
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Dynamic Security Analysis of JavaScript: Are We There Yet?
Anonymous Author(s)

Abstract
In this paper, we systematically evaluate the effectiveness of existing
tools for the dynamic security analysis of client-side JavaScript,
focusing in particular on information flow control. Each tool is
evaluated in terms of: (𝑖) compatibility, i.e., the ability to process
and analyze existing scripts without breaking; (𝑖𝑖) transparency, i.e.,
the ability to preserve the original script semantics when security
enforcement is not necessary; (𝑖𝑖𝑖) coverage, i.e., the effectiveness
in terms of number of detected information flows; (𝑖𝑣) performance,
i.e., the computational overhead introduced by the analysis. Our
investigation shows that most of the existing analysis tools are
incompatible with the modern Web and the compatibility issues
affecting them are not easily fixed. Moreover, transparency issues
abound and make us question analysis correctness. This is also
confirmed by our coverage evaluation, showing that some tools
are unable to detect any information flow on real-world websites,
while the remaining tools report significantly different outputs.
Finally, we observe that the computational overhead of analysis
tools may be significant and can exceed 30x. In the end, out of all
the evaluated tools, just one of them (Project Foxhound) is effective
enough for practical adoption at scale.

CCS Concepts
• Security and privacy→Web application security; Software
security engineering.

Keywords
JavaScript, Information flow control, Web measurements
ACM Reference Format:
Anonymous Author(s). 2018. Dynamic Security Analysis of JavaScript: Are
We There Yet?. In Proceedings of Make sure to enter the correct conference
title from your rights confirmation emai (Conference acronym ’XX). ACM,
New York, NY, USA, 11 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
JavaScript is the most popular programming language in the world,
according to recent data from GitHub [23] and Stack Overflow [44].
Although originally designed as a simple scripting language to
carry out easy tasks and make web pages more enjoyable to nav-
igate, it evolved into a production-level programming language
that is now used to develop security-sensitive applications, thus
motivating a significant interest by the research community. The
community proposed different approaches to analyze JavaScript:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

static analysis [26, 29, 31, 38], dynamic analysis [11] and hybrid
solutions [41, 48]. Yet, to the best of our knowledge, we still lack
standard and widely accepted analysis tools that can be used to
perform realistic security assessments of the JavaScript code avail-
able on the modern Web. For example, Steffens et al. implemented
their own taint tracking tool for JavaScript as part of a study on
client-side XSS [45], while Ahmad et al. developed a new taint
tracking engine to investigate information flows involving the web
storage [10]. Even industrial vendors are developing new tools
for JavaScript analysis, for example SAP recently released an in-
strumented browser for information flow tracking called Project
Foxhound [30]. Samsung also developed their own taint tracker
for JavaScript called Ichnaea [28]. The fact that everybody is im-
plementing their own analysis tool suggests that existing efforts
are difficult to reuse or suffer from important issues, but what is
actually lacking remains unclear. The goal of this paper is shed-
ding light on the current state of the art to better understand key
strengths and weaknesses of existing analysis tools.

Contributions. In this work, we systematically evaluate the effec-
tiveness of existing tools for information flow control of JavaScript
programs. Information flow control is a powerful and general tech-
nique for security assessments, being able to uniformly capture both
confidentiality and integrity policies [39]. We focus on dynamic
and hybrid approaches, because they are better suited to deal with
the high amount of dynamic features of JavaScript, such as string-
to-code transformation functions [12]. Moreover, we only focus on
the traditional use case of JavaScript as a client-side scripting lan-
guage running in web browsers, which received a significant deal
of attention from the web security community, see, e.g., research
on web tracking [9] and XSS detection [45].

After a preliminary investigation of the state of the art to identify
a set of candidate analysis tools to evaluate (Section 2), we assess
them on popular live websites to measure:

• Their compatibility with the modern Web, i.e., their ability
to process and analyze existing scripts from real-world
websites without breaking (Section 3).

• Their transparency guarantees, i.e., their ability to preserve
the execution behavior of the original scripts when they do
not violate an intended information flow policy (Section 4).

• Their coverage, i.e., their effectiveness in terms of number
of detected information flows (Section 5).

• Their performance in terms of running times, which deter-
mines their practicality and amenability for large-scale web
security measurements (Section 6).

Our analysis shows, despite significant efforts from the research
community, most analysis tools are unavailable, difficult to run or
do not support modern browser automation frameworks. Even for
those tools which we are able to run, the results are largely unsatis-
factory, showing that just a single tool (Project Foxhound [30]) is
effective enough for practical adoption. To support reproducibility,
we will share all our code and data after paper acceptance.

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

2 Methodology
We here discuss the methodology used in our evaluation of publicly
available dynamic analysis tools for JavaScript.

2.1 Tool Selection
To make our investigation systematic, we started our tool selection
from a survey of dynamic analysis techniques for JavaScript by
Andreasen et al. [11] and we used Google Scholar to identify more
recent research that references any of the papers from the survey.
To better define the scope of our evaluation and avoid improper
comparisons, we restricted the focus to information flow analyzers
rather than generic dynamic analysis tools such as Jalangi [42].

This process led to a preliminary list of 18 tools to evaluate,
which we further reduced based on two additional criteria required
by our experimental study. First, we require tool availability, i.e., we
only focus on analysis tools which are publicly available according
to the research papers where they have been presented. To obtain
a tool, we first look at the location of the tool’s binary or source
code reported in the paper. If this attempt is unsuccessful, e.g., due
to broken links, we request the implementation via e-mail to all
authors. In case we receive no reply within a week, we solicit the
authors again and wait another week for a reply. If we eventually
get the implementation, we spend up to eight hours tomake it run in
our testing environment and deem it as functional or not. Moreover,
we require support for browser automation. Since our analysis is
based on a large-scale measurement, we discard those tools which
are not supported by standard browser automation frameworks.
In particular, we discard those tools which are integrated into a
web browser that cannot be controlled using a modern version of
Selenium [8], Puppeteer [7] or Playwright [6]. The full list of tools
is shown in Appendix A.

After considering for evaluation 18 tools presented in the lit-
erature, we were left with just eight tools that we managed to
download and put into operation. The evaluated tools are:

(1) Project Foxhound [30]: a modified version ofMozilla Firefox
supporting dynamic taint tracking;

(2) PanoptiChrome [27]: a modified version of Chromium sup-
porting information flow analysis;

(3) JSFlow [25]: an experimental JavaScript engine with infor-
mation flow control capabilities, which we evaluate through
its deployment within the Chromium browser used for re-
search on browser fingerprinting [43];

(4) JEST [18]: a dynamic information flow analyzer for JavaScript
based on monitor inlining and value boxing;

(5) IF-Transpiler [41]: a hybrid approach for information flow
control of JavaScript operating in two stages, transpilation
and monitor inlining;

(6) GIFC [37]: a dynamic information flow analyzer built on
top of Linvail [17], a dynamic analysis tool for JavaScript
with fine-grained tracking of runtime values by means of
metaprogramming;

(7) LinvailTaint [16]: a dynamic taint tracker based on Linvail;
(8) JalangiTT [10]: a dynamic taint analysis tool inspired to

Ichnaea [28] (that is not publicly available) and based on
Jalangi [42], a generic dynamic analysis framework based
on code-level instrumentation.

