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ABSTRACT

Event-guided imaging has received significant attention due to its potential to rev-
olutionize instant imaging systems. However, the prior methods primarily fo-
cus on enhancing RGB images in a post-processing manner, neglecting the chal-
lenges of image signal processor (ISP) dealing with event sensor and the bene-
fits events provide for reforming the ISP process. To achieve this, we conduct
the first research on event-guided ISP. First, we present a new event-RAW paired
dataset, collected with a novel but still confidential sensor that records pixel-level
aligned events and RAW images. This dataset includes 3373 RAW images with
2248×3264 resolution and their corresponding events, spanning 24 scenes with 3
exposure modes and 3 lenses. Second, we propose a conventional ISP pipeline to
generate good RGB frames as reference. This conventional ISP pipleline performs
basic ISP operations, e.g.demosaicing, white balancing, denoising and color space
transforming, with a ColorChecker as reference. Third, we classify the existing
learnable ISP methods into 3 classes, and select multiple methods to train and
evaluate on our new dataset. Lastly, since there is no prior work for reference, we
propose a simple event-guided ISP method and test it on our dataset. We further
put forward key technical challenges and future directions in RGB-Event ISP. In
summary, to the best of our knowledge, this is the very first research focusing on
event-guided ISP, and we hope it will inspire the community. The code and dataset
are available at: https://github.com/yunfanLu/RGB-Event-ISP.

1 INTRODUCTION

Since their invention in 1975, digital cameras have profoundly impacted various aspects of mod-
ern society (Delbracio et al., 2021; Kyung et al., 2016). Active pixel sensors (APS) (Liebe et al.,
1998) are used as the core of cameras to capture RGB color signals, recording images or videos.
This technology forms the foundation for widespread applications in smartphones (Delbracio et al.,
2021), autopilot systems (Ingle & Phute, 2016), drones (Zhu et al., 2018), virtual reality (Huang
et al., 2017), and more. However, nowadays APS has reached a bottleneck wrt. power consump-
tion, frame rate, and dynamic range due to its global recording characteristics (Gallego et al., 2020).
Event vision sensors (EVS), with their inherent asynchronous recording property, achieve lower
power consumption (< 10mW ), lower latency (< 1ms), and higher dynamic range (> 120dB)
(Gallego et al., 2020). As a result, integrating EVS as a significant enhancement to APS imaging
system has received considerable attention in recent years (Lu et al., 2023b; Tulyakov et al., 2021;
Gallego et al., 2020; Tulyakov et al., 2022). Heavy efforts have been put on developing new imag-
ing system combining EVS and APS (Shariff et al., 2024; Lu et al., 2023b;a). The introduction of
EVS has nearly reshaped the entire framework of imaging formation and enhancement, impacting
almost all relevant areas e.g., video super-resolution (Lu et al., 2023b; Jing et al., 2021), video frame
interpolation (Tulyakov et al., 2021; 2022; Lu et al., 2023a), deblurring (Yuan et al., 2007; Zhang
et al., 2022; Yunfan et al., 2023), high dynamic range imaging (Xiaopeng et al., 2024; Messikom-
mer et al., 2022), low-light image enhancement (Wang et al., 2020b; Liang et al., 2024), and rolling
shutter correction (Zhou et al., 2022; Lu et al., 2023a). However, the majority of previous work fo-
cuses on using events as auxiliary information to boost the performance of classical RGB imaging
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Figure 1: (a), (b), and (c) display a RAW, Events, and RGB frame captured by the hybrid vision sensor
(HVS), respectively. The RAW image follows a quad-Bayer pattern (Yang et al., 2022), while the events are
positioned at the lower-right corner of each color pixel block, making the RAW resolution twice that of the
events. (d) illustrates the traditional ISP process. (e) shows the potential event-guided ISP process, where the
higher temporal resolution of events can captures motion information for ISP.

systems, while methods and benchmarks that considering the challenges and opportunities of events
in the APS ISP process, are lacking.

Merging APS and EVS in ISP is non-trivial on the implementation level. Prism spectrometer is an
early stage attempt and it needs the corresponding optical mechanic setting (Tulyakov et al., 2022).
However, this prism-based approach is very cumbersome, requiring additional optical prisms and
failing to ensure the alignment between APS and EVS. Sensors that integrate both APS and EVS on
the photodiode level are referred to as hybrid-vision sensors (HVS) (Yaqi et al., 2024; MIPI Chal-
lenge 2024, 2024), which represent a cutting-edge technology, offering significant advancements in
camera imaging. Due to the manufacturing complexity and error-prone design process of HVS, the
RAW data generated by APS in HVS exhibits higher noise, missing values at fixed positions, and
is more sensitive to defects (MIPI Challenge 2024, 2024; Yaqi et al., 2024). Recent works have
acknowledged this challenge and proposed datasets for demosaicing, denoising, or defect correc-
tion for APS RAW, where the challenges in APS of HVS take precedence over the potential benefits
events signal could provide. With the inherent higher dynamic range and lower latency, events can
perceive a broader spectrum and capture more-instant motion information (Shekhar Tripathi et al.,
2022; Liang et al., 2021), allowing significant potential for boosting the denoising and color correc-
tion of ISP processing of APS RAW, as shown in Fig. 1.

