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ABSTRACT

Research on exploration in reinforcement learning has mostly focused on problems
with a single agent interacting with an environment. However many problems
are better addressed by the concurrent reinforcement learning paradigm, where
multiple agents operate in a common environment. Recent work has tackled the
challenge of exploration in this particular setting (Dimakopoulou & Van Roy, 2018;
Dimakopoulou et al., 2018). Nonetheless, they do not completely leverage the
characteristics of this framework and agents end up behaving independently from
each other. In this work we argue that coordination among concurrent agents is
crucial for efficient exploration. We introduce coordination in Thompson Sampling
based methods by drawing correlated samples from an agent’s posterior. We apply
this idea to extend existing exploration schemes such as randomized least squares
value iteration (RLSVI). Empirical results on simple toy tasks emphasize the merits
of our approach and call attention to coordination as a key objective for efficient
exploration in concurrent reinforcement learning.

1 INTRODUCTION

At the heart of reinforcement learning is the exploration-exploitation trade-off that describes an
agent’s dilemma to balance maximizing its cumulative rewards and improving its knowledge of the
environment. While there have been a lot of attempts in recent years to improve practical exploration
(Bellemare et al., 2016; Osband et al., 2016a; Pathak et al., 2017; Burda et al., 2019), existing work
has mainly focused on fully sequential problems where a single agent interacts with an environment.
However, it is sometimes beneficial or even necessary to have multiple agents interacting concurrently
with the environment. For example, clinical trials are run in different phases, in each of them a group
of patients are studied simultaneously, results are then collected to facilitate the design of the next
phase (Perchet et al., 2015). Likewise, in many commercial applications a company might interact
with many customers at the same time before gathering their feedback to improve its strategy.

This setting corresponds to concurrent reinforcement learning (Silver et al., 2013; Pazis & Parr, 2016),
a framework where multiple agents interact with an environment while sharing data to learn in parallel.
To learn efficiently within this paradigm agents should coordinate their exploratory effort which adds
a layer of complexity to the already difficult exploration problem. There has been some interest in
designing exploration methods suited for concurrent learning (Dimakopoulou & Van Roy, 2018;
Dimakopoulou et al., 2018; Amin et al., 2021) however none of them actually achieve coordinated
exploration. That is, agents do not leverage other agents acting at the same time to influence their
decisions. Instead, agents will usually behave independently from each other conditioned on the
history. In the end, these techniques fail to fully satisfy the diversity property that Dimakopoulou &
Van Roy (2018) deemed necessary for efficient exploration in concurrent reinforcement learning.
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Our aim in this work is to highlight the importance of coordination in concurrent exploration. As
an introduction we provide a regret bound for Thompson Sampling based algorithms for concurrent
learning such as seed sampling (Dimakopoulou & Van Roy, 2018). Then, we propose a simple
coordination mechanism to introduce cooperation between parallel agents. This mechanism is first
used to create a bandit algorithm for multi-armed bandits with Gaussian rewards. We also use the
same strategy to extend Randomized Least Square Value Iteration (RLSVI; Wen (2014); Osband
et al. (2016b; 2018)). We evaluate the empirical performance of these algorithms on tabular problems
and show that it leads to improved performance over non-coordinated baselines. Altogether, given
the growing interest in concurrent reinforcement learning (Kalashnikov et al., 2018; Bodnar et al.,
2020; Kalashnikov et al., 2021), our work demonstrates the relevance of coordination as a research
direction to improve exploration in reinforcement learning.

2 PROBLEM FORMULATION

We consider a Markov decision process (MDP) M represented by a tuple ⟨S,A, PM , rM , H, ρ1⟩
with S the state space, A the finite set of actions, PM : S ×A← [0, 1]S the transition probability
distribution, rM : S × A 7→ [0, 1] the reward function, H ∈ N∗ the horizon and ρ1 the initial state
distribution. We will write S = |S| and A = |A| for the number of states and actions. Let G ∈ N∗

be the number of agents that operate in parallel. At the beginning of episode k, the g-th agent begins
at state sgk,1 sampled according to ρ1. Then, at depth h each agent takes an action agk,h, gets a reward
rgkh ∼ r(s

g
k,h, a

g
k,h) and transits to a new state sgk,h+1 ∼ P (s

g
k,h, a

g
k,h). We assume that agents share

information in real time. We also writeHkh the concatenated history for all agents up to episode k at
depth h.

