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ABSTRACT

In domain generalization (DG), most existing methods aspire to fine-tune a spe-
cific pretrained model through novel DG algorithms. In this paper, we propose
an alternative direction, i.e., to efficiently leverage a pool of pretrained models
without fine-tuning. Through extensive empirical and theoretical evidence, we
demonstrate that (1) pretrained models have possessed generalization to some ex-
tent while there is no single best pretrained model across all distribution shifts,
and (2) out-of-distribution (OOD) generalization error depends on the fitness be-
tween the pretrained model and unseen test distributions. This analysis motivates
us to incorporate diverse pretrained models and to dispatch the best matched mod-
els for each OOD sample by means of recommendation techniques. To this end,
we propose SIMPLE, a specialized model-sample matching method for domain
generalization. First, the predictions of pretrained models are adapted to the tar-
get domain by a linear label space transformation. A matching network aware
of model specialty is then proposed to dynamically recommend proper pretrained
models to predict each test sample. The experiments on DomainBed show that our
method achieves significant performance improvements (up to 12.2% for individ-
ual dataset and 3.9% on average) compared to state-of-the-art (SOTA) methods
and further achieves 6.1% gain via enlarging the pretrained model pool. Moreover,
our method is highly efficient and achieves more than 1000× training speedup
compared to the conventional DG methods with fine-tuning a pretrained model.
Code and supplemental materials are available at https://seqml.github.io/simple.

1 INTRODUCTION

Distribution shift is a common problem in real-world applications, which breaks the independent
and identically distributional (i.i.d.) assumption of machine learning algorithms (Wang et al., 2022).
Mismatches between training and test distributions, which are quite common in reality, can largely
deteriorate model performance and make machine learning models infeasible for practical applica-
tions (González & Abu-Mostafa, 2015). Therefore, enhancing the generalization ability of models
has attracted increasing attention (Cha et al., 2021; Zhang et al., 2022).

For its practical significance, various methods have been proposed, e.g., domain alignment (Ganin
et al., 2016; Gong et al., 2019; Arjovsky et al., 2019), meta-learning (Finn et al., 2017; Dou
et al., 2019; Du et al., 2020), and ensemble learning (Mancini et al., 2018; Cha et al., 2021; Arpit
et al., 2021). The effectiveness of DG algorithms is generally verified by fine-tuning a pre-trained
ResNet(He et al., 2016) model with these algorithms (Gulrajani & Lopez-Paz, 2020). It has demon-
strated that these algorithms improve upon empirical risk minimization (ERM) baseline on ResNet-
50 backbone (Arpit et al., 2021; Wiles et al., 2021). Meanwhile, recent studies show that neural
architectures and pretraining methods have a large impact on the model robustness to distribution
shifts (Radford et al., 2021; Wiles et al., 2021). For example, vision transformers are more robust to
texture and style shifts compared with ResNet-based models (Zhang et al., 2022), which are instead
superior to transformer-based models on dense image classification tasks (Liu et al., 2022). In terms
of pretraining, using pretraining datasets other than ImageNet-1k improves the generalization per-
formance in one test domain, yet leads to performance degradation in another (Kim et al., 2022).

∗It was conducted during the internship of Ziyue Li at Microsoft Research. Correspondence to Kan Ren.
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These findings are in line with the No Free Lunch (NFL) Theorem (Wolpert, 1996), which suggests
that no single model can always perform better than any other model without having substantive
information about the targeted problem. In DG, we usually have very limited information about the
test domain, so we are more likely to encounter the above challenge.

Inspired by these attempts, in this paper, we conduct a fine-grained study on the relationship be-
tween pretrained models and distribution shifts. From both empirical and theoretical evidence, we
show that no free lunch in terms of pretraining for domain generalization, i.e., there is no single best
pretrained model across shifting test distributions. Specifically, 283 pretrained models with different
network architectures, pretraining datasets, and learning objectives are compared for their general-
ization performance under different distributional shifts. The results reveal that the pretrained mod-
els without fine-tuning generalize well to some unseen domains, but none of these models dominate
in all unseen distributions. Furthermore, the theoretical analysis indicates that OOD generalization
error is determined by the fitness between model (varying w.r.t. the network architectures and model
weights) and test distribution. For any network architecture with fixed training distributions, such
as pretrained models (Iandola et al., 2014; He et al., 2016; 2021a), it is always possible to find a
beneficial or detrimental test distribution with a small or large generalization error.

Motivated by these findings, we propose an alternative DG paradigm that leverages pretrained mod-
els with different network architectures and shifting training distributions, upon which we match
the most suitable pretrained models for each OOD sample. As shown in Figure 3, our paradigm
(specialized model-sample matching for domain generalization, SIMPLE) first adopts a simple la-
bel adapter that projects the label space of the pretraining domain1 to that of unseen domains2, where
the adapter is shared by pretrained models from the same pretraining domain. Then, a matching net-
work, which is aware of model specialty, selects a set of proper pretrained models and aggregates
them together to conduct the prediction for each OOD sample. Notably, this promising alternative
exhibits significant performance improvements, averaging 3.9% over the existing SOTA results, with
gains of up to 12.2% on single datasets, and a significant increase in training efficiency.

To summarize, this work has made the following contributions:

• We theoretically and empirically analyze the generalization of pretrained models on shifting un-
seen test distribution, revealing no free lunch hypothesis exists that motivates our solution of model-
sample matching.
• In complementary to traditional DG solutions, we propose a novel DG paradigm which directly
leverages pretrained models without fine-tuning, and it has significantly improved the DG perfor-
mance in the mainstream benchmark upon other strong baselines.
• Besides the performance gain, our method is even more efficient since it does not follow the
common fine-tuning approach, shedding new light on using pretrained models in DG tasks.

2 NO FREE LUNCH IN PRETRAINING FOR DOMAIN GENERALIZATION

In this section, we investigate if there exists free lunch in pretraining for DG, that is, whether we can
find one single best pretrained model that generalizes across all distributional shifts. To this end, we
first conduct an empirical analysis on the generalization ability of pretrained models over shifting
distributions in Section 2.1, followed by a theoretical analysis in Section 2.2.

2.1 GENERALIZABILITY ANALYSIS OF THE PRETRAINED MODELS

We here analyze the generalization ability possessed by different pretrained models. Note that ex-
isting DG methods generally adopt a specific ImageNet-pretrained model (e.g, ResNet-50), which
has been shown not sufficient for generalization (Kumar et al., 2021; Kim et al., 2022). Thus, for
a comprehensive analysis, we first incorporate 283 diverse pretrained models composed of diverse
combinations of network architectures, pretraining datasets, objectives, and algorithms. Detailed
information on all these models and more experimental settings are in Appendix A.4. For the effi-
cient adaptation of pretrained models from pretraining domains to unseen domains, we propose to

1The data distribution where the pretrained models have been learned.
2Source and target domains in DG share the same label space yet differing from that of pretraining domains.
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train only a label space adapter upon the pretrained models without modifying any pretrained model
parameters, which is remarkably lightweight and will be elaborated detailedly in Section 3.2.

Takeaway 1: Pretrained models possess decent generalization ability for some OOD samples.
By grafting such a lightweight label space adapter, we find that the generalization performance of
the pretrained model is already promising in some cases. As a concrete example, given a fixed
DenseNet-121 model (Iandola et al., 2014) pretrained on ImageNet, we employ an adapter that
converts its prediction of the original ImageNet label space to that of OfficeHome (a dataset of
DG benchmark) (Venkateswara et al., 2017), with the adapter training on source domains. This
combination achieves an average accuracy of 78.3% on target domains, which is 5.9% higher than
SOTA as detailed in Section 4.3.

Takeaway 2: No dominant pretrained models across unseen domains. Though pretrained mod-
els have possessed some generalization ability in some cases, however, their generalization per-
formance relates to the specific unseen distributions. The left part of Figure 1 shows the relative
performance of the pretrained models evaluated in different domains, with label adapter. Each do-
main represents a different data distribution. As can be seen, pretrained models vary greatly in
performance on different test domains, without any single model being dominant in all domains.

Figure 1: Classification performance comparison of pretrained models in different domains and
different classes of the TerraIncognita dataset (Beery et al., 2018). For clarity of presentation, only
partial results are shown. The complete results can be found in Appendix A.4.

Takeaway 3: Pretrained models exhibit more diverse performance at finer-grained levels. We
further examine whether performance divergence also exists at a finer-grained level, such as class-
level. The right part of Figure 1 presents the relative model performance on 10 classes in TerraIncog-
nita dataset. Similar to that at domain-level, varying model performance among different classes is
also noticeable. Moreover, there exists a more pronounced divergence in model performance at the
finer class level, as evidenced in detail in Appendix A.4. It supports the necessity of incorporating
pretrained models and being aware of their specialty at a fine-grained level, which motivates us to
investigate and exploit the matching metric between models and test samples.

2.2 THEORETICAL ANALYSIS OF NO FREE LUNCH FOR DG

This section provides theoretical analysis to support the findings in Section 2.1. To alleviate the
generalization difficulties associated with the train-test mismatch, mainstream DG methods seek
domain-invariant features that can be generalized beyond the training distribution. However, there
are several issues to consider. First, domain-invariant features learned from source domains can
still be biased towards source domains and thus have limited performance on unseen domains (Cha
et al., 2022). Second, domain-specific information has also been found to enhance DG, as it may
be closely related to the sample labels that help generalize in certain unseen domains (Bui et al.,
2021). These observations suggest that existing DG methods may not guarantee whether a model can
generalize across distinct unseen target domains, the reason lies in the limitation of our knowledge
of unseen domains, which is in line with NFL theorem. The analysis of the OOD generalization
of kernel methods also points out the relevant insight that shift in test distribution may help or hurt
generalization (Canatar et al., 2021).

Theorem 1. (Informal; OOD Kernel Generalization;Canatar et al. (2021)) Given the kernel matrix
K(x, x′) with Mercer decomposition K(x, x′) = Φ(x)TΛΦ(x′). Suppose the training data is
i.i.d. generated from the distribution p(x), the target function is given by y = āTΦ(x), and the
training loss is kernel regression with ERM. The generalization error on distribution p̃(x) is given
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by Eg = Ematched
g + κāT (PΛ + κI)−1O ′(PΛ + κI)−1ā, where Oij =

∫
dxp̃(x)ϕi(x)ϕj(x) and

O ′ = O − 1−γ′

1−γ I. Here Ematched
g is the generalization error when the training distribution and test

distribution are matched (i.e., in-distribution error), P is the number of training samples, κ, γ are
constants depend on Λ, and γ′ is a constant depending on Λ and O .

