) = ESMoA(x) ∩ ES(x). 332

Events match when they have the same trigger iden- 333

tification, trigger classification, argument identifica- 334

tion and argument classification predictions. These 335

consensus predictions represent the most reliable 336

predictions, where both generative and discrimina- 337

tive methods converge on the same result. Further 338

details on the exact mechanism for consensus de- 339

tection can be found in Appendix A. 340
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3.4 Disagreement Handling via Confidence341

Filtering342

For cases where the Self-MoA and sequence tagger343

disagree, we employ a confidence-based filtering344

strategy. We first define the complete set of pre-345

dictions Ecomb(x) = ESMoA(x) ∪ ES(x) and the346

disagreement set Edis(x) = Ecomb(x) \ Econ(x).347

We then compute confidence scores for predic-348

tions in the disagreement set. To calculate confi-349

dence for Self-MoA predictions, we need to track350

the origin of each prediction. Let Ae = {i : e ∈351

EAi(x;Ti)} be the set of agent indices that pre-352

dicted event e. For Self-MoA predictions, confi-353

dence is calculated as the proportion of agents that354

made the same prediction:355

CSMoA(e) =
|Ae|
n

=
|{i : e ∈ EAi(x;Ti)}|

n
356

For sequence tagger predictions, confidence is357

derived from the softmax score of the predicted358

token in the output layer. Let Ttags be the set of all359

possible event tags in the sequence tagger’s output360

vocabulary (including event types and argument361

roles), and let span(e) denote the text span associ-362

ated with event e. The confidence is calculated as363

the maximum probability over all tags for the given364

span: CS(e) = maxt∈Ttags PS(t|span(e), x),365

where PS(t|span(e), x) is the probability distribu-366

tion over possible tags for the span of event e given367

the input text x.368

We define confidence thresholds θSMoA and θS369

to filter out low-confidence predictions. Given the370

sequence tagger’s superior precision in predictions,371

high-confidence sequence tagger predictions that372

disagree with the Self-MoA are retained in the final373

prediction set. Specifically, for sequence tagger pre-374

dictions with confidence exceeding the threshold375

(CS(e) ≥ θS), we include them directly in the set376

ES
hi_conf (x) = {e ∈ ES(x) ∩ Edis(x) | CS(e) ≥377

θS}.378

For low-confidence predictions from both mod-379

els, we apply confidence-based filtering. Let380

Erem(x) be the set of events to be removed381

due to low confidence, where ESMoA
rem = {e ∈382

ESMoA(x)∩Edis(x) | CSMoA(e) < θSMoA} rep-383

resents low-confidence Self-MoA predictions and384

ES
rem = {e ∈ ES(x) ∩ Edis(x) | CS(e) < θS}385

represents low-confidence sequence tagger predic-386

tions. The complete set of removed events is then387

Erem(x) = ESMoA
rem ∪ ES

rem.388

3.5 Reflection on Ambiguous Predictions 389

The remaining disagreement predictions after con- 390

fidence filtering represent ambiguous cases that 391

require further analysis. We define this set as 392

Ereflect(x) = Edis(x) \ Erem(x), capturing all 393

disagreements not removed during filtering. 394

We resolve these ambiguous cases through a 395

reflection mechanism R that formulates a struc- 396

tured query containing the original text context x 397

and the ambiguous predictions Ereflect(x). This 398

query presents each ambiguous prediction along 399

with its surrounding context, asking the LLM to 400

analyze and determine the correct prediction based 401

on linguistic cues, event semantics, and contextual 402

understanding. The reflection process leverages 403

the LLM’s reasoning capabilities to produce a re- 404

fined set of resolved predictions Ereflected(x) = 405

R(Ereflect(x), x). Further details on this proce- 406

dure can be found in Appendix C. 407

3.6 Final Prediction Set 408

The final prediction set combines high-confidence 409

agreed predictions with those resolved through 410

reflection, forming Efin(x) = Econ(x) ∪ 411

ES
hi_conf (x) ∪ Ereflected(x). This approach lever- 412

ages the complementary strengths of both gen- 413

erative and discriminative models: the structural 414

consistency and precision of sequence taggers for 415

straightforward cases, and the contextual reason- 416

ing capabilities of LLMs for resolving complex 417

ambiguities. 418

As shown in Figure 1, our framework effectively 419

handles hallucinations and disagreements between 420

models. For instance, in the example text "The pros- 421

ecutor, Alberto Nisman, was found shot dead in his 422

bathroom in January - four days after he accused 423

Fernandez and her aides of making a deal with Iran 424

to cover up the alleged roles that Iranian officials 425

played in the 1994 bombing of a Jewish center in 426

Argentina.", the sequence tagger identifies only the 427

trigger [’bombing’], while the MoA detects mul- 428

tiple candidates including [’dead’, ’shot’, ’bomb- 429

ing’]. Through our reflective agreement process, 430

the incorrect trigger ’shot’ is filtered out, resulting 431

in the accurate final triggers [’dead’, ’bombing’]. 432

This demonstrates how ARIS combines discrim- 433

inative precision with generative coverage while 434

eliminating hallucinations. 435
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Base LLM Approach
CASIE M2E2 MLEE