To better explore the benefits of events on the ISP process of HVS, we propose a new dataset with
pixel-wise aligned events and APS RAW image. This dataset uses the under-development HVS-
ALPIX-Eiger sensor (Alpsentek, 2024), which rearranges event and APS in a quad-Bayer pattern
(a quarter photodiodes are dedicated for event, as in Fig.1). This sensor has a high resolution with
1224 × 1632 for events and 2248 × 3264 for RAW, and offers superior color and noise profiles
compared to the DVS346 (Scheerlinck et al., 2019). These features make it promising for various
applications (Lu et al., 2023b). We ensure the dataset diversity in two ways: photographic setting
and scenes. For photographic setting, we adopt various values of aperture, focal length and exposure
time. For the scene diversity, we cover 12 categories of scenes, across a wide range of color scenes,
including flowers, buildings, under different weather and lighting conditions. In total, 3373 APS
frames and the corresponding events are captured. A standard 24-color ColorChecker (Goto et al.,
2003) is applied at certain frames as the color correction reference, as shown in Fig. 1 (c).

To generate the ground truth RGB images for the dataset, we propose a controllable ISP framework
based on MATLAB (Poon & Banerjee, 2001). This ISP framework, using the ColorChecker as a
prior, performs tasks such as black level calculation (Li et al., 2010), demosaicing (Hirakawa &
Parks, 2006), white balance (Weng et al., 2005), denoising (Abdelhamed et al., 2018), and color cor-
rection (McElvain & Gish, 2013), resulting in high-quality RGB images with controllable errors as
the reference ground truth. Since the controllable framework requires the ColorChecker information
as a prior, it cannot generalize to arbitrary scenes. The color accuracy and temporal stability of this
ISP are also analyzed. We categorize the existing ISP methods with RAW input into three categories
and benchmark their performances on our dataset. We compare their performances across various
scenarios and further conduct analysis on certain phenomena we have observed. Additionally, we
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propose a simple UNet-like (Ronneberger et al., 2015) event-guided ISP neural network to fuse
events with RAW images. This simple network can effectively improve the outdoor performance of
ISP compared to the original UNet (Ronneberger et al., 2015). We also identify key contributions
and challenges of events in the ISP process, providing a foundation and direction for future research.

2 RELATED WORKS

Event-guided Imaging Datasets: Event camera-guided imaging enhancement is an emerging field
where the contribution of real datasets is crucial (Gallego et al., 2020). Currently, event cam-
eras have made significant progress in areas such as frame interpolation (Tulyakov et al., 2021;
Lu et al., 2023a; Niklaus et al., 2017; Bao et al., 2019), video super-resolution (Lu et al., 2023b;
Jing et al., 2021), low-light enhancement (Liang et al., 2024; 2023), and deblurring (Xu et al.,
2021; Lin et al., 2020; Jiang et al., 2020). These advancements are supported by many founda-
tional datasets (Tulyakov et al., 2021; Scheerlinck et al., 2019; Lu et al., 2023b). For example,
BS-REGB (Tulyakov et al., 2022) is a frame interpolation dataset using a beamsplitter to pair event
cameras and RGB cameras. The CED (Scheerlinck et al., 2019) dataset and APLEX-VSR (Lu et al.,
2023b) dataset have been used in research on event camera-guided video super-resolution. Overall,
these datasets serve as the cornerstone and pioneers in research on related tasks. However, these
datasets assume that event cameras can obtain high-quality RGB images through the ISP process,
an assumption that is often too idealistic. Recognizing this, the MIPI (Yaqi et al., 2024; MIPI
Challenge 2024, 2024) challenge introduced a RAW demosaic dataset for HVS in event cameras,
addressing challenges like high noise and missing values in RAW from HVS. Although this dataset
is the first to focus on the RAW domain ISP process in event cameras, it lacks real event streams,
thereby overlooking the potential role of events in the ISP process. To address this gap, we propose
the first dataset with aligned RAW and events from a new HVS, aiming at exploring the potential
value and role of event data in the ISP process.