Theorem 1 will be detailed in Appendix A.5.
Remark 1. (Interpretations of Theorem 1) Theorem 1 shows that Eg is in the form Eg =
Ematched
g + vO ′v, where the second term is due to distribution shift. Note that, if a pretrained model

is kept frozen to serve as a static feature extractor for the subsequent trainable linear classifier, the
pretrained model acts as a kernel and thus Theorem 1 applies.
Remark 2. (Generalization depends on the fitness between model and test distributions) The eigen-
value of matrix O depends on the alignment between the test distribution p̃(x) and the kernel basis
Φ which is determined by the model (network architecture and model weights). The matrix O ′ may
have negative eigenvalues when p̃(x) and Φ are matched well and OOD generalization is even bet-
ter than i.i.d. generalization under such circumstances. On the contrary, when Φ(x) is fixed, p̃(x)
can be adversarially chosen such that the matrix O ′ has large positive eigenvalues and thus the
network fails to generalization to OOD data.
Remark 3. (No free lunch for a single model in DG) A major focus of DG is tackling covariate
shift, where p̃(x) can be set arbitrarily as long as p(y|x) = p̃(y|x). Under covariate shift, no single
pretrained model will outperform other models for all p̃(x), implying no free lunch theorem in DG.

The theoretical analysis above raises a natural question: should not the focus be more on matching
the pretrained model and testing distributions based on their fitness? Given that pretrained models
with fixed network architectures and training distributions always face beneficial or detrimental test
distributions, we suggest incorporating more pretrained models to create diverse network architec-
tures and shifting training distributions, to facilitate generalization. Depending on the fitness of the
pretrained models to the target distributions, it is then possible to match OOD samples to appropriate
models, thus bypassing the issue of using a single model indicated by the NFL theorem.

3 THE PROPOSED FRAMEWORK FOR DOMAIN GENERALIZATION

In this section, we present a novel framework, namely specialized model-sample matching for do-
main generalization (SIMPLE), that reformulates DG as a matching problem, in light of the analysis
in Section 2. We first introduce the overall framework in Section 3.1. Then, we elaborate on the
design of specialty-aware model-sample matching and ensemble in Section 3.2, followed by the
learning algorithm in Section 3.3.

3.1 THE OVERALL FRAMEWORK

This section provides an overview of the SIMPLE framework, as shown in Figure 3. Following
our analysis in Section 2, one single pretrained model is not sufficient to accommodate diverse
OOD samples. From an intuitive view, it appears that more models need to be incorporated and
selected to solve the problem. Analogous to recommending items (models) to users (samples) from
the vast item set in recommender system, we formulate DG as a model-sample matching problem,
with a model pool containing various models and a model dispatcher responsible for assigning these
models to OOD samples appropriately.

Preliminaries. DG aims to tackle the shift of data distribution among different domains by trans-
ferring knowledge from seen to unseen domains. Unlike domain adaptation, samples from unseen
target domain(s) are inaccessible in DG. For a domain, its input and label space can be denoted as
X ∈ Rd and Y ∈ RC , respectively, where d is the dimension of input and C is the number of
classes in Y; And its samples are observed constructing a dataset D = {(xi, yi)}Ni=1 with sample
number N . Consider that we have S source domains Ds = {D1, . . . , DS} and T target domains
Dt = {D1, . . . , DT } that share the same label space but with different joint distributions on X ×Y .

Pretrained model pool. As discussed in Section 2.2, the OOD generalization error depends on the
fitness between the pretrained model and the test distribution, which is unknown in DG. Therefore,
building a pool with diverse pretrained models is crucial for DG. Note that with abundant pretrained
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models being released, it is easy to construct a model pool by simply downloading pretrained models
from public repositories (Wightman, 2019), without further efforts such as retraining. We collect
extensive pretrained models to serve for SIMPLE, as detailed in Appendix A.3. We denote a model
pool with K models as {fk}Kk=1, each of which is parameterized as θk.

Label space adapter. As the label space of the pretraining domains generally differs from the one
shared by source and target domains, label space adapters are required to make them consistent. The
adapter is a linear mapping between these two label spaces (pretraining → source/target), which
is shared among different pretrained models from the same pretraining domain (e.g., we only use
one adapter for all the models trained on ImageNet-1k). Specifically, given pretrained model fk,
we parameterize the adapted model hψ(fk(·; θk)) as θ′k = [ψ; θk], where ψ denotes the parameters
of the adapter, hψ ∈ A: RCo → RC and Co is the dimension of the label space of the original
pretraining dataset of fk. Through the label adapter, the output of pretrained model fk can be
transformed and adapted to target domains as ŷik = hψ(fk(xi)), without fine-tuning {θk}Kk=1. In
this way, it can largely reduce the adaptation cost of the pretrained models onto the new domains.

By the above construction, SIMPLE differs from the existing methods in two aspects. First, most
existing DG methods strive to fine-tune a specific pretrained model, which cannot generalize well
to a variety of unseen domains, as analyzed in Section 2. Second, conventional options utilizing the
pretrained models are fine-tuning and linear probing, as shown in Figure 2(A) and (B), respectively.
In detail, fine-tuning the pretrained model is costly and can hurt generalization ability (Wortsman
et al., 2022), while linear probing (i.e., replacing the last layer of the pretrained model and retraining
that) may achieve better accuracy in OOD scenarios than fine-tuning the whole model (Kumar et al.,
2021). However, the linear probing layer is not transferable across models, making the way either
costly when a large number of models need to adapt to new target domains. Our label space adaption
shown in Figure 2(C), instead, is remarkably light since it is shared by all the models from the same
pretraining domain, which has also been empirically verified in Section 4.2.
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Figure 2: Different training paradigms in DG.
Model dispatcher. As shown in Section 2, there is no individual model performing the best across
different tasks, thus, appropriate models need to be dispatched to address each specific task. We
define a model dispatcher gρ, with parameter ρ, that takes the sample xi as input and determines
the weight wk assigned to model fk for the sample xi with

∑K
k=1 wk = 1. Here wk represents an

estimate of the relative match between the model fk in the model pool and the sample.

Based on the constructed model pool and the model dispatcher, the prediction for each test sam-
ple is an ensemble of the predictions by the dispatched models. The final prediction is given
by ŷi =

∑K
k=1 [wk · hψ(fk(xi))]. Finally, we can define a population loss as ED(ψ, ρ) =

1
|D|

∑|D|
j=1 Exi∼Dj

[l(ŷi, yi)] over the given domain D. The objective is to minimize the task-specific
loss l (e.g., cross-entropy loss for classification) over both source domains Ds and target domains
Dt by only minimizing the empirical risk ÊDs

(ψ, ρ) w.r.t. ψ and ρ. The performance on the target
domains, then, measures the generalization ability.

3.2 SPECIALTY-AWARE MODEL-SAMPLE MATCHING AND ENSEMBLE

Following the paradigm introduced in Section 3.1, this section elaborates on the model dispatcher,
which consists of a model-sample matching network and a specialty-aware ensemble layer.
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Figure 3: The SIMPLE framework. Based on a pool of fixed pretrained models, a recommender
learns the matching of models and samples for model dispatching with the help of a label space
adapter for prediction transformation. Note that only pretrained models from the same pretraining
domain share the same label space adapter.

Model-sample matching. To capture the fitness of pretrained models towards OOD samples, a
network is proposed to learn the model-sample matching function. We employ a simple recommen-
dation algorithm (but not restricted), neural collaborative filtering (NCF) (He et al., 2017), to initiate
a proof-of-concept for our idea. Following NCF, the matching scores mi = [mi1, . . . ,miK ] ∈ RK
of a sample xi and models {fk}Kk=1 are computed on their latent features ci and c = [c1, . . . , cK ],
through a non-linear function activated multi-layer perceptrons (MLP) as mi = MLP(c⊤i c). Specif-
ically, the sample and the model are first embedded and then transformed into a joint latent space.
The feature extractor of one pretrained model fk0 from our model pool, fixed as the sample fea-
ture extractor, generates sample embedding ei for the sample xi. For the embedding of each model
fk, we introduce a learnable embedding ek, included in ρ, which is randomly initialized and opti-
mized during training. Both of them are processed by two non-linear functions activated MLP as
ci = MLP(MLP(ei)) and ck = MLP(MLP(ek)), to map into the same space for matching scoring.

Specialty-aware ensemble. After constructing a series of ranked models based on the matching
metric, the subsequent goal is to conduct prediction by selecting the most proper models. We argue
that individual model prediction may not cover most of the target distribution, thus, instead of utiliz-
ing only the top-1 matched pretrained model, we propose to apply a specialty-aware model ensemble
to derive the final prediction for the specific sample. It is also considered that ensemble has shown
improved robustness (Lakshminarayanan et al., 2016) and model specialty in various tasks also
plays a key role in prediction (Gontijo-Lopes et al., 2021), which will be further elaborated in Sec-
tion 3.3. Specifically, we normalize matching scores by softmax function Softmax(z)j = ezj∑K

k=1 e
zk

to highlight the relative competition among the pretrained models. That is, the ensemble weights
wi = [w1, . . . , wk, . . . , wK ] ∈ RK , is computed as wi = Softmax(mi).

To save the inference time, we further select models with the top-k̃ (k̃ < K) matching scores, before
their inference for the given sample. In this paper, we set k̃ = 6 and the sensitivity analysis on k̃
will be shown in Section 4.5. The overall inference cost is small as illustrated in Section 4.2.

3.3 OBJECTIVE AND LEARNING FOR SPECIALIZED MODEL-SAMPLE MATCHING

Loss for ensemble learning. The classification loss Lens(ψ, ρ) = l (ŷi, yi) is optimized for the
likelihood of final ensemble output, to update both the matching network and the adapter.