Given a policy π, we define the value function for each agent g at depth h to be the expected sum of
rewards to be collected from the current state when following policy π:

VM,π
h (s) := E

[ H∑
h′=h

rM (sh′ , ah′)
∣∣ sh = s, ah′ ∼ π(sh′ , h′)

]
. (1)

We will also write VM,π
H+1(s) = 0 for all s ∈ S . The Bellman Equation applied in MDP M states that:

VM,π
h (s) = Ea∼π(s,h)

[
rM (s, a) + PM (s, a)⊤VM,π

h+1

]
(2)

We denote by M∗ the true MDP with unknown rewards and transition R∗ and P ∗. Let π∗ be an
optimal policy. We define the regret incurred by an agent g following policy π up to time T by

Regret(T, π,M∗) :=

⌊T/H⌋∑
k=1

∆g
k, (3)

where ∆g
k denotes regret over the kth episode

∆g
k := Es∼ρ1

[
VM∗,π∗

1 (s)− VM∗,πg
k

1 (s)
]
. (4)

We model the initial uncertainty of the environment with a prior distribution ϕ and assume that M∗ is
a sample from that prior. We then define the Bayesian regret as:

BayesRegret(T, π, ϕ) := EM∗∼ϕ

[
Regret(T, π,M∗)

]
. (5)

The per-agent regret experienced by the population of agents is given by, for K = ⌊T/H⌋:

MeanBayesRegret(T, π, ϕ) = EM∗∼ϕ

[ K∑
k=1

1

G

G∑
g=1

∆g
k

]
.

3 HOW CAN A TEAM OF AGENTS EXPLORE EFFICIENTLY?

In this section we take a closer look at exploration in the concurrent setting and the potential benefits
of coordination.
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Algorithm 1 Concurrent PSRL

1: Input: Prior distribution ϕ, G number of agents
2: for k = 1, 2, · · · do
3: for agent g = 1, · · · , G do
4: Sample an MDP Mg

k from the posterior: Mg
k ∼ ϕ(·|Hk1)

5: Compute the optimal policy for Mg
k

πg
k = argmax

π
V

Mg
k ,π

k,1

6: end for
7: for h = 1, · · · , H do
8: Act: agk,h ∼ π

g
k(s

g
k,h)

9: Observe rgkh and sgkh+1
10: end for
11: Update: Hk+1,1 ← Hk,1 ∪ {(sgk,h, a

g
k,h, r

g
kh)h,g}

12: end for

3.1 CONCURRENT EXPLORATION

Posterior Sampling for Reinforcement Learning (PSRL, (Strens, 2000; Osband et al., 2013)) extends
Thompson Sampling (Thompson, 1933) to reinforcement learning and operates by sampling a
statistically plausible model of the environment given a prior and data previously collected. The
agent then acts according to this model to gather more information and update its posterior. A natural
extension of PSRL is to draw multiple samples from the posterior – one for each concurrent agent –
as done in Algorithm 1. Dimakopoulou & Van Roy (2018)’s seed sampling algorithm is an instance
of this idea, agents draw multiple independent samples from the posterior. Our first contribution is to
provide the following regret bound for Concurrent PSRL
Theorem 1. The mean Bayes regret of Algorithm 1 is bounded by

MeanBayesRegret(T, π, ϕ) ≤ Õ(HS

√
AT

G
). (6)

Proof. All proofs are in the appendix.

This result shows that the average regret of concurrent posterior sampling scales in O(1/
√
G) and

that the total regret of Algorithm 1 scales in O(HS
√
AGT ). Asymptotically it is as efficient to run

concurrent posterior sampling with G agents for T timesteps as it is to run posterior sampling with a
single agent for GT timesteps. Similar results were found in the bandit setting by Contal et al. (2013)
and Kandasamy et al. (2018).

