
TIMEARENA: Shaping Efficient Multitasking Language Agents
in a Time-Aware Simulation

Anonymous ACL submission

Abstract

Despite remarkable advancements in emulating001
human-like behavior through Large Language002
Models (LLMs), current textual simulations do003
not adequately address the notion of time. To004
this end, we introduce TIMEARENA, a novel005
textual simulated environment that incorporates006
complex temporal dynamics and constraints007
that better reflect real-life planning scenarios.008
In TIMEARENA, agents are asked to complete009
multiple tasks as soon as possible, allowing for010
parallel processing to save time. We implement011
the dependency between actions, the time du-012
ration for each action, and the occupancy of013
the agent and the objects in the environment.014
TIMEARENA grounds to 30 real-world tasks015
in cooking, household activity, and laboratory016
work. We conduct extensive experiments with017
various LLMs using TIMEARENA. Our find-018
ings reveal that even the most powerful models,019
e.g., GPT-4, still lag behind humans in effec-020
tive multitasking, underscoring the need for en-021
hanced temporal awareness in the development022
of language agents.023

1 Introduction024

Large language models (LLMs) (OpenAI, 2022,025

2023; Team and Google, 2023) have enabled the de-026

velopment of language agents (a.k.a. LLM-based027

agents), which aim to simulate human behaviors in028

real-world scenarios through their planning capa-029

bilites (Liu et al., 2023; Gong et al., 2023; Akata030

et al., 2023). However, planning in the real world031

involves temporal and resource constraints (Russell032

and Norvig, 2010), which are rarely implemented033

in most textual simulations for LLMs and language034

agents (Wang et al., 2022; Park et al., 2023).035

The integration of time in simulated environ-036

ments challenges agents to navigate and align with037

human-like efficient multitasking skills. Such a038

simulation requires the agent to consider the fol-039

lowing three factors: 1) Time Duration and De-040

pendency: Actions will have durations upon de-041

Wash cup (5min)Wash teapot (4min)

Boil water (8min)

Wash clothes in washing
machine (20min) Hang clothes (5min)

Make tea (3min)

Task2: Wash Clothes

Pour tea into cup (2min)

Task1: Make Tea

Solution 1: Serial Processing

Solution 2: Parallel Processing ✅

Timeline 1

Timeline 2

Wash cupWash teapot Make Pour Hang

Make Pour

Hang

Boil water

Wash

Wa.. tea Wa.. cup

Wash clothes in washing machine

Boil

Ts=46min

Tp=25min

Objective: Finish Multiple Tasks in a Minimal Time

De
pe

nd
en

cy
 G

ra
ph

Tp < Ts!

Faster!

t=0

t=0

Wait

Figure 1: An example illustrating multitasking with
temporal constraints in TIMEARENA. The completion
of tasks requires actions in a predetermined dependency
and order. Underlined actions do not occupy the agent,
allowing other actions to be processed by the agent
simultaneously. The Wait action skips the current time
step, meaning the agent is idle.

pendencies, requiring agents to strategize and prior- 042

itize based on time constraints and task completion 043

progress. 2) Agent Occupancy: Agents will be oc- 044

cupied by certain actions thus they might be unable 045

to perform other actions at the same time. 3) Ob- 046

ject Occupancy: Some objects might be occupied 047

for some time, and agents must use available ob- 048

jects in the environment for the tasks. These factors 049

are common in real-life but are seldom addressed 050

by current textual simulations. 051

To help illustrate, Figure 1 shows an example 052

of completing make tea (Task 1) and wash clothes 053

(Task 2). The actions of each task might depend on 054

previous actions, e.g., agents must boil water be- 055

fore make tea, and each action takes a duration in 056

time, e.g., wash cup takes 5 minutes. In particular, 057

1

some actions let agents be idle, allowing agents058

to carry out other actions. For example, wash059

clothes in washing machine allows agents to060

perform other actions at the same time. Moreover,061

actions temporarily occupy objects, making them062

unavailable for other actions and hindering parallel063

processing. For example, boil water occupies064

the pot, delaying other actions like cook soup065

until it is available. When no action is currently066

available for the agent, the only option is to wait.067

For example, in Solution 2, the agent must wait068

for the completion of wash clothes in washing069

machine, before hang clothes.070

In this work, we introduce TIMEARENA, a tex-071

tual simulated environment featuring 30 real-world072

involving cooking, household activity, and labora-073

tory work. TIMEARENA is the first textual simu-074

lation to evaluate language agents on multitasking075

efficiency. Specifically, we incorporate the time076

duration of each action and set two types of ac-077

tions based on agent occupancy. One type occupies078

agents (e.g., wash cup) and another lets agents be079

idle (e.g., boil water). Additionally, we simu-080

late resource competition by implementing object081

occupancy, i.e., an object used for one task can-082

not be simultaneously used for another, which is083

common in parallel processing. Therefore, agents084

must focus on parallel processing, taking into ac-085

count the occupancy of agents and objects, to min-086

imize time consumption. We design four metrics087

in TIMEARENA to evaluate the average progress,088

completion speed, task completion rate and aver-089

age completion time. These metrics help to assess090

and analyze the efficient multitasking capabilities091

of language agents. Our comprehensive evaluation092

of 7 LLMs on TIMEARENA shows that current093

language agents struggle in efficient multitasking.094

Even the most powerful LLM, GPT-4, still faces095

challenges in parallel processing.096

In summary, our contributions are as follows:097

1) To the best of our knowledge, we are the first to098

explore the notion of time of language agents in a099

textual environment, which is important for more100

realistic simulation. 2) We create TIMEARENA,101

a novel text-based simulated environment consist-102

ing of 30 tasks, where LLMs can complete multi-103

ple tasks in parallel. 3) Using TIMEARENA, we104

conduct rich experiments to evaluate the efficient105

multitasking capabilities of language agents. Our106

results demonstrate that efficient multitasking in107

TIMEARENA poses a significant challenge for cur-108

rent LLMs and language agents.109

2 Related Work 110

Simulation-based Evaluation For language 111

Agents With the great success of LLMs (Ope- 112

nAI, 2022, 2023; Team and Google, 2023), recent 113

works have shifted the focus from traditional NLP 114

tasks to explore language agents in simulation en- 115

vironments that mimic real-world scenarios (Wu 116

et al., 2023; Liu et al., 2023; Gong et al., 2023; 117

Akata et al., 2023). These simulation environments 118

can be divided into two categories: 1) Social Simu- 119

lations (Park et al., 2023; Mukobi et al., 2023; Zhou 120

et al., 2023), which aim to evaluate the behaviors 121

of language agents in some social scenarios; 2) 122

Problem-solving simulations, which are created 123

based on games (Chen et al., 2023a,b; Zhang et al., 124

2023; Agashe et al., 2023) and scientific scenar- 125

ios (Wang et al., 2022). In this paper, we focus on 126

problem-solving simulations to investigate the effi- 127

cient multitasking capabilities of language agents. 128

Language Planning Language planning aims to 129

decompose a complex task into steps (Schank and 130

Abelson, 1975, 2013). Early studies mainly endow 131

the planning capabilities of LMs through training 132

them on specific planning datasets (Peng et al., 133

2018; Hua et al., 2019; Kong et al., 2021), which 134

exhibits poor generalization. Recent studies have 135

identified that LLMs can effectively decompose 136

tasks into procedural steps (Wang et al., 2023c; 137

Yuan et al., 2023; Shen et al., 2023). However, mul- 138

titask planning with parallel processing in dynamic 139

environments still remains under-studied. 140

Temporal Reasoning Temporal reasoning in- 141

volves comprehending, structuring, and interpret- 142

ing events, actions, and states through the lens of 143

time (Allen, 1991; Vila, 1994; Stock, 1998). Pre- 144

vious studies in temporal reasoning focus on tem- 145

poral relation extraction (Vashishtha et al., 2019; 146

Mathur et al., 2021; Wang et al., 2023b), event tem- 147

poral reasoning (Mathur et al., 2022; Yang et al., 148

2023; Wang and Zhao, 2023) and explore the tem- 149

poral reasoning capability of LLMs with several 150

contemporary time-sensitive QA datasets (Zhang 151

and Choi, 2021; Shang et al., 2022; Tan et al., 2023). 152

Distinguished from other benchmarks (Chu et al., 153

2023), our TIMEARENA creates a dynamic and 154

interactive simulated environment. 155

3 TIMEARENA 156

We create TIMEARENA, a textual simulated envi- 157

ronment to evaluate the efficient multitasking capa- 158

2

Simulation Designs

Objective: Completing 3 Tasks in the Shortest Time

Timeline: Agent Interacting with the Environment

Wash clothes in washing
machine (20min)

Hang clothes
(5min)

Wash cup (5min)Wash teapot (4min)

Boil water (8min) Make tea (3min)
Pour tea into cup

(2min)
Wash bed sheet in washing

machine (15min)
Hang bed

sheet (3min)

T=1min T=2min T=3min T=4min T=5min T=8min T=9min T=10min

Wash clothes in washing machine occupies Wash teapotBoil waterMake tea depends on and Wash teapot occupies the agent for 4 minutes, Boil water does not

A
ge

nt

A
ct

io
n

En
vi

ro
nm

en
t

Fe
ed

ba
ck

Task1: Make Tea Task2: Wash Clothes Task3: Wash Bed Sheet

⏰

Boiling water Washing clothes

⏰

⏰

Washing bed sheet

⏰

⏰

Making tea

⏰

⏰

Making tea

⏰

⏰

Waiting

⏰

⏰

Washing teapot

⏰

⏰

⏰

…

Washing teapot

⏰

⏰

⏰

Wash teapot
(4min)

Boil water finished.
Wash teapot finished. Make tea (3 min) Wait (1 min)Wash clothes

(20 min)
Boil water

(8 min)

…

Task Dependency Agent OccupancyObject Occupancy

Washing Machine
is occupied!