Learning-based ISP: Traditional ISPs (Schwartz et al., 2018) consist of long pipelines. In re-
cent years deep learning has brought new insights to ISPs (da Silva et al., 2023a) and has achieved
higher performance. These methods can be roughly categorized into three types. The first type is
full pipeline replacement methods, such as PyNet (Ignatov et al., 2020b) which use CNN architec-
tures to replace the entire ISP pipeline. The second type is stage-wise enhancement methods, like
CameraNet (Liang et al., 2021) and AWNet (Dai et al., 2020), which divide the ISP pipeline into
restoration and enhancement stages. The third type is image enhancement network-based methods,
which utilze state-of-the-art image proessing backbone models such as UNet (Ronneberger et al.,
2015) and Swin-Transformer (Liu et al., 2021) to deal with ISP tasks. Though these methods have
proven effective for RAW to RGB conversion, the potential of events in this process is not explored.

Event-guided Image/Video Enhancement: Due to their high dynamic range and high temporal res-
olution (Gallego et al., 2020; Shariff et al., 2024), event cameras have garnered significant attention
in the field of image/video enhancement and restoration (Gallego et al., 2020; Shariff et al., 2024),
including many applications. Initially, the use of events focused primarily on single-task enhance-
ments of RGB images or videos (Tulyakov et al., 2021; Pan et al., 2019; Lu et al., 2023b). Recently,
researchers recognized image enhancement tasks are inherently coupled with various degradations
interwoven (Zhang & Yu, 2022; Song et al., 2022; Yunfan et al., 2023), suggesting a trend towards
using events for unified solutions in camera computational imaging for multiple tasks. However,
existing methods focus solely on enhancing RGB images or videos using events, overlooking the ISP
pipeline, which generate RGB images from RAW images. Additionally, existing methods neglect the
potential value that events could provide in the ISP process.

3 DATASET COLLECTION

As the first dataset, which we call HVS-ISP Dataset, featuring paired raw-event data collected using
a HVS, our aim is to facilitate research on event-guided RAW ISP. We selected the HVS-Eiger sensor
developed by ALPIX (Alpsentek, 2024), which can output both APS and EVS signals that align in
both time and space, as show in Fig. 2 (b). More parameter details of APS and EVS are shown
in Tab. 1. Compared to the Prophesee sensor (Tulyakov et al., 2021), which can only output event
signals, and the DVS346 sensor (Scheerlinck et al., 2019), which has lower resolution (260 × 346)
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Figure 2: Overview of dataset collection. (a) illustrates the variety of scenes in the dataset, including
buildings, plants, animals, and calibration boards. (b) presents a schematic of the HVS sensor,
composed of a stacked active pixel sensor (APS) and an event vision sensor (EVS). (c) displays
dataset samples.

Table 1: Comparison between active pixel sensor (APS) and event vision sensor (EVS) (Alpsentek,
2024) in our dataset collection. APS and EVS are stacked together to form a hybrid-vision sensor
(HVS).

Sensor Resolution Frame
Rate

Power
Consumption

Redundant
Data Rate

Dynamic
Range

APS 2248× 3264 10∼60 fps > 100 mW 10 MB/s 60 dB
EVS 1124× 1632 ≥ 800 fps ∼10 mW 40-180 KB/s > 120 dB

and higher noise, our choice offers significant advantages. Hence our dataset, captured with this
advanced new sensor, holds significant value for the event vision research, providing a foundation
resource for advanced exploration in event-guided RAW ISP.

The collection of the dataset focuses on two main aspects: (1) the diversity of the dataset, ensuring
it has broad representativeness to cover a wide range of real-world scenarios; (2) the inclusion of a
ColorChecker for ISP calibration, which helps the ISP accurately restore scene colors to generate
high-quality RGB frames as references.

(1) Dataset Diversity: In constructing our dataset, we paid particular attention to two types of di-
versity: camera parameter diversity and scene diversity. Camera Parameter Diversity: To ensure
that our dataset encompasses a variety of photographic conditions, we made extensive adjustments
to the camera parameters. This included aperture values ranging from F1.0 to F6.0, focal lengths
extending from 8mm to 52mm, and exposure times varying from 1ms to 100ms. Scene Diversity:
We focused on three key aspects to ensure comprehensive scene diversity: Light Source Diversity:
We distinguished between indoor artificial light and outdoor natural light, with special consideration
for different weather conditions. Data collection was performed under various lighting conditions,
including sunny and cloudy days. Motion Diversity: We captured both dynamic and static videos,
ensuring a mix of scenes with and without motion blur. This variety helps in testing and enhancing
the performance of image processing algorithms under different motion conditions. Material Diver-
sity: We included a wide array of scenes such as trees, plants, buildings, fish, dolls, and more. These
scenes exhibit a broad spectrum of colors and textures, providing a rich dataset for comprehensive
testing and improvement of image processing techniques.