3.2 THE ISSUE WITH INDEPENDENT SAMPLING

Concurrent Posterior Sampling requires that each sample is drawn from the posterior but it does not
impose any constraint on their joint distribution. This gives us some flexibility in the choice of this
joint distribution. Options include

• Draw a single sample from the posterior that is then used for every agent.
• Draw independent samples from the posterior.
• Draw correlated samples from the posterior.

Dimakopoulou & Van Roy (2018) showed that the first option is inefficient because agents do not work
together to explore faster. Instead, their algorithm follows the second option and draw independent
samples from the posterior. Though they argue it allows agents to diversify their exploratory effort,
independence does not guarantee that agents will coordinate. There remains some probability that
some actions are repeated while other equally promising actions are ignored. In the context of
exploration, it would mean trying few state-action pairs several times as opposed to trying more
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state-action pairs fewer times. The former provides less information about the environment and leads
to sub-optimal exploration. We propose to reach the favored behavior by adding correlation between
samples from the posterior so that parallel agents can cooperate. The main idea in this paper is to
introduce coordination through the following principle.

Principle 1. Let s be a state such that all actions in s are equally likely to be the optimal (from the
exploration algorithm point-of-view) at episode k. We define the probability distribution

Qs,k,h =

(∑
g 1{ag

k,h=a}

G

)
a∈A

. (7)

Qs,k,h is the distribution of actions sampled by agents in s at episode k and timestep h. Then a
coordinated exploration algorithm should maximize the entropy of Qs,k,h.

In words, Principle 1 expresses that when all actions in a state are equally promising, agents should
try all possible actions roughly the same number of times. We will see in the section how this can
help us design new coordinated exploration algorithms.

4 BANDIT WITH GAUSSIAN REWARDS

To demonstrate the benefits of coordination we start with a simple multi-armed bandit problem with
A arms. The reward function for each arm is normally distributed with a known variance σ2. Agents
are uncertain about the mean reward for each arm over which they share a common N (µ0, σ0) prior.

4.1 COORDINATED THOMPSON SAMPLING

To derive an implementation of Algorithm 1 that validates Principle 1 we must find a way to influence
the joint distribution of posterior samples without affecting their marginals. To do so we introduce the
concept of a preference function. Let fk : J1, · · · , GK→ A be a preference function. For each agent
g, fk(g) encodes its affinity for a specific action at timestep k. We design our algorithm so that when
all possible actions are equally likely to be optimal under the posterior agent g will pull arm fk(g).
By enforcing that the set {fk(g)}g∈J1,··· ,GK covers the action space as well as possible we can validate
Principle 1 and promote coordination between agents. Algorithm 2 presents Coordinated Thompson
Sampling (CoordTS) an extension of Thompson Sampling with a coordination mechanism.

This mechanism relies on the relationship between sampling from a normal distribution and sampling
from a standard normal distribution. For any arm with posterior N (µk, σ

2
k)

z ∼ N (µk, σ
2
k)⇐⇒ ϵ ∼ N (0, 1), z = µk + σkϵ. (8)

Thompson Sampling proceeds by selecting the arm with the highest posterior sample. When all
arms have the same posterior distribution (i.e µ1 = · · · = µN and σ1 = · · · = σN ) this maximum
is achieved by the arm with the highest sample ϵ. We can create a preference for a specific arm by
assigning the maximum of ϵ to this arm. Dimakopoulou & Van Roy (2018)’s seed sampling algorithm
also made use of Equation 8 and they referred to ϵ as a seed, in the remainder of this paper we will
choose instead the term standard normal vector.

The sampling procedure used to draw a preference function at each timestep is given by Algorithm
3. The algorithm ensures that preferences are distributed almost equally among all actions. The
following lemma shows that if preferences are sampled according to Algorithm 3 then Principle 1
will be verified.