Teapot is dirty and
water has not boiled!

🕰

In
te

ra
ct

io
n

Vi
su

al
iz

at
io

n

Figure 2: An overview of TIMEARENA, with a multitasking example that shows our designs of the simulation.
TIMEARENA first sets an objective for the agent, and then the agent interacts with TIMEARENA over time, with the
design of task dependency, object occupancy, and agent occupancy.

bilities of language agents. To help illustrate, we159

first show an overview and an example run of how160

an agent interacts with the TIMEARENA environ-161

ment (§ 3.1), and then describe the design of the162

simulation environment in more detail (§ 3.2-3.3).163

3.1 Overview of TIMEARENA164

TIMEARENA challenges agents to complete multi-165

ple tasks strategically in the shortest possible time.166

This simulation emphasizes the importance of un-167

derstanding, performing, and optimizing actions168

within a constrained timeframe, mirroring practical169

scenarios involving time management.170

Central to TIMEARENA are Tasks, Objects, and171

Actions. Tasks define the objectives for the agents,172

Objects represent elements in the environment that173

agents will encounter and interact with, and Ac-174

tions are the means to accomplish these tasks. Real-175

time feedback and scoring mechanisms are integral176

to the environment, assessing agent performance177

and adding to the simulation’s complexity and re-178

alism. Unique features like the duration and occu-179

pancy of actions and strategic resource utilization180

distinguish TIMEARENA from other environments.181

An Example Run As in Figure 2, consider an182

agent tasked with make tea (Task 1), wash clothes183

(Task 2) and wash bed sheet (Task 3). The agent184

starts by decomposing the task into actions like185

boil water. In TIMEARENA, all actions have a186

duration (e.g., Boil water needs 8 minutes.) and187

dependencies (e.g., At T=4min, make tea violates188

the dependency because wash teapot and boil 189

water are not completed yet.). The agent then inter- 190

acts with objects (e.g., wash clothes in washing 191

machine), which become occupied during the pro- 192

cess. The agent can engage in non-occupied ac- 193

tions simultaneously (e.g., wash teapot) while 194

others (e.g., boil water) are in progress. Environ- 195

mental feedback guides the agent, indicating the 196

legitimacy of actions and the completion of tasks. 197

For example, if the washing machine is occupied, 198

the agent adjusts its strategy. The agent’s goal is 199

to complete all tasks efficiently, with performance 200

evaluated based on progress and completion time. 201

This dynamic interaction in TIMEARENA fosters 202

an environment where strategic planning, resource 203

management, and adaptability are key to an agent’s 204

success. 205

3.2 Components of TIMEARENA 206

Tasks In TIMEARENA, We design tasks within 207

three distinct scenarios or simulated settings, 208

namely, household activity, cooking, and labora- 209

tory work. Each scenario represents a specific con- 210

text or environment where multitasking is an inte- 211

gral part of the activities involved.1 For example, 212

one can do sweep floor while doing boil water. 213

Each scenario contains 10 tasks, and some actions 214

and objects are shared across multiple tasks of a 215

scenario. Each task requires multiple actions to 216

be executed, which manipulates the objects in the 217

1Details of tasks are in Appendix A.1.

3

environment for task completion. In the beginning,218

TIMEARENA gives a list of tasks to the agent, with219

a comprehensive task instruction consisting of a220

task description, an action space, and an object set:221

• Task Description: Introduces task objectives,222

e.g., Make a dish of beef fried rice, which223

consists of cooked rice and fried beef ;224

• Action Space: Lists the valid actions for the225

tasks (e.g., chop, wash);226

• Object Set: Lists the available objects in the227

environment for the tasks (e.g., pot, beaker).228

At every timestep t, the agent needs to generate229

valid actions on the objects and receive feedback230

from the environment.231

Objects Objects are integral to completing232

tasks and situating within the environment. In233

TIMEARENA, there are 71 different objects for234

all the tasks. Every task involves a list of objects,235

which might overlap with other tasks of the same236

scenario. To mimic the resource limitation in real-237

world parallel processing, we introduce:238

• Object Occupancy: the state of the object239

involved in an action is set to be occupied,240

e.g., wash cup will cause the object cup to241

be occupied. This object cannot be processed242

until the involved action is completed (after243

some time). Then, this object is reset as non-244

occupied and waits for another action.245

Actions We design a total of 45 actions for all 30246

tasks. Each action consists of a detailed description247

(e.g., chop OBJ, chop the whole item into248

sliced pieces.), showing a change of states the249

action will cause to an object.2 Different from250

existing text-based simulations (Wang et al., 2022;251

Gong et al., 2023; Shridhar et al., 2020), in our252

case, an action has a duration of time and may253

occupy the agent from performing other actions, to254

the passage of time. In detail:255

• Action Dependency: An action within the256

same task might depend on completing other257

actions within the same task. In Figure 2,258

make tea is dependent on wash teapot.259

• Duration of Time: Each action holds a time-260

frame in the timeline, ranging from 1 to 10261

minutes. In practice, agents only have an edu-262

cated guess of the time duration of each action263

until actually interacting with TIMEARENA.264

2All the actions are listed in Apendix A.2.

• Agent Occupancy: One key to parallel pro- 265

cessing is agent occupancy, which prevents 266

agents from performing other tasks. There- 267

fore, we consider two types of actions based 268

on agent occupancy: Type 1 action occupies 269

the agent til completion (e.g., wash teapot); 270

and Type 2 action lets agents be idle, allowing 271

to perform other actions (e.g., boil water). 272

3.3 The Interaction between Agent and 273

Environment 274

Environmental Feedback The feedback from a 275

textual environment is important to simulate and 276

implement the constraints in TIMEARENA using 277

only textual messages. We define feedback as the 278

response from the environment following an ac- 279

tion by an agent. A feedback message could be of 280

multiple types, including: 281

• Invalid Action: An action attempt that does 282

not match the required format, e.g., clean 283

teapot is invalid. 284

• Action on Non-existing Object: An action 285

attempt that visits objects that are not in the 286

object set, e.g., pan is non-existent. 287

• Wrong Action Input: An action attempt 288

that the prerequisite action has not completed 289

(e.g., Cannot perform action add to on ob- 290

ject shrimp. Because shrimp is raw.) or has 291

been completed (e.g., wash beaker has been 292

completed). 293

• Action on Mismatched Object: An action 294

attempt that does not match the object, e.g., 295

You cannot perfrom read on potato. 296

• Action on Occupied Object: An action at- 297

tempt on occupied objects, e.g., Object pot is 298

being occupied by another action. 299

Correspondingly, valid actions will trigger environ- 300

mental feedback of the following types: 301

• Action Start: Avoiding previous errors, valid 302

actions will receive a feedback message con- 303

taining the specific performing time, marking 304

the start of the action, e.g., You are doing wash 305

cup, it will take 9 minutes. 306

• Action Completion: When an action is com- 307

pleted, the environment will send a message, 308

e.g., cup is clean, and reset the occupying 309

state of the object (cup). 310

Progress Score The progress score, denoted as 311

a percentage, reflects the agent’s completion rate 312

4

Scenario # Actions # Objects Time (min)

Cooking 5.6 5.5 18.9
Household Activity 4.1 3.5 12.8
Laboratory Work 5.3 2.7 16.1

Table 1: Average number of actions and objects per task
in each scenario, and the average shortest completion
time for these tasks.

of required actions within the environment, where313

the total duration for all actions is considered as314

100%. Each action’s contribution to the progress315

score is proportionate to its duration. Specifi-316

cally, if an action’s duration is ti minutes, its con-317

tribution to the progress score is calculated as318

si =
(

ti∑n
j=1 tj

)
× 100%, with n representing the319

total number of actions. For instance, an action320

lasting 5 minutes in a total action duration of 20321

minutes contributes 25% to the progress score.322

4 Experiments323

4.1 Experiment Settings324

Task Set Construction In our experiments, we325

design three categories of task combinations based326

on the number of tasks: # Task=1, # Task=2 and327

Task=3 scenarios. In # Task=1 scenario, agents328

focus on completing one task (e.g., make tea). For329

the other two scenarios, we combine either two or330

three tasks from 10 single tasks (e.g., make tea331

and wash clothes). Then, we randomly select 10332

combined tasks for each scenario.3333

Interaction Initially, the environment provides334

a comprehensive task instruction that details the335

task, action space, and object set. Subsequently,336

the agent produces an action based on this instruc-337

tion, adhering to a prescribed format specified in338

the action space; any deviation is considered in-339

valid. To facilitate action recognition by the en-340

vironment, regular expressions are employed to341

parse actions from responses (e.g., extracting wash342

clothes from I will wash clothes). For each ac-343

tion execution, the agent must incorporate task in-344

structions, previous actions, and feedback from the345

environment into LLMs as context.4346

Maximum Time Each combined task is allo-347

cated a maximum completion time. We set the348

3Appendix B.1 shows examples of single and combined
tasks.