(2) ColorChecker as ISP Reference: To ensure precise color correction and white balance in ISP
pipeline, we utilized a standard 24-color ColorChecker (Tian et al., 2002) as critical references.
At the start of each video shoot, we captured frames containing the ColorChecker and gradually
removed the chart from subsequent frames. We meticulously annotated the position of the Col-
orChecker in each frame using the LabelMe tool (Russell et al., 2008), as shown in Fig. 2 (c). For
frames without the ColorChecker, we applied previously determined ColorChecker parameters as
references. This approach guarantees reliable color correction data in our dataset. Incorporating the
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Figure 3: Flows in controllable ISP process. (a) Quad-bayer pattern raw image, which serves as the initial
input. (b) Black pattern and fixed-pattern noise removal to suppress sensor-induced artifacts. (c) Demosaicing
to reconstruct a rgb image from the raw data. (d) White balancing using a ColorChecker for accurate color
reproduction. (e) Denoising to filter out spatial noise from the image. (f) Color space transformation and
Gamma to convert the image into the desired color space for final output.

ColorChecker allows generating high-quality RGB values, enhancing color fidelity. This method
ensures robustness for applications requiring accurate color restoration. Additionally, we conducted
a thorough manual review of the ColorChecker annotations to validate their accuracy, further im-
proving our dataset’s reliability for ISP algorithms.

In summary, based on these two main objectives, we captured a total of 24 videos. Each video
contains 80 to 140 frames, resulting in a total of 3373 APS RAW frames and their corresponding
events. Additionally, the dataset includes the positions of the ColorCheckers within the APS images.
We divided the dataset into training and test sets, with 3/4 of the data used for training and 1/4 for
testing. The testing set includes 3 indoor scenes and 3 outdoor scenes to ensure sufficient diversity.
For more details on data collection and visualizations, please refer to the supplementary material.

4 CONTROLLABLE ISP

(a) Fixed Pattern Noise (FPN) (b) ISP w/o remove FPN (c) ISP w remove FPN

Figure 4: Fixed pattern noise (FPN) removal. (a) Visualizes the
camera’s fixed pattern noise. (b) and (c) show the RGB images
without and with fixed pattern noise removal, respectively. The im-
age in (c) demonstrates lower noise and more accurate white bal-
ance after the removal of fixed pattern noise.

The controllable ISP aims to provide
module-based and analytically mea-
surable RGB frames based on the
APS RAW. With the support of the
contained ColorChecker, the result-
ing frames have good color accuracy
and low noise, serving as the refer-
ence for APS. Requirement of the
ColorChecker prevents from gener-
alizing to other arbitrary scenes. In
this section, we introduce each mod-
ule, followed by a quality evaluation
and pros-and-cons discussion, with
the hope that this ISP pipeline will be
beneficial for the community.

4.1 CONTROLLABLE
ISP PIPELINE

Fig. 3 depicts that how an image is
processed via a conventional ISP pipeline, making the reference for the APS data. (1) Black
Level and Fixed Pattern Subtraction: Taking an arbitrary unprocessed bayer raw as input, a pre-
calibrated global black level value blc is subtracted, following by subtracting a fixed pattern vector
fpn 1. blc is the min of a raw image taken under a pure-black environment while fpn is a vector that
records the per-row average value as the used sensor is only with horizontal fixed pattern, as shown

1blc and fpn are calibrated in a pure-dark laboratory setting. Over five frames are captured and averaged to
increase the calibration accuracy.
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(a) CIEDE00 Error (b) CIELAB Δ!" Error (c) Time Domain Fluctuations 

Figure 5: Color errors and fluctuations of our ISP method, computed using a ColorChecker. (a) CIEDE 2000
Error Probability Density Distribution: Displays CIEDE 2000 error values distribution with annotations for
average (5.84), median (5.07), and maximum error means (14.62). (b) CIEDE Lab Error Probability Density
Distribution: Shows CIEDE Lab error values distribution, indicating average (8.99), median (7.0), and maxi-
mum error means (24.37). (c) Time-Domain Fluctuations of RGB Color Values: Illustrates RGB color values
fluctuations over time, representing temporal stability and variations in color accuracy.

in Fig. 4. (2) Demosaicing: Given bayer pattern, the well-adopted demosaicing method (Rainbow-
Johnny-Johnny-Image-Processing-Lim, 2022) is used. The resolution is preserved while the channel
number is tripled. Note that this method is still prone to generating false color in very high frequency
area, as shown in Fig. 3(c). (3) Manual White Balancing: On a RGB image (greenish due to no
white balance), we use LabelMe (Russell et al., 2008) to extract the mean colors of 24 ColorChecker
patches. The 21st patch is used as the groundtruth illumination for manual white balance Qian et al.
(2017; 2019). (4) Spatial Denoising: We use a milestone denoising method BM3D (Dabov et al.,
2009) to perform spatial denoising with the setting of σ = 50. (5) Color Space transform: Fol-
lowing Finlayson et.al. (Finlayson et al., 2015), given the retrieved ColorChecker values and the
predefined oracle ColorChecker values, we optimize towards the CIEDE00 error and obtain the fi-
nal color correction matrix ccm of the shape (3, 3). A linear sRGB image is then computed from the
input image I: Ilinsrgb = I ∗ccm. (6) Gamma: Following sRGB standard (Anderson et al., 1996), a
piecewise gamma curve is applied for brightness perception. Due to space limitations, please refer
to the supplementary material for more details and hyperparameters of controllable ISP.