Lemma 1. We define

Pk =
(∑

g 1{fk(g)=a}

G

)
a∈A

, Qk =
(∑

g 1{ag
k=a}

G

)
a∈A

. (9)

Pk and Qk correspond to the distribution of preferences and actions at timestep k. Then, Algorithm
3 maximizes the entropy of Pk. Furthermore, when all arms have the same distribution under the
posterior then the entropy of Qk is also maximized.
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Algorithm 2 Coordinated Thompson Sampling

1: Input: Gaussian prior p : N (µ0, σ
2
0In), G ∈ N+ number of agents, A ∈ N+ number of arms,

fk : J1, · · · , GK→ A preference functions
2: for k = 1, · · · do
3: for agent g = 1, · · · , G do
4: // Sample a standard normal vector
5: Sample ϵg ∼ N (0, In)
6: j ← argmaxi ϵ

g[i]
7: m← fk(g)
8: Swap values by setting ϵg[m] = ϵg[j] and ϵg[j] = ϵg[m]
9: // Compute posterior sample

10: θ̃kh = µk + σkϵ
g

11: end for
12: Act: agk = argmaxa∈A θ̃

g
k[a], ∀g

13: Observe r(agk), ∀g
14: Update: p← P

(
· |p, a1k, r(a1k), · · · , aGk , r(aGk )

)
15: end for

Algorithm 3 Pigeonhole sampling

1: Input: G ∈ N+ number of agents, N ∈ N+ number of arms
2: Initialize m ∈ RN , f ∈ RG, with m[i] = 0 and f [i] = 0 ∀i
3: for g = 1, · · · , G do
4: c← argminim[i]
5: Draw index j uniformly random from c
6: f[g] = j
7: m[j] = m[j] + 1
8: end for
9: Return f

4.2 ANALYSIS

To better understand the behavior of CoordTS we study the simpler two armed bandit setting (A = 2,
A = {a1, a2}). Let g be an agent with a preference for action a1. At each timestep, g will draw
independently ϵ1, ϵ2 ∼ N (0, 1) then use ϵ = (max(ϵ1, ϵ2),min(ϵ1, ϵ2)) to compute a sample from
the posterior. Because of this reshuffling, ϵ is no longer Gaussian. The distribution of ϵ is made more
precise by the following lemma.

Lemma 2. LetX1, X2 be two iid random variables distributed according toN (0, 1). LetZ = (X,Y )
with X = max(X1, X2) and Y = min(X1, X2). Then X and Y follow a skew normal distribution
with scale +1 and−1 and Z follows a half-normal distribution with support on {(x, y) ∈ R2|x ≥ y}.

(a) PDF of the marginals, they follow a skew nor-
mal distribution with scale +1 and −1.

(b) PDF of the joint distribution, a half-normal
distribution with support on {ϵ1 ≥ ϵ2}

Figure 1: Marginals and joint distribution for a standard normal vector with a preference for the first
action in a two armed Gaussian bandit.

5



Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

(a) Probability of selecting action a1 as a function of
σ2/σ1 when µ1 = µ2.

(b) Probability of selecting action a1 as a function of
µ1 − µ2 when σ1 = σ2

Figure 2: Probability to sample action 0 in a two arm bandit problem with posterior N (µ1, σ
2
1) and

N (µ2, σ
2
2) with independent sampling and coordination with a preference for action 0.

Figure 1 shows the joint distribution and marginals of ϵ. If instead g were to have a preference for
action a2 then its standard normal vector’s marginals would also follow a skew normal distribution
with scale −1 and +1 and its joint distribution would be the missing half of the truncated normal
distribution in Figure 1b. Altogether, while ϵ is not Gaussian when the preference of g is known, it is
when the preference of g has been marginalized. Algorithm 2 achieves coordination by enforcing a
good coverage of the posterior, ensuring that when agents sample their standard normal vector they
draw as many times from the two halves of the distribution separated by the line {ϵ1 = ϵ2}.
The condition mentioned in Principle 1 may never be verified. We may wonder how CoordTS behave
outside of this rare event and if it still allows agents to coordinate. To answer that question we
can numerically estimate the probability of choosing each action. Figure 2 shows the probability
of selecting action a1 for independent and coordinated sampling as a function of the posterior
distribution of the two arms. We observe that an agent with a preference for an action will select it
more often than it would if agents were independent. This shows that, even when actions do not have
the exact same probability to be optimal, parallel agents can coordinate. This highlights the relevance
of the term preference to describe the agent’s affinity for a particular action.