The significant gap between the number of considered tools and
the number of evaluated tools already leads to a first insight of our
research: most analysis tools for JavaScript are unavailable, difficult
to automate or do not work on modern setups.

The 18 analysis tools that we considered are based on different
architectures: ten are based on browser modifications, two are im-
plemented as browser extensions and the remaining six are based
on code rewriting, i.e., the code is instrumented for analysis pur-
poses. Out of the eight tools that we managed to run, five are based
on code rewriting and three are based on browser modifications.
This leads to the second insight of our preliminary evaluation: anal-
ysis tools based on code rewriting are easier to setup and maintain
than tools based on other architectures, e.g., browser modifications.

2.2 Web Measurement
We assess the different criteria by running the tools on a top list of
popular real-world websites, which offer a common playground for
research on web security measurements. In particular, we build our
analysis on the Top 10k domains included in the Tranco ranking [36]
generated on 27 September 2024. Recall that different tools are based
on different architectures. Tools based on browser modifications can
be used off-the-shelf to access the websites under analysis, while
tools based on code rewriting might require additional work for
browser integration. If the browser integration layer is provided by
the authors of the tool, we reuse it as it is, otherwise we implement
our own integration layer based on a web proxy that instruments
both the inline and the external scripts by calling the tool.

Before starting our web measurement, we performed a pre-
analysis step to identify tools suffering from obvious flaws and
filter out those which are too slow for any reasonable practical
adoption, thus constituting a bottleneck for our investigation. In
particular, we let each tool access the homepages of the top 1,000
domains of Tranco that are accessible using a standard web browser
(Google Chrome), setting a timeout of five minutes per page. Since
most websites should take around five seconds to fully render [20],
this means accepting an overhead of around 60x on average for
the analysis phase. Our pre-analysis showed that JSFlow triggered
the timeout for all the websites under analysis, while all the other
tools managed to complete the analysis on more than 50% of the
websites (sometimes many more). Based on this, we removed JS-
Flow from our evaluation pipeline. We also dropped GIFC from our
evaluation, because it is based on a legacy version of Linvail which
we did not manage to configure correctly. Still, we observe that our
evaluation includes LinvailTaint, which is based on a more recent
version of the same analysis framework. We eventually evaluated
the remaining six tools on the 6,921 domains of Tranco which are
accessible using a standard web browser.

3 Compatibility Evaluation
JavaScript is a complex and living language, undergoing yearly
revisions. This means that existing analysis tools for JavaScript may
support just part of the language or become outdated as soon as
JavaScript is extendedwith new features. A key question for existing
analysis tools is whether they are compatible with the modern
Web, in the sense that they can potentially be used to analyze
production scripts running on live websites.We define compatibility

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Dynamic Security Analysis of JavaScript: Are We There Yet? Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

as the ability of an analysis tool to process and analyze existing
scripts from real-world websites without breaking. For example,
compatibility violations might occur when a tool is unable to parse
a script because it uses some unsupported JavaScript features or
cannot perform the analysis after parsing, e.g., because the script
instrumentation process fails.

3.1 Measurement Methodology
Since we define compatibility as the ability of an analysis tool to (𝑖)
process and (𝑖𝑖) analyze existing scripts from real-world websites
without breaking, we correspondingly structure our analysis in two
parts, discriminating between syntactic compatibility and eventual
compatibility as defined below. We perform our analysis on all the
scripts available in the homepages of the analyzed websites. In total,
we found 148,029 scripts included or inlined within the homepage
of the websites under analysis, reducing to 110,533 scripts after
deduplication based on the MD5 hash of their code.

3.1.1 Syntactic Compatibility. To understand whether an analysis
tool processes existing scripts correctly, we base our investigation
on JavaScript parsing. In particular, we observe that JavaScript is
based on a living standard called ECMAScript (ES), which is updated
on a yearly basis since 2015 to introduce new language features
and refine some of the limitations of the original JavaScript design.

Since ES espouses backward compatibility, each new edition of
the JavaScript language is defined as a superset of the previous edi-
tion. We can then leverage the following methodology to determine
whether a tool 𝑡 is syntactically compatible with a script 𝑠 , i.e., it
can parse it correctly. We first try to parse the script’s code with
parsers for different versions of the language, ordered from ES5
(the standard before 2015) through the latest ES version at the time
of writing. The first parser correctly recognizing the script provides
the resulting version number 𝑉𝑠 . We finally compare 𝑉𝑠 with the
ES version 𝑉𝑡 supported by 𝑡 and we say that 𝑡 is syntactically
compatible with 𝑠 if and only if 𝑉𝑠 ≤ 𝑉𝑡 .

In our analysis, we performed a manual investigation to identify
the ES versions supported by the different tools from trusted sources.
When the tool is a patched version of a popular browser, we re-
lied on information provided by MDN’s browser-compat-data [5],
a widely-used project offering data about compatibility among
browsers. For the other tools, we took into account the supported
version of ES declared by the authors in the research article. If
this information is unavailable, we reconstructed the supported
ES version by inspecting the source code of the tool’s parser and
identifying the recognized syntactic constructs.

3.1.2 Eventual Compatibility. Although syntactic compatibility is
helpful, because it tells us whether existing tools can possibly be
used off-the-shelf on the modernWeb, one might argue that parsing
issues are easily solved by means of transpilers like Babel [1], which
can compile existing code to different ES versions to support back-
ward compatibility. We then used Babel to transpile all the scripts
creating compatibility issues down to ES5, which is supported by all
the tools under investigation. After this step, we log all the internal
errors of the tool produced when analyzing the script 𝑠 (transpiled,
if needed) and we stipulate that 𝑡 is eventually compatible with 𝑠

if and only if no fatal error is encountered by the tool during the

transpilation (when necessary) and analysis phases. Specifically, we
consider the following types of errors as fatal: transpilation errors,
instrumentation errors (for tools based on code rewriting), parsing
errors after transpilation, and crashes during execution.

A challenge we encountered with transpilation was the sup-
port for native modules. Introduced in ES6, this feature allows
JavaScript programs to be split into isolated components, which
are then loaded using import statements. Unfortunately, unlike
traditional scripts, ES5 does not provide an easy way to simulate
such semantics. To address this problem, we first use Babel to trans-
form native modules into CommonJS [4], where import statements
are replaced with function calls. The function in question, known
as require, is not defined in browser environments. Hence, we
leverage browserify [2] to bundle all CommonJS modules into a
single ES5 script, linking them through an implementation of the
require function. Finally, we include this bundle in the website,
replacing the original program based on native modules.

3.1.3 Compatibility. Note that syntactic compatibility and even-
tual compatibility are independent concepts, i.e., a tool may satisfy
one property, both properties, or neither. The separation between
syntactic and eventual compatibility is useful, because it provides
insights on the root causes underlying compatibility issues and
allows us to quantify the practical importance of transpilation in
the wild. We just say that a tool 𝑡 is compatible with a script 𝑠 when
𝑡 is both syntactically and eventually compatible with 𝑠 , i.e., the
parsing and analysis phases operate correctly without transpilation.