4.2 CONTROLLABLE ISP EVALUATION

We evaluated the controllable ISP in two main aspects: the color accuracy of individual images
and the temporal stability of color recovery in continuous videos. For color accuracy, we used
the CIEDE00 (Luo et al., 2001) and CIELAB ∆ab (Lee & Powers, 2005) metrics to evaluate color
accuracy. CIEDE00 is a widely used metric for color matching, considering the nonlinear char-
acteristics of color differences and the human eye’s sensitivity to colors, which accurately reflects
human visual perception of color differences. CIELAB ∆ab is a color difference metric based on the
CIELAB color space (Mahy et al., 1994). Specifically, as shown in Fig. 5 (a) (b), we conducted a
ColorChecker-based evaluation on 100 randomly selected samples. In CIEDE00 (Luo et al., 2001),
we obtained an average value of 5.84 and a median value of 5.07; For CIELAB ∆ab, we obtained
an average value of 8.99 and a median value of 7.00, demonstrating that our method can generally
restore colors up to an accurate level. We displayed the maximum error distribution per image,
showing that in CIEDE00 it is around 14, and in CIELAB ∆ab around 24, affected by color filter
sensitivity and photodiode layout. For temporal stability in frame estimation differences, as shown
in Fig. 5 (c). We selected a 140-frame video, marking the ColorChecker in each frame. After gen-
erating colors frame by frame, we observed that differences for the 24 ColorChecker colors are all
under 0.01, mostly within 0.005. This confirms our algorithm’s temporal stability.

In summary, we presented a controllable ISP pipeline and analyzed its performance. However, the
ISP contains numerous controllable variables and hyperparameters. We hope that future researchers
will focus on optimizing these controllable aspects of the ISP to further enhance its performance.
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Table 2: Comparison on Parameters, FLOPS, and Time. Top two models are highlighted in red and green.

Unet PyNet CameraNet AWNet PyNetCA MW-ISPNet InvertISP Swin
Transformer eSL Ev-UNet

Params↓ 16.64 47.55 25.79 96.07 29.27 7.22 92.44 8.87 0.737 21.51
GFLOPS↓ 4.52 111.96 19.19 120.21 51.27 29.22 1.41 14.24 48.49 6.89
Time (s)↓ 0.0100 0.0775 0.0300 0.2138 0.0308 0.0459 0.0436 0.0868 0.063 0.012

Table 3: Comparison of Methods on HVS ISP Dataset outdoor scenes. Top two models are highlighted in red
and green. ∗ refer to the results obtained by the same model with different hyperparameters.

2-Out-Tree-2 3-Out-Flower-2 4-Out-Building-1 Average
PSNR↑ SSIM↑ L1↓ PSNR↑ SSIM↑ L1↓ PSNR↑ SSIM↑ L1↓ PSNR↑ SSIM↑ L1↓

PyNET 31.70 0.9818 0.0190 35.12 0.9784 0.0127 30.60 0.9752 0.0223 32.47 0.9785 0.0180
PyNET∗ 27.56 0.9711 0.0310 32.35 0.9646 0.0175 28.20 0.9600 0.0311 29.37 0.9652 0.0265
PyNetCA 31.86 0.9788 0.0202 34.19 0.9773 0.0139 29.22 0.9725 0.0280 31.76 0.9762 0.0207
InvertISP 28.56 0.9487 0.0243 25.59 0.9298 0.0313 28.62 0.9307 0.0287 27.59 0.9364 0.0281
MV-ISPNet 27.05 0.9680 0.0256 33.61 0.9648 0.0137 28.62 0.9657 0.0304 29.76 0.9662 0.0232
CameraNet 11.18 0.2580 0.2289 12.39 0.2741 0.1899 10.52 0.2534 0.2609 11.36 0.2618 0.2266
CameraNet∗ 13.26 0.637 0.2044 13.59 0.2736 0.1770 10.06 0.2753 0.2474 12.30 0.3953 0.2096
AWNet 14.33 0.8836 0.1166 20.10 0.9316 0.0519 16.70 0.9390 0.0951 17.04 0.9180 0.0879
Swin-Transformer 25.02 0.9539 0.0308 29.14 0.9555 0.0231 21.57 0.9295 0.0523 25.24 0.9463 0.0354
UNet 21.97 0.9583 0.0393 29.43 0.9717 0.0208 22.12 0.9603 0.0460 24.51 0.9634 0.0354
UNet∗ 29.52 0.9752 0.0206 25.75 0.9623 0.0323 29.24 0.9680 0.0265 28.17 0.9685 0.0265
eSL-Net 25.67 0.9424 0.0342 19.39 0.9180 0.0576 24.01 0.9277 0.0502 23.02 0.9294 0.0473
EV-UNet 32.86 0.9795 0.0148 32.87 0.9698 0.0157 24.59 0.9600 0.0369 30.11 0.9698 0.0225