We now consider the general case (A ≥ 2). Let e = (e1, · · · , eN ) be the canonical basis of the
Euclidean space RN . For i ∈ J1, · · · , NK we define Fi = {x ∈ RN |∀j, xT ei ≥ xT ej}. The
distribution of the standard normal vector of an agent with a preference for action ai will be a
truncated normal distribution with support on Fi. Algorithm 2 ensures that at each timestep standard
normal vectors sampled are distributed almost equally among each Fi. This is made more precise by
the following lemma which follows directly from Lemma 1
Lemma 3. Consider a team of G agents and Nk(Fi) the number of standard normal vectors sampled
at timestep k that belong to subspace Fi. Then, we have ∀i, j ∈ J1, ..., NK, |Nk(Fi)−Nk(Fj)| ≤ 1.

Because (Fi)i∈J1,··· ,NK define a partition of RN , standard normal vectors sampled by Algorithm 4
are normally distributed when agents’ preferences have been marginalized.

4.3 EMPIRICAL EVALUATION

We now evaluate CoordTS empirical performance on our Gaussian bandit problem. As a baseline, we
compare with Upper Confidence Bounds (UCB) and Thompson Sampling with independent agents.
We use the following parameters for the problem: µ0 = 0, σ0 = 300, σ = 10, A = 500. Figures
3a and 3b show the mean regret as a function of the number of concurrent agents after 50 episodes,
results are averaged over 500 runs. We observe a clear improvement using correlated sampling
over independent sampling. Both algorithms perform similarly when the number of agents is small
however the gap widens as the number of agents grows. With 10 agents CoordTS provides a 0.5%
improvement over independent Thompson Sampling, this gap increases to almost 40% with 500
agents. As a whole, our experiments underline the potential of coordinated exploration.

5 COORDINATION WITH LINEAR FUNCTION APPROXIMATION

The previous section provided a simple example where coordination between agent can be beneficial.
In this section we extend those ideas and focus on the more general reinforcement learning problem
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(a) Number of concurrent agents varying between
1 and 100.

(b) Number of concurrent agents varying between
100 and 800.

Figure 3: Mean regret per agent after 50 episodes on multi-armed bandit with normal rewards as a
function of the number of concurrent agents.

with linear function approximation. We assume that we are provided a state representation ϕh :
S × A → Rd. We write Φh ∈ RSA×d the feature matrix Φh := [ϕh(s, a)](s,a)∈S×A. We assume
that the Q-function can be approximated by a linear function with weight vector θh ∈ Rd such that

∀(s, a) ∈ S ×A, Q∗
h(s, a) ≈ θTh ϕh(s, a). (10)

Randomized Least-Squares Value Iteration (RLSVI, Wen, 2014; Osband et al., 2016b) has been intro-
duced as a computationally tractable way to approximate PSRL with linear function approximation.
RLSVI uses random perturbations to approximate a posterior over value functions. RLSVI extends
naturally to the concurrent setting by drawing multiple independent samples.

5.1 COORDINATED RLSVI

To add a coordination mechanism to RLSVI we start by generalizing the concept of preference
previously introduced. Let fk,h : J1, · · · , GK× S → A be a preference function, fk,h(g, s) encodes
the preference of agent g at state s, episode k and timestep h. We also need the generalization of
Equation 8, for µ ∈ Rd,Σ ∈ Rd×d

Z ∼ N (µ,Σ)⇐⇒ ϵ ∼ N (0, Id), Z = µ+Dϵ, (11)

whereD ∈ Rd×d is the square root of Σ, i.e Σ = DD⊤. Following Principle 1, we wish to coordinate
agents when all actions in a state are equally promising. At state s, RLSVI acts according the greedy
action argmaxα∈A

(
Φθ̃

)
(s, α) where θ̃ is a sample from the posterior. All actions in s are equally

likely to be selected if we have

∀a1, a2 ∈ A, θ⊤h ϕs,a1

D
= θ⊤h ϕs,a2 , (12)

with equality in distribution and θh the posterior distribution over value functions learned by RLSVI.
The computation of a standard normal vector is made more precise by the following lemma