4Appendix B.2 gives an example of interaction between
the agent and the environment.

time limit for completing a single task at 40 min- 349

utes, which exceeds the total time required for all 350

actions in any given task. For tasks that are com- 351

bined, the time limit is proportionally increased by 352

the number of tasks involved. 353

Oracle Performance As shown in Tabel 2, Or- 354

cale represents the optimal performance, includ- 355

ing the shortest completion time and the fastest 356

completion rate, which are manually calculated. 357

Specifically, we calculate oracle performance us- 358

ing a greedy strategy: always start the longest non- 359

occupied actions as early as possible and avoid 360

idleness when there are actions to perform.5 361

Finishing The interaction finishes under any of 362

the following conditions: 1) Agents have com- 363

pleted all the actions that solve the tasks (i.e., the 364

progress score reaches 100%) 2) Time has run out; 365

3) Agents who have performed incorrect actions 5 366

times in a row are considered to fail the task. 367

Model Choice We employ a diverse set of lan- 368

guage models for the agent, including Mistral-7B 369

by MistralAI (Jiang et al., 2023), OpenChat-3.5 370

fine-tuned from Mistral’s 7B model (Wang et al., 371

2023a), Vicuna-13B fine-tuned from LLaMA’s 372

13B model with instructions (Chiang et al., 2023), 373

Mixtral-8x7B, a Mixture-of-Expert version of 374

Mistral (Mistral AI team, 2023), Google’s Gem- 375

ini Pro (Team et al., 2023), OpenAI’s GPT-3.5 376

(gpt-3.5-turbo-1106) (OpenAI, 2022), and GPT- 377

4 (gpt-4-1106-preview) (OpenAI, 2023). We 378

employ greedy decoding for all the models with 379

the temperature set to 0. 380

4.2 Evaluation Metrics 381

To comprehensively evaluate the ability of agents 382

to multitask, we consider both time and score and 383

design the following four metrics: 384

• Average Progress Score (score, AS): The 385

average highest progress score achievable by 386

an agent, calculated as: AS =
(∑

i∈N Pi

N

)
, 387

where Pi denotes the maximum progress score 388

of i-th task that agents can reach, and N de- 389

notes the number of all tasks. 390

• Completion Speed (score per minute, CS): 391

The average of the highest score divided by 392

the time taken to achieve it, calculated as: 393

5Appendix A.4 shows our algorithm for calculating the
oracle performance.

5

Model # Task=1 # Task=2 # Task=3

AS ↑ CS ↑ CR ↑ CT ↓ AS ↑ CS ↑ CR ↑ CT ↓ AS ↑ CS ↑ CR ↑ CT ↓
C

oo
ki

ng

Mistral-7B 63.70 3.59 30.00 25.67 42.20 1.49 0 - 39.40 1.06 0 -
OpenChat-3.5 76.30 3.89 30.00 20.33 37.10 1.80 0 - 41.00 1.17 0 -
Vicuna-13B 84.60 4.10 60.00 21.83 48.80 1.76 0 - 26.00 1.03 0 -
Mixtral-8x7B 50.80 3.81 10.00 19.00 40.10 1.99 0 - 27.60 1.17 0 -

Gemini Pro 78.30 3.57 50.00 24.60 31.00 1.75 0 - 18.50 1.26 0 -
GPT-3.5 77.70 3.61 30.00 24.33 52.30 1.87 0 - 33.10 1.23 0 -
GPT-4 98.70 3.48 90.00 28.22 93.50 1.83 70.00 52.57 82.50 1.21 40.00 76.25

+ Self-plan 89.00 3.83 60.00 26.50 64.90 2.05 10.00 37.00 26.20 1.15 0 -

Oracle 100 5.31 100 18.90 100 2.85 100 35.00 100 1.94 100 52.50

H
ou

se
ho

ld
A

ct
iv

ity

Mistral-7B 64.80 6.00 20.00 15.50 45.30 2.46 0 - 49.90 1.78 0 -
OpenChat-3.5 70.50 5.34 30.00 15.67 68.20 2.73 0 - 44.30 1.83 0 -
Vicuna-13B 69.50 5.94 40.00 14.25 45.90 2.34 0 - 24.90 1.69 0 -
Mixtral-8x7B 68.80 6.08 40.00 15.00 51.60 2.85 10.0 31.00 60.20 1.83 10.00 58.00

Gemini Pro 68.10 5.92 40.00 16.50 60.50 3.02 10.00 25.00 40.30 1.93 0 -
GPT-3.5 87.40 5.98 70.00 16.71 63.80 2.57 10.00 36.00 45.30 1.82 0 -
GPT-4 100 5.81 100 17.20 100 2.89 100 34.50 98.40 1.82 90.00 54.78

+ Self-plan 87.20 6.01 80.00 16.37 84.50 2.80 50.00 35.20 95.30 1.93 60.00 50.16

Oracle 100 7.81 100 12.80 100 4.23 100 23.60 100 2.82 100 35.40

L
ab

or
at

or
y

W
or

k

Mistral-7B 70.80 4.39 30.00 21.67 47.10 2.27 0 - 38.40 1.37 0 -
OpenChat-3.5 65.50 5.07 30.00 13.33 45.80 2.10 0 - 27.50 1.30 0 -
Vicuna-13B 59.60 3.94 20.00 26.00 20.80 1.87 0 - 22.90 1.40 0 -
Mixtral-8x7B 64.10 4.57 40.00 24.25 41.80 2.43 0 - 32.40 1.58 0 -

Gemini Pro 88.00 5.17 70.00 19.57 57.50 2.64 20.00 35.50 25.70 1.61 0 -
GPT-3.5 71.50 4.52 30.00 22.00 47.60 2.17 0 - 37.90 1.52 0 -
GPT-4 97.50 5.32 90.00 18.67 85.30 2.61 50.00 39.20 83.10 1.71 60.00 60.33

+ Self-plan 95.30 5.09 80.00 20.12 83.00 2.79 50.00 36.40 70.00 1.87 60.00 54.66

Oracle 100 6.21 100 16.10 100 4.14 100 24.60 100 2.84 100 35.50

Table 2: Model performance under different task combination settings in TIMEARENA. We report Average Progress
Score (AS), Completion Speed (CS), Task Completion Rate (CR), and Average Completion Time (CT). #Task=n
represents that agents are required to do n tasks altogether. We also list the Oracle result for comparison. The best
results are bolded, and the second best ones are underlined.

CS =
(∑

i∈N Pi∑
i∈N Ti

)
, where Ti denotes the time394

required to reach Pi of i-th task.395

• Task Completion Rate (%, CR): The rate396

of successfully completed tasks, calculated as:397

CR =
(
S
N

)
, where S denotes the number of398

tasks completed successfully. Notably, when399

combining tasks, a combined task counts as400

one task.401

• Average Completion Time (minutes, CT):402

The average time taken for completing tasks403

successfully: CT =
(∑

i∈S Ti

S

)
.404

4.3 Main Results405

As shown in Table 2, GPT-4 achieves the best per-406

formance across different task combinations. More-407

over, the combined tasks are more challenging than408

single tasks despite the longer time given. Apart409

from GPT-4, most models fail to complete 2 or 3410

tasks, showing their limited multitasking abilities 411

and the challenging nature of our environment. 412

For open-source models, OpenChat-3.5 and 413

Vicuna-13B are even better than GPT-3.5, demon- 414

strating the potential of open-sourced models to de- 415

velop multitasking capabilities. However, a lower 416

task completion rate indicates that these models 417

quickly complete simple actions initially but then 418

encounter difficulties. They either get caught in 419

repetitive actions or fail to properly segment subse- 420

quent tasks, which significantly impacts task perfor- 421

mance. For example, initially, potato is unpicked, 422

so the agent first performs pick potato. Subse- 423

quently, the agent mistakenly opts for cook potato 424

in pot rather than the correct chop potato, be- 425

cause it incorrectly decomposes the task. 426

To explore the potential of heuristic algorithms 427

in improving model performance, we introduce 428

self-plan prompting to GPT-4, as illustrated in Ap- 429

pendix B.3. Under this method, the model initially 430

6

49.5%50.5%

Vicuna-13B

27.6%

72.4%

OpenChat-3.5

41.4%
58.6%

Mixtral-7Bx8

11.4%

88.6%

Gemini Pro

29.9%

70.1%

GPT-3.5-turbo

9.1%

90.9%

GPT-4

Invalid Action/Object
Repeating Completed Action

Dependency Violation
Object-Mismatched Action

Valid Action Unneccesary Wait Neccesary Wait

Incorrect Action Correct Action

Figure 3: The proportions of correct and incorrect ac-
tions of each language agent.

