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Abstract

Large Language Models (LLMs) inherently001
use autoregressive decoding, which lacks paral-002
lelism in inference and results in significantly003
slow inference speeds, especially when hard-004
ware parallel accelerators and memory band-005
width are not fully utilized. In this work, we006
propose Amphista, a speculative decoding al-007
gorithm that adheres to a non-autoregressive008
decoding paradigm. Owing to the increased009
parallelism, our method demonstrates higher010
efficiency in inference compared to autoregres-011
sive methods. Specifically, Amphista models012
an Auto-embedding Block capable of parallel in-013
ference, incorporating bi-directional attention014
to enable interaction between different draft-015
ing heads. Additionally, Amphista implements016
Staged Adaptation Layers to facilitate the tran-017
sition of semantic information from the base018
model’s autoregressive inference to the drafting019
heads’ non-autoregressive speculation, thereby020
achieving paradigm transformation and feature021
fusion. We conduct a series of experiments on022
a suite of Vicuna models using MT-Bench and023
Spec-Bench. For the Vicuna 33B model, Am-024
phista achieves up to 2.75× and 1.40× wall-025
clock acceleration compared to vanilla autore-026
gressive decoding and Medusa, respectively,027
while preserving lossless generation quality.028

1 Introduction029

Generative large language models (LLMs) have030

achieved significant breakthroughs in language pro-031

cessing by scaling the transformer decoder block,032

revealing a potential path towards AGI (Artificial033

General Intelligence) (OpenAI, 2022). However,034

during the decoding process of LLMs, the temporal035

dependency inherent in autoregressive next-token036

prediction, coupled with the massive parameter037

count of foundational models, leads to markedly038

low inference efficiency, characterized by high la-039

tency per token and low throughput per second.040

In this context, acceleration during inference has041

Figure 1: Top-1/5 accuracy for different heads of
Medusa and our Amphista. We perform testing with
randomly sampled 5% sharegpt conversation data. Am-
phista far outperforms Medusa in terms of head accu-
racy, especially for the latter two heads.

become a burgeoning research area. Speculative de- 042

coding (Stern et al., 2018; Chen et al., 2023) uses a 043

draft model for preliminary multi-step speculative 044

inference and a target model to verify the specula- 045

tive predictions, emerging as a very promising algo- 046

rithmic strategy. Notably, by employing a rejection 047

sampling strategy (Leviathan et al., 2023), the gen- 048

eration quality and accuracy of the speculate-and- 049

verify framework are consistent with those of the 050

base model, making speculative decoding a lossless 051

acceleration framework. Medusa decoding (Cai 052

et al., 2024) innovatively uses the base model’s last 053

hidden states to implement a multi-heads inference 054

framework. It has been widely adopted due to its 055

significant acceleration effect and simple structure. 056

However, based on our experiments, as shown 057

in Figure 1, we find that except for the first head, 058

Medusa heads’ prediction accuracy is relatively 059

low, which affects the acceleration performance on 060

downstream tasks. To address inaccuracies and en- 061

sure the parallel inference capability of the drafting 062

heads, we first propose the Auto-embedding Block, 063

which incorporates a bi-directional self-attention 064

module (Vaswani et al., 2017) following MLPs’ 065

activation (see Figure 2). This structure allows 066

preceding drafting heads to attend to subsequent 067

heads and, more importantly, enables backward 068

drafting heads to benefit from the information pro- 069
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vided by preceding heads. It equips drafting heads070