Lemma 4. Let g be an agent in state s at timestep k. Let N (θ̄,Σ) be the posterior distribution over
value functions for the current timestep, ϵ ∼ N (0, Id) and θ̃ = θ̄ +Dϵ, where D is the square root
of Σ. If all actions in s are equally likely to be the greedy action chosen by RLSVI we have, with
a = fk(g, s):

a ∈ argmax
α∈A

(
Φθ̃

)
(s, α) iff

∀α ̸= a, ϵ⊤ψs,a ≥ ϵ⊤ψs,α,
(13)

where ψs,α =
D⊤ϕs,α

∥D⊤ϕs,α∥2
. If ψs,a is different from every other ψs,α, the greedy action a is unique.

This lemma shows that if an agent has a preference for an action a its standard normal vector will
be distributed according to a truncated Gaussian with support on Fs,a = {x ∈ Rd|∀α ̸= a, ψ⊤

s,ax ≥
ψ⊤
s,αx}. This result generalizes CoordTS’ sampling procedure to the linear function approximation

setting. Because {Fs,a}a∈A define a partition of Rd, we recover the fact that when agents’ preferences
are marginalized standard normal vectors are normally distributed.
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(a) Average regret after 2000 episodes as function
of the number of concurrent agents.

(b) Average regret over the first 2000 episodes with
60 concurrent agents.

Figure 4: Performance of RLSVI and CoordRLSVI in the "Binary Tree Environment", results are
averaged over 500 seeds

We are now ready to present a new coordinated algorithm that extends RLSVI. This algorithm that
we call Coordinated RLSVI (CoordRLSVI) is made up of two parts. The first part describes the
update of the posterior distribution and is presented in the appendix as Algorithm 4. It assumes a
prior N (0, λI) over weights and injects Gaussian noise with variance σ2. The only difference with
the original RLSVI algorithm is that the algorithm returns the mean and covariance matrix of the
posterior instead of samples. To obtain a complete exploration algorithm, action selection must be
done according to the procedure specified by Algorithm 5. Algorithm 5 adds two steps to RLSVI’s
greedy action selection. In the first step the algorithm samples a preference for each agent at its
current state. To keep track of preferences assigned during the episode a buffer B is created. Two
states within a certain distance are considered similar and share the same entry in the buffer to monitor
preferences. This distance is defined using a metric ∥ · ∥ and a radius r > 0. In the second step a
standard normal vector is drawn for each agent at its current state.

5.2 EMPIRICAL EVALUATION

In this section we present empirical results that support the effectiveness of CoordRLSVI. Our testing
environment is a full binary tree of height H as displayed by Figure 5. Each agent starts at the root
s0 then they can transition left or right at every step. All states have zero reward except for the leaves.
At each leaf c the agent chooses a last action to observe a gaussian reward with unknown mean µc

and known variance ν2 after which the episode ends. Agents share a common prior N (µ0,Σ0) over
rewards mean. In this environment coordination can be useful as agents can cooperate in order to
reach individual leaves faster.

We compare RLSVI and CoordRLSVI on this environment with a one-hot encoding for features and
the following hyperparameters λ = 50, σ = 25, H = 6, ν = 25,Σ0 = ν2I, µ0 = 0. Results are
displayed in Figures 4 and 4a, each data point was averaged over 500 seeds. The two algorithms
perform similarly when the number of agents is low. As the number of agents increases, CoordRLSVI
average regret decreases faster, with 60 agents, CoordRLSVI mean regret is 43% smaller than
RLSVI’s. By coordinating agents, CoordRLSVI is faster to achieve a lower regret, highlighting the
benefit of coordination for linear function approximation.