discovers the dependencies among actions, task de-431

scriptions, and objects and estimates the duration432

of each action. It then adopts a greedy strategy sim-433

ilar to Oracle Performance, favoring selecting the434

longest-duration actions that do not require continu-435

ous engagement from the agent in the task model to436

formulate a plan. Then, the agent executes this plan437

through interactions with the environment. How-438

ever, the results indicate that self-plan prompting439

is outperformed by vanilla GPT-4. There are three440

possible reasons for such performance: 1) The dif-441

ficulty in accurately parsing actions and identifying442

their dependencies; 2) The reliance on estimating443

action durations might introduce cascading errors,444

leading to inaccurate results of the greedy strategy;445

3) The rigid adherence to flawed plans, without446

adapting to the dynamic nature of interactions with447

the environment, leads to its failure.448

4.4 Analysis449

Can language agents master multitasking? We450

conduct detailed analysis to investigate the types451

of actions. and define six fine-grained types of ac-452

tions: 1) Correct Actions: Valid Action, Wait 2)453

Incorrect Actions: Invalid Action/Object, Depen-454

dency Violation, Repeating Completed Action and455

Object-Mismacthed Action.6456

We calculate the frequency of these actions of457

each agent throughout their interactions. The re-458

sults in Figure 3 show that a significant propor-459

tion of invalid actions are due to dependency vio-460

lations and mismatches with objects. Multitasking461

6Detailed description of different types of actions can be
found in Appendix A.3.

0

50

100 93.5
79.9

Average Progress Score (AS)

0

1

2 1.83 1.82
Completion Speed (CS)

0

25

50

75 70.0

50.0

Task Completion Rate (CR)

0

20

40

60 52.57 51.6
Average Completion Time (CT)

w/o Constraints w/ Constraints

Figure 4: Comparison of the performance of GPT-4 with
and without resource constraints. We impose constraints
by limiting to a single instance each of pot, fryer, and
oven.

involves performing several tasks simultaneously. 462

As the number of tasks increases, the complexity 463

of objects and actions escalates, leading to intri- 464

cate dependencies between actions. Thus, the high 465

proportion of actions that violate dependencies and 466

mismatch objects suggests that language agents 467

face challenges in managing complex action in- 468

terdependencies during multitasking, indicating a 469

limitation in their multitasking capabilities. 470

Are language agents aware of parallel process- 471

ing? Parallel processing can significantly reduce 472

the time required for efficient multitasking. If an 473

agent is capable of parallel processing, it can en- 474

gage in additional actions instead of unnecessary 475

waiting for the current action. To answer this ques- 476

tion, we decompose wait action into two types: 477

necessary wait and unnecessary wait. The 478

former represents that no actions can currently be 479

performed, requiring waiting for other actions to 480

complete. In particular, we report the maximum 481

number of necessary wait. Unnecessary wait 482

indicates that there are other action options avail- 483

able. Figure 3 shows that wait actions constitute 484

over half of the valid actions performed by differ- 485

ent LLMs, and necessary wait only accounts for 486

a small part of it. This indicates a tendency for 487

agents to engage in unnecessary waiting, showing 488

their ignorance of parallel processing and inability 489

to complete tasks in minimal time (Table 2). 490

Do resource constraints affect the multitasking 491

of language agents? Resource constraints refer 492

to limitations in the availability of resources (e.g., 493

the number of objects) necessary for task comple- 494

tion, which is rather common in real life. To design 495

7

cooking1

(1,a)

cooking2

(2,a)

cooking3

(3,a)

cooking4

(4,a)

cooking5

(5,a)

cooking6

(6,a)

cooking7

(1,b)

cooking8

(2,b)

cooking9

(3,b)

cooking10

(4,b)

household activity1

(5,b)

household activity2

(6,b)

household activity3

(1,c)

household activity4

(2,c)

household activity5

(3,c)

household activity6

(4,c)

household activity7

(5,c)

household activity8

(6,c)

household activity9

(1,d)

household activity10

(2,d)

laboratory work1

(3,d)

laboratory work2

(4,d)

laboratory work3

(5,d)

laboratory work4

(6,d)

laboratory work5

(1,e)

laboratory work6

(2,e)

laboratory work7

(3,e)

laboratory work8

(4,e)

laboratory work9

(5,e)

laboratory work10

(6,e)

Time

Pr
og

re
ss

 S
co

re
Mistral-7B Vicuna-13B Gemini Pro GPT-3.5-turbo GPT-4

Figure 5: Task progress score curves of language agents on two task combinations in TIMEARENA. The names at
the bottom-right indicate the scenario and task number. For example, cooking1 represents the first combination of
tasks in the cooking scenario.

resource constraints, we first select three objects:496

pot, fryer and oven in the cooking scenario, and497

choose # Task=2 setting in Table 2. Then, we set498

that there is only one instance of each of the three499

objects, simulating the limitation of resources in the500

environment. Figure 4 compares GPT-4’s perfor-501

mance before and after applying these constraints.502

We find that the constraints do not affect the task503

completion time or speed, revealing that GPT-4504

rarely attempts to process tasks in parallel. How-505

ever, a noticeable decline in both completion rate506

and progress score indicates that the constraints507

prevent the models from better comprehending and508

decomposing multiple tasks.509

Language agents trapped in an infinite loop.510

To delve into why language agents struggle with511

multiple tasks, we analyze the progress score512

changes over time. As illustrated in Figure 5, Vi-513

cuna, Mistral, Gemini and GPT-3.5 often cease514

scoring without completing all tasks, maintaining515

low scores until time runs out (e.g., (5,b), (2,c) and516

(6,d)). We further examine their actions during517

these periods and find that they always perform518

incorrect actions and waiting alternately. Since519

wait is a valid action, repeatedly alternating be- 520

tween waiting and incorrect actions does not lead 521

to task failure, but neither does it contribute to an 522

increase in scores. To find out whether agents wait 523

for good reasons, we ask them to explain each ac- 524

tion via the chain-of-thought prompting strategy, 525

and they often believe wait can pause incorrect 526

actions. However, they find it hard to adjust their 527

incorrect actions based on feedback after waiting, 528

resulting in them being trapped in infinite loops. 529

5 Conclusion 530

In this paper, we introduce TIMEARENA, a text- 531

based simulated environment designed to incor- 532

porate the notion of time. TIMEARENA extends 533

beyond simply acknowledging the dependency of 534

actions by also considering their duration, an essen- 535

tial factor in time modeling. Using TIMEARENA, 536

we evaluate the multitasking and parallel process- 537

ing capability of language agents. Our findings 538

indicate that language agents still have significant 539

room for improvement when completing multiple 540

tasks in dynamic environments, highlighting an 541

area for future research. 542

8

Limitations543

In TIMEARENA, we implement detailed descrip-544

tions of tasks and environments, along with fine-545

grained textual feedback to simulate interactions.546

However, TIMEARENA is still designed as a textual547

simulation for LLMs, lacking visual information548

that might be necessary for agents to succeed in549

real-world tasks. For example, in the laboratory550

work scenario, it is challenging to completely rep-551

resent chemical reactions through text due to their552

complexity. The number of tasks and scenarios is553

limited, while the number of multitasking scenar-554

ios that allow parallel processing is large in real555

life. Moreover, in TIMEARENA, agents interact556

with the environment only through actions that are557

explicitly presented in action prompts, rather than558

exploring freely. Also, whether an action occupies559

an agent sometimes depends on specific conditions.560

For instance, the action cook beef is classified as561

non-occupying in TIMEARENA, implying that it562

does not engage agents continuously. Yet, in real-563

ity, this action requires attention, such as turning564

the beef to prevent burning, a detail TIMEARENA565

overlooks, potentially reducing the realism of our566

simulation.567

Ethical Statement568

We hereby acknowledge that all authors of this569

work are aware of the provided ACL Code of Ethics570

and honor the code of conduct.571

Use of Human Annotations Our institution re-572

cruited three annotators to implement the task cre-573

ation for three scenarios. We ensure the privacy574

rights of the annotators are respected during the575

annotation process. The annotators receive com-576

pensation exceeding the local minimum wage and577

have consented to tasks generated for TIMEARENA578

for research purposes.579

Risks The TIMEARENA in our experiment is cre-580

ated by human annotators, and we further examine581

them to guarantee that they are devoid of socially582

harmful or toxic language. However, evaluating583

the data quality of tasks is based on common sense,584

which can vary among individuals from diverse585

backgrounds.586

References587

Saaket Agashe, Yue Fan, and Xin Eric Wang. 2023.588
Evaluating multi-agent coordination abilities in large589

language models. 590

Elif Akata, Lion Schulz, Julian Coda-Forno, Seong Joon 591
Oh, Matthias Bethge, and Eric Schulz. 2023. Playing 592
repeated games with large language models. 593