to better represent contextual information, thereby071

improving the acceptance rate of their predictions.072

Moreover, this is a non-autoregressive modeling073

structure that achieves lower drafting latency com-074

pared to an autoregressive approach.075

Additionally, we observe a gap between the au-076

toregressive base model and the non-autoregressive077

draft model in terms of token prediction paradigms.078

To bridge this paradigm gap and further enhance079

feature representations across different drafting080

heads, we introduce the staged adaptation layers.081

These layers serve as an adaptive module between082

the base model and the drafting model, facilitat-083

ing the transformation and integration of features.084

Through their adaptation, the semantically enriched085

feature is then input into the auto-embedding block086

after MLP activations. This process significantly087

aids the bi-directional attention mechanism in fus-088

ing features across different heads, ultimately im-089

proving the acceptance rate and translating into a090

noticeable wall-clock time speedup.091

Finally, we aim to better align the entire drafting092

model with the base model. To enhance adaptation093

with minimal computational overhead, a sampled094

token from the base model’s last prediction step095

is introduced to the staged adaptation layers. This096

key integration unites Amphista and the base model097

more effectively, thus enabling seamless inference098

acceleration with a significant improvement.099

To summarize, our contributions are as follows:100

• We propose Amphista, a cost-efficient non-101

autoregressive inference acceleration framework102

based on Medusa, enabling bi-directional inter-103

action (Auto-embedding) among different heads104

during the drafting phase.105

• To bridge the token prediction paradigm gap106

from autoregressive to non-autoregressive mod-107

eling and to further enhance the auto-embedding108

block’s representation, we introduce staged adap-109

tation layers to adapt information from the base110

model’s hidden states to different drafting posi-111

tions in two stages. Additionally, we introduce a112

sampled token to better align the draft and target113

models without incurring much overhead.114

• We evaluate a suite of foundation models of var-115

ious sizes. The experimental results show that116

Amphista significantly outperforms Medusa in117

both acceptance rate and speed-up across dif-118

ferent generation tasks. Notably, our method119

achieves better gains on larger foundational mod- 120

els, demonstrating a substantial scaling property. 121

2 Preliminaries 122

In this section, we introduce some preliminary 123

background related to our work as follows: 124

Speculative Decoding. Speculative execution is 125

widely utilized in the field of computer architecture 126

and has been successfully applied to LLM decod- 127

ing algorithm recently (Leviathan et al., 2023; Chen 128

et al., 2023; Stern et al., 2018). The core idea is to 129

leverage a small, lower-quality model (draft model) 130

together with a large, higher-quality model (target 131

model) to accelerate token generation. Concretely, 132

in each decoding step, the algorithm first uses the 133

draft model to autoregressively generate a sequence 134

of future tokens. These drafted tokens are then ver- 135

ified by the target model in a single forward pass. 136

During the verification process, a certain strategy 137

is applied to determine which tokens are accepted 138

by the target model and which are rejected and 139

discarded. Previous work (Leviathan et al., 2023) 140

has theoretically and empirically demonstrated that 141

the token output distribution of speculative decod- 142

ing is consistent with the autoregressive generation 143

of original target model, but with fewer decoding 144

steps, thus enhancing generation efficiency. 145

Medusa Decoding. Medusa Decoding (Cai et al., 146

2024) represents an efficient speculative decod- 147

ing algorithm that adheres to the draft-and-verify 148

principle. Specifically, Medusa decoding employs 149

several independent MLP layers as drafting heads, 150

which are integrated with the base model to form 151

a unified architecture. During each decoding itera- 152

tion, the base model’s lm_head is used to sample 153

the token at the next-0 position. Concurrently, the 154

i-th MLP head predicts the token at the next-i posi- 155

tion. After the generation of these drafting tokens, 156

the base model’s forward pass is employed to ver- 157

ify and determine whether to accept or reject these 158

tokens. By utilizing simple MLP layers as drafting 159

heads, Medusa effectively balances computational 160

overhead and prediction accuracy, thereby achiev- 161

ing significant acceleration. Hydra (Ankner et al., 162

2024), which is a subsequent state-of-the-art opti- 163

mization based on Medusa, transforms the indepen- 164

dent MLP heads into sequentially dependent MLP 165

heads, further enhancing the predictive accuracy. 166

Tree Attention. Tree attention (Miao et al., 2024; 167

Cai et al., 2024) is proposed to calculate atten- 168

tion scores for multiple draft candidates in parallel. 169
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Figure 2: The framework of our Amphista decoding. Our methods improve Medusa in two folds: (1) We introduce
staged adaptation layers, consisting of a group of causal Transformer Decoder layers built upon the base LLM,
to adapt the base model’s hidden states and sampled tokens in two stages. This module ensures that the adapted
features contain richer contextual information, supporting multiple-token predictions rather than focusing solely
on the immediate next-token prediction. (2) We introduce an auto-embedding block, which is a bi-directional
Transformer Encoder module with positional encoding. This block allows each head to attend to others, fostering
cooperative predictions and thereby enhancing the speculation accuracy during the drafting stage.

Medusa also uses tree attention, through the use of170

a specially designed tree causal mask, each node in171

the tree can only attend to its ancestors, ensuring172

the accurate computation of attention scores and173

efficiently processing multiple candidate sequences174

simultaneously (see A.1 for more details).175

3 Amphista176

The overview of our method is shown in Figure 2.177

Building its pipeline upon base model, Amphista178

contains two main modules: (1) Staged Adapta-179

tion Layers. They are causal Transformer Decoder180

layers that adapt the base model’s hidden states181

and sampled token embedding in two stages, each182

focusing on different drafting positions. This adap-183

tation process results in hidden states that are en-184

hanced with position-aware contextual information,185

improving overall prediction accuracy, especially186

for the latter steps. (2) Auto-embedding Block. It187

is a Transformer Encoder module that conducts bi-188

directional self-attention computations among the189

representations of different draft heads, allowing190

each head can be attended by the others. This facil-191

itates collaborative prediction among these heads, 192

thereby improving overall prediction accuracy. 193

3.1 Staged Adaptation Layers 194

Figure 2 demonstrates the relevant details of our 195

staged adaptation layers. Although base model’s 196

hidden states contain semantically rich information, 197

there are still differences in the representation re- 198

quirements between the base model and the draft 199

heads. Specifically, the hidden states of the base 200

model are trained only for predicting the next to- 201

ken, while draft heads need more contextual and 202

positon-aware hidden states to perform multi-step 203

speculation. To address this problem, Medusa-2 204

applies LoRA (Hu et al., 2021) for joint training of 205

the base model and draft heads, which may com- 206

promise the generality on downstream tasks. Hydra 207

employs a single prefix layer for all positions, lack- 208

ing targeted adaptation for different positions. We 209

propose an effective adaptation method by incor- 210

porating two adaptation layers to transform and 211

adapt the strong semantic information from the 212

base model in stages. Specifically, given the hid- 213

den states ht at position t from the base model’s 214
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final layer and the embedding of the token et+1215

sampled from ht, we use the two adaptation layers216

to transform them in stages as below:217

h1t = S1AL(fc1([ht; et+1]), kv
1
1:t−1)

h2t = S2AL(fc2([h
1
t ; et+1]), kv

2
1:t−1)