Loss for label space adapter learning. To train the general label space adapter hψ for all pretrained
models, we incorporate the weighted classification losses of adapted predictions of pretrained mod-
els to update the shared adapter, which is defined as follows:

Ladapter(ψ) =
∑K
k=1 wk · l (ŷik, yi) =

∑K
k=1 wk · l (hψ(fk(xi)), yi) . (1)

Loss for model specialty learning. The model dispatcher generates ensemble weights to aggregate
multiple model predictions for each sample, where models vary in their performance significantly
over samples as indicated in Section 2. Thus, we expect to assign more weights to the models with
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Table 1: DomainBed benchmarking. Baseline results are from original papers with the same setup.
Algorithm PACS VLCS OfficeHome TerraIncognita DomainNet avg.

Model Pool-A
Non-ensemble algorithms

DANN (Ganin et al., 2016) 84.6±1.1 78.7±0.3 65.4±0.6 48.4±0.5 38.4±0.0 63.1
CORAL (Sun & Saenko, 2016) 86.0±0.2 77.7±0.5 68.6±0.4 46.4±0.8 41.8±0.2 64.1
MLDG (Li et al., 2018a) 84.8±0.6 77.1±0.4 68.2±0.1 46.1±0.8 41.8±0.4 63.6
MMD (Li et al., 2018b) 85.0±0.2 76.7±0.9 67.7±0.1 49.3±1.4 39.4±0.8 63.6
C-DANN (Li et al., 2018c) 82.8±1.5 78.3±0.6 65.6±0.5 47.6±0.8 38.9±0.1 62.6
ERM (Gulrajani & Lopez-Paz, 2020) 85.7±0.5 77.4±0.3 67.5±0.5 47.2±0.4 41.2±0.2 63.8
Fish (Shi et al., 2021) 85.5±0.3 77.8±0.3 68.6±0.4 45.1±1.3 42.7±0.2 63.9
LP-FT (Kumar et al., 2022) 84.6±0.8 76.7±1.5 65.0±0.2 47.1±0.7 43.0±0.1 63.3
MIRO (Cha et al., 2022) 85.4±0.4 79.0±0.0 70.5±0.4 50.4±1.1 44.3±0.2 65.9

Ensemble algorithms
SWAD (Cha et al., 2021) 88.1±0.1 79.1±0.1 70.6±0.2 50.0±0.3 46.5±0.1 66.9
EoA (Arpit et al., 2021) 88.6 79.1 72.5 52.3 47.4 68.0
MIRO + SWAD (Cha et al., 2022) 88.4±0.1 79.6±0.2 72.4±0.1 52.9±0.2 47.0±0.0 68.1
SIMPLE 88.6±0.4 79.9±0.5 84.6±0.5 57.6±0.8 49.2±1.1 72.0

Model Pool-B
EoA+ (Arpit et al., 2021) 95.8 81.1 83.9 61.1 60.9 76.6
MIRO + SWAD (Cha et al., 2022) 96.8±0.2 81.7±0.1 83.3±0.1 64.3±0.3 60.7±0.0 77.3
SIMPLE+ 99.0±0.1 82.7±0.4 87.7±0.4 59.0±0.6 61.9±0.5 78.1

Table 2: Compare the training and inference cost of SIMPLE against that of SOTA baseline. ↑
(↓) means higher (lower) is better. The training time represents the overall back-propagation time.
Details are in Appendix A.10.

Pretrained
model type Algorithm # Learnable

params (↓)
Training time speedup
v.s. SOTA baseline (↑)

Inference
GFLOPs (↓)

ImageNet-pretrained MIRO + SWAD (ResNet-50) 25.6M 1 × 3.9
SIMPLE (Model Pool-A) 0.9M 1000 × 9.6

Diverse MIRO + SWAD (RegNetY-16GF) 79.7M 1 × 15.2
SIMPLE (Model Pool-B) 0.9M 1000 × 9.6

higher sample-level specialties to achieve the best utilization of the pretrained models. We use the
likelihood of the ground truth label p(yi |xi; θ′k) on the i-th sample produced by model fk as the
evaluation metric of its sample-level model specialty. That is, we try to minimize the estimation risk
of the estimated model specialty on the ground truth, i.e., wk and p(yi |xi; θ′k), as

Lspecialty(ρ) = −
∑K
k=1 [p (yi |xi; θ′k) · ln(wk) + (1− p (yi |xi; θ′k)) · ln(1− wk)] . (2)

Lspecialty is used to optimize the model-sample network and the ensemble layer to work jointly as a
specialty-aware model dispatcher.

Therefore, the total loss to minimize is L = aeLens(ψ, ρ)+adLadapter(ψ)+asLspecialty(ρ), where ae,
ad, and as are loss weights. It is worth noting that the only parameters to update are {ψ, ρ}, each of
which is lightweight compared to the pretrained models which remain fixed in our method, yet have
been fine-tuned in other previous works.

4 EXPERIMENTS

4.1 EVALUATION PROTOCOL

We conduct experiments on DomainBed suite (Gulrajani & Lopez-Paz, 2020) which provides like-
for-like comparisons between algorithms with a standard evaluation, as detailed in Appendix A.6.

Datasets. We experiment on 5 real-world benchmark datasets including PACS (4 domains, 9,991
samples, 7 classes) (Li et al., 2017), VLCS (4 domains, 10,729 samples, 5 classes) (Fang et al.,
2013), OfficeHome (4 domains, 15,588 samples, 65 classes) (Venkateswara et al., 2017), TerraIncog-
nita (4 domains, 24,778 samples, 10 classes) (Beery et al., 2018), and DomainNet (6 domains,
586,575 samples, 345 classes) (Peng et al., 2019).

Baselines. We compare SIMPLE with strong DG baselines including state-of-the-art. General DG
methods incorporate elaborate learning algorithms including ERM (Vapnick, 1998), CORAL (Sun
& Saenko, 2016), MLDG (Li et al., 2018a), MMD (Li et al., 2018b), DANN (Ganin et al., 2016),
C-DANN (Li et al., 2018c), Fish (Shi et al., 2021), LP-FT (Kumar et al., 2021), and MIRO (Cha
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Table 3: Results of (1) ablation study and (2) SIMPLE with different sized model pools.
Algorithm PACS VLCS OfficeHome TerraIncognita DomainNet avg.

Model Pool-A
test-best single model 62.1 66.6 78.3 40.5 28.3 55.2
random ensemble 40.2 48.6 34.7 16.2 12.0 30.3
SIMPLE (small pool) 84.1±0.5 79.8±0.1 79.9±0.1 56.8±0.2 46.3±0.4 69.4
SIMPLE 88.6±0.4 79.9±0.5 84.6±0.5 57.6±0.8 49.2±1.1 72.0

Model Pool-B
test-best single model 95.6 82.1 78.3 40.5 52.7 69.8
random ensemble 38.5 46.5 28.2 19.7 12.5 29.1
SIMPLE+ (small pool) 96.1±0.0 82.2±0.0 80.7±0.2 56.8±0.3 54.7±0.1 74.1
SIMPLE+ 99.0±0.1 82.7±0.4 87.7±0.4 59.0±0.6 61.9±0.5 78.1

et al., 2022). Some other works incorporate ensemble learning, including SWAD (Cha et al., 2021)
and EoA (Arpit et al., 2021). MIRO has combined SWAD (MIRO + SWAD) into their approach,
with the result being the current SOTA for DomainBed. More details can refer to Appendix A.7.

Model pool composition. We collect 283 pretrained models to compose model pools, described in
detail in Appendix A.3. Based on their pretraining domains, we divide them into a pure ImageNet-
pretrained model pool (Model Pool-A) and one with pretrained models from different datasets
(Model Pool-B). We denote SIMPLE using Model Pool-B as SIMPLE+ to distinguish it from
the one using Model Pool-A.

4.2 EVALUATION RESULTS ON DOMAINBED

This section presents the evaluation results of DomainBed suite, on which we compare SIMPLE
with general DG algorithms to verify its effectiveness and efficiency. Specifically, we compare
algorithms using ImageNet-pretrained models only (e.g., SIMPLE using Model Pool-A) and using
pretrained models from diverse pretraining datasets (e.g., SIMPLE+ using Model Pool-B), resp.

Performance comparison. As shown in Table 1, SIMPLE achieves an average performance of
72.0% with ImageNet-pretrained models, exceeding the current SOTA competitor (MIRO + SWAD)
by 3.9% and ranks first in all datasets. SIMPLE even outperforms the second-best method by 12.2%
on OfficeHome dataset. The results show that our proposed paradigm of using only pretrained
models without fine-tuning is more effective than the traditional paradigm that requires fine-tuning.
Furthermore, by using Model Pool-B that includes models pretrained on other datasets, SIMPLE+

further improves the average performance by 6.1% over SIMPLE and beats other strong baselines.

Training cost comparison. As SIMPLE does not fine-tune these models but use the matching
network to dispatch models, the training cost is almost negligible versus general DG methods. As
shown in Table 2, the number of learnable parameters of SIMPLE (0.9M) is minor compared with
the normal image backbone network used by MIRO (25.6M for ResNet-50 and 79.7M for RegNetY-
16GF). In addition, training of SIMPLE uses noticeably less time with 1000 times speedup.

Inference cost comparison. Additionally, the inference cost is controlled through selectively ac-
tivating appropriate models with the highest k̃(< K) matching metric values, for inference. This
reduces the inference cost to a large extent, though more than 200 pretrained models have been in-
corporated in the model pool. As shown in Table 2, although SIMPLE uses more inference cost
than the model using ResNet-50 as the backbone, SIMPLE+ uses less inference time than the ex-
isting SOTA (MIRO + SWAD) using RegNetY-16GF (Singh et al., 2022) as the backbone. That is,
SIMPLE+ obtains new SOTA results with significantly higher training and inference efficiency.

The significant training time advantage of SIMPLE and its surpassing performance indicate that
SIMPLE is an effective and efficient paradigm for DG. We illustrate the matching preference of
SIMPLE, i.e., which models are typically dispatched in specific domains, in Appendix A.11.

4.3 ABLATION STUDIES

We verify the effectiveness of SIMPLE design by answering two research questions (RQ) as below.

(RQ1) Does SIMPLE achieve better generalization performance than the best single model in
the model pool? To verify, we train an individual adapter on source domains for each pretrained
model and show the “cheating” upper bound of single model performance by reporting the best
single model performance on test set as test-best single model in Table 3. As shown in Table 1, the
best single model has outperformed the current SOTA (MIRO + SWAD) on certain datasets (e.g.,
OfficeHome and VLCS). Nevertheless, SIMPLE beats it in all the comparisons (RQ1). This implies
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that SIMPLE has somehow compensated for the drawbacks brought by NFL of a single model in
DG, by utilizing different pretrained models and dispatching them selectively to OOD samples.