James F Allen. 1991. Planning as temporal reasoning. 594
KR, 91:3–14. 595

Jiangjie Chen, Siyu Yuan, Rong Ye, Bodhisattwa Prasad 596
Majumder, and Kyle Richardson. 2023a. Put your 597
money where your mouth is: Evaluating strategic 598
planning and execution of llm agents in an auction 599
arena. arXiv preprint arXiv:2310.05746. 600

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, 601
Chenfei Yuan, Chi-Min Chan, Heyang Yu, Yaxi Lu, 602
Yi-Hsin Hung, Chen Qian, Yujia Qin, Xin Cong, 603
Ruobing Xie, Zhiyuan Liu, Maosong Sun, and Jie 604
Zhou. 2023b. Agentverse: Facilitating multi-agent 605
collaboration and exploring emergent behaviors. 606

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, 607
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan 608
Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. 609
2023. Vicuna: An open-source chatbot impressing 610
gpt-4 with 90%* chatgpt quality. See https://vicuna. 611
lmsys. org (accessed 14 April 2023). 612

Zheng Chu, Jingchang Chen, Qianglong Chen, Weijiang 613
Yu, Haotian Wang, Ming Liu, and Bing Qin. 2023. 614
Timebench: A comprehensive evaluation of temporal 615
reasoning abilities in large language models. 616

Ran Gong, Qiuyuan Huang, Xiaojian Ma, Hoi Vo, Zane 617
Durante, Yusuke Noda, Zilong Zheng, Song-Chun 618
Zhu, Demetri Terzopoulos, Li Fei-Fei, and Jianfeng 619
Gao. 2023. Mindagent: Emergent gaming interac- 620
tion. 621

Xinyu Hua, Zhe Hu, and Lu Wang. 2019. Argument 622
generation with retrieval, planning, and realization. 623
In Proceedings of the 57th Annual Meeting of the As- 624
sociation for Computational Linguistics, pages 2661– 625
2672, Florence, Italy. Association for Computational 626
Linguistics. 627

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men- 628
sch, Chris Bamford, Devendra Singh Chaplot, Diego 629
de las Casas, Florian Bressand, Gianna Lengyel, Guil- 630
laume Lample, Lucile Saulnier, et al. 2023. Mistral 631
7b. arXiv preprint arXiv:2310.06825. 632

Xiangzhe Kong, Jialiang Huang, Ziquan Tung, Jian 633
Guan, and Minlie Huang. 2021. Stylized story gen- 634
eration with style-guided planning. In Findings of 635
the Association for Computational Linguistics: ACL- 636
IJCNLP 2021, pages 2430–2436, Online. Association 637
for Computational Linguistics. 638

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu 639
Lei, Hanyu Lai, Yu Gu, Hangliang Ding, Kaiwen 640
Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Ao- 641
han Zeng, Zhengxiao Du, Chenhui Zhang, Sheng 642
Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie 643
Huang, Yuxiao Dong, and Jie Tang. 2023. Agent- 644
bench: Evaluating llms as agents. 645

9

http://arxiv.org/abs/2310.03903
http://arxiv.org/abs/2310.03903
http://arxiv.org/abs/2310.03903
http://arxiv.org/abs/2305.16867
http://arxiv.org/abs/2305.16867
http://arxiv.org/abs/2305.16867
http://arxiv.org/abs/2308.10848
http://arxiv.org/abs/2308.10848
http://arxiv.org/abs/2308.10848
http://arxiv.org/abs/2311.17667
http://arxiv.org/abs/2311.17667
http://arxiv.org/abs/2311.17667
http://arxiv.org/abs/2309.09971
http://arxiv.org/abs/2309.09971
http://arxiv.org/abs/2309.09971
https://doi.org/10.18653/v1/P19-1255
https://doi.org/10.18653/v1/P19-1255
https://doi.org/10.18653/v1/P19-1255
https://doi.org/10.18653/v1/2021.findings-acl.215
https://doi.org/10.18653/v1/2021.findings-acl.215
https://doi.org/10.18653/v1/2021.findings-acl.215
http://arxiv.org/abs/2308.03688
http://arxiv.org/abs/2308.03688
http://arxiv.org/abs/2308.03688

Puneet Mathur, Rajiv Jain, Franck Dernoncourt, Vlad646
Morariu, Quan Hung Tran, and Dinesh Manocha.647
2021. TIMERS: Document-level temporal relation648
extraction. In Proceedings of the 59th Annual Meet-649
ing of the Association for Computational Linguistics650
and the 11th International Joint Conference on Natu-651
ral Language Processing (Volume 2: Short Papers),652
pages 524–533, Online. Association for Computa-653
tional Linguistics.654

Puneet Mathur, Vlad Morariu, Verena Kaynig-Fittkau,655
Jiuxiang Gu, Franck Dernoncourt, Quan Tran, Ani656
Nenkova, Dinesh Manocha, and Rajiv Jain. 2022.657
DocTime: A document-level temporal dependency658
graph parser. In Proceedings of the 2022 Conference659
of the North American Chapter of the Association660
for Computational Linguistics: Human Language661
Technologies, pages 993–1009, Seattle, United States.662
Association for Computational Linguistics.663

Mistral AI team. 2023. Mixtral of experts. Accessed:664
2023-12-15.665

Gabriel Mukobi, Hannah Erlebach, Niklas Lauffer,666
Lewis Hammond, Alan Chan, and Jesse Clifton. 2023.667
Welfare diplomacy: Benchmarking language model668
cooperation. arXiv preprint arXiv:2310.08901.669

OpenAI. 2022. Chatgpt.670

OpenAI. 2023. Gpt-4 technical report.671

Joon Sung Park, Joseph C. O’Brien, Carrie J. Cai,672
Meredith Ringel Morris, Percy Liang, and Michael S.673
Bernstein. 2023. Generative agents: Interactive sim-674
ulacra of human behavior.675

Baolin Peng, Xiujun Li, Jianfeng Gao, Jingjing Liu, and676
Kam-Fai Wong. 2018. Deep Dyna-Q: Integrating677
planning for task-completion dialogue policy learn-678
ing. In Proceedings of the 56th Annual Meeting of679
the Association for Computational Linguistics (Vol-680
ume 1: Long Papers), pages 2182–2192, Melbourne,681
Australia. Association for Computational Linguistics.682

Stuart J Russell and Peter Norvig. 2010. Artificial intel-683
ligence a modern approach. London.684

Roger C Schank and Robert P Abelson. 1975. Scripts,685
plans, and knowledge. In IJCAI, volume 75, pages686
151–157.687

Roger C Schank and Robert P Abelson. 2013. Scripts,688
plans, goals, and understanding: An inquiry into689
human knowledge structures. Psychology Press.690

Chao Shang, Guangtao Wang, Peng Qi, and Jing Huang.691
2022. Improving time sensitivity for question answer-692
ing over temporal knowledge graphs. In Proceedings693
of the 60th Annual Meeting of the Association for694
Computational Linguistics (Volume 1: Long Papers),695
pages 8017–8026, Dublin, Ireland. Association for696
Computational Linguistics.697

Yongliang Shen, Kaitao Song, Xu Tan, Wenqi Zhang, 698
Kan Ren, Siyu Yuan, Weiming Lu, Dongsheng Li, 699
and Yueting Zhuang. 2023. Taskbench: Benchmark- 700
ing large language models for task automation. 701

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, 702
Yonatan Bisk, Adam Trischler, and Matthew 703
Hausknecht. 2020. Alfworld: Aligning text and em- 704
bodied environments for interactive learning. arXiv 705
preprint arXiv:2010.03768. 706

Oliviero Stock. 1998. Spatial and temporal reasoning. 707
Springer Science & Business Media. 708

Qingyu Tan, Hwee Tou Ng, and Lidong Bing. 2023. 709
Towards benchmarking and improving the temporal 710
reasoning capability of large language models. In 711
Proceedings of the 61st Annual Meeting of the As- 712
sociation for Computational Linguistics (Volume 1: 713
Long Papers), pages 14820–14835, Toronto, Canada. 714
Association for Computational Linguistics. 715

Gemini Team, Rohan Anil, Sebastian Borgeaud, 716
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, 717
Radu Soricut, Johan Schalkwyk, Andrew M Dai, 718
Anja Hauth, et al. 2023. Gemini: a family of 719
highly capable multimodal models. arXiv preprint 720
arXiv:2312.11805. 721