(1)218

Note that S1AL stands for the Stage-one Adapta-219

tion Layer that adapts base model hidden states and220

base token embedding, while S2AL stands for the221

Stage-two Adaptation Layer that adapts FAL’s out-222

put hidden states as well as the base token embed-223

ding. The function fc1 and fc2 are fully connected224

layers employed to transform features derived from225

the concatenation of hidden states and token em-226

beddings. The terms kv11:t−1 and kv21:t−1 repre-227

sent the key-value caches for each adaptation layer.228

Subsequently, adapted hidden states h1t and h2t are229

fed into the first and second halves of the drafting230

heads respectively, ensuring that each adaptation231

layer focuses on adapting base model’s semantic232

representations in specific future locations.233

3.2 Auto-embedding Block234

Figure 2 shows the detailed design of our Auto-235

embedding Block. Given a set of K drafting MLP236

heads, MLPk head is tasked with predicting the237

token in the (t+k+1)-th position. Upon acquiring238

adapted hidden states h1t and h2t from the first and239

second staged adaptation layers, we first utilize240

the MLP layers to project them into more position-241

aware and semantically rich hidden states:242

h
′
k = MLPk(h

1
t ), k = 1, 2, . . . , ⌊K/2⌋

h
′
k = MLPk(h

2
t ), k = ⌊K/2⌋+ 1, . . . ,K

(2)243

Where MLPi ∈ Rd×d, and d is the dimension of244

the base model hidden states. We then concatenate245

these K hidden states along the seq_len dimension:246

H ′ = concat([h′1, h
′
2, h

′
3, . . . , h

′
K ]) (3)247

Where H ′ ∈ RK×d. In order to further enhance248

the relative positional information among different249

heads, we introduce additional positional encod-250

ings. Specifically, we introduce a learnable posi-251

tional embedding PE ∈ RK×d, and the position-252

encoded hidden states Hp are expressed as:253

Hp = H ′ + PE (4)254

Finally, we employ an effective and efficient bi-255

directional self-attention module to enable mutual256

awareness among the drafting heads and use addi- 257

tional learnable lm_head to sample the top-k draft 258

tokens in each position: 259

attno = Self-Attention(Hp) (5) 260

261
draftk = lm_headk(attno[k]), k = 1, . . . ,K

(6) 262

In the end, these draft tokens are organized into a 263

draft tree and then verified by the LLM through tree 264

attention. Unlike the independent heads in Medusa 265

and the sequentially dependent heads in Hydra, 266

our Amphista adopts bi-directionally dependent 267

heads. This approach enhances overall prediction 268

accuracy while maintaining a non-autoregressive 269

mechanism, potentially reducing the substantial 270

computation overhead associated with sequential 271

calculations (i.e., autoregressive manner). 272

3.3 Training Objective 273

Our loss function consists of two components. The 274

first component aims to match the distribution of 275

the base model’s output tokens by employing a 276

Cross-Entropy (CE) loss between the logits of Am- 277

phista and those of the base model. The second 278

component uses a language modeling (LM) loss 279

to measure the discrepancy between Amphista’s 280

output and the ground truth tokens. This dual ob- 281

jective enables Amphista to align with the base 282

model while also acquiring predictive capabilities 283

from the real corpus to a certain extent. 284

LAmphista = λ1 Lalignment + λ2 Llm (7) 285

286
Lalignment = CE(logitsAmphista, logitsTt+1) (8) 287

288
Llm = CE(logitsAmphista, yground_truth) (9) 289

Note that logitsAmphista and logitsTt+1 are the log- 290

its from Amphista and the base model for token 291

Tt+1, while yground_truth represent the ground truth 292

labels of token Tt+1. The terms λ1 and λ2 are 293

weighting factors for the two training objectives. 294

4 Experiments 295

4.1 Experimental Settings 296

Models and Baselines. Following (Cai et al., 2024; 297

Li et al., 2024; Ankner et al., 2024), we use Vicuna 298

family of models (Zheng et al., 2024) as our base 299

model. Specifically, we implement our method 300

on Vicuna 7, 13, and 33B models with four draft- 301

ing heads. As for compared baseline methods, we 302

choose original Speculative Decoding, Lookahead 303

4



Table 1: The speed-up metric comparison on MT-Bench and Spec-Bench between different methods under greedy
setting (Temperature = 0). We regard the speed-up of vanilla autoregressive decoding as 1.00×.

Model Size Method MT-Bench
Spec-Bench

Avg
Translation Summarization QA Math RAG

7B

Vanilla 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00×
Spec-decoding 1.62× 1.11× 1.66× 1.46× 1.45× 1.61× 1.45×
Lookahead 1.44× 1.15× 1.26× 1.25× 1.56× 1.13× 1.27×
Medusa 1.87× 1.42× 1.42× 1.50× 1.74× 1.39× 1.50×
Hydra++ 2.37× 1.92× 1.80× 1.94× 2.43× 2.04× 2.03×
Amphista (ours) 2.44× 1.96× 2.11× 1.94× 2.45× 2.20× 2.13×

13B

Vanilla 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00×
Spec-decoding 1.66× 1.17× 1.75× 1.44× 1.59× 1.73× 1.53×
Lookahead 1.34× 1.08× 1.23× 1.15× 1.51× 1.15× 1.22×
Medusa 1.85× 1.55× 1.55× 1.53× 1.88× 1.51× 1.60×
Hydra++ 2.34× 1.75× 1.85× 1.85× 2.31× 1.86× 1.92×
Amphista (ours) 2.49× 1.88× 2.14× 1.88× 2.41× 2.04× 2.07×