Trg-I Trg-C Arg-I Arg-C Trg-I Trg-C Arg-I Arg-C Trg-I Trg-C Arg-I Arg-C

TagPrime 72.00 71.60 47.47 45.61 63.97 63.30 37.47 34.19 74.61 72.38 48.30 46.74

DEBATE-EE – 41.80 – 40.50 – – – – – – – –
MMUTF – – – – – 55.50 – 38.20 – – – –

Llama-3.1 8B

One-Shot 0.15 0.15 0.00 0.00 3.77 3.77 0.40 0.40 0.23 0.23 0.00 0.00
FineTuned-EE 42.59 42.27 26.72 25.30 66.87 63.16 31.94 27.78 50.64 44.96 38.75 34.93
FineTuned-DEE 65.89 65.34 44.60 42.56 67.43 64.00 36.33 32.80 55.40 52.14 50.98 48.33
ARIS 70.78 70.27 48.79 46.84 73.49 71.39 41.41 38.84 73.80 70.33 54.30 50.86

Phi-3 7B

One-Shot 3.11 2.49 0.85 0.60 31.37 27.45 9.35 4.68 1.13 0.68 0.72 0.72
FineTuned-EE 41.99 41.32 26.83 25.74 59.44 55.11 28.14 24.31 29.11 26.53 26.98 24.25
FineTuned-DEE 62.26 61.53 42.00 40.55 67.26 64.31 32.30 29.57 37.89 35.52 45.93 44.31
ARIS 69.08 68.39 46.63 44.99 74.22 71.39 41.11 36.61 74.78 72.45 59.19 56.98

Table 1: F1 score of Event Extraction performance (Trg=trigger, Arg=argument; I=identification, C=classification)
across three benchmark datasets. Bold numbers indicate best performance on evaluation metric.

4 Experiments436

4.1 Dataset and Evaluation Metrics437

We evaluate our approach on three benchmark438

datasets for event extraction processed following439

the TextEE benchmark standardization process440

(Huang et al., 2024): CASIE (Satyapanich et al.,441

2020), M2E2 (Li et al., 2020), and MLEE (Pyysalo442

et al., 2012). We use the train/dev/test partitions de-443

fined in TextEE’s "split1" for all three datasets. For444

M2E2, we used only the text, and did not include445

any image or video information. These datasets rep-446

resent diverse domains and text structures: CASIE447

covers cybersecurity news with 5 event types in448

long paragraphs; M2E2 contains shorter news con-449

tent with 8 event types primarily in 1-2 sentence450

format; and MLEE represents the biomedical do-451

main with 29 event types across long paragraphs.452

For evaluation, we report micro F1 scores for the453

following tasks: Trigger Identification, which eval-454

uates the model’s ability to correctly identify event455

trigger spans in text, regardless of event type; Trig-456

ger Classification, which measures performance in457

both identifying event triggers and correctly clas-458

sifying their event types; Argument Identification,459

which assesses the model’s capability in identifying460

argument entities associated with correctly identi-461

fied event triggers; and Argument Classification,462

which requires correct identification of both the463

argument entity and its role assignment for a given464

event trigger. For all metrics, we employ exact465

match scoring.466

4.2 Implementation467

For the discriminative sequence tagger component468

of our proposed approach, we utilize TagPrime469

(Hsu et al., 2023), a unified framework for rela- 470

tional structure extraction that has demonstrated 471

superior performance on event extraction tasks. We 472

implement TagPrime with roberta-large from hug- 473

gingface (FacebookAI, 2024) as the backbone en- 474

coder (Liu et al., 2019). 475

For the generative component, we employ 476

Llama-3.1-8B-Instruct (Grattafiori et al., 2024) and 477

Phi-3-small-8k-instruct (Abdin et al., 2024). We 478

access both models through their respective Hug- 479

ging Face implementations (Meta-Llama, 2024; 480

Microsoft, 2024). To train both LLMs for event 481

extraction, we used LoRA (Hu et al., 2022) im- 482

plemented with the Hugging Face PEFT library 483

(Mangrulkar et al., 2022). Our LoRA configuration 484

uses a rank of 32, a scaling factor (α) of 128, and 485

a dropout rate of 0.05. In all of our experiments 486

we utilize 10 Self-MoA Agents that have a tem- 487

perature of 0.9 unless stated otherwise. For our 488

confidence-based filtering for our ARIS approach, 489

we dynamically determined dataset-specific thresh- 490

olds for each model and temperature setting to op- 491

timize system performance. These thresholds and 492

details on how they were computed, are reported in 493

Appendix B. 494

4.3 Overall Event Extraction Performance 495

We compare our proposed event extraction ap- 496

proach against several baseline approaches and 497

state-of-the-art methods across multiple configura- 498

tions. Our baselines include various LLM-based ap- 499

proaches using both zero-shot and few-shot prompt- 500

ing, as well as fine-tuned variants. The One-Shot 501

baseline employs off-the-shelf LLMs with carefully 502

designed prompts that explain the event extraction 503

task and dataset structure, and provide a single 504
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Base LLM Approach Temp.
Trg-I Trg-C Arg-I Arg-C