Gemini Team and Google. 2023. Gemini: A family of 722
highly capable multimodal models. 723

Siddharth Vashishtha, Benjamin Van Durme, and 724
Aaron Steven White. 2019. Fine-grained temporal 725
relation extraction. In Proceedings of the 57th An- 726
nual Meeting of the Association for Computational 727
Linguistics, pages 2906–2919, Florence, Italy. Asso- 728
ciation for Computational Linguistics. 729

Lluis Vila. 1994. A survey on temporal reasoning in 730
artificial intelligence. Ai Communications, 7(1):4– 731
28. 732

Guan Wang, Sijie Cheng, Xianyuan Zhan, Xiangang Li, 733
Sen Song, and Yang Liu. 2023a. Openchat: Advanc- 734
ing open-source language models with mixed-quality 735
data. arXiv preprint arXiv:2309.11235. 736

Haoyu Wang, Hongming Zhang, Yuqian Deng, Jacob 737
Gardner, Dan Roth, and Muhao Chen. 2023b. Ex- 738
tracting or guessing? improving faithfulness of event 739
temporal relation extraction. In Proceedings of the 740
17th Conference of the European Chapter of the As- 741
sociation for Computational Linguistics, pages 541– 742
553, Dubrovnik, Croatia. Association for Computa- 743
tional Linguistics. 744

Ruoyao Wang, Peter Jansen, Marc-Alexandre Côté, and 745
Prithviraj Ammanabrolu. 2022. ScienceWorld: Is 746
your agent smarter than a 5th grader? In Proceedings 747
of the 2022 Conference on Empirical Methods in 748
Natural Language Processing, pages 11279–11298, 749
Abu Dhabi, United Arab Emirates. Association for 750
Computational Linguistics. 751

10

https://doi.org/10.18653/v1/2021.acl-short.67
https://doi.org/10.18653/v1/2021.acl-short.67
https://doi.org/10.18653/v1/2021.acl-short.67
https://doi.org/10.18653/v1/2022.naacl-main.73
https://doi.org/10.18653/v1/2022.naacl-main.73
https://doi.org/10.18653/v1/2022.naacl-main.73
https://mistral.ai/news/mixtral-of-experts/
https://openai.com/blog/chatgpt
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2304.03442
http://arxiv.org/abs/2304.03442
http://arxiv.org/abs/2304.03442
https://doi.org/10.18653/v1/P18-1203
https://doi.org/10.18653/v1/P18-1203
https://doi.org/10.18653/v1/P18-1203
https://doi.org/10.18653/v1/P18-1203
https://doi.org/10.18653/v1/P18-1203
https://doi.org/10.18653/v1/2022.acl-long.552
https://doi.org/10.18653/v1/2022.acl-long.552
https://doi.org/10.18653/v1/2022.acl-long.552
http://arxiv.org/abs/2311.18760
http://arxiv.org/abs/2311.18760
http://arxiv.org/abs/2311.18760
https://doi.org/10.18653/v1/2023.acl-long.828
https://doi.org/10.18653/v1/2023.acl-long.828
https://doi.org/10.18653/v1/2023.acl-long.828
http://arxiv.org/abs/2312.11805
http://arxiv.org/abs/2312.11805
http://arxiv.org/abs/2312.11805
https://doi.org/10.18653/v1/P19-1280
https://doi.org/10.18653/v1/P19-1280
https://doi.org/10.18653/v1/P19-1280
https://doi.org/10.18653/v1/2023.eacl-main.39
https://doi.org/10.18653/v1/2023.eacl-main.39
https://doi.org/10.18653/v1/2023.eacl-main.39
https://doi.org/10.18653/v1/2023.eacl-main.39
https://doi.org/10.18653/v1/2023.eacl-main.39
https://doi.org/10.18653/v1/2022.emnlp-main.775
https://doi.org/10.18653/v1/2022.emnlp-main.775
https://doi.org/10.18653/v1/2022.emnlp-main.775

Yuqing Wang and Yun Zhao. 2023. Tram: Benchmark-752
ing temporal reasoning for large language models.753
arXiv preprint arXiv:2310.00835.754

Zihao Wang, Shaofei Cai, Anji Liu, Xiaojian Ma, and755
Yitao Liang. 2023c. Describe, explain, plan and se-756
lect: Interactive planning with large language models757
enables open-world multi-task agents. arXiv preprint758
arXiv:2302.01560.759

Yue Wu, Xuan Tang, Tom M. Mitchell, and Yuanzhi Li.760
2023. Smartplay: A benchmark for llms as intelligent761
agents.762

Sen Yang, Xin Li, Lidong Bing, and Wai Lam. 2023.763
Once upon a time in graph: Relative-time pretrain-764
ing for complex temporal reasoning. In Proceedings765
of the 2023 Conference on Empirical Methods in766
Natural Language Processing, pages 11879–11895,767
Singapore. Association for Computational Linguis-768
tics.769

Siyu Yuan, Jiangjie Chen, Ziquan Fu, Xuyang Ge, So-770
ham Shah, Charles Jankowski, Yanghua Xiao, and771
Deqing Yang. 2023. Distilling script knowledge from772
large language models for constrained language plan-773
ning. In Proceedings of the 61st Annual Meeting of774
the Association for Computational Linguistics (Vol-775
ume 1: Long Papers), pages 4303–4325, Toronto,776
Canada. Association for Computational Linguistics.777

Hongxin Zhang, Weihua Du, Jiaming Shan, Qinhong778
Zhou, Yilun Du, Joshua B. Tenenbaum, Tianmin Shu,779
and Chuang Gan. 2023. Building cooperative embod-780
ied agents modularly with large language models.781

Michael Zhang and Eunsol Choi. 2021. SituatedQA: In-782
corporating extra-linguistic contexts into QA. In Pro-783
ceedings of the 2021 Conference on Empirical Meth-784
ods in Natural Language Processing, pages 7371–785
7387, Online and Punta Cana, Dominican Republic.786
Association for Computational Linguistics.787

Xuhui Zhou, Hao Zhu, Leena Mathur, Ruohong Zhang,788
Haofei Yu, Zhengyang Qi, Louis-Philippe Morency,789
Yonatan Bisk, Daniel Fried, Graham Neubig, and790
Maarten Sap. 2023. Sotopia: Interactive evaluation791
for social intelligence in language agents.792

11

http://arxiv.org/abs/2310.01557
http://arxiv.org/abs/2310.01557
http://arxiv.org/abs/2310.01557
https://doi.org/10.18653/v1/2023.emnlp-main.728
https://doi.org/10.18653/v1/2023.emnlp-main.728
https://doi.org/10.18653/v1/2023.emnlp-main.728
https://doi.org/10.18653/v1/2023.acl-long.236
https://doi.org/10.18653/v1/2023.acl-long.236
https://doi.org/10.18653/v1/2023.acl-long.236
https://doi.org/10.18653/v1/2023.acl-long.236
https://doi.org/10.18653/v1/2023.acl-long.236
http://arxiv.org/abs/2307.02485
http://arxiv.org/abs/2307.02485
http://arxiv.org/abs/2307.02485
https://doi.org/10.18653/v1/2021.emnlp-main.586
https://doi.org/10.18653/v1/2021.emnlp-main.586
https://doi.org/10.18653/v1/2021.emnlp-main.586
http://arxiv.org/abs/2310.11667
http://arxiv.org/abs/2310.11667
http://arxiv.org/abs/2310.11667

A TIMEARENA Details793

A.1 Tasks794

TIMEARENA contains 30 tasks in cooking, house-795

hold activity, and laboratory work scenarios. To796

illustrate how to complete a task, we show the flow797

chart for each task in Figure 6, Figure 7 and Fig-798

ure 8.799

A.2 Actions800

The environment implements 45 actions, and each801

action has a description. We show the details of802

these actions in Table 3.803

A.3 Action Types804

As shown in Table 4, we define 4 incorrect action805

types and 2 correct action types for analyzing why806

agents fail in multitasking.807

A.4 Greedy Algorithm808

We show the greedy algorithm in Algorithm 1.809

B Examples of TIMEARENA810

B.1 Tasks811

Table 5, 6 and 7 present some examples of task812

combinations in TIMEARENA for a better under-813

standing.814

B.2 Interaction815

Table 5 shows an example of interaction between816

an agent and environment in the cooking scenario.817

B.3 Self-plan818

Table 9 shows the prompt of the self-plan method.819

Algorithm 1: Greedy Algorithm for Mini-
mal Time Calculation
Input: Set of actions A, Durations T ,

Dependencies p(A).
Output: Minimal time Tmin.

1 Define non-occupied actions A∗ and
occupied actions A′ from A.

2 Sort A∗ by T in descending order.
3 A ← concatenate(A∗,A′).
4 Initialize Action_list as an empty list.
5 foreach ai ∈ A do
6 P ← BFS(ai, p(ai)) to collect

prerequisites.
7 foreach pi ∈ P do
8 if pi ∈ A then
9 Action_list.append(pi).