33B

Vanilla 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00×
Spec-decoding 1.73× 1.28× 1.76× 1.54× 1.71× 1.69× 1.60×
Lookahead 1.32× 1.09× 1.21× 1.16× 1.55× 1.16× 1.24×
Medusa 1.97× 1.72× 1.62× 1.66× 2.06× 1.61× 1.73×
Hydra++ 2.54× 1.93× 2.10× 2.04× 2.63× 2.17× 2.17×
Amphista (ours) 2.75× 2.11× 2.49× 2.12× 2.83× 2.44× 2.40×

(Fu et al., 2024), Medusa (Cai et al., 2024) and304

Hydra (Ankner et al., 2024) for fair comparison.305

Training and Datasets. For the training stage,306

again following (Cai et al., 2024; Ankner et al.,307

2024), we use ShareGPT 1 dataset to fine-tune our308

proposed module while keeping base model frozen.309

Training is conducted using HuggingFace Trainer,310

which we employ with AdamW optimizer (β1=0.9,311

β2=0.999) and a cosine learning rate schedule with312

warmup strategy, the initial learning rate is set to313

1e-3 and we train 4 epochs. At the evaluation stage,314

we use MT-Bench (Zheng et al., 2024) and Spec-315

Bench (Xia et al., 2024) as our benchmark. MT-316

Bench is an open source multi-turn conversation317

benchmark which is also evaluated by Hydra and318

Medusa. Spec-Bench is a well-acknowledged and319

comprehensive benchmark designed for assessing320

speculative decoding methods across diverse appli-321

cation scenarios, it includes 480 test samples, en-322

compassing various tasks such as translation, ques-323

tion answering, math reasoning, summarization,324

and retrieval-augmented generation (RAG).325

Metrics. Following previous speculative decoding326

work, we choose tokens/s and tokens/step as our327

main metrics. Tokens/step measures the average328

token length accepted per forward pass of the target329

LLM. Tokens/s represents the overall throughput330

of the acceleration algorithm, which is influenced331

1ShareGPT. 2023. https://huggingface.co/datasets/Aeala/
ShareGPT_Vicuna_unfiltered

by both the prediction accuracy of the speculator 332

and the drafting latency of the speculator. 333

4.2 Evaluation of Amphista 334

Amphista is based on multi-head prediction rather 335

than feature auto-regression prediction. Hence, Hy- 336

dra, which employs multiple heads for autoregres- 337

sive drafting, has been chosen as a competitive 338

baseline method for comparison. Specifically, Hy- 339

dra’s best-performing model (i.e., Hydra++) is used 340

for fair evaluation and vicuna-68m (Yang et al., 341

2024) is used as draft model for the vanilla specu- 342

lative decoding method. We conduct all the experi- 343

ments on A100 40G GPUs, and all the experimental 344

settings are kept the same for fair comparison. 345

Table 1 and Table 2 present the speed-up met- 346

rics compared on MT-Bench and Spec-Bench un- 347

der greedy and random sampling settings (see 348

A.2 for more experiment results). Overall, Am- 349

phista demonstrates significant performance supe- 350

riority over Medusa and surpasses Hydra’s best 351

results by a considerable margin across a variety 352

of generation tasks, and also greatly exceeding 353

the speed-up achieved by vanilla speculative de- 354

coding. In detail, Amphista achieves a 2.44× - 355

2.75× speed-up on MT-Bench and 2.13× - 2.40× 356

speed-up on Spec-Bench under greedy decoding 357

setting. Similarly, under random sampling setting, 358

Amphista achieves a 2.37× - 2.85× speed-up and 359

1.99× - 2.43× speed-up on MT-Bench and Spec- 360
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Table 2: The speed-up metric comparison on MT-Bench and Spec-bench between different methods under random
sampling setting (Temperature = 0.7). We regard the speed-up of vanilla autoregressive decoding as 1.00×.

Model Size Method MT-Bench
Spec-Bench

Avg
Translation Summarization QA Math RAG

7B

Vanilla 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00×
Spec-decoding 1.39× 1.02× 1.41× 1.24× 1.32× 1.43× 1.28×
Lookahead 1.28× 1.05× 1.21× 1.12× 1.25× 1.14× 1.16×
Medusa 1.86× 1.51× 1.47× 1.57× 1.89× 1.43× 1.57×
Hydra++ 2.35× 1.81× 1.81× 1.97× 2.41× 1.74× 1.95×
Amphista (ours) 2.37x 1.81× 1.92× 1.96× 2.43× 1.79× 1.99×

13B

Vanilla 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00×
Spec-decoding 1.52× 1.08× 1.57× 1.33× 1.42× 1.46× 1.37×
Lookahead 1.30× 1.07× 1.19× 1.15× 1.38× 1.14× 1.19×
Medusa 2.01× 1.65× 1.62× 1.71× 2.01× 1.57× 1.71×
Hydra++ 2.57× 1.90× 1.99× 2.12× 2.56× 2.04× 2.12×
Amphista (ours) 2.65× 1.93× 2.16× 2.17× 2.64× 2.15× 2.22×

33B

Vanilla 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00×
Spec-decoding 1.58× 1.21× 1.62× 1.48× 1.59× 1.54× 1.48×
Lookahead 1.29× 1.04× 1.18× 1.15× 1.52× 1.14× 1.21×
Medusa 2.06× 1.71× 1.79× 1.76× 2.10× 1.79× 1.83×
Hydra++ 2.74× 2.01× 2.24× 2.24× 2.82× 2.26× 2.31×
Amphista (ours) 2.85× 2.05× 2.51× 2.29× 2.90× 2.39× 2.43×