3.2 Empirical Results
Figure 1 reports for each tool the percentage of scripts where the
tool is syntactically compatible, eventually compatible and compat-
ible. The first observation we make is that four out of six evaluated
tools have a syntactic compatibility rate of 69%, i.e., they cannot
parse about one third of the production scripts running in live
websites, because their supported ES version is too old (ES5). Un-
fortunately, this cannot be generally fixed by transpilation to an
older ES version. The eventual compatibility rate of JEST and IF-
Transpiler is 32% and 16% respectively, meaning that less than one
third of the scripts can be analyzed with these tools, despite tran-
spilation to ES5 using a state-of-the-art tool like Babel. LinvailTaint
can take some advantage from transpilation: its compatibility rate
is 47%, but its eventual compatibility rate is 63%, meaning that the
use of transpilation allows it to recover around 16% of the scripts
under analysis. The root cause of the eventual compatibility issues
faced by JEST, IF-Transpiler and LinvailTaint are instrumentation
errors: although transpilation and parsing succeed, the tools are
unable to correctly instrument the scripts for analysis. JalangiTT
is the tool reaping most benefits from transpilation, because its
compatibility rate is 67%, but its eventual compatibility rate is 96%
(+29%). Eventual compatibility issues affecting JalangiTT are pri-
marily crashes, meaning that the analysis starts but unexpectedly
terminates with a fatal error. To sum up, many existing analysis
tools for JavaScript support only legacy ES versions and are unable
to correctly parse scripts on modern websites; while transpilation to
ES5 can fix this issue for tools that already have a relatively high
compatibility rate, it is far from a perfect solution in practice.

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

JES
T

IF-T
ran

spi
ler

Lin
va

ilTa
int

Jala
ng

iTT

Pro
jec

tFo
xh

ou
nd

Pan
op

tiC
hro

me

Tool

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

69% 69% 69% 69%

100% 100%

32%

16%

63%

96% 95%

50%

24%

10%

47%

67%

95%

50%

Compatibility analysis
Syntactically compatible
Eventually compatible
Compatible

Figure 1: Compatibility analysis of the different tools.

Project Foxhound is the most robust solution for the modern
Web, outperforming all the tools seen so far in terms of compatibil-
ity, because it is able to successfully analyze 95% of the collected
scripts out of the box. This can be explained by the fact that Project
Foxhound is the most recent tool and is implemented on top of a
commercial browser like Mozilla Firefox, thus being more prepared
to face the complexity of JavaScript. However, this is not a general
rule for modified browsers. Although PanoptiChrome is built on a
modern Chromium revision, it achieves only a 50% compatibility
rate in practice, mainly because the tool becomes unresponsive
when analyzing complex websites. The authors of PanoptiChrome
did not encounter this issue, as they operated the tool manually
without an automation framework, terminating it after a fixed time-
out [27], whereas our approach relies on Playwright to detect when
a page has finished loading, which throws an exception whenever
it loses control of PanoptiChrome. This shows that even recent tools
that have been designed to be compatible with the modern Web can
still face troubles when analyzing complex websites.

To provide additional insights on compatibility issues, we inves-
tigate which JavaScript features are most often used by existing
scripts in the wild. This information is useful, because it allows
tool designers to understand which JavaScript features are most
important to prioritize when developing new analysis tools. The
top ten language features are shown in Table 1: block scoping and
arrow functions are used on more than 20% of the analyzed scripts,
hence it is crucial to support them in analysis tools. Remarkably,
most of the most popular language features have been introduced
in ES2015. This teaches us that any realistic JavaScript core should
include a significant number of ES2015 feature. Features introduced
in newer versions of ES are not nearly as widespread.

4 Transparency Evaluation
Compatibility is a necessary precondition to run any analysis tool,
but it does not suffice to ensure that the tool operates as intended.
Ideally, an analysis tool should never modify the behavior of the
analyzed code unless this is required to enforce security. In line
with existing work [33], we then say that a tool is transparent on a
website if and only if it preserves the website’s original behavior
when the website already respects the intended security policy.

Table 1: Top ten JavaScript features observed in the wild

Construct ES Version Frequency

Block scoping ES2015 25%
Arrow functions ES2015 24%
Destructuring ES2015 16%
Template literals ES2015 12%
Spread ES2015 12%
Classes ES2015 8%
Object spread ES2018 8%
For-of ES2015 7%
Computed properties ES2015 6%
Async functions ES2017 6%

4.1 Measurement Methodology
Transparency is harder to measure than compatibility, because the
behavior of live websites is unknown and we cannot determine
what is their “intended” security policy. In our measurement, we
restrict the focus to the most liberal policy which does not enforce
any security requirement, i.e., all the information flows are allowed.
This policy should never modify the website’s behavior and thus
identifies a minimal baseline for transparency.

To evaluate transparency on a website𝑤 , we access the home-
page of𝑤 with both a standard browser 𝑏 and an analysis tool 𝑡 . We
then wait enough time to allow both 𝑏 and 𝑡 to render the HTML
document, which we detect based on the load event; if we are un-
able to detect the event within two minutes in any of the two runs,
we discard the website because it did not complete loading. We
collect relevant events within the two runs to build corresponding
execution traces of the website𝑤 , which characterize the website
behavior. Finally, we compare the execution trace observed by 𝑏
against the execution trace observed by 𝑡 . If there is a mismatch
between the two traces, we detect a transparency violation for 𝑡 .

4.1.1 Defining and Comparing Execution Traces. Choosing the rele-
vant events abstracting an execution trace is a difficult task, because
there is a delicate trade-off to consider. On the one hand, we would
like to abstract the execution into as many events as possible to

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Dynamic Security Analysis of JavaScript: Are We There Yet? Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

precisely characterize the website behavior and detect most trans-
parency violations. On the other hand, observing too many events
might make the analysis brittle and lead to the detection of trans-
parency violations even when they do not actually take place. To
avoid over-reporting, our approach is prudent and abstracts execu-
tion traces as sets of uncaught exceptions, which are a strong signal
that there was something wrong with the program run.

In particular, let 𝐸𝑏 and 𝐸𝑡 stand for the sets of uncaught excep-
tions detected in the standard browser 𝑏 and in the analysis tool 𝑡
when visiting a given website: we detect a transparency violation
if and only if 𝐸𝑡 ⊈ 𝐸𝑏 , i.e., when the tool observes an uncaught
exception that was not observed in a standard web browser. We do
not check the weaker requirement 𝐸𝑡 ≠ 𝐸𝑏 , because the JavaScript
execution model is asynchronous and even the presence of the load
event is not a bullet-proof guarantee that the HTML document was
entirely rendered, hence set equality is difficult to achieve. However,
since the tool execution is normally slower than the browser exe-
cution, the tool execution is expected to be a prefix of the browser
execution, i.e., for a transparent tool we expect 𝐸𝑡 ⊆ 𝐸𝑏 .

4.1.2 Dealing with Non-Determinism. The behavior of websites
might be non-deterministic for different reasons. For example, web-
sites might serve different content depending on the requesting user
agent. This means that a standard browser 𝑏 and an analysis tool 𝑡
might observe different execution traces not because transparency
was broken, but because the website served different content to
them. Moreover, even different executions on the same browser
or tool might exhibit different behavior for generic reasons, e.g.,
different scripts may be loaded at runtime due to highly dynamic
components like advertisement scripts.