(RQ2) Is it necessary to assemble pretrained models according to their specialty? The analysis
in Section 2.1 shows that pretrained models possess certain generalization ability. Thus, a natural
approach is to simply aggregate pretrained models without considering their relative specialty on
different samples, e.g., randomly select k̃ models for each sample and average their outputs as the
final prediction (Lakshminarayanan et al., 2017). The results of the random ensemble are shown in
Table 3, illustrating that random ensemble lags behind SIMPLE by a large margin. This verifies the
necessity to select and ensemble pretrained models based on their specialty over samples (RQ2).

4.4 PRACTICAL TIPS FOR CONSTRUCTING MODEL POOLS

In this section, we investigate the impact of different model pool properties on the generalization
performance, to provide useful guidance for the composition and utilization of model pools. The
corresponding results are presented in Table 3. Specifically, we focus on the size and diversity
of model pools by comparing four different model pools, i.e., Model Pool-A-Small (ImageNet-
pretrained, 15 models), Model Pool-A (ImageNet-pretrained, 244 models), Model Pool-B-Small
(diverse pretraining datasets, 17 models), and Model Pool-B (diverse, 283 models). The composition
of these model pools can be found in Appendix A.3.

Tip 1: Use a larger model pool. Based on the analysis in Section 2, a larger model pool is fa-
vored as it increases the probability that the model pool contains models that match well with each
OOD sample. This is consistent with the comparison of Model Pool-A-Small with Model Pool-A,
and Model Pool-B-Small with Model Pool-B. Both types of model pools show significantly better
generalization performance as the size of the model pool increases.

Tip 2: Incorporate diverse models. The performance comparison of Model Pool-A(-Small) and
Model Pool-B(-Small) indicates that adopting diverse pretrained models from different pretraining
domains can enhance DG performance remarkably.

Tip 3: Increasing model diversity matters more than increasing model pool size. On top
of Model Pool-A-Small, Model Pool-A incorporates 224 additional pretrained models from Ima-
geNet pretraining domain, while Model Pool-B-Small adds 2 more models that are pretrained on
YFCC100M (Radford et al., 2021). However, SIMPLE performs better upon Model Pool-B-Small,
suggesting that the diversity of model pool may be more important for generalization.

The above tips from empirical observations that, more models and more diversity can improve gen-
eralization performance, again suggest that there is no free lunch for DG. Thus, different pretrained
models are needed to address DG. SIMPLE provides a way to realize this goal both effectively and
efficiently by (1) adapting pretrained models to unseen domains via label space adaption with a low
cost and (2) dispatching best-fit models from a large model pool to handle each OOD sample.

4.5 SENSITIVITY ANALYSIS

We conduct sensitivity analysis for k̃ and sample feature extractor fk0 , detailed in Appendix A.9,
and the main findings include: (1) There is a marginal effect on the generalization performance im-
provement brought by increasing k̃, and SIMPLE can outperform SOTA baseline (MIRO + SWAD)
even when k̃ = 2; and (2) SIMPLE is robust to the selection of feature extractors.

5 CONCLUSION

Despite recent studies suggesting that network architectures and pretraining practices affect gener-
alization ability to a large extent, no work has explored the use of these easy-to-obtain pretrained
models to address domain generalization. Our work provides a comprehensive analysis of generaliz-
ing pretrained models to unseen domains and reveals that there is no free lunch of pretrained models
in DG. Based on that, we propose a novel DG paradigm that leverages fixed pretrained models
and dispatches them to OOD samples based on their matching metric to the target task. Exten-
sive evaluations show that our proposal is a promising alternative for DG, with better generalization
performance and significantly higher training efficiency compared to existing DG methods.
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A APPENDIX

A.1 RELATED WORK

Mainstream DG research generally addresses distributional shifts through data manipulation (Tobin
et al., 2017; Peng et al., 2018), robust representational learning (Tzeng et al., 2014; Arjovsky et al.,
2019), and exploration of new learning strategies such as ensemble learning Cha et al. (2021). We
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here only review studies that are mainstream in DG and that relate to our method. For a more
comprehensive survey, please refer to Wang et al. (2022).

Data manipulation. DG arises from the lack of sufficient data to feed machine learning models,
so they are biased to the training distribution, resulting in an inability to work well on the test dis-
tribution (Wang et al., 2022). Thus, various methods resort to manipulating the training samples
to simulate unseen target domains, among which there are two techniques, namely data augmenta-
tion (Shankar et al., 2018) and data generation (Li et al., 2021). Data augmentation has been widely
used in general machine learning models to enhance their generalization ability by avoiding over-
fitting (Shorten & Khoshgoftaar, 2019). Inspired by its importance, Tobin et al. (2017) first uses it
for DG to simulate test distributions, and subsequently, Peng et al. (2018); Khirodkar et al. (2019);
Tremblay et al. (2018) also adopt data augmentation in various ways. In addition to the common
feature augmentation, Peng et al. (2022) further propose to perform label augmentation. In the field
of data generation, instead of augmentation, methods generate new samples or domains by means
of such as Mixup (Zhang et al., 2017), auto-encoder (Qiao et al., 2020), generative adversarial net-
work (Rahman et al., 2019).

Representation learning. In another promising direction, some DG studies attempt to extract
domain-invariant features that can be generalized to unseen domains (Ben-David et al., 2006), or
separate domain-shared and domain-specific parts from the features for generalization (Khosla et al.,
2012). Motivated by the transferability of domain-invariant features across varied domains and the
expectation of their generalization ability to unseen domains, methods try to obtain a specific feature
space that is invariant to domain labels. Li et al. (2018b) first introduces adversarial training in DG,
allowing the generator seeks to trick the discriminator about the domain labels of images and thus
generate domain-invariant features. Several works (Shao et al., 2019; Rahman et al., 2020; Wang
et al., 2020b) follow this direction. In the line of extracting domain-invariant features, other works
explicitly align feature distribution learned from source domains, with the differences measured by
Wasserstein distance (Zhou et al., 2020), maximum mean discrepancy (Wang et al., 2018; 2020a),
or mean and variance (Peng et al., 2019). At a meta level, Balaji et al. (2018) consider learning a
regularization function on the classifier to avoid biasing to domain-specific information. In contrast,
for robust representation learning, some work aims to separate domain-invariant variables from the
specific ones of the learned features (Niu et al., 2015; Ilse et al., 2020; He et al., 2021b).

Ensemble learning. Ensemble learning methods Hansen & Salamon (1990); Zhou et al. (2018);
Li et al. (2023) exploit multiple models to produce prediction results and combine the results with
various techniques, e.g., boosting Schapire (1990); Freund (1995); Moghimi et al. (2016) or mean
aggregation Zhou et al. (2018); Zhang et al. (2020), aiming at achieving better performance than
individual model alone. As a well-known technique to improve generalization performance, ensem-
ble learning has also been explored in DG. One general idea of using ensemble learning by existing
DG methods is to utilize the relationship between unseen domains and source domains. Specifically,
in the work of Mancini et al. (2018), they train an individual classifier for each specific source do-
main and one additional classifier to predict the probability of each domain that a sample belongs
to, and aggregate their predictions by weights accordingly. In addition, Segu et al. (2020) proposes
to maintain domain-specific batch normalization layers, which will be weighted for aggregation in
inference. Zhou et al. (2021) instead trains only domain-specific classifier heads while letting them
share the same feature extractor. SWAD (Cha et al., 2021) and EoA (Arpit et al., 2021) instead use
model ensemble and weight ensemble directly to improve the generalization. Though promising
in enhancing performance, ensemble learning is criticized for its computational efficiency, which
hinders the practical application (Wang et al., 2022).

Relation to existing work. The main difference between the existing DG works and SIMPLE resides
in the fact that these efforts seek to find an optimal model that can settle all distributional shifts.
Even DG algorithms that use ensemble learning are trying to find an optimal ensemble that has
a flatter loss landscape and better generalization ability (Cha et al., 2021). To this end, existing
works use a specific pretrained model for initialization, as this performs better than training from
scratch (Wortsman et al., 2022), and then fine-tune it with training algorithms like data manipulation,
robust representation learning, or ensemble learning as discussed above. In contrast, recent studies
have shown that such specific pretrained models may not be sufficient to solve distributional shifts,
and that pretraining strategies need to be chosen for different types of distributional shifts. To the
best of our knowledge, SIMPLE is the first work to address DG by directly using different pretrained
models without fine-tuning, by reformulating DG as a model-sample matching problem. Moreover,
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SIMPLE does not fine-tune these pretrained models, but uses domain-level label space adaptation
to achieve effective adaptation, which has significantly reduced the cost of training and adaptation.

A.2 MORE DISCUSSION ABOUT SIMPLE

Towards a robustness algorithm that can effectively and efficiently leverage extensive pretrained
models for DG, there are certain challenges that remain in our paper. Currently, SIMPLE is not
feasible for adding new pretrained models into the model pool for direct utilization. Although re-
training is lightweight, we need a more straightforward approach to address this problem due to the
rapid development of pre-trained models. We leave this problem, i.e., the cold-start problem which
has been long studied in recommendation fields, as further work.

A.3 PRETRAINED MODEL POOLS

This section presents the pretrained models used in SIMPLE. With more and more pretrained mod-
els being published, it is straightforward to build a pretrained model pool consisting of several public
pretrained models for direct adaptation to novel domains. In particular, these models are categorized
according to their pretraining domain as an ImageNet-pretrained model pool (Model Pool-A) and a
pool (Model Pool-B) containing models pretrained on datasets other than the ImageNet dataset.

Model Pool-A. DG methods commonly use ImageNet-pretrained models to initialize the model
weights for further fine-tuning(Kim et al., 2021). To present fair comparisons with those methods,
we first construct an ImageNet-pretrained model pool (Model Pool-A). Specifically, we collect 244
models with diverse network architectures and learning objectives from popular 3rd-party reposito-
ries345. Note that, the models pretrained on the same dataset, i.e., ImageNet, will share the same
label adapter transforming the vanilla model outputs to the target label space. Therefore, for Model
Pool-A, only one label space adapter will be trained, to transform the original predictions for 1,000
classes in ImageNet into the predictions of the target class space.