P R F1 P R F1 P R F1 P R F1

Llama-3.1 8B

Self-MoA 0.9 46.99 71.17 56.51 44.98 68.29 54.15 28.03 63.15 38.76 26.28 59.09 36.32
Self-MoA 0.6 53.12 68.42 59.72 50.99 65.79 57.37 30.73 58.79 40.33 28.81 55.02 37.80
Self-MoA 0.1 63.18 61.31 62.07 60.79 59.02 59.75 39.25 52.83 44.98 37.19 50.03 42.61
ARIS 0.9 69.16 76.85 72.69 67.20 74.75 70.66 42.94 55.27 48.17 40.60 52.19 45.51
ARIS 0.6 68.26 76.59 72.15 66.37 74.52 70.17 48.56 50.52 49.37 46.30 48.04 46.94
ARIS 0.1 66.72 77.19 71.56 64.72 74.92 69.43 44.78 53.06 48.38 42.61 50.53 46.59

Phi-3 7B

Self-MoA 0.9 39.02 73.50 50.47 37.15 70.34 48.13 24.80 60.23 35.08 23.30 56.55 32.95
Self-MoA 0.6 46.29 69.46 55.02 44.27 66.75 52.72 32.35 58.62 41.54 30.69 55.43 39.37
Self-MoA 0.1 59.77 60.80 59.82 57.15 58.35 57.30 41.40 49.14 44.62 39.52 46.73 42.52
ARIS 0.9 71.55 74.81 72.69 69.58 72.86 70.74 47.16 51.65 48.79 44.52 48.64 46.00
ARIS 0.6 73.49 74.52 73.78 71.46 72.54 71.78 50.01 49.33 49.43 47.68 46.94 47.06
ARIS 0.1 68.84 76.03 72.04 66.70 73.77 69.85 46.64 50.76 48.38 44.63 48.45 46.24

Table 2: Impact of sampling temperature on event extraction performance. Results show precision (P), recall (R),
and F1 scores across different sampling temperatures.

event extraction example without any task-specific505

training. For each test instance, we selected the506

most similar training example using TF-IDF vec-507

torization (Salton and Buckley, 1988) with cosine508

similarity, ensuring that the provided examples are509

contextually relevant to the test cases.510

For fine-tuned approaches, we implement two511

training strategies: FineTuned-EE represents stan-512

dard end-to-end fine-tuning where the LLM learns513

to directly map input text to complete event struc-514

tures (event triggers, event types, event arguments,515

and event argument roles) in a single step. In con-516

trast, FineTuned-DEE leverages our proposed de-517

composed instruction fine-tuning approach (Sec-518

tion 3.1), where the model first learns individual519

subtasks before progressing to complete event ex-520

traction. For both FineTuned-EE and FineTuned-521

DEE, inference is performed using a single LLM522

with a temperature setting of 0.9. Our final pro-523

posed method, ARIS, combines the decomposed524

fine-tuning with our proposed inference framework525

that integrates the Self Mixture of Agents, con-526

sensus detection, confidence-based filtering, and527

reflection mechanisms.528

We compare against several strong baselines in-529

cluding TagPrime (Hsu et al., 2023), a discrimi-530

native sequence tagging model that represents the531

current state-of-the-art for event extraction tasks, as532

well as recent LLM-based approaches: DEBATE-533

EE (Wang and Huang, 2024), which employs a534

multi-agent debate framework that iteratively re-535

fines event extraction predictions through discus-536

sions between debating agents, critics, and judges,537

enhanced with diverse retrieval-augmented gener-538

ation and adaptive conformal prediction modules,539

and MMUTF (Seeberger et al., 2024), a unified540

template filling framework that extracts event ar- 541

guments by matching candidates to argument roles 542

using templates as queries. The results shown for 543

DEBATE-EE and MMUTF rows are the F1 scores 544

provided in their original papers. 545

The results in Table 1 demonstrate that our pro- 546

posed approach achieves significant improvements 547

over baseline methods across all three datasets. Our 548

ARIS approach consistently outperforms compet- 549

ing methods, particularly in argument extraction 550

tasks. 551

On CASIE, our method is competitive with Tag- 552

Prime for trigger detection while surpassing it 553

on argument tasks. For M2E2, we achieve the 554

strongest performance across all metrics, with both 555

Llama-3.1 and Phi-3 implementations of ARIS sig- 556

nificantly outperforming TagPrime. On MLEE, 557

our Phi-3 based ARIS implementation shows the 558

strongest performance across all metrics. Notably, 559

ARIS with Phi-3 improves argument classification 560

F1 scores over the TagPrime model, surpassing the 561

strong baseline by over 10 points. 562

The results of the one-shot experiment show that 563

LLMs may struggle with event extraction when 564

using basic prompting strategies, showing the need 565

for fine-tuning on the task. The effectiveness 566

of decomposed instruction fine-tuning is evident 567

when comparing FineTuned-DEE with standard 568

FineTuned-EE, showing consistent improvements 569

across all datasets. The ARIS framework further 570

enhances performance, particularly for argument- 571

related tasks. These results validate our hypothesis 572

that combining the complementary strengths of 573

discriminative models and LLMs through our re- 574

flective agreement approach effectively addresses 575

the limitations of individual approaches. 576
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Base LLM Approach
Trg-I Trg-C Arg-I Arg-C