To mitigate the impact of non-determinism, we rely on a record
and replay technique proposed in prior research [35]. We use the
Web Page Replay tool from Google’s Catapult project [3] to record
all the requests and responses fired from the browser 𝑏 and de-
terministically reproduce them in the tool 𝑡 . Although Web Page
Replay is a robust and useful tool, it is not perfect. To further miti-
gate non-determinism, we perform five executions of the recorded
trace and we identify the execution trace to use in our transparency
analysis based on majority voting. If there is no execution trace
represented at least three times in our five executions, we conclude
that Web Page Replay is not operating correctly on the website
under analysis and we exclude it from our transparency assessment.

4.1.3 Avoiding Measurement Artifacts. A subtle aspect that we have
to deal with is that our own measurement approach might break
transparency. Since our methodology abstracts execution traces in
terms of events that can only be observed inside the browser, i.e.,
exceptions, we cannot rely on external components like network
proxies to ensure that transparency is not accidentally broken. In
principle, any new script injected in the website by our measure-
ment approach might negatively interfere with the website logic or
with the analysis tool under scrutiny. To reduce such risks, we use
a very lightweight instrumentation approach which is designed to
minimize room for transparency violations. In particular, we just
register an event handler via the addEventListener function in
order to capture uncaught errors raised by the website scripts.

60%

40%

JEST

82%

18%

IF-Transpiler

7%

93%

LinvailTaint

71%

29%

JalangiTT

97%

3%

ProjectFoxhound

77%

23%

PanoptiChrome

Transparency analysis

Transparent Non-transparent

Figure 2: Transparency analysis of the different tools

4.2 Empirical Results
For each tool, we measure transparency just on those websites
where the tool satisfies eventual compatibility for at least one script,
i.e., the tool correctly parses and analyzes some scripts of the web-
site possibly after transpilation. Otherwise, the tool would not per-
form any analysis at all, which would make it artificially easier to
preserve transparency and bias ourmeasurement. Before presenting
results, we report that our strategy for addressing non-determinism
through majority voting is definitely successful: in almost all web-
sites, we were able to identify a predominant execution trace, with
just 13 cases in total where this was not feasible.

Figure 2 reports the number of websites where each tool was
able to operate transparently. The figure leads to several interest-
ing findings, motivating the importance of a fine-grained analysis
distinguishing compatibility and transparency as done in our eval-
uation. We observed that JEST and IF-Transpiler are incompatible
with many scripts, with eventual compatibility rates of only 32%
and 16%, respectively. However, their transparency rates are higher,
at 60% for JEST and 82% for IF-Transpiler, indicating that they do
not trigger new exceptions on most websites during analysis. In
other words, once these tools are able to perform their analysis,
we have relatively high assurance about their respect of the origi-
nal website semantics. Conversely, LinvailTaint enjoyed a higher
eventual compatibility rate of 63%, but suffers from a very low
transparency rate equal to 7%. This means that in virtually all the

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

analyzed websites we are able to detect new exceptions introduced
by the presence of the tool, which might modify the website se-
mantics and make the analysis unreliable. JalangiTT and Project
Foxhound, which showed the best figures in terms of compatibility,
also preserve transparency in most websites. This is particularly
apparent for Project Foxhound, showing a transparency rate of
97%, as opposed to the 71% of JalangiTT. Lastly, in addition to
having a lower eventual compatibity rate than Project Foxhound,
PanoptiChrome exhibits a lower transparency rate of 77%. Our
evaluation shows that transparent information flow control through
code rewriting is possible but difficult to implement correctly, because
even the enforcement of an empty security policy might trigger new
exceptions in live websites. Existing solutions based on browser modifi-
cations offer higher transparency guarantees than tools based on code
rewriting. For space reasons, we discuss the main types of observed
transparency violations in Appendix B.

5 Coverage Evaluation
Coverage estimates how many information flows are successfully
detected by an analysis tool. It is reasonable that existing analy-
sis tools have limitations leading to both false positives and false
negatives. Unfortunately, most analysis tools do not undergo a com-
prehensive coverage evaluation, meaning that their effectiveness on
real-world JavaScript code is unknown. Evaluating coverage is im-
portant because research based on JavaScript analysis, such as web
measurements, may rely on existing information flow analyzers.

5.1 Measurement Methodology
To measure the effectiveness of different information flowmonitors,
we would need a ground truth of JavaScript programs annotated
with their correct set of information flows. In prior work Sayed et
al. crafted such a benchmark, which was used to assess the effec-
tiveness of IF-Transpiler [41]. The same benchmark was also used
in an empirical evaluation of different information flow monitors
for JavaScript performed by Scull Pupo et al. [37]. Unfortunately,
this existing benchmark only includes 28 small test cases covering
a tiny subset of JavaScript features and none of the standard library
functions, hence it does not capture the complexity of real-world
JavaScript. Moreover, 23 of the 28 test cases involve the monitor-
ing of implicit information flows, hence they cannot assess the
effectiveness of taint trackers designed to detect just explicit flows.

In line with the rest of the paper, we aim to evaluate existing
tools against real-world websites to mitigate the bias associated
with using a synthetic and limited benchmark. However, as dis-
cussed above, there is currently no ground truth of information
flows for real-world websites. Without an accurate manual scrutiny
of websites, it is impossible to determine whether a tool is missing
some information flows (false negatives) or detecting flows that do
not occur in practice (false positives). We then use a comparative ap-
proach to collect flows from the same websites with different tools
and the same security policy, comparing their outputs for agree-
ment. Additionally, we apply a simple heuristic to detect explicit
flows based on syntactic matches.

5.1.1 Policy Specification. Differently from transparency, cover-
age evaluation requires tools to be configured with a non-trivial
information flow policy that logs relevant information flows. This

task is challenging because different tools use different policy lan-
guages, support different sources and sinks, and track different
types of flows. Some tools do not even support customizable poli-
cies and run with a hard-coded policy. Therefore, we look for a
policy that is specifiable in all the considered tools, while being
simple enough to reduce development burden and minimize room
for inconsistencies. We then consider a common policy that re-
ports information flows originating from client-side storage, i.e.,
document.cookie and localStorage.getItem, and reaching the
network sink fetch(target), where 𝑡𝑎𝑟𝑔𝑒𝑡 is the target domain of
the network request. This policy is supported by all the tools, be-
cause communication of client-side identifiers over the network is
a typical concern of web privacy studies [22]. Note that the con-
sidered tools also support other popular network sinks, such as
XMLHttpRequest, yet not all of them log the target domain.

Project Foxhound and JalangiTT already hard-code an extended
version of this policy. Therefore, we simply filter out the informa-
tion flows involving irrelevant sources or sinks. IF-Transpiler and
LinvailTaint do not offer a straightforward way to define sources
and sinks. IF-Transpiler requires manual insertion of statements in
the instrumented code to upgrade and check the security level of
variables at source and sink locations. LinvailTaint instead reserves
two variables, one tagged as source and the other one as sink of the
analysis. We initialize the analysis by installing wrappers around
source and sink functions that execute tool-specific instructions
for upgrading and checking the security levels of return values and
arguments, respectively. We could not configure the policy in the
case of JEST due to a number of generic problems and the lack of ex-
ample policies in the JEST repository that could guide our attempts.
Our experience aligns with that of other independent researchers
who did not include JEST in their experimental evaluations [37].