Model Pool-B. Previous studies also found that ImageNet-pretrained model (e.g, ResNet-50) is not
sufficient for generalization (Kumar et al., 2021; Kim et al., 2022), suggesting the need for models
pretrained on different datasets. Therefore, we further expand the Model Pool-A by incorporating
models that trained on datasets including ImageNet-21k, YFCC100M (Radford et al., 2021), In-
stagram 3.6B (Singh et al., 2022), as Model Pool-B. In total, we add 39 models, whose weights
are obtained from the same sources or from their public repositories67. Thus, Model Pool-B con-
tains 283 pretrained models with varied network architectures, learning objectives, and pretraining
datasets.

To analyze the impact of model pool size on performance, we take a portion of the models from these
two model pools and use them to construct Model Pool-A-Small and Model Pool-B-Small. Specifi-
cially, in Model Pool-A-Small, we incorporate the architectures including AlexNet (1) (Krizhevsky
et al., 2012), DenseNet-121/169/201 (3) (Iandola et al., 2014), Dual-Path-Network-68 (1) (Chen
et al., 2017), NASNetMobile (1) (Zoph et al., 2018), ResNet-18/34/50 (3) (He et al., 2016), SE-
ResNet-50 (1) Hu et al. (2018), SqueezeNet-1.0/1.1 (2) (Iandola et al., 2016), and MAE-ViT-
Base/Large/Huge (3) (He et al., 2021a). On the other hand, several DG algorithms also use models
pretrained on other datasets, such as 1G-1B (Arpit et al., 2021) and ILSVRC12 (Thomas et al.,
2021). Therefore, we build Model Pool-B-Small which contains two more CLIP models (Radford
et al., 2021), ViT-B/16 and ViT-B/32, which are trained on a subset of the YFCC100M dataset of
roughly the same size as ImageNet.

A detailed list of pretrained models is given in table 7, with the sources of the models, the dimen-
sions of their outputs and FLOPs (floating point operations per second).

3https://github.com/rwightman/pytorch-image-models
4https://github.com/Cadene/pretrained-models.pytorch
5https://github.com/facebookresearch/mae
6https://github.com/openai/CLIP
7https://github.com/facebookresearch/SWAG
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A.4 EMPIRICAL EVIDENCE OF NO FREE LUNCH

In this section, we elaborate on the empirical analysis in Section 2, and provide more experimental
details and insights for the analysis.

Transfer and performance measurement of pretrained models. As discussed in Section 2, in-
stead of fine-tuning or conducting linear probing to adapt those pretrained models to be a predictive
model for unseen target domains, we only train a label space adapter that learns the mapping function
hψ . Then we train this shared adapter hψ with the empirical loss ÊDs(ψ, ρ) without fine-tuning the
pretrained model parameters {θk}, as formally described in Section 3.2. With the trained adapter,
we use the likelihood of the ground truth label p(yi |xi; θ′k) on the i-th sample produced by each
adapted model, which also indicates the confidence of the ground truth label yi of the model and∑
y∈Y p(y |xi; θ′k) = 1. We utilize this likelihood as the evaluation metric of its sample-level model

specialty.

Experimental settings. First, we analyze the specialty distribution of each pretrained model
from an aggregation view (i.e, domains and classes, respectively), and we verify if there exists a
dominant pretrained model that generalizes best across different unseen domains. We calculate
domain-level model specialty as summation of the sample-level specialty over all domain samples
as

∑
(xi,yi)∼D log p(yi |xi; θ′k), on TerraIncognita (Beery et al., 2018) with four domains. To reflect

the relative model performance, we perform min-max normalization for model specialty values in
the same domain. These complete results are shown in Figure 4, with only partial results put in
Section 2 for a clearer presentation. Then, we further examine whether performance divergence
also exists at the finer-grained class-level. Similar as that at domain-level, Figure 4 presents the
relative model performance on 10 classes in TerraIncognita. In addition, to clearly compare model
specialty differences at the two levels, we present heatmaps of specialty differences (measured by
Kullback-Leibler divergence) for domain and class pairs, respectively in Figure 5.

Based on the results of comparing the performance of all pretrained models on different domains
and classes, we can draw more empirical insights as follows:

(1) Most importantly, there is no single model that performs best both across domains and classes;

(2) The divergence of the performance distribution is significantly more prominent at the class level
than at the domain level, as evidenced by the comparison of the Figure 5(a) and (b);

(3) As a side finding, models that perform well in the ‘Bird’ class generally perform well in the
‘Bobcat’ class, as indicated by their pair-wise Kullback-Leibler divergence values. However, models
that perform well in ‘Bird’ and ‘Bobcat’ usually perform poorly in ‘Dog’ and ‘Rabbit’ classes. This
can be viewed as another piece of evidence of NFL for shifting distribution shifts.

A.5 NO FREE LUNCH THEOREM

We here detail the formal version of Theorem 1 with related definitions.

Considering a kernel regression task, training samples {xµ, yµ} are sampled from i.i.d. and the
labels which contain noisy are generated from a target function yµ = f̄ (xµ) + ϵµ where the noise
covariance is ⟨ϵµϵν⟩ = ε2δµν . Then the model for regression is trained by minimizing the empirical
error (ERM loss):

f∗ = argmin
f∈H

1

2

P∑
µ=1

(f (xµ)− yµ)
2
+ Λ⟨f, f⟩H,

where H is a Reproducing Kernel Hilbert Space (RKHS) associated with a positive semi-definite
kernel K (x, x′) : RD × RD → R, and ⟨., .)H is the Hilbert inner product. The generalization error
on the test distribution p̃(x) isEg(D) =

〈(
f∗(x)− f̄(x)

)2〉
p̃(x)

, which is a random variable whose

value depends on the sampled training dataset. Therefore, the generalization error is averaged over
the distribution of all datasets with sample size P :

Eg =
〈(
f∗(x)− f̄(x)

)2〉
p̃(x),D

.

Based on the problem setting, Canatar et al. (2021) proposes the following proposition:
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Figure 4: Performance comparison of all pretrained models on different domains and classes of the
TerraIncognita benchmark. Note that we omit the model names for clarity, and each row represents
the performance of one model. 18
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(a) Domain-level. (b) Class-level.

Figure 5: Kullback-Leibler divergence between the performance distribution over all the leveraged
pretrained models in domain-leval (a) and class-level (b), respectively.

Proposition 1. (Restating Proposition 1 in Canatar et al. (2021)) Consider the kernel regres-
sion problem defined above, where the model is trained on p(x) and tested on p̃(x). Consider
the Mercer decomposition of the RKHS kernel K(x, x′) = Φ(x)TΛΦ(x′), where we defined
M × M (M possibly infinite) diagonal eigenvalue matrix Λργ = ηρδργ and the column vector
Φ(x) = (ϕ1(x), ϕ2(x) . . . , ϕM (x)), with

∫
dxp(x)Φ(x)Φ(x)⊤ = I. Also consider an expansion

of the target function in the Mercer basis f(x) = a⊤Φ(x) with a coefficient vector a.
The dataset averaged OOD generalization error is given by:

Eg = E0,p(x)
g︸ ︷︷ ︸

ID error

+
γ′ − γ

1− γ
ε2 + κ2a⊤(PΛ + κI)−1O ′(PΛ+ κI)−1a︸ ︷︷ ︸

distribution shift error

,

κ = Λ+ κTr
(
P + κΛ−1

)−1
, γ = P Tr

(
P + κΛ−1

)−2
, γ′ = P TrO

(
P + κΛ−1

)−2
,

where κ must be solved self-consistently, and we defined the M ×M overlap matrix

Oργ =

∫
dxp̃(x)ϕρ(x)ϕγ(x), O ′ = O − 1− γ

1− γ
I.

Here E0,p(x)
g denotes the generalization error when both training and test distributions are matched

to p(x) (i.e., in-distribution error) and is given by:

E0,p(x)
g =

γ

1− γ
ε2 +

κ2

1− γ
a⊤(PΛ + κI)−2a.

Further, the expected estimator is:

⟨f∗(x;P )⟩D =
∑
ρ

Pηρ
Pηρ + κ

aρϕρ(x).

A.6 EVALUATION SETTINGS

Evaluation protocol. We follow DomainBed protocol to conduct our evaluation, for fair com-
parisons with baselines. We use the training-domain validation set protocol for model selection.
Specifically, one domain in a dataset is selected as the target domain and the rest as source domains,
from which 20% of samples are used as the validation set. All runs are repeated 3 times using dif-
ferent random seeds, thus, with different train-validation splits. The out-of-domain test performance
averaged over all domains will be reported for each dataset. In addition, we use the standard number
of iterations of 5,000 for all datasets, with early-stop based on validated accuracy.

Hyperparameter tuning. Here we state the details of hyperparameter tuning in our experiments.
We use separate Adam optimizers (Zhang, 2018) for the ensemble network and label space adapter.
Table 4 lists the hyperparameters to tune and their search space. For each domain, we sweep through
48 different hyperparameter settings.
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Table 4: Hyperparameters we set or tune for SIMPLE.
Hyperparameter Search Range
learning rate used for matching network [0.0001,0.1]
learning rate used for label space adapter [0.0001,0.1]
loss weight ae [0.01, 1.0]
loss weight ad [0.01, 1.0]
loss weight as [0.01, 1.0]
weight decay of Adam optimizer [1e-3,1e-4,1e-5,1e-6, 1e-7]
batch size [32, 64, 128, 256]

A.7 BASELINES

• Stochastic Weight Averaging Densely (SWAD) (Cha et al., 2021): SWAD performs weight
ensemble during model training.

• Ensemble of Average (EoA) (Arpit et al., 2021): EoA combines both model ensemble and
weight ensemble by taking an ensemble of moving average models from 6 runs. They ex-
periment with three different pretrained models as initialization. The first one is pretrained
on ImageNet with ResNet-50 and the second is pretrained on both ImageNet and a much
larger additional dataset, IG-1B, with a more advanced backbone, ResNeXt-50 (Xie et al.,
2017). Additionally, with a pretrained RegNetY-16GF (Singh et al., 2022), EoA achieves
its best results. We denote the last one as EoA+ to indicate it uses the additional dataset
and to compare with SIMPLE+.