5 BENCHMARK AND DIRECTION

Based on the RGB frames obtained from the controllable ISP, we evaluate the performance of four
types of ISP methods, particularly in outdoor and indoor scenarios. The experiments are conducted
in the same environment and framework. Additionally, we will discuss the potential reasons behind
these results and propose future research directions. Implementation Details: All our models were
trained and tested on the same machine with a single A40 GPU with 48GB of GPU memory. We used
PyTorch (Paszke et al., 2017) for all experiments, applying random cropping and rotation for data
augmentation. The training batch size was 1, with each patch sized at 1024 × 1024. The learning
rate was 0.0001, and all models were trained for 50 epochs. Evaluation Metrics: We evaluate
model performances in two aspects: resource consumption, including parameters in millions (M ),
GFLOPS, and average inference time (s); and image reconstruction for indoor and outdoor scenes,
measured by PSNR (Hore & Ziou, 2010), SSIM (Brunet et al., 2011), and L1 distance.

5.1 ISP BENCHMARK METHODS

Inspired by the prior ISP survey study (da Silva et al., 2023b), we categorize learning-based ISP
models into three classes: full pipeline, stage-wise, image enhancement network-based. We selected
two to four open-source models from each category for training and evaluation on our dataset. Fur-
thermore, we put forward another new category of event fusion method, and since there is no prior
research to refer to, we design a simple event-guided ISP neural network to test on our dataset. For
more details on ISP methods, please refer to the supplementary material.

Full Pipeline ISP: These models utilize CNN architectures to integrate traditional ISP processes
into an end-to-end conversion from RAW to RGB images. Notable models in this category include
PyNet (Ignatov et al., 2020b), PyNetCA (Kim et al., 2020), InvertISP (Xing et al., 2021), and MV-
ISPNet (Ignatov et al., 2020a).

Stage-wise ISP: They employ multiple specialized modules to handle different ISP tasks, either
sequentially or in parallel, to produce the final image. In our benchmark, we selected Camer-
aNet (Liang et al., 2021) and AWNet (Dai et al., 2020) for their distinct approaches. Note that due
to the unavailability of a PyTorch version of CameraNet (Liang et al., 2021), we experimented on a
converted version. The modules in the original AWNet (Dai et al., 2020) are trained independently,
however in our experiment we trained them end-to-end.

Image Enhancement Network-Based ISP: There have been numbers of high performance back-
bone models for image enhancement in image enhancement tasks like deblurring (Zhang et al.,
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(a) Events (b) RAW (c) Good RGB (d) UNet (e) PyNet (f) eSL-Net (g) EV-UNet

(h) RAW (i) Good RGB (j) AWNet (k) Swin-Transformer (l) Unet (m) PyNetCA

Figure 6: Visualization results of different methods on HVS-ISP Dataset outdoor scenes.

Table 4: Comparison of Methods on HVS ISP Dataset indoor scenes. ∗ refer to the results obtained
by the same model with different hyperparameters.