Since each tool represents and reports flows using its own format,
we parse and uniformly model information flows as triples of the
form (src, snk,𝑤). src and snk identify respectively the source and
the sink of the flow, while𝑤 determines the website where the flow
has been identified. The latter information is necessary to define
the flow identity, as two flows with the same features but found on
different websites should be considered distinct. Note that this rep-
resentation does not consider whether a flow is explicit or implicit.
Generally, ignoring this distinction could result in inaccurate mea-
surements. In fact, taint trackers capture fewer information flows
than general tools for information flow analysis, since the former
find only explicit flows, while the latter detect both explicit and
implicit flows. However, neither of the tools capable of capturing
implicit flows, namely IF-Transpiler and PanoptiChrome, provide
sufficient information to distinguish between the two types of flows.
Therefore, we log all flows detected by these tools indiscriminately
and draw our conclusions with awareness of this limitation.

5.1.2 Defining Agreement. We compare each flow identified by a
tool 𝑡 with two independent sets of observations. First, we check
whether some other tool 𝑡 ′ found the same flow: if this is the case,
the flow is likely a true positive. The intuition here is that false pos-
itives are introduced by over-approximations and analysis errors
which are unlikely to be the same for different tools. We refer to this
approach as cooperative agreement. Moreover, we check whether
the flow was identified by a simple heuristic to detect explicit flows

6



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Dynamic Security Analysis of JavaScript: Are We There Yet? Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 2: Number of information flows detected by the tools
and estimate of true positives according to agreement

Flows TPc TPs TP TP%
IF-Transpiler 0 0 0 0 −
LinvailTaint 35 5 24 24 69%
JalangiTT 67 10 33 33 49%
Project Foxhound 919 28 862 862 94%
PanoptiChrome 128 13 95 95 74%

based on syntactic matches, from which we call this strategy syntac-
tic agreement. In particular, we look for a correspondence between
the content of client-side storage and the payload of network re-
quests by using longest substring matching: if the longest common
substring between the value of a client-side storage item and the
payload (path + query string) of a network request has length at
least 8, it is likely that some value was read from the client-side
storage and sent over the network, hence the reported flow is likely
a true positive. To make this heuristic approach more precise, we
remove timestamps from network requests before matching: in fact,
timestamps in network requests are often generated dynamically
rather than being retrieved from client-side storage, which would
lead to spurious syntactic matches. By using this automated tech-
nique, we are able to detect (likely) true positives at scale even in
absence of a ground truth. We complement this automated analysis
with some manual investigation to refine our findings.

5.2 Empirical Results
Table 2 presents the findings of our coverage evaluation. The first
column reports the number of information flows detected by each
tool. TPc and TPs are the estimated number of true positives ac-
cording to cooperative and syntactic agreement, respectively. TP
indicates the number of flows meeting at least one of the agreement
heuristics and TP% normalizes TP to the total number of flows.

The first observation we make is that syntactic agreement out-
performs cooperative agreement in estimating true positives. On
one side, the small number of true positives based on cooperative
agreement suggests that each tool produces outcomes which are
poorly shared by other tools. On the other side, the large number
of true positives based on syntactic agreement confirms that our
simple matching criteria are sufficient enough to capture appar-
ent data transfers. Project Foxhound is the most effective tool in
terms of detected information flows (919), with the second best-
performing tool being PanoptiChrome with just 128 detected flows.
Moreover, most of the information flows detected by Project Fox-
hound are marked as true positives by our heuristics (94%). After
manually reviewing a random sample of 10 potential false positives,
it turns out that they are actually true positives missed by our cri-
teria for syntactic agreement. More precisely, most of these cases
occur when storage items are transformed (e.g., encoded in Base64)
before reaching a network sink, or when communicated values
are actually timestamps or short strings from client-side storage.
This further confirms that Project Foxhound far surpasses the other
tools in terms of precision, proving to be a dependable tool when it
comes to searching for information flows on the modern Web.

IF-Transpiler finds no information flows at all in the wild. Since
this finding is surprising, we used the small information flow bench-
mark by Sayed et al. [41] to confirm that the tool is configured cor-
rectly and is able to identify the information flows in the benchmark.
We also tested variants of the benchmark with our set of sources
and sinks, confirming that the tool is operating correctly in a small
synthetic environment. To better understand why IF-Transpiler is
basically unusable in the wild, we restricted our focus to a sam-
ple of those websites where it enjoyed eventual compatibility for
all scripts and transparency. This way, we exclude compatibility
issues and transparency violations as the reasons leading to infor-
mation flows being undetected. What we observed is that, for all
such websites, also the other tools did not find any flows, except
one detected by Project Foxhound. This suggests that the websites
where IF-Transpiler operate correctly are so simple that they really
have no information flows, while on the other websites we may
attribute ineffective coverage to analysis errors.

LinvailTaint and JalangiTT are the only language-based tools
capable of finding information flows, identifying 35 and 67 explicit
flows, respectively. Our agreement heuristics estimate 69% true
positives for LinvailTaint compared to 49% for JalangiTT, indicat-
ing that the former may be more precise than the latter. However,
both these percentages suggest a potential high number of false
positives, especially for JalangiTT, where just one in two detected
flows is likely a true positive. To unveil the reason behind this po-
tential prevalence of false reports, we manually validate a random
sample of 10 flows for both tools, aiming to sort these cases as
either confirmed false positives or not. We found that only 2 in 10
instances from LinvailTaint were confirmed as false positives, with
the remaining cases being misclassified by our matching heuristics.
In fact, we identified values from client-side storage reaching a net-
work sink after being decoded, primarily from Base64. In contrast,
we confirmed 8 in 10 instances from JalangiTT to be false positives,
leading us to conclude that this tool operates with lower precision.

In the end, our analysis shows that existing information flow
analyzers for JavaScript show a low agreement rate and may suffer
from potential false positives, despite the use of dynamic analysis.

6 Performance Evaluation
Contrary to the other three requirements, a satisfactory perfor-
mance in terms of running times is not a stringent requirement of
analysis tools, because different users have different computational
resources and desiderata. Still, performance is particularly impor-
tant for large-scale analyses of the Web, such as those carried out
in traditional web security measurements.