• Random ensemble: In contrast to SIMPLE of learning to select models for ensemble, we
also compare it with an average ensemble of k̃ models chosen randomly for each sample.

A.8 MORE ABLATION STUDY

Here we introduce an additional baseline that uses the same set of ensemble weights for all sam-
ples in a domain, rather than generating different ensemble weights to aggregate model predictions
differently for each OOD sample.

For ensemble-based approaches, the overall prediction is given by ŷi = w⊤[f1(xi), · · · , fK(xi)],
where wk is the weight for aggregating the prediction of k-th models fk(xi). In SIMPLE, the
ensemble weights are given by w = MLP(c⊤i C), where ci is the embedding for the i-th sample and
C contains the embeddings for all the models.

Therefore, there is a special case of proposed ensemble approach, where the ensemble weights
w ∈ RK are randomly initialized and optimized through back-propagation. Here in this simplified
version, w is shared for all the samples in the dataset and does not incorporate model or sample in-
formation. Compared with this simplified version, SIMPLE explicitly leverages sample and model
information (encoded in the embedding vectors ci and C) to generate specialized ensemble weights
for each sample, which is more fine-grained. With model and sample embedding, SIMPLE enjoys
much lower training cost when incorporating new pretrained models that are not in the model pool.

We implement this special case and conduct experiments on OfficeHome dataset to compare with
SIMPLE. By performing sufficient hyperparameter tuning, such a simple version achieves an av-
erage accuracy of 82.3% on OfficeHome, which is worse than 87.7% of SIMPLE (and even worse
than 84.6% of SIMPLE using the much smaller Model Pool-A) and 83.9% of the existing SOTA.
It in contrast suggests that, incorporating information about models and the sample to conduct fine-
grained model-sample matching in SIMPLE, is necessary and more effective, than using a set of
weights and optimized by back-propagation.

A.9 SENSITIVITY ANALYSIS

A.9.1 ANALYSIS OF k̃ IN TOP-k̃ MODEL SELECTION

Intuitively, using more models in an ensemble may lead to better performance (Zhang et al., 2020).
However, a larger ensemble size also means that the ensemble consumes more computation in infer-
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ence. Thus, in inference, we choose to selectively activate k̃ (< K) models with higher ensemble
weights. It is necessary to verify the impact of how many models are used for the prediction of
each sample on the final performance, which can help balance the effectiveness and efficiency of
our approach.

Settings. To demonstrate the sensitivity of changes in the parameter k̃ (the number of models
activated in inference) to the final generalization performance, we evaluated the performance of
SIMPLE+ with different values of k̃ in the top-k̃ selection on the OfficeHome dataset. Specifically,
we evaluate k̃ ∈ [1, . . . , 10], with a limited and average sweep of the hyperparameters to save
computational time. Therefore, the accuracy may not be optimal.
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Figure 6: The impact of k̃ values of top-k̃ selection in inference, on the generalization performance
of SIMPLE+ on the OfficeHome dataset.

As illustrated in Figure 6, the highest accuracy of 87.02% is obtained when the number of activated
models reaches the highest value we set. This indicates that the generalization performance can
benefit from using more models to compose the ensemble for the final prediction. However, another
important finding of this result is that the marginal effect of increasing the number of models de-
creases as the number of activated models increases. For example, when k̃ is increased from 1 to
2, SIMPLE+ gains 1.22% performance gain. In contrast, when k̃ shifts from 8 to 10, the perfor-
mance gain is only 0.11%. Therefore, it is predictable that since matching networks can provide a
decent ranking of pretrained models, we can obtain promising generalization performance with lim-
ited activation models to save computational cost. Note that when k̃ = 2, our method has obtained
a performance that exceeds the existing SOTA (MIRO + SWAD).

A.9.2 ANALYSIS OF FEATURE EXTRACTOR SELECTION

We perform an ablation study to verify the robustness of our matching network to the selection of
feature extractors. Here we provide details for that claim in Section 4.5.

Settings. In general, ResNet-based models are used as feature extractors. We compare the perfor-
mance of our method here with a ResNet-based feature extractor (ResNet-34) and a more advanced
network structure (EfficientNet-B7 with Noisy Student) to see if these changes result in significant
performance differences. Specifically, ResNet-34 and EfficientNet-B7-NS obtain ImageNet top-1
classification accuracy of 75.0% and 86.9%, respectively. This ablation study is performed on the
OfficeHome dataset, with results shown in Table 5.

Table 5: Performance comparison of SIMPLE+ using ResNet-34 and EfficientNet-B7-NS as the
feature extractor.

domain A C P R avg.
ResNet-34 88.5±0.2 76.7±0.6 92.8±0.9 92.6±0.3 87.7±0.5

EfficientNet-B7-NS 85.8±0.8 77.0±0.7 92.2±0.5 91.9±0.7 86.7±0.6
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As can be seen, using ResNet-34 or EfficientNet-B7-NS results in similar performance, without one
dominating in all domains. Therefore, feature extractor selection has little impact on the general-
ization performance of SIMPLE, showing its robustness. Meanwhile, it is noted that the number
of parameters of EfficientNet-B7-NS is three times higher than that of ResNet-34. Therefore, we
choose ResNet-34 because it can provide good performance with less computation cost.

A.9.3 ANALYSIS OF LABEL SPACE ADAPTER TRAINING

As detailed in Section 3.3, the label space adapter of SIMPLE is trained by two losses, Lens(ψ, ρ)
and Ladapter, and the training process will be influenced by the ensemble weights wi. In this section,
we analyze and verify whether such an influence affects the training of adapters.

Note that, we train the same adapter for all the pretrained models from the same pretraining domain,
which is more efficient (than training different adapters for different pretrained models) and also
avoids unexpected training instability. When considering the large model pool with various models
from different pretraining domains (e.g., Model Pool-B), we believe the influence is acceptable or
even beneficial since: (1) adapters will observe all the training samples, so their training is sufficient;
(2) since the number of parameters of adapters is relatively small, the training of adapters will not
have a significant impact on the final performance; (3) although the training of adapters is influenced
by the ensemble weights, it is unbiased because the ensemble weights are optimized according to
the final objective.

Furthermore, we conduct experiments to verify whether training label space adapters under the
influence of ensemble weights will affect the training of adapters or degrade the performance.

Settings. We compare single model performance with and without the influence of ensemble
weights on the corresponding label space adapter. For no influence on adapters, we separately
train individual adapters for each model. We select several models which are assigned with small
ensemble weights in SIMPLE. The evaluation is on ‘art’ domain of the OfficeHome dataset.

Figure 7 shows the performance difference between (1) a model with the adapter trained with and
without ensemble weights (blue bars); and (2) our method SIMPLE and the SOTA baseline for
reference (orange bar). As can be seen, (1) single model performance does not significantly degrade
under the influence of ensemble weights (even less than the difference between our method SIMPLE
and the existing SOTA); (2) moreover, for some models in Figure 7, training a shared adapter (i.e.,
influenced by the ensemble weights) can make a single model perform even better. The possible
reason is that training a shared adapter for multiple models avoids overfitting, leading to better
generalization.

A.10 TRAINING AND INFERENCE COST COMPARISON

We compare the training and inference costs of SIMPLE with general DG methods, including SOTA
and methods that use ensemble learning. Specifically, for training costs, we evaluate the number
of learnable parameters and the overall training time. And for inference, we compute GFLOPs. To
fairly compare training costs, we run experiments of ERM, SWAD, and SIMPLE on a single Nvidia
Tesla V100 and compare their overall back-propagation time from the start of training to the end (or
early-stop). And based on the statistics of ERM and SWAD, we estimate the training time for EoA
and MIRO, respectively. The results are shown in Table 6.

Training cost comparison. As shown in Table 2, training SIMPLE paradigm uses noticeably
less time. SIMPLE+ takes only 0.1% of the time of ERM on PACS. The significant training time
advantage of the method and its surpassing performance suggest that SIMPLE is an effective and
efficient paradigm for domain generalization.

Inference cost comparison. Although ensemble methods like EoA and SEDGE achieve better
generalization performance at the cost of higher inference FLOPs, SEDGE still manages to save a
large amount of inference cost compared to the previous best ensemble model (half of the inference
FLOPs compared to EoA). This is because SIMPLE only selects models with the highest k̃(< K)

ensemble weights. Therefore, only k̃ of K models are activated for inference per sample, which
reduces the inference cost to a large extent. In addition, compared to SOTA (MIRO + SWAD),
which uses a larger network architecture to achieve better results than using ResNet-50, SIMPLE+

22



Published as a conference paper at ICLR 2023

0 1 2 3 4 5 6 7 8 9 10 11 12 refer-
 ence

Model index

4

2

0

2

4

Pe
rfo

rm
an

ce
 d

iff
er

en
ce

(Model with a separate adapter) minus (Model with a shared adapter)
(SIMPLE) minus (existing SOTA (MIRO))

Figure 7: The difference of single model performance with and without the influence of ensemble
weights, on the OfficeHome dataset.

keeps the inference cost using significantly lower GFLOPs than SOTA uses to obtain the new SOTA
results.

Table 6: The comparison of training and inference cost. Here the training time implies the overall
back-propagation time. The training times of ERM and SWAD are derived from the statistics of our
runs, and we estimate the training time of EoA and MIRO based on that of ERM. The run for SWAD
on DomainNet failed due to out-of-memory.

Algorithm # Learnable
parameters (↓)

Training time (↓) Inference
PACS VLCS OfficeHome Terra DomainNet GFLOPs (↓)

ERM
with ResNet-50 25.6M 3.4h 3.6h 3.3h 3.4h 9.8h 3.9

SWAD
with ResNet-50 25.6M 2.1h 2.4h 2.1h 2.1h / 3.9

EoA
with ResNet-50 153.4M 20.4h 21.6h 19.8h 20.4h 58.8h 23.5

MIRO + SWAD
with ResNet-50 25.6M 3.4h 3.6h 3.3h 3.4h 9.8h 3.9

MIRO + SWAD (SOTA)
with RegNetY-16GF 79.7M 10.6h 11.2h 10.3h 10.6h 30.5h 15.2

SIMPLE
with Model Pool-A 0.9M 9.2s 12.0s 16.9s 9.6s 55.9s 9.7

SIMPLE+

with Model Pool-B 0.9M 8.8s 10.3s 20.9s 9.3s 79.1s 9.6

A.11 MATCHING PREFERENCE ANALYSIS

SIMPLE shows excellent generalization performance in the case of dispatching only fixed pre-
trained models to predict each OOD sample. Thus, we are curious about its matching preference,
that is, which models are typically dispatched in specific domains. This could also provide insights
into which types of pretrained models might be more suitable for certain domains.