P R F1 P R F1 P R F1 P R F1

Llama-3.1 8B
Self-MoA 46.99 71.17 56.51 44.98 68.29 54.15 28.03 63.15 38.76 26.28 59.09 36.32
ARIS w/o TagPrime 60.87 60.08 60.31 58.69 58.08 58.23 33.26 57.10 42.03 31.38 53.87 39.66
ARIS 69.16 76.85 72.69 67.20 74.75 70.66 42.94 55.27 48.17 40.60 52.19 45.51

Phi-3 7B
Self-MoA 39.02 73.50 50.47 37.15 70.34 48.13 24.80 60.23 35.08 23.30 56.55 32.95
ARIS w/o TagPrime 53.52 64.50 57.52 50.84 61.65 54.78 31.30 52.44 38.53 29.38 49.55 36.26
ARIS 71.55 74.81 72.69 69.58 72.86 70.74 47.16 51.65 48.79 44.52 48.64 46.00

TagPrime 76.64 65.33 70.19 75.43 64.32 69.09 49.34 40.88 44.41 46.76 38.88 42.18

Table 3: Ablation study demonstrating component contributions to event extraction performance. Results highlight
the complementary strengths of discriminative (TagPrime) and generative approaches.

4.4 Impact of Temperature on Self-MoA577

LLMs578

To understand how sampling diversity impacts per-579

formance, we evaluated our approach across three580

temperature settings (t=0.9, t=0.6, and t=0.1) dur-581

ing inference. Table 2 presents the averaged results582

across all datasets.583

The results reveal that while temperature substan-584

tially affects standalone Self-MoA performance,585

the full ARIS approach maintains consistent perfor-586

mance across all settings. For Self-MoA alone, tem-587

perature variations produce dramatic differences in588

precision-recall trade-offs, where higher tempera-589

tures lead to higher recall and lower precision. We590

observe dramatic shifts in precision-recall balance591

for Phi-3, with precision increasing from 39.02% to592

59.77% for trigger identification while recall drops593

from 73.50% to 60.80%.594

In contrast, our full ARIS approach demonstrates595

stability across the tested temperatures, with F1596

scores for all metrics showing variation of less597

than 2 points. This stability demonstrates that598

our confidence-based filtering, agreement detec-599

tion, and reflection mechanisms effectively normal-600

ize the varying predictions produced at different601

temperatures.602

4.4.1 Ablation Study603

To understand the contributions of different com-604

ponents in our approach, we conducted an ablation605

study focusing on the integration of the sequence606

tagger with the ARIS framework. Table 3 presents607

results averaged across all datasets, comparing our608

full ARIS approach against variants with compo-609

nents removed.610

The results reveal clear complementary strengths611

between the discriminative and generative compo-612

nents. The RoBERTa-based TagPrime sequence613

tagger demonstrates superior precision across all614

tasks, but shows lower recall. Conversely, the ARIS 615

approach without TagPrime or reflection exhibits 616

higher recall, but show lower precision. 617

Our full ARIS approach effectively leverages 618

these complementary strengths that results in 619

higher F1 scores across all metrics. The improve- 620

ments are even more pronounced for argument- 621

related tasks. The practical impact of these comple- 622

mentary strengths is demonstrated through detailed 623

pipeline examples in Appendix H. These examples 624

trace the complete processing flow from initial pre- 625

dictions through agreement detection, confidence 626

filtering, and reflection, providing concrete illustra- 627

tions of how ARIS effectively leverages the preci- 628

sion of discriminative models and the semantic flex- 629

ibility of generative approaches to improve event 630

extraction performance. 631

5 Conclusion 632

In this paper, we introduced ARIS, a hybrid event 633

extraction method that combines the complemen- 634

tary strengths of discriminative sequence taggers 635

and generative LLMs through a structured reflec- 636

tive agreement mechanism. Our approach lever- 637

ages a Self Mixture of Agents to generate diverse 638

event predictions, employs agreement detection 639

to identify high-confidence consensus predictions, 640

applies confidence-based filtering to eliminate low- 641

precision candidates, and utilizes a reflection mech- 642

anism powered by decomposed instruction fine- 643

tuning to resolve ambiguous cases. Experiments 644

across three benchmark datasets demonstrate that 645

ARIS consistently outperforms existing state-of- 646

the-art methods, with particularly notable improve- 647

ments in argument extraction tasks. Beyond em- 648

pirical performance gains, our work advances the 649

theoretical understanding of hybrid model integra- 650

tion and structured reflective reasoning in complex 651

NLP tasks. 652
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Limitations653

While our proposed approach demonstrates im-654

provements in event extraction performance, it655

comes with significant computational overhead.656

The approach requires running multiple LLM in-657

stances for the Self-MoA component, which sub-658

stantially increases both inference time and compu-659

tational resources compared to traditional discrim-660

inative models. Additionally, the training process661

for decomposed instruction fine-tuning demands662

considerable GPU resources and time, particularly663

when working with larger LLMs. A further lim-664

itation concerns the reflection mechanism itself,665

which handles the most ambiguous cases that nei-666

ther the Self-MoA nor discriminative model could667

confidently resolve. While effective for some diffi-668

cult instances, the reflection component may still669

struggle with highly challenging cases. This is an670

inherent ceiling to the reflection-based approach671

when confronted with the hardest examples.672
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A Agreement Detection872