Bench with different base model sizes respectively.361

These robust results demonstrate that enhancing362

non-autoregressive drafting can surpass autoregres-363

sive drafting in terms of speed-up, highlighting364

the efficiency of our Amphista architecture. Dur-365

ing the drafting stage, all computations in non-366

autoregressive modeling (i.e., Amphista) can be367

processed in parallel, better leveraging the parallel368

computing capabilities of modern GPU accelera-369

tors. This leads to a more optimal trade-off between370

drafting acceptance rate and drafting latency.371

Moreover, Amphista exhibits a discernible up-372

ward trend in speed-up when employed on larger373

base models. This can be attributed to Amphista’s374

cost-efficient non-autoregressive modeling and ef-375

fective transformation of semantic information376

from the base model. Amphista allows for appro-377

priate increases in accepted token length without378

introducing excessive additional inference costs.379

For more exploration on the performance potential380

of Amphista, please refer to A.2.3.381

Last but not least, we further provide the ac-382

tual throughput of different methods on MT-Bench383

with a batch size of 1. As depicted in Figure 3,384

Amphista achieves an actual throughput of approx-385

imately 120 tokens/s with a 7B base model and386

about 80 tokens/s with a 13B base model under387

both temperature settings. This performance sur-388

passes that of Medusa and Hydra, underscoring389

Amphista’s advantages in practical deployment.390

Figure 3: Throughput (tokens/s) on MT-Bench with
different base model sizes and temperatures.

Table 3: Results on CNN/DM and XSUM with different
temperatures, AR means Auto-Regressive decoding.

Benchmark Temp Method ROUGE-1 ROUGE-2 ROUGE-L Speed-up

AR 18.74 8.44 12.59 1.00×
0.0

Amphista 18.70 8.44 12.59 2.15×

AR 17.92 7.65 11.93 1.00×CNN/DM
0.7

Amphista 17.91 7.65 11.92 2.31×

AR 17.32 5.05 12.16 1.00×
0.0

Amphista 17.30 5.05 12.15 2.25×

AR 15.99 4.44 11.42 1.00×XSUM
0.7

Amphista 15.96 4.43 11.40 2.10×

4.3 Generation Quality of Amphista 391

We perform evaluation on XSUM (Narayan et al., 392

2018) and CNN/DM (See et al., 2017) to validate 393

the generation quality of our Amphista (more de- 394

tails can be found in appendix A.2.1). From the 395

ROUGE-1/2/L scores (Lin, 2004) in Table 3, we 396

can find that Amphista can reserve the output distri- 397

bution quality while achieving 2.10×-2.31× speed- 398

up compared with vanilla auto-regressive decoding. 399
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Table 4: Ablation experiments of different model variants on MT-Bench and Spec-Bench, with the base model
being Vicuna 7B and the evaluation metric being speed-up. Medusa can be considered as Amphista w/o any added
modules, and Hydra can be seen as Medusa w/ sequential dependency heads.

Method Variants MT-Bench
Spec-Bench

Avg
Translation Summary QA Math RAG

Medusa 1.86× 1.51× 1.47× 1.57× 1.89× 1.43× 1.57×
Hydra++ 2.37× 1.92× 1.80× 1.94× 2.43× 2.04× 2.03×
Amphista w/o Auto-embedding 2.30× 1.82× 2.00× 1.81× 2.25× 1.99× 1.97×
Amphista w/o Position-Encoding 2.42× 1.96× 2.08× 1.92× 2.42× 2.18× 2.11×
Amphista w/o Staged-Adaptation 2.14× 1.85× 1.75× 1.78× 2.10× 1.91× 1.88×
Amphista w/ One-Adaptation-Layer 2.31× 1.90× 1.99× 1.83× 2.35× 2.14× 2.04×
Amphista w/o Sampled-Token 2.25× 1.88× 1.80× 1.81× 2.26× 2.01× 1.95×
Amphista (ours) 2.44× 1.96× 2.11× 1.94× 2.45× 2.20× 2.13×

Table 5: Ablation experiments of different model variants on MT-Bench and Spec-Bench, with the base model being
Vicuna 7B and evaluation metric being average accepted length. Medusa can be considered as Amphista w/o any
added modules, and Hydra can be seen as Medusa w/ sequential dependency heads.

Method Variants MT-Bench
Spec-Bench

Avg
Translation Summary QA Math RAG

Medusa 2.52 2.12 2.01 2.05 2.48 2.09 2.15
Hydra++ 3.58 2.80 2.70 2.91 3.61 2.90 2.98
Amphista w/o Auto-embedding 3.16 2.41 2.66 2.40 3.11 2.49 2.60
Amphista w/o Position-Encoding 3.47 2.61 2.90 2.78 3.47 2.91 2.93
Amphista w/o Staged-Adaptation 2.91 2.42 2.24 2.30 2.85 2.38 2.43
Amphista w/ One-Adaptation-Layer 3.36 2.49 2.68 2.71 3.37 2.75 2.80
Amphista w/o Sampled-Token 3.11 2.43 2.48 2.45 3.15 2.55 2.61
Amphista (ours) 3.50 2.62 3.01 2.80 3.50 2.96 2.98