Settings. We attempt to analyze the preferences of our approach for network architectures and
pretraining datasets. To do so, we first measure the importance of the pretrained models and then
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perform a refined analysis of their architectures and pretraining datasets. Specifically, by taking the
model dispatcher trained by SIMPLE, we compute the sum of the ensemble weights assigned to
each pretrained model as its importance measure for ranking. Then, we classify these pretrained
models according to the basic architecture and the pretraining dataset. Treating the ranking of the
pretrained models as the ranking of the associated types, we can measure the importance of each
type by calculating the mean reciprocal rank (MRR).

Figure 8: Samples that are included in DomainBed, from Table 3 in Gulrajani & Lopez-Paz (2020).

Analysis of network architecture. Figure 13, 14, 15, 16, and 17 show the raw rankings of the
pretrained models on different datasets. From the ranking information, we can see that SIMPLE
assigns markedly different pretrained models to samples from different domains. This may imply
that these domains, as shown in Figure 17, may differ widely from each other and thus need to be
handled by varying combinations of pretrained models. We then classify these pretrained models
based on their basic architecture, i.e., CNN-based, ViT-based, and MLP-based, with their MRR
values over different datasets and domains shown in Figure 9. It can be seen that ViT-based models
are dispatched more frequently than CNN-based models in most domains, with the exception of 6
domains. Observations over these domains suggest that CNN-based models tend to be used more for
real images (e.g., photo), while ViT-based models are chosen to handle stylistic or textural variations
(e.g., sketch).

Analysis of pretraining datasets. We then analyze on the pretraining datasets, including ImageNet-
1k, ImageNet-21k8, CLIP (Radford et al., 2021), and SWAG (Singh et al., 2022), used for pretrained
models. The MRR results of these different pretraining datasets on five datasets are shown in Fig-
ure 10, with scores grouped by domain. On one hand, it can be seen that our method shows a
preference for SWAG, CLIP, and ImageNet-21k over ImageNet-1k dataset. This preference can
be supported by recent studies finding that pretraining on ImageNet-1k is insufficient for gener-
alization (Kumar et al., 2022) and that changing the dataset may improve generalization perfor-
mance (Kim et al., 2022). On the other hand, despite this preference, SIMPLE dispatches different
models for each domain (e.g. on TerraIncognita-L100 neither SWAG nor CLIP is chosen much, but
rather ImageNet-pretrained models are used), suggesting that there is still no free lunch for DG in
the selection of pretraining datasets.

8https://image-net.org/index
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Figure 9: MRR values for the different network architectures used by the pretrained models.
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Figure 10: MRR values for the different pretraining datasets used by the pretrained models.
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A.12 LEVERAGING MATCHING PREFERENCE AS TRANSFERABILITY MEASUREMENT

In this section, we leverage the matching preferences of the learned model dispatcher to optimize
the model pool size and study the performance of SIMPLE for different model pool sizes.

Specifically, since the model dispatcher of SIMPLE learns to match the best suitable models for
unseen samples at a meta-level, its matching preference over unseen domains (without accessing
ground truth labels) can be regarded as a measurement of model transferability on these unseen
samples. Therefore, we can further optimize the model pool size used for each domain in a two-stage
manner: (1) first learn with a large model pool on source domains to generate matching preferences;
and (2) then reconstruct a smaller model pool to include models preferred by our dispatcher.

Settings. We experiment this two-manner training on PACS and OfficeHome datasets, using differ-
ent reconstructed model pool sizes in the second stage. Note that we construct a model pool specific
to each domain in a dataset, based on aggregated matching preferences for all samples of the unseen
domain.

The results of PACS and OfficeHome datasets are shown in Figure 11 and 12, respectively. As
can be seen, given that SIMPLE can automatically match models more suitable for transferring to
unseen domains, we can actually go beyond the existing SOTA approach even using a model pool
with only two models (while the best single model fails to outperform since there is No Free Lunch).
And when using a smaller model pool, SIMPLE can even further improve the performance of the
OfficeHome dataset.
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Figure 11: The performance of SIMPLE on PACS dataset, with model pools of different sizes.
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Figure 12: The performance of SIMPLE on OfficeHome dataset, with model pools of different
sizes.
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Figure 13: Ranking of the models in the four domains of PACS using the sum of the ensemble
weights assigned to the models. The four columns from left to right in the figure correspond to the
different domains (Art, Cartoon, Photo, Sketch) in the dataset.
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Figure 14: Ranking of the models in the four domains of VLCS using the sum of the ensemble
weights assigned to the models. The four columns from left to right in the figure correspond to the
different domains (Caltech101, LabelMe, SUN09, VOC2007) in the dataset.
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Figure 15: Ranking of the models in the four domains of OfficeHome using the sum of the ensemble
weights assigned to the models. The four columns from left to right in the figure correspond to the
different domains (Art, Clipart, Product, Photo) in the dataset.
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Figure 16: Ranking of the models in the four domains of TerraIncognita using the sum of the en-
semble weights assigned to the models. The four columns from left to right in the figure correspond
to the different domains (L100, L38, L43, L46) in the dataset.
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Figure 17: Ranking of the models in the four domains of DomainNet using the sum of the ensemble
weights assigned to the models. The six columns from left to right in the figure correspond to the
different domains (Clipart, Infographic, Painting, QuickDraw, Photo, Sketch) in the dataset.
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Table 7: List of pretrained models from one of the following sources:
(timm, pretrainedmodels, clip, MAE, or SWAG). The output dimension
is the number of classes in the pretraining domain.