Agreement detection reconciles event predictions873

from the Self-MoA ensemble and the sequence tag-874

ger by identifying cases where both systems refer875

to the same underlying event mention. This process876

involves separate matching criteria for triggers and877

arguments, as detailed below.878

A.1 Trigger Span Agreement879

Trigger predictions from both models are consid-880

ered to be in agreement if their textual spans over-881

lap beyond a predefined threshold, indicating they882

refer to the same underlying event mention. This883

criterion effectively handles partial overlaps, such884

as when one span is a substring of another—for ex-885

ample, "attached" versus "was attached"—as886

they semantically represent the same trigger. In887

these scenarios, the span predicted by the sequence888

tagger is retained due to its higher precision in de-889

termining exact span boundaries.890

A.2 Argument Span Agreement891

To determine agreement between argument predic-892

tions, we first align them based on their associated893

trigger and event type. For each matched trigger894

between the two systems, its candidate arguments895

are evaluated independently for span-level over-896

lap. This enables partial agreement at the argu-897

ment level: a single trigger may have some argu-898

ments in agreement and others not, depending on899

their span overlap. For example, arguments like900

"the government officials" and "government901

officials" linked to the same trigger and event902

type are considered to be in agreement. In such903

cases, we retain the span predicted by the sequence904

tagger due to its higher precision in boundary iden-905

tification.906

B Confidence Threshold Selection907

Predictions that are not in agreement between the908

two systems enter this phase. Confidence thresh-909

olds for filtering event predictions were dataset-910

specific, determined by analyzing the distribution911

of confidence scores on validation sets. For each912

dataset, we:913

1. Computed confidence score distributions sep-914

arately for correct (found in gold annotations)915

and incorrect predictions.916

2. Used descriptive statistics (mean, median,917

quartiles) to guide a targeted search range for918

optimal thresholds.919

3. Conducted a search within this range, select- 920

ing thresholds that maximized the validation 921

set F1 score. 922

This threshold selection procedure was repeated in- 923

dividually for trigger and argument predictions, en- 924

suring dataset-specific tuning that improved overall 925

performance. After the agreement detection phase, 926

predictions identified as disagreements are handled 927

based on finalized confidence thresholds: high- 928

confidence disagreements are retained directly, low- 929

confidence disagreements are discarded immedi- 930

ately, and intermediate-confidence cases are for- 931

warded to the reflection mechanism for further anal- 932

ysis. 933

B.1 Dataset and Temperature Specific 934

Confidence Thresholds 935

These two tables present the per-dataset, per- 936

temperature confidence thresholds applied during 937

disagreement handling. Table 4 gives the trigger- 938

level thresholds, while Table 5 lists the argument- 939

level thresholds. In both tables, θS is the sequence- 940

tagger (TagPrime) retention threshold, θ+SMoA is 941

the high-confidence Self-MoA keep threshold, and 942

θ−SMoA is the low-confidence Self-MoA drop thresh- 943

old. 944

Model Dataset Temp θS θ+SMoA θ−SMoA

Phi-3

M2E2 0.1 0.90 0.90 0.20
0.6 0.89 0.95 0.60
0.9 0.89 0.90 0.50

CASIE 0.1 0.035 1.10 0.90
0.6 0.008 1.10 0.80
0.9 0.007 0.95 0.40

MLEE 0.1 0.99 1.10 0.90
0.6 0.99 1.10 0.90
0.9 0.99 1.10 0.80

Llama-3.1

M2E2 0.1 0.80 1.00 0.70
0.6 0.80 0.90 0.50
0.9 0.80 0.85 0.30

CASIE 0.1 0.004 1.00 0.90
0.6 0.004 0.95 0.50
0.9 0.004 0.90 0.50

MLEE 0.1 1.00 1.00 0.10
0.6 1.00 0.95 0.40
0.9 0.00 0.80 0.55

Table 4: Trigger-level confidence thresholds

C Reflection Mechanism 945

Our reflection mechanism addresses ambiguous 946

predictions, cases of disagreement between the 947

Self-MoA ensemble and the sequence tagger that 948
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Model Dataset Temp θS θ+SMoA θ−SMoA