1-In-Fruit-2 3-In-ColChecker-40 4-In-RLChart-10 Average
Methods PSNR↑ SSIM↑ L1↓ PSNR↑ SSIM↑ L1↓ PSNR↑ SSIM↑ L1↓ PSNR↑ SSIM↑ L1↓
PyNET 13.09 0.7970 0.2182 11.38 0.7922 0.2489 11.42 0.7100 0.2563 11.97 0.7664 0.2412
PyNET∗ 14.46 0.8068 0.2008 24.02 0.9550 0.0497 13.58 0.7694 0.1978 17.36 0.8437 0.1494
PyNetCA 18.13 0.8843 0.1253 29.53 0.9723 0.0246 35.51 0.9727 0.0121 27.72 0.9431 0.0540
InvertISP 25.83 0.9098 0.0346 28.33 0.9500 0.0235 30.65 0.9578 0.0183 28.27 0.9392 0.0254
MV-ISPNet 31.91 0.9594 0.0185 29.56 0.9729 0.0265 31.88 0.9670 0.0170 31.12 0.9664 0.0207
CameraNet 13.06 0.2660 0.1947 13.58 0.2722 0.1836 12.47 0.2391 0.2257 13.04 0.2591 0.2013
CameraNet∗ 14.18 0.290 0.1630 10.60 0.2667 0.2545 13.26 0.2636 0.2044 12.68 0.2672 0.2073
AWNet 17.95 0.8665 0.1302 32.17 0.9807 0.0184 30.98 0.9596 0.0215 27.03 0.9356 0.0567
Swin-Transformer 25.73 0.9397 0.0301 25.50 0.9561 0.0359 26.18 0.9486 0.0252 25.80 0.9481 0.0304
UNet 17.62 0.9161 0.0747 13.96 0.8828 0.1454 15.53 0.8750 0.1170 15.70 0.8913 0.1124
UNet∗ 32.52 0.9659 0.0161 29.04 0.9740 0.0257 33.72 0.9716 0.0146 31.76 0.9705 0.0188
eSL 27.09 0.9428 0.0331 24.79 0.9548 0.0434 26.52 0.9415 0.0379 26.13 0.9464 0.0381
EV-UNet 14.16 0.8706 0.1533 31.64 0.9779 0.0214 32.33 0.9678 0.0173 26.04 0.9388 0.0640

2022) and super-resolution (Chen et al., 2022). Though not initially designed for ISPs, minor modi-
fications can adapt these models for ISP tasks. For our benchmark, we selected UNet (Ronneberger
et al., 2015) and Swin-Transformer (Liu et al., 2021; Lu et al., 2024).

Event Fusion Method: As the first research on event-guided ISP, we have no prior research for
reference. Therefore, we selected eSL-Net (Wang et al., 2020a), an event-based backbone network
used in various tasks (Lu et al., 2023b). Additionally, we merged events as voxel-grid (Liu et al.,
2023) with UNet’s encoder as EV-UNet to verify events effectiveness and challenges.

5.2 COMPARATIVE EXPERIMENTS AND VISUALIZATION ANALYSIS

Computational Performance: In Tab. 2, InvertISP (Xing et al., 2021) excels in computational ef-
ficiency with 1.41 GFLOPS, significantly lower than the over 100 GFLOPS of AWNet (Dai et al.,
2020) and PyNet (Kim et al., 2020), which is suitable for limited computing resources. UNet sur-
passes CameraNet (Liang et al., 2021) in processing speed with a response time of 0.01 s, preferable
for real-time performance. Overall, UNet demonstrates balanced performance with low GFLOPS
and the fastest processing speed, due to its straightforward design.

Outdoor Performance: Tab. 3 shows the superior performance of PyNet across three outdoor back-
grounds. PyNet (Kim et al., 2020) achieves the best PSNR (Hore & Ziou, 2010), SSIM (Brunet et al.,
2011), and L1 with an overall average PSNR (Hore & Ziou, 2010) of 32.47, significantly higher than
other models. Specifically, EV-UNet shows significant improvement in outdoor scenes with UNet
after incorporating events gain, increasing from 28.17 to 30.11. In contrast, the commonly used
event-based method eSL-Net performs poorly with a PSNR (Hore & Ziou, 2010) of only 23. This
poor performance mainly results from the limited receptive field of eSL, which is insufficient for
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(a) Raw (b) Swin-Transformer (c) AWNet (d) MW-ISPNet

(e) Good RGB (f) U-Net (g) PyNetCA (h) PyNet

Figure 7: Visualizations on HVS-ISP Dataset indoor scenes.

estimating the global illumination information, and thus failing to achieve consistent global illumi-
nation enhancement. We further discuss on this issue in Sec. 5.3. we also visualize the results in
Fig. 6. PyNet has achieved the highest PSNR (Hore & Ziou, 2010) but exhibits edge artifacts, this
is likely due to the overfitting of the model. In outdoor scenes, event-enhanced outputs of EV-UNet
show good global consistency. Fig. 6 shows that AWNet (Dai et al., 2020) struggles with fine texture
restoration, explaining its inferior performance to other methods.

Indoor Performance: Tab. 4 shows that UNet∗ excels in indoor environments, especially when
handling multiple colored fruits and scenes with complex lighting and details. The output of
AWNet (Dai et al., 2020) has overall excessive brightness, as illustrated in Fig. 7, explaining its
low PSNR values. PyNet exhibits noticeable artifacts, consistent with the good RGB edge but with
significantly different brightness, likely due to the ill-posed nature of brightness recovery in the ISP
process, resulting in its poor indoor performance. Event-fusion methods perform poorly indoors,
primarily due to flickering light sources that complicate event characteristics. For more analysis
about these issues, please refer to Sec. 5.3.