10 Remove pi from A.
11 end
12 end
13 Action_list.append(ai).
14 end
15 Tmin ← 0.
16 while not empty A∗ or A′ do
17 foreach ai ∈ Action_list do
18 if check_dependency(ai) then
19 if ai ∈ A∗ then
20 Tmin ← Tmin + 1.
21 Remove ai from A∗.
22 else
23 Tmin ← Tmin + T (ai).
24 Remove ai from A′.
25 end
26 break.
27 end
28 end
29 Increment Tmin by 1 if no action is

performed.
30 end

12

Action Description

pick OBJ Pick the unpicked item
cook OBJ1 in OBJ2 Cook the raw item until it’s cooked through
chop OBJ Chop the whole item into sliced pieces
fry OBJ1 in OBJ2 Fry the raw item until it is fried to perfection
wash OBJ Wash the dirty item to make clean
bake OBJ1 in OBJ2 Bake the raw item in the oven until it’s roasted
activate OBJ Activate the inactive device to turn it active
pour OBJ1 into OBJ2 Pour the liquid in item into the empty container until it is full
brew OBJ1 with OBJ2 Brew the dry item leaves with the container until they’re steeped
gather OBJ Gather the scattered items until it is collected
scrape OBJ1 into OBJ2 Scrape the contents from the full item into th empty item
place OBJ1 into OBJ2 Place the unplaced item into the right place
fill OBJ1 with OBJ2 Fill the container with something
hoe OBJ Hoe the uncultivated item until it is cultivated and ready for planting
weed_with OBJ Weed with the item
set_up OBJ Set up the item that is not set yet until it is already set
iron OBJ Iron the wrinkled item until they are smooth
put OBJ1 on OBJ2 Put the item on the right place
add OBJ1 to OBJ2 Add one item to the container
rinse OBJ Rinse the dry item
find OBJ Find the missed item so that it is found and can be used
heat OBJ Heat the cool item until it is hot
dilute OBJ Dilute the concentrated item until it is diluted
cut OBJ Cut the whole item into divided pieces
dissolve OBJ1 in OBJ2 Dissolve the solid item in the liquid until it is dissolved
polish OBJ Polish the rusty item until it is polished
empty OBJ Empty the full item until it is empty
hanging OBJ Hang the item
water OBJ1 by OBJ2 Water the item by something
trim OBJ Trim the overgrown item
plant OBJ Plant the uncultivated item until it is planted
store OBJ Store the unstored item
stir OBJ1 with OBJ2 Stir the separate liquid in item with something until it is homogeneous
soak OBJ1 in OBJ2 Soak the dry item in something until it is wet
mop OBJ Mop the dirty item until it is clean
read OBJ Read the unknown item
fold OBJ Fold the spread item until it is tidy
crush OBJ Crush the intact item until it is crushed
cool OBJ Cool the hot item until it is cool
dry OBJ Dry the item until it is dry
wipe OBJ Wipe the dirty item until it is clean
put OBJ1 in OBJ2 Put the item in something
label OBJ Give the ambiguous item a label
crystallize OBJ Crystallize the fluid item until it is crystallized
filter OBJ Filter the mixed item until it is refined

Table 3: Details of actions with descriptions.

13

Type Subtype Explanation Example: Make tea

Incorrect
Actions

Invalid Action/Object
An action does not in the
action space or non-existent
objects are visited.

<Valid Actions>
activate; wash; brew with; pour into
<Objects>
tea(dry); kettle(inactive);
teapot(dirty); cup(dirty)
<Trajectory>
T=1: clean teapot
T=2: brew tea with teapot
T=3: wash teapot
T=4: wash kettle
T=5: wash teapot
T=6: activate kettle
T=7: wait
...

Repeating Completed Action
An action is in the action space and
matches the objects, but it
has already been completed.

Dependency Violation

An action is in the action space
and matches the objects, but the
necessary prerequisite actions
have not been completed.

Object-Mismatched Action
An action is in the action space
and the object is available,
but they do not match.

Correct
Actions

Valid Action An action is in the action space
and matches the objects.

Wait An action is used to pass the
current time.

Table 4: Action types and their explanations with an example.

As an AI agent , your objective is to efficiently complete a series of tasks as
described. You must adhere to the specific requirements and constraints of each task
, including dependencies and timing. Efficiency is key; complete all tasks in the
shortest possible time. I will provide instructions regarding actions and objects.

** Action Protocol **:
- You can perform only one action at a time.
- After each observation from the environment , output an action based on that
observation and the instructions.
- Actions fall into two categories:
- Continuous Actions: Perform these actions until completion (e.g., "wash OBJ").
- Autonomous Actions: These progress over time , allowing simultaneous tasks (e.g., "
heat OBJ").
- Follow the "Valid Actions" format for your output (e.g., "wash cup").
- If no action is required , use "wait" to skip the current time.
- Output the action explicitly (e.g., "wash cup").
- Select object names (OBJ) from the list of Available Objects (e.g., use "rice"
instead of "cooked rice").

Task 1
<Description >
- Prepare a noodle dish , which consists of cooked noodle , fried mushrooms and shrimp
.
<Valid Actions and Usages >
- pick OBJ: Pick the unpicked item.
- cook OBJ1 in OBJ2: Cook the raw item until it's cooked through.
- chop OBJ: Chop the whole item into sliced pieces.
- fry OBJ1 in OBJ2: Fry the raw item until it is fried to perfection.
- add OBJ1 to OBJ2: Add one item to the container.
- wash OBJ: Wash the dirty item to make clean.
- wait: pass the current time without doing anything.

All Available Objects (OBJ)
noodle; mushroom; shrimp; fryer; pot; dish

**The Initial States of Objects **
noodle: unpicked; mushroom: unpicked; shrimp: unpicked; fryer: empty; pot: empty;
dish: dirty

Table 5: An example of # Task=1 scenario.

14

(a) The first task in the cooking scenario. (b) The second task in the cooking scenario.

(c) The third task in the cooking scenario. (d) The fourth task in the cooking scenario.

(e) The fifth task in the cooking scenario. (f) The sixth task in the cooking scenario.

(g) The seventh task in the cooking scenario. (h) The eighth task in the cooking scenario.

(i) The ninth task in the cooking scenario. (j) The tenth task in the cooking scenario.

Figure 6: The action dependencies and durations for the ten tasks in the cooking scenario. Actions that occupy the
agent, preventing them from doing anything else, are indicated with a blue background. In contrast, actions not
occupying the agent, allowing for parallel tasks, are marked with a red background.

15

(a) The first task in the household activity scenario. (b) The second task in the household activity scenario.

(c) The third task in the household activity scenario. (d) The fourth task in the household activity scenario.

(e) The fifth task in the household activity scenario. (f) The sixth task in the household activity scenario.

(g) The seventh task in the household activity scenario. (h) The eighth task in the household activity scenario.

(i) The ninth task in the household activity scenario. (j) The tenth task in the household activity scenario.

Figure 7: The action dependencies and durations for the ten tasks in the household activity scenario. Actions that
occupy the agent, preventing them from doing anything else, are indicated with a blue background. In contrast,
actions that do not occupy the agent, allowing for parallel tasks, are marked with a red background.

16

(a) The first task in the laboratory work scenario. (b) The second task in the laboratory work scenario.

(c) The third task in the laboratory work scenario. (d) The fourth task in the laboratory work scenario.

(e) The fifth task in the laboratory work scenario. (f) The sixth task in the laboratory work scenario.

(g) The seventh task in the laboratory work scenario. (h) The eighth task in the laboratory work scenario.

(i) The ninth task in the laboratory work scenario. (j) The tenth task in the laboratory work scenario.

Figure 8: The action dependencies and durations for the ten tasks in the laboratory work scenario. Actions that
occupy the agent, preventing them from doing anything else, are indicated with a blue background. In contrast,
actions that do not occupy the agent, allowing for parallel tasks, are marked with a red background.

17

As an AI agent , your objective is to efficiently complete a series of tasks as
described. You must adhere to the specific requirements and constraints of each task
, including dependencies and timing. Efficiency is key; complete all tasks in the
shortest possible time. I will provide instructions regarding actions and objects.

** Action Protocol **:
- You can perform only one action at a time.
- After each observation from the environment , output an action based on that
observation and the instructions.
- Actions fall into two categories:
- Continuous Actions: Perform these actions until completion (e.g., "wash OBJ").
- Autonomous Actions: These progress over time , allowing simultaneous tasks (e.g., "
heat OBJ").
- Follow the "Valid Actions" format for your output (e.g., "wash cup").
- If no action is required , use "wait" to skip the current time.
- Output the action explicitly (e.g., "wash cup").
- Select object names (OBJ) from the list of Available Objects (e.g., use "rice"
instead of "cooked rice").