Phi-3

M2E2 0.1 1.00 1.00 0.70
0.6 0.99 0.85 0.60
0.9 0.99 0.75 0.30

CASIE 0.1 0.07 1.10 0.95
0.6 1.10 0.95 0.50
0.9 0.07 0.81 0.30

MLEE 0.1 1.10 0.90 0.30
0.6 1.10 0.90 0.40
0.9 1.10 0.60 0.30

Llama-3.1

M2E2 0.1 0.99 0.99 0.50
0.6 0.99 1.00 0.90
0.9 0.90 0.99 0.50

CASIE 0.1 0.05 1.00 0.70
0.6 0.03 0.90 0.60
0.9 0.04 0.90 0.60

MLEE 0.1 1.00 0.70 0.50
0.6 1.00 0.80 0.50
0.9 1.00 0.50 0.10

Table 5: Argument-level confidence thresholds

remain unresolved after confidence-based filtering.949

This section details the structured reflection proce-950

dure, including prompt design, parsing strategies,951

and LLM configuration.952

C.1 Prompt Format953

Our reflection mechanism employs carefully de-954

signed structured prompts to elicit precise re-955

sponses from the LLM. Each prompt follows a956

format comprising:957

1. Role specification: Defines the LLM’s pre-958

cise role (e.g., argument validator).959

2. Task description: Provides explicit instruc-960

tions for classifying candidates.961

3. Generation rules: Sets strict output con-962

straints to avoid hallucinations and ensure963

structured responses.964

4. Context: Supplies the complete passage and965

candidate triggers or arguments for accurate966

contextual evaluation.967

5. Example output: Demonstrates the required968

structured output format.969

C.2 LLM Configuration970

For both trigger and argument reflection, we use971

our fine-tuned LLMs with the following settings to972

ensure deterministic and accurate outputs:973

• Temperature: 0.1 (to ensure consistent, de-974

terministic outputs)975

• Max tokens: 4096976

You previously identified the following
candidate triggers:

<CANDIDATE_TRIGGERS_TO_VERIFY>

Your task is to decide for each whether it truly
signals an event trigger.

Generation Rules:
1. Classify each phrase as either 'Trigger' or '
Non-Trigger'.
2. Output strictly in the required format-no
extra text.

Output Format (strict):
- Wrap the answer in triple backticks (```)
- Write: ClassificationMap = {"phrase1": "
Trigger", "phrase2": "Non-Trigger", ...}