4.4 Ablation Study400

Diverging from other approaches based on spec-401

ulative sampling and Medusa, Amphista’s main402

insight lies in adapting transformation through403

Staged Adaptation Layers and enhancing integra-404

tion via the non-autoregressive Auto-embedding405

Block. This approach strengthens semantic infor-406

mation derived from the base model. In doing407

so, Amphista achieves significant improvements in408

drafting accuracy while also maintaining highly ef-409

ficient parallel computing capabilities. The former410

experimental results show that Amphista indeed411

achieves a significant improvement in both drafting412

accuracy and drafting efficiency. In this section,413

we conduct comprehensive ablation experiments414

based on the vicuna 7B model to validate the effec-415

tiveness of each proposed module in our Amphista.416

Specifically, we conduct five model variants as fol-417

lows: (1) Amphista w/o Auto-embedding which418

means removing the Auto-embedding Block in419

Amphista. (2) Amphista w/o Position-Encoding420

which means removing the additional position em-421

bedding matrix in Auto-embedding Blcok. (3) Am-422

phista w/o Staged-Adaptation which means re-423

moving staged adaptation layers. (4) Amphista w/ 424

One-Adaptation-Layer which means using only 425

one adaptation layer for all the drafting heads. (5) 426

Amphista w/o Sampled-Token which means re- 427

moving sampled token during adaptation process. 428

It should be noted that we consider the original 429

Medusa as Amphista without any additional mod- 430

ules, and we regard Hydra as Medusa with sequen- 431

tially dependent heads. The corresponding experi- 432

mental results are presented in Table 4 and Table 5. 433

From these comparative results, four key observa- 434

tions can be found as follows: 435

• Amphista w/o Auto-embedding exhibits an ap- 436

proximate 5%-8% decrease in speed-up perfor- 437

mance and about a 10%-12% reduction in aver- 438

age accepted length. This highlights the effective- 439

ness of the Auto-embedding Block in mitigating 440

inaccuracies deriving from the independent spec- 441

ulation of Medusa heads, and demonstrating the 442

efficiency of non-autoregressive drafting compu- 443

tations. Additionally, Amphista w/o Position- 444

Encoding exhibits a slight performance decline, 445

with an approximate 2% decrease in inference 446

speed-up, suggesting that position encoding pro- 447
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vides additional benefits.448