Model id Source Model Name Output Dimension MFLOPs
1 pretrainedmodels squeezenet1 0 1000 785.29
2 pretrainedmodels squeezenet1 1 1000 335.60
3 timm resnetv2 152x2 bit teacher 1000 4.10
4 timm resnext50 32x4d 1000 4062.06
5 timm resnext50d 32x4d 1000 4292.47
6 timm rexnet 100 1000 379.98
7 timm rexnet 130 1000 631.64
8 timm rexnet 150 1000 835.36
9 timm rexnet 200 1000 1458.16
10 timm selecsls42b 1000 2843.06
11 timm selecsls60 1000 3425.65
12 timm selecsls60b 1000 3461.41
13 timm semnasnet 100 1000 297.21
14 timm seresnet50 1000 3923.46
15 timm seresnext26d 32x4d 1000 2605.98
16 timm seresnext26t 32x4d 1000 2575.64
17 timm seresnext50 32x4d 1000 4064.47
18 timm skresnet18 1000 1732.17
19 timm skresnet34 1000 3496.38
20 timm skresnext50 32x4d 1000 4260.47
21 timm spnasnet 100 1000 318.08
22 timm ssl resnet18 1000 1734.79
23 timm ssl resnet50 1000 3921.04
24 timm ssl resnext50 32x4d 1000 4062.06
25 timm swin base patch4 window7 224 1000 102.33
26 timm swin large patch4 window7 224 1000 215.38
27 timm swin small patch4 window7 224 1000 61.28
28 timm swin tiny patch4 window7 224 1000 40.99
29 timm swsl resnet18 1000 1734.79
30 timm swsl resnet50 1000 3921.04
31 timm swsl resnext50 32x4d 1000 4062.06
32 timm tf efficientnet b0 1000 351.21
33 timm tf efficientnet b0 ap 1000 351.21
34 timm tf efficientnet b0 ns 1000 351.21
35 timm tf efficientnet cc b0 4e 1000 154.99
36 timm tf efficientnet cc b0 8e 1000 154.99
37 timm tf efficientnet es 1000 1513.29
38 timm tf efficientnet lite0 1000 350.60
39 timm tf mixnet l 1000 492.45
40 timm tf mixnet m 1000 295.36
41 timm tf mixnet s 1000 214.28
42 timm tf mobilenetv3 large 075 1000 137.04
43 timm tf mobilenetv3 large 100 1000 195.96
44 timm tf mobilenetv3 large minimal 100 1000 190.21
45 timm tf mobilenetv3 small 075 1000 33.62
46 timm tf mobilenetv3 small 100 1000 46.07
47 timm tf mobilenetv3 small minimal 100 1000 42.55
48 timm tnt s patch16 224 1000 33.18
49 timm tv densenet121 1000 2703.08
50 timm tv resnet34 1000 3501.19
51 timm tv resnet50 1000 3921.04
52 timm tv resnext50 32x4d 1000 4062.06
53 timm twins pcpvt base 1000 561.73
54 timm twins pcpvt large 1000 794.99
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55 timm twins pcpvt small 1000 317.77
56 timm twins svt base 1000 534.18
57 timm twins svt large 1000 940.45
58 timm twins svt small 1000 192.95
59 timm visformer small 1000 4532.08
60 timm vit base patch16 224 1000 192.20
61 timm vit base patch16 224 miil 1000 192.17
62 timm vit base patch32 224 1000 192.09
63 timm cait s24 224 1000 99.52
64 timm cait xxs24 224 1000 38.79
65 timm cait xxs36 224 1000 43.87
66 timm coat lite mini 1000 135.35
67 timm coat lite small 1000 170.24
68 timm coat lite tiny 1000 107.48
69 timm coat mini 1000 284.68
70 timm coat tiny 1000 206.37
71 timm convit base 1000 192.18
72 timm convit small 1000 88.16
73 timm convit tiny 1000 32.85
74 timm cspresnext50 1000 2942.24
75 timm deit base distilled patch16 224 1000 192.93
76 timm deit base patch16 224 1000 192.20
77 timm deit small distilled patch16 224 1000 76.22
78 timm deit small patch16 224 1000 75.85
79 timm deit tiny distilled patch16 224 1000 33.04
80 timm deit tiny patch16 224 1000 32.86
81 timm densenet121 1000 2703.08
82 timm densenet169 1000 3204.45
83 timm densenet201 1000 4092.84
84 timm densenetblur121d 1000 2931.62
85 timm dla34 1000 2927.88
86 timm dla46 c 1000 556.25
87 timm dla46x c 1000 518.84
88 timm dla60 1000 4059.07
89 timm dla60 res2net 1000 3955.43
90 timm dla60 res2next 1000 3323.87
91 timm dla60x 1000 3380.01
92 timm dla60x c 1000 565.83
93 timm dm nfnet f1 1000 45.10
94 timm dpn68 1000 2218.44
95 timm dpn68b 1000 2218.44
96 timm eca nfnet l0 1000 2.73
97 timm ecaresnet50d 1000 4151.53
98 timm ecaresnet50d pruned 1000 2413.62
99 timm ecaresnet101d pruned 1000 3313.54
100 timm ecaresnetlight 1000 3916.31
101 timm efficientnet b0 1000 368.01
102 timm efficientnet b1 1000 543.33
103 timm efficientnet es 1000 1705.92
104 timm efficientnet es pruned 1000 1705.92
105 timm efficientnet lite0 1000 367.40
106 timm ese vovnet19b dw 1000 1271.76
107 timm fbnetc 100 1000 367.22
108 timm gernet m 1000 2865.44
109 timm gernet s 1000 709.75
110 timm ghostnet 100 1000 140.10
111 timm gluon resnet18 v1b 1000 1734.79
112 timm gluon resnet34 v1b 1000 3501.19
113 timm gluon resnet50 v1b 1000 3921.04
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114 timm gluon resnet50 v1c 1000 4151.11
115 timm gluon resnet50 v1d 1000 4151.45
116 timm gluon resnext50 32x4d 1000 4062.06
117 timm gluon seresnext50 32x4d 1000 4064.47
118 timm gmixer 24 224 1000 78.45
119 timm gmlp s16 224 1000 55.07
120 timm hardcorenas a 1000 212.67
121 timm hardcorenas b 1000 238.99
122 timm hardcorenas c 1000 256.37
123 timm hardcorenas d 1000 273.29
124 timm hardcorenas e 1000 321.83
125 timm hardcorenas f 1000 324.90
126 timm hrnet w18 1000 4116.73
127 timm hrnet w18 small 1000 1538.74
128 timm hrnet w18 small v2 1000 2494.39
129 timm legacy seresnet18 1000 1734.88
130 timm legacy seresnet34 1000 3501.34
131 timm legacy seresnet50 1000 3701.95
132 timm legacy seresnext26 32x4d 1000 2375.58
133 timm legacy seresnext50 32x4d 1000 4064.47
134 timm levit 128 1000 55.91
135 timm levit 128s 1000 54.54
136 timm levit 192 1000 112.07
137 timm levit 256 1000 194.78
138 timm levit 384 1000 426.22
139 timm mixer b16 224 1000 166.90
140 timm mixer b16 224 miil 1000 166.90
141 timm mixer l16 224 1000 344.89
142 timm mixnet l 1000 529.61
143 timm mixnet m 1000 323.54
144 timm mixnet s 1000 228.17
145 timm mixnet xl 1000 862.22
146 timm mnasnet 100 1000 299.91
147 timm mobilenetv2 100 1000 286.90
148 timm mobilenetv2 110d 1000 410.63
149 timm mobilenetv2 120d 1000 637.93
150 timm mobilenetv2 140 1000 555.31
151 timm mobilenetv3 large 100 1000 205.38
152 timm mobilenetv3 large 100 miil 1000 205.38
153 timm mobilenetv3 rw 1000 205.38
154 timm nfnet l0 1000 13.09
155 timm pit b 224 1000 209.98
156 timm pit b distilled 224 1000 210.96
157 timm pit s 224 1000 99.93
158 timm pit s distilled 224 1000 100.48
159 timm pit ti 224 1000 39.09
160 timm pit ti distilled 224 1000 39.34
161 timm pit xs 224 1000 61.83
162 timm pit xs distilled 224 1000 62.20
163 timm regnetx 002 1000 189.83
164 timm regnetx 004 1000 379.27
165 timm regnetx 006 1000 573.07
166 timm regnetx 008 1000 762.68
167 timm regnetx 016 1000 1528.64
168 timm regnetx 032 1000 3029.51
169 timm regnetx 040 1000 3780.90
170 timm regnety 002 1000 190.29
171 timm regnety 004 1000 383.25
172 timm regnety 006 1000 573.40
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173 timm regnety 008 1000 760.28
174 timm regnety 016 1000 1537.44
175 timm regnety 032 1000 3029.41
176 timm regnety 040 1000 3789.28
177 timm repvgg b0 1000 3239.87
178 timm res2net50 14w 8s 1000 4010.80
179 timm res2net50 26w 4s 1000 4082.33
180 timm res2net50 48w 2s 1000 3989.85
181 timm res2next50 1000 4005.80
182 timm resmlp 12 224 1000 69.52
183 timm resmlp 12 distilled 224 1000 69.52
184 timm resmlp 24 224 1000 83.49
185 timm resmlp 24 distilled 224 1000 83.49
186 timm resmlp 36 224 1000 97.45
187 timm resmlp 36 distilled 224 1000 97.45
188 timm resmlp big 24 224 1000 233.73
189 timm resmlp big 24 224 in22ft1k 1000 233.73
190 timm resmlp big 24 distilled 224 1000 233.73
191 timm resnest14d 1000 2636.61
192 timm resnest26d 1000 3475.13
193 timm resnest50d 1s4x24d 1000 4222.56
194 timm resnest50d 4s2x40d 1000 4201.50
195 timm resnet18 1000 1734.79
196 timm resnet18d 1000 1964.95
197 timm resnet26 1000 2247.86
198 timm resnet26d 1000 2478.27
199 timm resnet34 1000 3501.19
200 timm resnet34d 1000 3731.34
201 timm resnet50 1000 3921.04
202 timm resnet50d 1000 4151.45
203 timm resnetblur50 1000 4914.30
204 timm resnetv2 50x1 bit distilled 1000 2.05
205 timm vit large patch16 224 1000 436.37
206 timm vit large r50 s32 224 1000 387.23
207 timm vit small patch16 224 1000 75.85
208 timm vit small patch32 224 1000 75.79
209 timm vit small r26 s32 224 1000 57.42
210 timm vit tiny patch16 224 1000 32.86
211 timm vit tiny r s16 p8 224 1000 42.02
212 pretrainedmodels alexnet 1000 681.57
213 pretrainedmodels densenet121 1000 2732.91
214 pretrainedmodels densenet169 1000 3240.65
215 pretrainedmodels densenet201 1000 4139.87
216 pretrainedmodels dpn68 1000 2241.70
217 pretrainedmodels nasnetamobile 1000 551.83
218 pretrainedmodels resnet18 1000 1734.79
219 pretrainedmodels resnet34 1000 3501.19
220 pretrainedmodels resnet50 1000 3921.04
221 pretrainedmodels se resnet50 1000 3707.13
222 swag regnety 16gf in1k 1000 15223.83
223 swag regnety 32gf in1k 1000 30849.35
224 timm beit base patch16 224 1000 171.92
225 timm beit large patch16 224 1000 364.30
226 timm convnext base 1000 616.58
227 timm convnext base 384 in22ft1k 1000 616.58
228 timm convnext base in22ft1k 1000 616.58
229 timm convnext large 1000 1205.29
230 timm convnext large 384 in22ft1k 1000 1205.29
231 timm convnext large in22ft1k 1000 1205.29

35



Published as a conference paper at ICLR 2023

232 timm convnext nano 1000 2340.25
233 timm convnext nano hnf 1000 2340.25
234 timm convnext nano ols 1000 2386.90
235 timm convnext small 1000 392.34
236 timm convnext small 384 in22ft1k 1000 392.34
237 timm convnext small in22ft1k 1000 392.34
238 timm convnext tiny 1000 307.45
239 timm convnext tiny 384 in22ft1k 1000 307.45
240 timm convnext tiny hnf 1000 4261.97
241 timm convnext tiny in22ft1k 1000 307.45
242 timm convnext xlarge 384 in22ft1k 1000 1980.92
243 timm convnext xlarge in22ft1k 1000 1980.92
244 MAE vit base patch16 1000 192.21
245 MAE vit large patch16 1000 436.38
246 MAE vit huge patch14 1000 785.64
247 swag vit b16 768 164.43
248 swag vit l16 1024 339.30
249 swag vit h14 1280 584.25
250 swag regnety 16gf 3024 15220.81
251 swag regnety 32gf 3712 30845.63
252 timm vit base patch16 224 miil in21k 11221 199.67
253 timm mixer b16 224 miil in21k 11221 174.39
254 timm mobilenetv3 large 100 miil in21k 11221 205.38
255 timm swin base patch4 window7 224 in22k 21841 122.71
256 timm swin large patch4 window7 224 in22k 21841 245.93
257 timm beit base patch16 224 in22k 21841 187.21
258 timm beit large patch16 224 in22k 21841 384.68
259 timm convnext base in22k 21841 636.96
260 timm convnext large in22k 21841 1235.83
261 timm convnext small in22k 21841 407.62
262 timm convnext tiny in22k 21841 322.74
263 timm convnext xlarge in22k 21841 2021.65
264 timm resnetv2 50x1 bitm in21k 21843 42.78
265 timm resnetv2 50x3 bitm in21k 21843 128.30
266 timm resnetv2 101x1 bitm in21k 21843 42.78
267 timm resnetv2 152x2 bitm in21k 21843 85.54
268 timm vit base patch16 224 in21k 21843 207.49
269 timm vit base patch32 224 in21k 21843 207.38
270 timm vit base r50 s16 224 in21k 21843 244.24
271 timm mixer b16 224 in21k 21843 182.18
272 timm mixer l16 224 in21k 21843 365.27
273 timm vit huge patch14 224 in21k 21843 811.09
274 timm vit large patch16 224 in21k 21843 456.75
275 timm vit large patch32 224 in21k 21843 456.61
276 timm vit large r50 s32 224 in21k 21843 407.61
277 timm vit small patch16 224 in21k 21843 83.50
278 timm vit small patch32 224 in21k 21843 83.45
279 timm vit small r26 s32 224 in21k 21843 65.07
280 timm vit tiny patch16 224 in21k 21843 36.70
281 timm vit tiny r s16 p8 224 in21k 21843 45.86
282 clip ViT-B-16 arbitrary 188.32
283 clip ViT-B-32 arbitrary 188.32
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