Example:
```ClassificationMap = {"therapy": "Trigger", "
increase dose": "Non-Trigger"}```

Passage:
<FULL_PASSAGE_TEXT>

Candidates:
<TRIGGER_CANDIDATE_LIST>

Q: For each candidate above, decide whether it
is a 'Trigger' or 'Non-Trigger'.

Figure 2: Structured prompt for binary trigger verifica-
tion via reflection.

• Length penalty: 1.05 (to maintain concise, 977

focused responses) 978

C.3 Trigger Reflection 979

Triggers requiring reflection are presented within 980

structured prompts (see Figure 2). The 981

LLM classifies each candidate as "Trigger" or 982

"Non-Trigger". Parsed reflection results update 983

the final trigger set by retaining only confirmed 984

triggers for subsequent argument extraction. 985

C.4 Argument Reflection 986

Ambiguous arguments undergo similar reflection 987

prompts (Figure 3), explicitly linking each argu- 988

ment to its trigger. The LLM assigns a binary 989

is_correct flag, enabling precise filtering and in- 990

tegration into final event representations. 991

D Final Integration of Predictions 992

After performing agreement detection, confidence- 993

based filtering, and reflection, we consolidate pre- 994

dictions into a unified output representation. 995
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You are an argument validator.
Given a single trigger and its candidate
arguments, decide which arguments are valid.

Generation Rules:
1. An argument is valid only if the passage
supports its role for this trigger.
2. Preserve the input order-do not add, remove,
or reorder.
3. Output exactly three fields per argument: `
text`, `role`, `is_correct`.
4. Wrap the entire response in triple backticks
(```).

Passage:
"<FULL_PASSAGE_TEXT>"

Trigger:
"<TRIGGER_TEXT>" (type: "<EVENT_TYPE>")

Candidate Arguments to verify:
<CANDIDATE_ARGUMENTS_TO_VERIFY>

Q: For each candidate above, set `is_correct` to
`true` or `false`.

Figure 3: Structured prompt for binary argument verifi-
cation via reflection.

D.1 Triggers996

Trigger predictions fall into one of three categories:997

• Agreed triggers: Identified by both the Self-998

MoA ensemble and the sequence tagger.999

• High-confidence single-source triggers: Pro-1000

duced by only one model but retained due to1001

exceeding the confidence threshold.1002

• Reflected triggers: Ambiguous cases re-1003

solved by the LLM reflection mechanism.1004

Each group is maintained as a separate list dur-1005

ing processing. In the final stage, all triggers are1006

merged to form the complete trigger set for each1007

document.1008

D.2 Arguments1009

Arguments are integrated per trigger, preserving1010

the provenance of each prediction. For a given1011

trigger, its associated arguments may come from1012

any of the following sources:1013

• Agreed arguments: Confirmed by both sys-1014

tems for a shared trigger.1015

• High-confidence disagreements: Provided1016

by one system with sufficient confidence.1017

• Reflected arguments: Verified after reflec-1018

tion over ambiguous trigger-argument pairs.1019

Throughout processing, argument predictions carry 1020

the identifier of their associated trigger, allowing us 1021

to correctly reassemble arguments under their origi- 1022

nating triggers during the final merge. This ensures 1023

that each trigger in the final output is paired with 1024

the full set of validated and reconciled arguments, 1025

regardless of their source path in the pipeline. 1026

E ARIS Algorithm 1027

The Reflective Agreement algorithm integrates 1028

predictions from a discriminative model (Tag- 1029

Prime) and a generative Mixture-of-Agents (Self- 1030

MoA), systematically leveraging model consensus, 1031

confidence-based filtering, and reflective inference 1032

to enhance event extraction accuracy. The ARIS 1033

Algorithm can be found in Algorithm 1. 1034

F Decomposed Instruction Dataset 1035

Construction 1036

This appendix describes the construction of the 1037

Decomposed Instruction Dataset that is used for 1038

the instruction fine-tuning stage in ARIS (Sec- 1039

tion 3.1). The goal of this dataset is to teach the 1040

LLM the complete reasoning chain of event extrac- 1041

tion through a curriculum of thirteen task variants. 1042

To equip the LLMs with a rich understanding of 1043

each event extraction subtask. We curated instruc- 1044

tion datasets from MLEE, M2E2, and CASIE, con- 1045

verting each into a unified JSON schema following 1046

the TextEE split 1 configuration. 1047

Holistic Event-Structure Modeling These vari- 1048

ants require the model to generate an end-to-end 1049

representation of every event in a passage, en- 1050

forcing coherence across triggers, types, and ar- 1051

guments: 1052

• Full-Structure Construction: extract all trig- 1053

gers in passage order, assign each the correct 1054

event type, and list every argument with its 1055

role. 1056

• Role-Ablated Construction: as above, but 1057

systematically mask exactly one argument 1058

role per instance, compelling the model to 1059

infer missing components. 1060

Trigger-Focused Reasoning By isolating the 1061

foundational stage of event extraction, these vari- 1062

ants sharpen the model’s precision in identifying 1063

and classifying triggers: 1064

• Trigger Detection Only: list every trigger 1065

span in passage order, without type informa- 1066

tion. 1067
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Algorithm 1: Reflective Agreement for Event Extraction (ARIS)
Data: Ordered trigger sets Etagger and ESMoA, confidence threshold τ , Reflection Module R,

input text x
Result: Final event trigger set Efinal(x)
Eagree(x)← {(t, p) | (t, p, _) ∈ Etagger, (t, p, _) ∈ ESMoA}
Edisagree(x)← {(t, p) | (t, p, _) ∈ (Etagger ∪ ESMoA) \ Eagree(x)}
Ehigh_conf (x), Eambiguous(x)← ∅, ∅
foreach (t, p) ∈ Edisagree(x) do

conftagger ← confidence of (t, p) in Etagger (0 if missing)
confSMoA ← confidence of (t, p) in ESMoA (0 if missing)
combined_conf ← conftagger+confSMoA

number of models predicting (t,p)

if combined_conf ≥ τ then
Ehigh_conf (x)← Ehigh_conf (x) ∪ {(t, p)}

else
Eambiguous(x)← Eambiguous(x) ∪ {(t, p)}

Ereflected(x)← R(Eambiguous(x), x)
Efinal(x)← SortByPosition(Eagree(x) ∪ Ehigh_conf (x) ∪ Ereflected(x))
return Efinal(x)

• Trigger Type Classification – Single: given1068

one trigger, choose its event type.1069

• Trigger Type Classification – Multi: batch-1070

classify the types of all triggers.1071

• Trigger vs. Non-Trigger Discrimination: bi-1072

nary classification of candidate n-grams as1073

triggers or non-triggers, using hard negatives1074

drawn from the local context.1075

• Event Detection (joint): detect all triggers1076

and assign types within a single structured1077

output.1078