6.1 Measurement Methodology
Comparing the performance of different tools is surprisingly subtle,
because different tools suffer from different failures. For example,
if a tool is not eventually compatible with most of the scripts on a
website, its performance figures cannot be trusted because most of
the JavaScript code does not undergo the analysis phase. We then
measure the analysis time of a tool 𝑡 just over those websites where
(𝑖) 𝑡 is eventually compatible with all the scripts on the website and
(𝑖𝑖) 𝑡 is transparent there. This way, we know that all the scripts
on the websites have been analyzed without breakage. Computing

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 3: Performance statistics

Tool Overhead

LinvailTaint 23.9x
JalangiTT 8.6x
Project Foxhound 1.4x
PanoptiChrome 36.7x

the average analysis time of 𝑡 on such websites does not directly
enable a comparison with other tools though. For example, if a tool
enjoys transparency just on very simple websites making limited
use of JavaScript, its average analysis time would be biased towards
low numbers just because such websites are easy to analyze. We
then evaluate performance in terms of the analysis overhead in-
troduced over a traditional web browser on the same websites. In
particular, let𝑊𝑡 be the set of websites that 𝑡 can analyze based
on our inclusion criterion above. If 𝑇𝑏 (𝑤) is the time required to
render the website𝑤 in a standard web browser and 𝑇𝑡 (𝑤) is the
time required to analyze the same website using the tool 𝑡 , we com-
pute the overhead of 𝑡 as the average overhead across all websites
in𝑊𝑡 , i.e., avg𝑤∈𝑊𝑡

(𝑇𝑡 (𝑤)/𝑇𝑏 (𝑤)). Note that we do not measure
the performance of JEST and IF-Transpiler because we have been
unable to detect any information flows with those tools in the wild,
meaning that their practical adoption is infeasible.

6.2 Empirical Results
Table 3 reports the outcome of our performance evaluation. Once
again, Project Foxhound outperforms its competitors, with an aver-
age overhead of just 1.4x with respect to a standard web browser.
This result can be justified by the fact that all taint tracking opera-
tions are performed natively within the browser. Nonetheless, the
other modified browser we consider, PanoptiChrome, suffers from
a pronounced overhead of 36.7x. This is mainly due to the authors’
recommendation to disable certain optimizations in the JavaScript
engine, including the JIT compiler, which would otherwise prevent
the tool from running. Additionally, the tool’s ability to detect im-
plicit flows, as well as explicit ones, could further contribute to slow
down the execution. This shows that information flow tracking can
be efficiently performed through browser modifications, yet detection
of implicit flows may significantly slow down the analysis and make
it infeasible for web measurements.

Regarding language-based tools, we observe that LinvailTaint
and JalangiTT suffer from a significant overhead of around 23.9x
and 8.6x, respectively. After inspecting the source code of these
two tools, we suspect that this extra time is necessary to make the
analysis precise, i.e., these tools reimplement in JavaScript several
native operations with the goal of exposing their internals to the
analysis. It is worth noting that the authors of Linvail, which is
used to create LinvailTaint, report that their library experiences an
overhead one order of magnitude higher than that of Jalangi, which
JalangiTT relies on [17]. However, our findings reveal the overheads
between the derived tools to be much closer. This might be attrib-
uted to the fact that their benchmark comprises CPU-intensive
programs, a common choice for performance evaluation purposes.
In turn, this study uses real-world web pages as its benchmark,

where JavaScript primarily facilitates interactivity rather than en-
gaging in heavy computations. Since our automated analysis does
not emulate user interaction, we may expect that some portions of
JavaScript code are not actually executed at all. In the end, we note
that analysis tools based on code rewriting incur major performance
overheads, which may be attributed to the need of reimplementing
native functions in JavaScript to make them visible to the analysis.

7 Related Work
There exist a few surveys on the dynamic analysis of JavaScript,
some of which focusing also on security applications and informa-
tion flow control [11, 15, 47]. A major difference of this work with
respect to traditional surveys is that we do not just review existing
papers, but we experimentally measure the effectiveness of different
tools on live websites based on systematic criteria. The goal of our
work is informing the community about the actual effectiveness
of existing tools and identifying room for improvement for future
analysis tools. It is worth noticing that prior work on information
flow control for JavaScript already compared the effectiveness of
different tools for information flow control. For example, the au-
thors of GIFC compared their tool against competitors on a small
benchmark of synthetic JavaScript programs designed to test the
features of different information flow analyzers [37]. This evalua-
tion on a synthetic benchmark draws overly optimistic conclusions
and does not shed light about the effectiveness of existing tools
on real-world programs, such as the scripts that we collect from
prominent websites in the Tranco list. Moreover, our analysis uses
more sophisticated and systematic evaluation criteria formulated in
terms of compatibility and transparency, which elucidate the main
shortcomings of existing tools when they face the Web. Finally, we
mention that our research methodology draws inspiration from
traditional web measurement studies [21]. Prior work in the field
performed automated measurements on JavaScript programs to
analyze web tracking [10], browser fingerprinting [43] and XSS
vulnerabilities [45].

8 Conclusion
Dynamic security analysis tools for JavaScript do not fare well
against the Web. The only effective solution given the current state
of the art is Project Foxhound, which is a tool based on browser
modifications, rather than on code rewriting. Unfortunately, our
experience with prior work suggests that tools based on browser
modifications do not age well, because they are difficult to main-
tain and easily become outdated. Indeed, out of ten tools based on
browser modifications considered for evaluation, we just managed
to run three, two of which are very recent. This motivates additional
research on how to combine the best of the two worlds, i.e., how
to design a JavaScript analysis tool which is effective and efficient
like browser-based solutions, while being as simple to maintain as
solutions based on code rewriting. We encourage the community
to investigate this challenging problem and propose alternative
solutions.

References
[1] 2024. Babel. https://babeljs.io/
[2] 2024. Browserify. https://browserify.org/
[3] 2024. Catapult. https://chromium.googlesource.com/catapult/

8

https://babeljs.io/
https://browserify.org/
https://chromium.googlesource.com/catapult/


929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Dynamic Security Analysis of JavaScript: Are We There Yet? Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

[4] 2024. CommonJS. https://wiki.commonjs.org/wiki/CommonJS
[5] 2024. mdn/browser-compat-data. https://github.com/mdn/browser-compat-data
[6] 2024. Playwright. https://playwright.dev/
[7] 2024. Puppeteer. https://pptr.dev/
[8] 2024. Selenium. https://www.selenium.dev/
[9] Zubair Ahmad, Stefano Calzavara, Samuele Casarin, and Ben Stock. 2024. Infor-

mation flow control for comparative privacy analyses. Int. J. Inf. Sec. 23, 5 (2024),
3199–3216. https://doi.org/10.1007/S10207-024-00886-0

[10] Zubair Ahmad, Samuele Casarin, and Stefano Calzavara. 2024. An Empirical
Analysis of Web Storage and Its Applications to Web Tracking. ACM Trans. Web
18, 1 (2024), 7:1–7:28.

[11] Esben Andreasen, Liang Gong, Anders Møller, Michael Pradel, Marija Selakovic,
Koushik Sen, and Cristian-Alexandru Staicu. 2017. A Survey of Dynamic Analysis
and Test Generation for JavaScript. ACM Comput. Surv. 50, 5 (2017), 66:1–66:36.

[12] Aslan Askarov and Andrei Sabelfeld. 2009. Tight Enforcement of Information-
Release Policies for Dynamic Languages. In Proceedings of the 22nd IEEE Computer
Security Foundations Symposium, CSF 2009, Port Jefferson, New York, USA, July
8-10, 2009. IEEE, 43–59.

[13] Thomas H. Austin and Cormac Flanagan. 2012. Multiple facets for dynamic
information flow. In POPL, John Field and Michael Hicks (Eds.). ACM, 165–178.

[14] Abhishek Bichhawat, Vineet Rajani, Deepak Garg, and Christian Hammer. 2014.
Information Flow Control in WebKit’s JavaScript Bytecode. In POST (Lecture
Notes in Computer Science, Vol. 8414), Martín Abadi and Steve Kremer (Eds.).
Springer, 159–178.