• Amphista w/o Staged-Adaptation leads to a449

more significant decline in speed-up (14%) and450

average accepted length (16%). This empha-451

sizes the importance of bridging the feature452

gap between the base model and drafting heads,453

and further underscores the critical role of the454

staged adaptation layer in enhancing the auto-455

embedding block. Additionally, it is noteworthy456

that Amphista w/ One-Adaptation-Layer uti-457

lizes only a single adaptation layer for all drafting458

positions. In contrast to staged adaptation, this459

approach poses greater challenges to the adap-460

tation process, resulting in some performance461

degradation, thereby validating the rationale be-462

hind our staged adaptation design.463

• Amphista w/o Sampled-Token also causes an464

approximate 8% performance decline. Unlike465

previous works (e.g., Hydra and EAGLE), we do466

not use the sampled token directly for the next467

step of prediction. Instead, we adapt it along468

with the base model’s hidden states. This not469

only indicates that the sampled token, in addition470

to base model hidden states, contains important471

semantic information, but also demonstrates the472

effectiveness of our staged adaptation approach.473

• Thanks to the autoregressive characteristics and474

the substantial number of parameters in the MLP475

layers, Hydra exhibits great performance in av-476

erage token length. However, the computational477

overhead of auto-regressive methods is huge,478

resulting in significant reductions when trans-479

lated into final speed-up. In contrast, Amphista480

achieves a comparable average token length to481

Hydra, and due to the parallelism and efficiency482

of its non-autoregressive computations, it ulti-483

mately attains a more favorable overall trade-off.484

5 Related Work485

Increasing techniques have been proposed to en-486

hance the inference speed of large language mod-487

els (LLMs), covering aspects of system hardware,488

model architecture, and decoding algorithms. A489

significant branch of these techniques is Model490

Compression, which includes methods such as491

model quantization (Yao et al., 2023; Dettmers492

et al., 2024; Liu et al., 2023a; Ma et al., 2024),493

pruning (Belcak and Wattenhofer, 2023; Liu et al.,494

2023b; Zhong et al., 2024), and distillation (Zhou495

et al., 2024; Sun et al., 2024; Touvron et al., 2021).496

Additionally, techniques like kv-cache (Ge et al., 497

2023; Kwon et al., 2023), flash-attention (Dao et al., 498

2022), and early exiting (Bae et al., 2023; Elhoushi 499

et al., 2024; Liu et al., 2024a) have also signifi- 500

cantly reduced inference overhead. 501

Another important line of research is Specula- 502

tive Decoding, which our work is based on. It can 503

be broadly categorized into two types. The first 504

treats the target model and draft model separately 505

and independently, involving the use of a small lan- 506

guage model (Kim et al., 2024; Leviathan et al., 507

2023; Liu et al., 2024b; Monea et al., 2023; Chen 508

et al., 2024; Du et al., 2024), external database, or 509

n-grams pool (He et al., 2024; Fu et al., 2024; Kou 510

et al., 2024; Ou et al., 2024) to generate candidate 511

token sequences or token trees (Miao et al., 2024), 512

which the LLM then verifies. The second type 513

views the draft model as a dependent approxima- 514

tion of the target model, deriving the draft model di- 515

rectly from the target model or building additional 516

modules on top of the base model for drafting. For 517

instance, Self-SD (Zhang et al., 2023) utilizes the 518

LLM itself by skipping some decoder layers for 519

drafting, ReDrafter (Zhang et al., 2024) uses an 520

RNN-style structure to generate draft tokens, and 521

EAGLE (Li et al., 2024) trains a feature regressive 522

layer to predict subsequent tokens. Medusa (Cai 523

et al., 2024), Clover (Xiao et al., 2024), and Hydra 524

(Ankner et al., 2024), which are most similar to 525

our work, use lightweight drafting heads to obtain 526

candidate token trees. Unlike these approaches, we 527

propose a novel method using a bi-directional auto- 528

embedding block combined with additional staged 529

adaptation layers to further enhance acceleration. 530

6 Conclusion 531

We propose Amphista, an efficient non- 532

autoregressive speculative decoding framework 533

that accelerates inference through parallel pro- 534

cessing and enhances alignment between the 535

base and draft models via feature adaptation. 536

Specifically, Amphista introduces two key mod- 537

ules: the Auto-embedding Block, which uses 538

bi-directional self-attention to enable collaborative 539

speculation among drafting heads, and the Staged 540

Adaptation Layers, which transform semantic 541

information from the base model for multi-step 542

prediction. Extensive experiments demonstrate 543

the effectiveness and superiority of Amphista, 544

showcasing the potential of non-autoregressive 545

modeling for speculative decoding. 546
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Limitations547

While we have found and adhered to using bi-548

directional self-attention for non-autoregressive549

modeling as an efficient inference structure, we550

have not yet fully explored the optimal structure of551

the Auto-embedding Block module. Specifically,552

this includes experimenting with different interme-553

diate sizes (i.e., the hidden dimensions used in self-554

attention computations) and increasing the number555

of self-attention layers within the auto-embedding556

block to enhance its modeling depth (see A.2.3).557

Both of these structural optimizations could po-558

tentially improve Amphista’s acceleration perfor-559

mance within the current framework. Additionally,560

this work primarily focuses on scenarios where the561

batch size is equal to one, with limited consider-562

ation and optimization for larger batch sizes. We563

leave these areas as our future work and also hope564

that researchers interested in non-autoregressive565

inference acceleration will build upon this founda-566

tion.567
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A Appendix801

A.1 Draft Tree802

For a fully fair comparison, we adopt the same draft803

tree structure as Medusa and Hydra. As shown in804

Figure 4, this tree is a sparse structure with a depth805

of 4, representing four drafting heads, and includes806

a total of 64 nodes, including the root node (the807

token sampled in the final step of the base model).808

Each layer’s nodes represent the tokens obtained809

by top_k sampling from the corresponding drafting810

head. The entire tree is constructed using an auxil-811

iary dataset by maximizing the acceptance proba-812

bility of the whole tree (Cai et al., 2024). Moreover,813

a specially designed tree mask is used to correctly814

compute attention scores while simultaneously han-815

dling multiple paths, as described in Figure 5.816

However, in some cases, due to the lack of re-817

dundant computational power (such as in high-818

throughput inference service scenarios) or par-819

allel accelerators, an excessive number of tree820

nodes may lead to significant computation over-821

head, thereby affecting the acceleration efficiency822

of the algorithm. Consequently, we configure vary-823

ing numbers of draft tree nodes without changing824

the tree depth for more comprehensive comparison,825

and the experimental results are shown in Table826

6. From these results we observe that as the num-827

ber of tree nodes decreases, the width of the tree828

reduces, leading to a decrease in speed-up for all829

compared methods. However, the decline is slightly830

less pronounced for Amphista, owing to its higher831

head accuracy. Furthermore, across various tree832

node configurations, we consistently achieve op-833

timal performance, demonstrating the advantages834

of our algorithm in practical deployment and low-835

resource scenarios.836

Table 6: Speed-up comparison on MT-Bench with vary-
ing number of draft tree nodes.

Method Node = 22 Node = 35 Node = 45 Node = 64

Medusa 1.71× 1.80× 1.87× 1.87×
Hydra++ 2.17× 2.26× 2.28× 2.37×
Amphista 2.29× 2.37× 2.42× 2.44×

A.2 Additional Experiments Results837

A.2.1 Evaluation on XSUM and CNN/DM838

We use XSUM (Narayan et al., 2018) and839

CNN/DM (See et al., 2017) for evaluating the840

generation quality of our Amphista, the base841

Figure 4: Draft tree used in Medusa, Hydra and our
Amphista.
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Figure 5: An illustration of Tree Attention. Assum-
ing Medusa has only 2 heads, where head-1 generates
the top-2 tokens and head-2 generates the top-3 tokens,
resulting in 6 candidate sequences (e.g., ABD). Addi-
tionally, a special tree mask is designed to ensure causal
relationships among the top-k nodes of each head.

model is vicuna 7B. Specifically, we perform zero- 842

shot evaluation and the input prompt template is 843

'Article:'+ 'Original Text' + '\nSummary:'. 844

Additionally, for input prompts exceeding a length 845

of 2048, we perform truncation to meet the base 846

model’s input requirements. 847

Table 7: The speed-up metric comparison on Humaneval
and GSM8K between different methods under greedy
setting. The base model is vicuna 7B and 13B, and we
regard the speed-up of vanilla auto-regressive decoding
as 1.00×.