Argument-Level Inference Focusing on post-1079

trigger reasoning, these variants train the model to1080

extract and label arguments conditioned on known1081

triggers:1082

• Argument Extraction – Single: list all ar-1083

gument spans for one specified trigger (roles1084

omitted).1085

• Argument Extraction – Multi: for each trig-1086

ger in passage order, list its arguments (roles1087

omitted).1088

• Role Assignment – Single: given one trig-1089

ger–argument pair, assign the correct role.1090

• Role Assignment – Multi: for a specified trig-1091

ger, assign roles to all its candidate arguments1092

in order.1093

• Argument Extraction (Joint): Given all trig-1094

gers, extract all associated arguments for each1095

trigger and assign a semantic role to each.1096

Table 6 summarizes the number of instruction ex- 1097

amples per variant and dataset, illustrating the scale 1098

and balance of our decomposed curriculum. To- 1099

gether, these thirteen variants provide a curriculum 1100

that progresses from atomic subtasks (e.g., isolated 1101

classification) to full event construction. 1102

All prompts follow a six-part canonical struc- 1103

ture (role → task → rules → format → example 1104

→ query) and answers are serialized as fenced 1105

code blocks under a single top-level key (e.g., 1106

EventArguments, Triggers, RoleAssignments). 1107

F.1 Negative Sampling for Trigger 1108

Discrimination 1109

To generate trigger vs. non-trigger examples, 1110

we sample negative n-grams that (i) occur exactly 1111

once in the passage, (ii) share no substring with any 1112

gold trigger, (iii) lie within a three-token window 1113

of any trigger, and (iv) satisfy a POS constraint 1114

(verbs, nouns, or determiners). We draw up to 1115

three negatives per document to ensure sufficient 1116

coverage of hard negatives. 1117

F.2 Example Instruction 1118

Figure 4 presents a complete Argument Extraction 1119

– Single instruction. 1120

G Training and Hyperparameter Details 1121

This section outlines the hardware setup and key hy- 1122

perparameters used to train the RoBERTa sequence 1123

tagger and fine-tune the LLM-based components 1124
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Task Variant Casie M2E2 MLEE

Full-Structure Construction 1,047 640 199
Role-Ablated Construction 930 606 194
Trigger Detection Only 1,047 640 199
Trigger Type Classification (Single) 5,181 736 1,793
Trigger Type Classification (Multi) 1,047 640 199
Trigger vs. Non-Trigger Discrimination (Multi) 931 526 193
Trigger vs. Non-Trigger Discrimination (Single) 4,184 1,381 938
Event Detection (Joint) 1,047 640 199
Argument Extraction (Single Trigger) 5,183 736 1,839
Argument Extraction (Multi Triggers) 1,047 640 199
Argument Extraction (Joint) 1,047 640 199
Role Assignment (Single Argument) 15,466 1,108 2,760
Role Assignment (Multi Arguments) 5,980 748 4,705

Total 44,137 9,681 13,616

Table 6: Number of examples per decomposed instruction variant and dataset.

You are an argument extractor.
Extract all arguments for the specific trigger
shown below.

Generation Rules:
1. List arguments in the exact order they appear
in the passage.
2. Ignore argument roles and include only the
argument texts.

Output Format (strict):
- Wrap the answer in triple backticks (```).
- Write: Arguments = ["arg1", "arg2", ...].

Example:
```
Arguments = ["insulin", "VEGF"]
```

Passage:
"US Needs Broad Coalition to Fight IS Militants,
Analysts Say-With President Barack Obama
setting a new strategy to combat Islamic State
militants (also known as ISIL or ISIS) in Iraq
and Syria, analysts say he will need to build a
broad-based coalition of international and
regional players to support those efforts"

Q: What are the arguments of the trigger "combat
" (event type: "Conflict:Attack")?
A: ```\nArguments = ["militants"]\n```

Figure 4: Argument Extraction – Single instruction
example

in ARIS. 1125

G.1 Infrastructure for LLM Fine-Tuning 1126

Experiments were conducted on a single GPU per 1127

run: 1128

• CASIE/ MLEE: NVIDIA H200 (140GB) 1129

• M2E2: NVIDIA A100 (80GB) 1130

Average fine-tuning times: CASIE (8h), MLEE 1131

(3h), M2E2 (<1 h). 1132

Training We fine-tune two instruction mod- 1133

els: microsoft/Phi-3-small-8k-instruct and 1134

meta-llama/Llama-3.1-8B-Instruct, each us- 1135

ing LoRA-based parameter-efficient adaptation. 1136

Both models are trained for 2 epochs with con- 1137

text length 4096, a batch size of 4. For Phi-3, 1138

we apply LoRA with r=32, α=128, dropout 0.05, 1139

and target modules {q_proj, k_proj, v_proj, 1140

o_proj, gate_proj, down_proj, up_proj}. 1141

For LLaMA-3.1, LoRA is applied to q_proj and 1142

v_proj with the same rank and scaling settings. 1143

G.2 RoBERTa Sequence Tagger 1144

We use roberta-large as the backbone encoder 1145

for all sequence tagging experiments. 1146

Training Batch sizes and epochs per dataset are 1147

summarized in below table. 1148

Dataset Task Batch Size Epochs

CASIE ED / EAE 16 / 4 10 / 90
MLEE ED / EAE 16 / 4 60 / 90
M2E2 ED / EAE 32 / 6 10 / 90

1149
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Input Text Moments after the revered activist was escorted through a crowd, the assassin walked
towards Gandhi and, at a range of just one meter, fired his gun three times, killing the
man who led India’s historic revolt against British rule.

Self–MoA Triggers fired, killing
TagPrime Triggers killing

Agreement Set killing
Disagreement (high-conf.) –
Disagreement (low-conf.) fired (discarded) ✓
Disagreement (need reflection) –

Final Trigger List killing

Argument Pipeline for "killing"

Self–MoA Arguments assassin
Agent−−−→ killing; Gandhi Victim−−−→ killing

TagPrime Arguments assassin
Agent−−−→ killing; man Victim−−−→ killing

...

Final Event Representation assassin
Agent−−−→ killing; Gandhi Victim−−−→ killing

Gold Reference assassin
Agent−−−→ killing; Gandhi Victim−−−→ killing; gun Instrument−−−−−→ killing

Figure 5: Illustrative walk-through of the ARIS pipeline on an M2E2 document. Step 1: the Self–MoA ensemble
suggests two triggers (killing, fired) while the TagPrime outputs (killing). Step 2: the agreement module keeps
the shared trigger killing and flags the disagreement fired. Step 3: confidence filtering rejects the low-confidence
fired. Step 4: reflection resolves argument-level mismatches. Outcome: the final event representation matches
gold except for the still-missing Instrument (gun), revealing an open error category.

H Examples1150

ARIS Refinement on M2E2 sample input Fig-1151

ure 5 illustrates the three-stage ARIS pipeline:1152

agreement detection, confidence-based filtering,1153

and reflection-based resolution.1154
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