Task 1
<Description >
- Prepare and bake a cheese and tomato pizza
<Valid Actions and Usages >
- pick OBJ: Pick the unpicked item.
- chop OBJ: Chop the whole item into sliced pieces.
- wash OBJ: Wash the dirty item to make clean.
- add OBJ1 to OBJ2: Add one item to the container.
- bake OBJ1 in OBJ2: Bake the raw item in the oven until it's roasted.
- wait: pass the current time without doing anything.

Task 2
<Description >
- Prepare chicken and potato stir -fry , which consists of fried chicken and fried
potato.
<Valid Actions and Usages >
- pick OBJ: Pick the unpicked item.
- chop OBJ: Chop the whole item into sliced pieces.
- fry OBJ1 in OBJ2: Fry the raw item until it is fried to perfection.
- add OBJ1 to OBJ2: Add one item to the container.
- wash OBJ: Wash the dirty item to make clean.
- wait: pass the current time without doing anything.

All Available Objects(OBJ)
dish_1; dish_2; dough; cheese; tomato; oven; chicken; potato; fryer

**The Initial States of Objects **
dish_1: dirty; dish_2: dirty; dough: unpicked; cheese: unpicked; tomato: unpicked;
oven: empty; chicken: unpicked; potato: unpicked; fryer: empty

Table 6: An example of # Task=2 scenario.

18

As an AI agent , your objective is to efficiently complete a series of tasks as
described. You must adhere to the specific requirements and constraints of each task
, including dependencies and timing. Efficiency is key; complete all tasks in the
shortest possible time. I will provide instructions regarding actions and objects.

** Action Protocol **:
- You can perform only one action at a time.
- After each observation from the environment , output an action based on that
observation and the instructions.
- Actions fall into two categories:
- Continuous Actions: Perform these actions until completion (e.g., "wash OBJ").
- Autonomous Actions: These progress over time , allowing simultaneous tasks (e.g., "
heat OBJ").
- Follow the "Valid Actions" format for your output (e.g., "wash cup").
- If no action is required , use "wait" to skip the current time.
- Output the action explicitly (e.g., "wash cup").
- Select object names (OBJ) from the list of Available Objects (e.g., use "rice"
instead of "cooked rice").

Task 1
<Description >
- Prepare a garden bed for planting flowers by using sprinkling can filled with
herbicide , hoeing , and weeding
<Valid Actions and Usages >
- add OBJ1 to OBJ2: Add one item to the container.
- weed_with OBJ: Weed with the item.
- hoe OBJ: Hoe the uncultivated item until it is cultivated and ready for planting.
- plant OBJ: Plant the uncultivated item until it is planted
- wait: pass the current time without doing anything.

Task 2
<Description >
- Iron a suit and store it properly
<Valid Actions and Usages >
- set_up OBJ: Set up the item that is not set yet until it is already set.
- put OBJ1 on OBJ2: Put the item on the right place.
- heat OBJ: Heat the cool item until it is hot.
- iron OBJ: Iron the wrinkled item until they are smooth.
- store OBJ: Store the unstored item\nwait: pass the current time without doing
anything.

Task 3
<Description >
- Make a cup of coffee
<Valid Actions and Usages >
- add OBJ1 to OBJ2: Add one item to the container.
- activate OBJ: Activate the inactive device to turn it active.
- wash OBJ: Wash the dirty item to make clean.
- pour OBJ1 into OBJ2: Pour the liquid in item into the empty container until it is
full.
- wait: pass the current time without doing anything.

All Available Objects(OBJ)
sprinkling_can; herbicide; land; flower; ironing_board; suit; iron; coffee_beans;
coffee_machine; water; cup

**The Initial States of Objects **
sprinkling_can: empty; herbicide: not added; land: uncultivated; flower:
uncultivated; ironing_board: not set yet; suit: not put on right place; iron: cool;
coffee_beans: not added; coffee_machine: empty; water: not added; cup: dirty

Table 7: An example of # Task=3 scenario.

19

<|Environment |>:
As an AI agent , your objective is to efficiently complete a series of tasks as
described. You must adhere to the specific requirements and constraints of each task
, including dependencies and timing. Efficiency is key; complete all tasks in the
shortest possible time. I will provide instructions regarding actions and objects.

** Action Protocol **:
- You can perform only one action at a time.
- After each observation from the environment , output an action based on that
observation and the instructions.
- Actions fall into two categories:
- Continuous Actions: Perform these actions until completion (e.g., "wash OBJ").
- Autonomous Actions: These progress over time , allowing simultaneous tasks (e.g., "
heat OBJ").
- Follow the "Valid Actions" format for your output (e.g., "wash cup").
- If no action is required , use "wait" to skip the current time.
- Output the action explicitly (e.g., "wash cup").
- Select object names (OBJ) from the list of Available Objects (e.g., use "rice"
instead of "cooked rice").

Task 1
<Description >
- Make a dish of beef fried rice , which consists of cooked rice and fried beef.
<Valid Actions and Usages >
- wash OBJ: Wash the dirty item to make clean.
- pick OBJ: Pick the unpicked item.
- cook OBJ1 in OBJ2: Cook the raw item until it's cooked through.
- chop OBJ: Chop the whole item into sliced pieces.
- fry OBJ1 in OBJ2: Fry the raw item until it is fried to perfection.
- add OBJ1 to OBJ2: Add one item to the container.
- wait: pass the current time without doing anything.

All Available Objects(OBJ)
rice; beef; pot; fryer; dish

**The Initial States of Objects **
rice: unpicked; beef: unpicked; pot: empty; fryer: empty; dish: dirty

<|Environment |>:
In t=1, your action is:

<|Agent|>:
pick dish

<|Environment |>:
You are doing ``wash dish ``, it will take 2 minutes.
rice is picked.

In t=3, your action is:

<|Agent|>:
cook rice in pot

<|Environment |>:
You are doing ``cook rice in pot ``, it will take 4 minutes.

In t=4, your action is:

<|Agent|>:
wait

<|Environment |>:
You wait for one minute.

...

Table 8: An example of interaction in cooking scenario.

20

<|Environment |>:
As an AI agent , your objective is to efficiently complete a series of tasks as
described. You must adhere to the specific requirements and constraints of each task
, including dependencies and timing. Efficiency is key; complete all tasks in the
shortest possible time. I will provide instructions regarding actions and objects.

** Action Protocol **:
- You can perform only one action at a time.
- After each observation from the environment , output an action based on that
observation and the instructions.
- Actions fall into two categories:
- Continuous Actions: Perform these actions until completion (e.g., "wash OBJ").
- Autonomous Actions: These progress over time , allowing simultaneous tasks (e.g., "
heat OBJ").
- Follow the "Valid Actions" format for your output (e.g., "wash cup").
- If no action is required , use "wait" to skip the current time.
- Output the action explicitly (e.g., "wash cup").
- Select object names (OBJ) from the list of Available Objects (e.g., use "rice"
instead of "cooked rice").

Task 1
<Description >
- Make a dish of beef fried rice , which consists of cooked rice and fried beef.
<Valid Actions and Usages >
- wash OBJ: Wash the dirty item to make clean.
- pick OBJ: Pick the unpicked item.
- cook OBJ1 in OBJ2: Cook the raw item until it's cooked through.
- chop OBJ: Chop the whole item into sliced pieces.
- fry OBJ1 in OBJ2: Fry the raw item until it is fried to perfection.
- add OBJ1 to OBJ2: Add one item to the container.
- wait: pass the current time without doing anything.

All Available Objects(OBJ)
rice; beef; pot; fryer; dish

**The Initial States of Objects **
rice: unpicked; beef: unpicked; pot: empty; fryer: empty; dish: dirty

Given the list of valid actions , available objects , and the task descriptions (goal
), please perform the following steps:
- Identify and list all of the necessary actions required to accomplish the task 's
goal.
- For each action , determine and note the specific objects that are required.
- Assess and map out any dependencies between actions , indicating which actions must
precede others.

- Arrange the actions in a logical sequence that respects the dependencies and leads
efficiently towards completing the task.

- If any action has multiple dependencies , list them in order of priority based on
the task 's constraints and goal.
- Present the final action sequence in a clear and ordered list , ensuring that the
progression of steps will achieve the task 's objective.

The key to efficiency:
- When completing tasks , some actions are non -occupied actions(Type 2), meaning you
can perform other actions simultaneously.
- To maximize efficiency , adhere to the following principle: always start the non -
occupied action you anticipate will be the most time -consuming as early as possible.
- You should perform actions during idle times as much as possible to minimize the
time spent doing nothing.

...

Table 9: Prompt of self-plan method in cooking scenario.

21

	Introduction
	Related Work
	TimeArena
	Overview of TimeArena
	Components of TimeArena
	The Interaction between Agent and Environment

	Experiments
	Experiment Settings
	Evaluation Metrics
	Main Results
	Analysis

	Conclusion
	TimeArena Details
	Tasks
	Actions
	Action Types
	Greedy Algorithm

	Examples of TimeArena
	Tasks
	Interaction
	Self-plan