[15] Nataliia Bielova. 2013. Survey on JavaScript security policies and their enforce-
ment mechanisms in a web browser. J. Log. Algebraic Methods Program. 82, 8
(2013), 243–262.

[16] Laurent Christophe. 2023. LinvailTaint. https://github.com/lachrist/aran/
blob/664f0a304b555bcb106f24e72734ad8c88dac429/graveyard/test/live/linvail-
taint.js

[17] Laurent Christophe, Elisa Gonzalez Boix, Wolfgang De Meuter, and Coen De
Roover. 2016. Linvail: A General-Purpose Platform for Shadow Execution of
JavaScript. In SANER. IEEE Computer Society, 260–270.

[18] Andrey Chudnov and David A. Naumann. 2015. Inlined Information Flow
Monitoring for JavaScript. In CCS, Indrajit Ray, Ninghui Li, and Christopher
Kruegel (Eds.). ACM, 629–643.

[19] Ravi Chugh, Jeffrey A. Meister, Ranjit Jhala, and Sorin Lerner. 2009. Staged
information flow for javascript. In PLDI, Michael Hind and Amer Diwan (Eds.).
ACM, 50–62.

[20] Sourojit Das. 2024. How fast should a Website Load in 2024? | BrowserStack.
https://www.browserstack.com/guide/how-fast-should-a-website-load

[21] Nurullah Demir, Matteo Große-Kampmann, Tobias Urban, Christian Wressneg-
ger, Thorsten Holz, and Norbert Pohlmann. 2022. Reproducibility and Repli-
cability of Web Measurement Studies. InWWW, Frédérique Laforest, Raphaël
Troncy, Elena Simperl, Deepak Agarwal, Aristides Gionis, Ivan Herman, and
Lionel Médini (Eds.). ACM, 533–544.

[22] Steven Englehardt and Arvind Narayanan. 2016. Online Tracking: A 1-million-
site Measurement and Analysis. In Proceedings of the 2016 ACM SIGSAC Confer-
ence on Computer and Communications Security, Vienna, Austria, October 24-28,
2016, Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C.
Myers, and Shai Halevi (Eds.). ACM, 1388–1401. https://doi.org/10.1145/2976749.
2978313

[23] GitHub. 2022. The Top Programming Languages.
https://octoverse.github.com/2022/top-programming-languages.

[24] Willem De Groef, Dominique Devriese, Nick Nikiforakis, and Frank Piessens.
2012. FlowFox: a web browser with flexible and precise information flow control.
In CCS, Ting Yu, George Danezis, and Virgil D. Gligor (Eds.). ACM, 748–759.

[25] Daniel Hedin, Arnar Birgisson, Luciano Bello, and Andrei Sabelfeld. 2014. JSFlow:
tracking information flow in JavaScript and its APIs. In SAC, Yookun Cho, Sung Y.
Shin, Sang-Wook Kim, Chih-Cheng Hung, and Jiman Hong (Eds.). ACM, 1663–
1671.

[26] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis
for JavaScript. In SAS (Lecture Notes in Computer Science, Vol. 5673), Jens Palsberg
and Zhendong Su (Eds.). Springer, 238–255.

[27] Rahul Kanyal and Smruti R. Sarangi. 2024. PanoptiChrome: AModern In-browser
Taint Analysis Framework. In Proceedings of the ACM on Web Conference 2024,
WWW 2024, Singapore, May 13-17, 2024, Tat-Seng Chua, Chong-Wah Ngo, Ravi
Kumar, Hady W. Lauw, and Roy Ka-Wei Lee (Eds.). ACM, 1914–1922. https:
//doi.org/10.1145/3589334.3645699

[28] Rezwana Karim, Frank Tip, Alena Sochurková, and Koushik Sen. 2020. Platform-
Independent Dynamic Taint Analysis for JavaScript. IEEE Trans. Software Eng.
46, 12 (2020), 1364–1379.

[29] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gibbons,
John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: a static
analysis platform for JavaScript. In FSE, Shing-Chi Cheung, Alessandro Orso,
and Margaret-Anne D. Storey (Eds.). ACM, 121–132.

[30] David Klein, Thomas Barber, Souphiane Bensalim, Ben Stock, and Martin Johns.
2022. Hand Sanitizers in the Wild: A Large-scale Study of Custom JavaScript

Sanitizer Functions. In EuroS&P. IEEE, 236–250.
[31] Hongki Lee, Sooncheol Won, Joonho Jin, Junhee Cho, and Sukyoung Ryu. 2012.

SAFE: Formal specification and implementation of a scalable analysis framework
for ECMAScript. In FOOL 2012: 19th International Workshop on Foundations of
Object-Oriented Languages. Citeseer, 96.

[32] Sebastian Lekies, Ben Stock, and Martin Johns. 2013. 25 million flows later:
large-scale detection of DOM-based XSS. In CCS, Ahmad-Reza Sadeghi, Virgil D.
Gligor, and Moti Yung (Eds.). ACM, 1193–1204.

[33] Jay Ligatti, Lujo Bauer, and David Walker. 2005. Edit automata: enforcement
mechanisms for run-time security policies. Int. J. Inf. Sec. 4, 1-2 (2005), 2–16.

[34] William Melicher, Anupam Das, Mahmood Sharif, Lujo Bauer, and Limin Jia.
2018. Riding out DOMsday: Towards Detecting and Preventing DOM Cross-Site
Scripting. In NDSS. The Internet Society.

[35] Marius Musch and Martin Johns. 2021. U Can’t Debug This: Detecting JavaScript
Anti-Debugging Techniques in the Wild. In USENIX Security, Michael D. Bailey
and Rachel Greenstadt (Eds.). USENIX Association, 2935–2950.

[36] Victor Le Pochat, Tom van Goethem, Samaneh Tajalizadehkhoob, Maciej Ko-
rczynski, and Wouter Joosen. 2019. Tranco: A Research-Oriented Top Sites
Ranking Hardened Against Manipulation. In NDSS. The Internet Society.

[37] Angel Luis Scull Pupo, Laurent Christophe, Jens Nicolay, Coen De Roover, and
Elisa Gonzalez Boix. 2018. Practical Information Flow Control for Web Applica-
tions. In RV (Lecture Notes in Computer Science, Vol. 11237), Christian Colombo
and Martin Leucker (Eds.). Springer, 372–388.

[38] IBMResearch. 2006. T.J.Watson Libraries for Analysis (WALA). http://wala.sf.net
[Accessed 18-04-2024].

[39] Andrei Sabelfeld and Andrew C. Myers. 2003. Language-based information-flow
security. IEEE J. Sel. Areas Commun. 21, 1 (2003), 5–19.

[40] Prateek Saxena, Steve Hanna, Pongsin Poosankam, and Dawn Song. 2010. FLAX:
Systematic Discovery of Client-side Validation Vulnerabilities in Rich Web Ap-
plications. In NDSS. The Internet Society.

[41] Bassam Sayed, Issa Traoré, and Amany Abdelhalim. 2018. If-transpiler: Inlining
of hybrid flow-sensitive security monitor for JavaScript. Comput. Secur. 75 (2018),
92–117.