Summary: These sections show that the performance of numerous ISP methods on HVS sen-
sor datasets varies significantly across different scenes. For instance, PyNet and AWNet (Dai
et al., 2020) exhibit great variability between indoor and outdoor environments, underscoring that
learning-based ISP methods are highly scene-dependent. This highlights the necessity for future
work to analyze different scenes individually to fully understand the performance of a network.
Furthermore, adding events to UNet significantly improves performance in outdoor scenarios but
not indoors, mainly due to the flickering indoor lighting. Addressing this issue remains a crucial
challenge for future research.

5.3 DISCUSSION AND FUTURE DIRECTION

Through the comprehensive and objective evaluation of various models on our dataset, we have also
observed a number of findings that can bring insights for future work.

Significant Indoor-Outdoor Performance Gap on PyNet and AWNet (Dai et al., 2020): We
observed a significant indoor-outdoor performance gap on PyNet (Ignatov et al., 2020b) and
AWNet (Dai et al., 2020). PyNet performs better in outdoor scenes than indoor, ranking the top
of all models, while AWNet (Dai et al., 2020) shows quite the opposite behavior. Generally, outdoor
scenes have more dynamic and varied lighting compared to indoor environments, which are difficult
for models to learn. The original AWNet (Dai et al., 2020) is designed to be trained in a multi-stage
manner with different loss functions. Therefore it might have fallen into sub-optima when trained
end-to-end in our experiment, resulting in the poor performance in modeling the harder outdoor
scenes.

Local Brightness Artifacts: Artifacts occur when the brightness in certain image areas sig-
nificantly deviates from the overall luminance (see Fig. 7). We investigated this by examin-
ing the relationship between a brightness of a pixel and the RAW data within its 5 × 5 vicin-
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ity. We treat the neighboring RAW data as a 25-dimensional vector, and apply t-SNE to
project it onto a 2D plane, recording the (x, y) coordinates. We then converted the RGB val-
ues of the pixel to YUV, recording the Y (brightness) as the z coordinate, as shown in Fig. 8.

Figure 8: The ill-posedness of brightness estimation in the ISP pro-
cess. We visualized the 5×5 region in the RAW image and the bright-
ness of corresponding pixel in the color image at the center of this
region. The results show that the same RAW region corresponds to
different brightness levels in different images.

By plotting pixels from three ran-
dom images in 3D (Fig. 8), we
show that pixel brightness and
neighboring RAW data have a
non-injective relationship. Multi-
ple brightness levels can emerge
from the same RAW data, indicat-
ing that global information, not
just local RAW value, is essential
for accurately determining pixel
brightness to avoid local artifacts.

Event Gains: The integration
of events in our dataset signif-
icantly enhances performance in
outdoor scenes when comparing
EV-UNET with UNet, primarily
due to the additional motion in-
formation and dynamic range pro-
vided by the events. However,

simple fusion does not fully exploit these characteristics, highlighting the need for more sophis-
ticated designs in future research. Conversely, performance decreases in indoor scenes, primarily
due to the flickering of artificial light sources.

Flickering Artificial Lighting: Under certain indoor scenarios, some artificial light source (Xu
et al., 2023), e.g.LEDs, flicker because of the alternating current frequency. Given that the event
frame rate of the sensor significantly exceeds the usual AC frequency (50 or 60 Hz), the flicker-
ing lighting introduces considerable fluctuations in the event data over time. The distributions and
features of events in these conditions are completely different from that in the natural lighting con-
ditions, and could result in the model’s failure in restoring the images from RAW data.

6 CONCLUSION

In this work, we present the first events-RAW paired dataset for event-guided ISP research. The
dataset consists of 3373 high quality high resolution RAW images and corresponding pixel-level
aligned events. Subsequently, good RGB frames are generated by a controllable ISP pipeline we
proposed. A comprehensive evaluation and analysis of existing learnable ISPs and a simple event-
guided ISP method are conducted on our dataset. Based on this analysis, we summarize some key
points and challenges for event-guided ISP. We wish to emphasize the potential of event data in ISP
processes again. Event cameras have a high dynamic range and high temporal resolution, which
surpass the limits of human vision systems. In terms of dynamic range and temporal sampling,
the information captured by event sensor is somehow a superset of that of human eye. Therefore,
generating images perceptible to human vision is a matter of downward compatibility. Limitations:
Firstly, the scale of our dataset is relatively small, because the HVS sensor we use is still in the
prototype stage and the associated hardware is cumbersome and exhibits low stability, which has
raised the cost in data collection and thus a limited size dataset. And yet we are committed to
expanding the dataset with more diverse real-world scenarios in future research. Secondly, our
dataset has not thoroughly addressed the issue of flickering in artificial lighting caused by alternating
current, especially in indoor scenarios. The flickering considerably impairs the performance of our
method and further research should pay attention to this problem.
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