Model Size Benchmark Vinilla AR Medusa Hydra++ Amphista

7B
Humaneval 1.00× 2.40× 2.76× 3.02×
GSM8K 1.00× 1.87× 2.14× 2.32×

13B
Humaneval 1.00× 2.11× 2.75× 3.00×
GSM8K 1.00× 1.98× 2.39× 2.68×

A.2.2 Code Generation and Math Reasoning 848

In this section, we provide more experimental re- 849

sults on code generation and math reasoning. we 850

choose public Humaneval (Chen et al., 2021) and 851

GSM8k (Cobbe et al., 2021) benchmark for evalu- 852
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Table 8: The speed-up and average accepted length metric comparison with the base model being vicuna 7B. We
regard the speed-up of vanilla auto-regressive decoding as 1.00×.

Metric Method MT-Bench
Spec-Bench

Avg
Translation Summarization QA Math RAG

Speed-up

Vanilla 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00×
Hydra++ 2.37× 1.92× 1.80× 1.94× 2.43× 2.04× 2.03×
Amphista 2.44× 1.96× 2.11× 1.94× 2.45× 2.20× 2.13×
Amphista-α 2.63× 2.09× 2.23× 2.06× 2.61× 2.34× 2.27×

Average Accepted Length

Vanilla 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Hydra++ 3.58 2.80 2.70 2.91 3.61 2.90 2.98
Amphista 3.50 2.62 3.01 2.80 3.50 2.96 2.98
Amphista-α 3.58 2.70 3.14 2.90 3.62 3.08 3.09

ation, and the base model is vicuna 7B and vicuna853

13B. According to the results in Table 7, we can854

observe that due to the universal template and nota-855

tion of code generation and mathematical reason-856

ing, almost all compared methods achieve a higher857

speed-up. Furthermore, our Amphista algorithm858

consistently attains optimal performance, demon-859

strating the superiority of our approach.860

A.2.3 Exploring The Potential of Amphista861

In this section, we conduct a preliminary explo-862

ration of Amphista’s scaling ability to demon-863

strate its potential for performance enhancement.864

By leveraging the efficiency of non-autoregressive865

modeling, we increase the number of auto-866

embedding blocks, which are essential modules867

within Amphista, while maintaining parallel infer-868

ence. This approach yields remarkable results, de-869

tailed in Table 8. Specifically, we employ two lay-870

ers of self-attention in the auto-embedding module,871

renaming our method as Amphista-α. This adjust-872

ment leads to an average accepted length increase873

of approximately 0.1-0.2 tokens and a notable 5%-874

8% improvement in overall speed-up, highlighting875

Amphista’s performance growth potential. We an-876

ticipate this to be a highly promising and potent877

attribute of Amphista.878

A.3 Case Study879

Here we show some real case studies (see Figure880

6, 7) on Amphista inference, the base model is Vi-881

cuna 7B. Note that we do not apply any special882

processing to the tokenizer’s output, preserving the883

original results. Tokens highlighted in red repre-884

sent those generated by our Amphista during each885

step of decoding. Tokens in black indicate those886

generated by base model. From these practical ex-887

amples, we can observe that in the vast majority888

of cases, Amphista generates at least two tokens889
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[AMD Official Use Only]

Here is a Python code to calculate Fibonacci numbers: 

 ```python

def fibonacci(n): 

    if n <= 1: 

        return n

    else:

        return fibonacci(n-1) + fibonacci(n-2)

 

 for i in range(10):

    print(fibonacci(i))

``` 

This code defines a function `fibonacci` that takes an integer `n` as input and returns the `n `- th Fibonacci number. The function uses 

recursion to calculate the Fibonacci numbers, starting with the first two numbers ( 1 and 1 ) and then using the previous two numbers to 

calculate the next two number . 

The code then uses a `for` loop to print the first  10 Fibonacci numbers.</s>

Input Prompt: Write a code to calculate Fibonacci numbers.

Response

Figure 6: Case study on code generation. Tokens in red
means those generated by our Amphista and tokens in
black means those generated by base model itself.
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[AMD Official Use Only]

Input Prompt: What good habits can make the body healthier?

There are many good habits that can help keep the body healthy. Some of these include:

1. Eating a balanced diet that includes a variety of fruits, vegetables, whole grains, and lean proteins. 

2. Getting regular exercise, such as walking, jogging, or lifting weights. 

3. Getting enough sleep, ideally 7 - 9 hours per night.

4. Practicing good hygiene, such as washing your hands regularly and brushing your teeth twice a day. 

5. Avoiding smoking and excessive alcohol consumption. 

6. Managing stress through activities such as meditation, yoga, or deep breathing exercises.

7. Getting regular check-ups and screenings, such as blood pressure checks and cancer screenings.

8. Practicing safe sex and avoiding risky behaviors that can spread sexually transmitted in fections.

9. Staying hydrated by drinking plenty of water throughout the day.

10. Practicing mindfulness and being aware of your body's needs and signals.</s> 

Response

Figure 7: Case study on text generation. Tokens in red
means those generated by our Amphista and tokens in
black means those generated by base model itself.

per decoding step. This generally results in a stable 890

at least 2x speed-up, demonstrating the efficiency 891

of our algorithm. Additionally, Amphista’s output 892

is consistent with the base model’s auto-regressive 893

decoding output, ensuring the generation quality of 894

our Amphista. 895
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