[42] Koushik Sen, Swaroop Kalasapur, Tasneem G. Brutch, and Simon Gibbs. 2013.
Jalangi: a selective record-replay and dynamic analysis framework for JavaScript.
In ESEC/FSE, Bertrand Meyer, Luciano Baresi, and Mira Mezini (Eds.). ACM,
488–498.

[43] Alexander Sjösten, Daniel Hedin, and Andrei Sabelfeld. 2021. EssentialFP: Ex-
posing the Essence of Browser Fingerprinting. In EuroS&P. IEEE, 32–48.

[44] Stack Overflow. 2023. Stack Overflow Developer Survey
2023. https://survey.stackoverflow.co/2023/?utm_source=social-
share&utm_medium=social&utm_campaign=dev-survey-2023.

[45] Marius Steffens, Christian Rossow, Martin Johns, and Ben Stock. 2019. Don’t
Trust The Locals: Investigating the Prevalence of Persistent Client-Side Cross-Site
Scripting in the Wild. In NDSS. The Internet Society.

[46] Ben Stock, Sebastian Lekies, Tobias Mueller, Patrick Spiegel, and Martin Johns.
2014. Precise Client-side Protection against DOM-based Cross-Site Scripting.
In USENIX Security, Kevin Fu and Jaeyeon Jung (Eds.). USENIX Association,
655–670.

[47] Kwangwon Sun and Sukyoung Ryu. 2017. Analysis of JavaScript Programs:
Challenges and Research Trends. ACM Comput. Surv. 50, 4 (2017), 59:1–59:34.

[48] Omer Tripp, Pietro Ferrara, and Marco Pistoia. 2014. Hybrid security analysis of
web JavaScript code via dynamic partial evaluation. In ISSTA, Corina S. Pasareanu
and Darko Marinov (Eds.). ACM, 49–59.

[49] Shiyi Wei and Barbara G. Ryder. 2013. Practical blended taint analysis for
JavaScript. In ISSTA, Mauro Pezzè and Mark Harman (Eds.). ACM, 336–346.

A Tool Selection Details
Table 4 reports all the tools that we initially considered in our re-
search. We mark with a gray background the tools which have been
excluded from further investigation based on the criteria discussed
in Section 2.1.

B Transparency Issues
To better understand why transparency was broken, we measure
the frequency of the different types of exceptions occurring during
the analysis and reporting transparency violations in the different
tools (see Figure 3). TypeError is the most common type of excep-
tion in nearly all the tools. A manual inspection reveals that these
cases mostly involve accessing properties of undefined or null.

9

https://wiki.commonjs.org/wiki/CommonJS
https://github.com/mdn/browser-compat-data
https://playwright.dev/
https://pptr.dev/
https://www.selenium.dev/
https://doi.org/10.1007/S10207-024-00886-0
https://github.com/lachrist/aran/blob/664f0a304b555bcb106f24e72734ad8c88dac429/graveyard/test/live/linvail-taint.js
https://github.com/lachrist/aran/blob/664f0a304b555bcb106f24e72734ad8c88dac429/graveyard/test/live/linvail-taint.js
https://github.com/lachrist/aran/blob/664f0a304b555bcb106f24e72734ad8c88dac429/graveyard/test/live/linvail-taint.js
https://www.browserstack.com/guide/how-fast-should-a-website-load
https://doi.org/10.1145/2976749.2978313
https://doi.org/10.1145/2976749.2978313
https://doi.org/10.1145/3589334.3645699
https://doi.org/10.1145/3589334.3645699
http://wala.sf.net


1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Table 4: Dynamic analysis tools considered in this work. Rows with a gray background include tools which have been excluded
from further investigation for different reasons (see the Notes column).

Analysis tool Type Explicit flows Implicit flows Architecture Notes

FLAX [40] Dynamic ✓ × Modified browser Unavailable implementation
PersistentClientsideXSS [32, 45, 46] Dynamic ✓ × Modified browser Broken browser automation
ChromiumTaintTracking [34] Dynamic ✓ × Modified browser Broken browser automation
JSA [48] Hybrid ✓ × Modified browser Unavailable implementation
JSBAF [49] Hybrid ✓ × Modified browser Unavailable implementation
Project Foxhound [30] Dynamic ✓ × Modified browser -
PanoptiChrome [27] Dynamic ✓ ✓ Modified browser -
FlowFox [24] Dynamic ✓ ✓ Modified browser Lack of browser automation
ZaphodFacets [13] Dynamic ✓ ✓ Browser extension Failed to run on modern setup
ifc4bc [14] Hybrid ✓ ✓ Modified browser Failed to run on modern setup
SIF [19] Hybrid ✓ ✓ Browser extension Unavailable implementation
JSFlow [25] Dynamic ✓ ✓ Modified browser Implementation from [43]
JEST [18] Dynamic ✓ ✓ Code rewriting -
IF-Transpiler [41] Hybrid ✓ ✓ Code rewriting -
GIFC [37] Dynamic ✓ ✓ Code rewriting Built on top of Linvail [17]
LinvailTaint [16] Dynamic ✓ × Code rewriting Built on top of Linvail [17]
Ichnaea [28] Dynamic ✓ × Code rewriting Unavailable implementation
JalangiTT [10] Dynamic ✓ × Code rewriting Built on top of Jalangi [42]

Specifically, for language-based tools, we observe that some identi-
fiers involved in these errors are related to the analysis code. This
suggests that the analysis performed by these tools is not robust
and can easily deviate the execution upon reaching invalid states.
Moreover, we identify equivalent error messages with different

formats between runs on Firefox and Project Foxhound. We conser-
vatively mark these differences as false positives; despite our efforts
to align the execution of the tool with that of a regular browser,
we were unable to eliminate them completely. Finally, the majority
of SyntaxError instances thrown by IF-Transpiler indicate that the
tool is generating syntactically incorrect analysis code.

10



1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Dynamic Security Analysis of JavaScript: Are We There Yet? Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

JES
T

IF-T
ran

spi
ler

Lin
va

ilTa
int

Jala
ng

iTT

Pro
jec

tFo
xh

ou
nd

Pan
op

tiC
hro

me

Tool

0

10

20

30

40

50

60

70

80

%
 o

cc
ur

re
nc

es

5% 5%

20%

27%

7% 9%

30%

48%

5%

16%

2% 0%

54%

39%

55%

37%

77%

58%

12%
8%

20% 20%

13%

33%

Transparency issues
ReferenceError
SyntaxError
TypeError
Other

Figure 3: Classification of observed transparency issues

11


	Abstract
	1 Introduction
	2 Methodology
	2.1 Tool Selection
	2.2 Web Measurement

	3 Compatibility Evaluation
	3.1 Measurement Methodology
	3.2 Empirical Results

	4 Transparency Evaluation
	4.1 Measurement Methodology
	4.2 Empirical Results

	5 Coverage Evaluation
	5.1 Measurement Methodology
	5.2 Empirical Results

	6 Performance Evaluation
	6.1 Measurement Methodology
	6.2 Empirical Results

	7 Related Work
	8 Conclusion
	References
	A Tool Selection Details
	B Transparency Issues