6 DISCUSSION

Concurrent reinforcement learning presents an enticing offer; trading time with computational cost by
increasing the number concurrent of agents. However, the increased computational requirements can
become restrictive. Coordination can provide a solution to this problem by maximizing the efficiency
of concurrent reinforcement learning algorithms. In this work we presented the first algorithms
that achieve coordination in reinforcement learning by drawing correlated samples from a posterior
distribution. While these algorithms performed better than existing ones, much work remains to
be done to capitalize on coordinated exploration. First, it is unclear how we can mathematically
model coordinated algorithms to better understand their behavior and derive sharper regret bounds.
Then, moving beyond linear function approximation will be an important hurdle, yet it is where
coordination will be most valuable. As concurrent reinforcement is becoming more sought after, it is
in complex applications with intractable state and action spaces that it will shine the most.
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Algorithm 4 Randomized Least-Squares Value Iteration for coordination

1: Input: Data Φ1(s
g
i1, a

g
i1), r

g
i1, · · · ,ΦH(sgiH−1, a

g
iH−1), r

g
iH : i < k, g < G, parameters λ >

0, σ > 0.
2: Output: θ̄k1,Σk1, · · · , θ̄kH ,ΣkH

3: for h = H, · · · , 1 do
4: Generate regression problem M ∈ R(k∗G)×d, b ∈ Rk∗G:

M ←

 Φh(s
1
1h, a

1
1h)

...
Φh(s

G
k,h, a

G
k,h)



bi ←


rgih +maxα

(
Φh+1θ̃

g
k,h+1

)
(sgi,h+1, α) if h < H

rgih + rgi,h+1 if h = H

5: Bayesian linear regression for the value function

θ̄kh ←
1

σ2

( 1

σ2
M⊤M +

1

λ
I
)−1

M⊤b

Σkh ←
( 1

σ2
M⊤M +

1

λ
I
)−1

6: for g = 1, · · · , G do
7: Sample θ̃gkh ∼ N (θ̄kh,Σkh)
8: end for
9: end for

s0

s2

s6s5

s1

s4s3

Figure 5: Full binary tree environment, H = 3

APPENDIX A RELATED WORK

Thompson Sampling. Thompson Sampling (Thompson, 1933) has enjoyed a resurgence in recent
years as an efficient method for exploration in reinforcement learning (Strens, 2000; Osband et al.,
2013). RLSVI (Wen, 2014; Osband et al., 2016b) is a theory-sound algorithm (Russo, 2019; Zanette
et al., 2020) that was proposed as a tractable approximation of Thompson Sampling that could
be applied to linear function approximation. Other work have attempted to extend the Thompson
Sampling paradigm to non-linear function approximation (Osband et al., 2016a; 2018; Touati et al.,
2018; Azizzadenesheli et al., 2018)

Concurrent Thompson sampling. As noted by Dimakopoulou & Van Roy (2018), Thompson
Sampling based algorithms are easily scalable to the concurrent reinforcement learning setting.
Kandasamy et al. (2018) proposed a parallel version of Thompson Sampling for Bayesian optimization.
Amin et al. (2021) introduced batch Thompson Sampling as a way to parallelize Thompson Sampling.
The regret of their algorithm scales in O(log T ) batch queries as opposed to a linear scaling for a fully
sequential algorithm. However it requires a dynamic batch size with a varying number of concurrent
agents. This could be problematic for some real world scenarios.

Learning diverse policies. The idea of learning a diverse set of policies in reinforcement learning has
been investigated in the past in the context of single or multi agent systems. Often these techniques

11
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Algorithm 5 RLVSI with coordinated greedy action selection

Input: Feature matrices Φ1, · · · ,ΦH , preference function buffer B ← {}, radius r > 0.
Output: θ̃k1, · · · , θ̃k,H
for k = 1, · · · do

Compute θ̄k1,Σk1, ..., θ̄k,H ,ΣkH using Algorithm 4
Observe sgk1, ∀g
// Reset preferences counts
B ← {}
for h = 1, · · · , H do

Compute Dkh such that Σkh = DkhD
⊤
kh

for g = 1, · · · , G do
// Sample a preference for agent g at state sgkh
if s← NearestNeighborLessThan(sgk,h,B, r) then
m← B[s]

else
Create vector m = 0, with m ∈ RA

B ← B ∪ {sgkh : m}
end if
c← argminαm[α]
Draw a uniformly random from c
m[a] = m[a] + 1 and update B
// Sample a standard normal vector using rejection sampling
∀α ∈ A, ψsgkh,α

← D⊤
khϕsgkh,α

/∥D⊤
khϕsgkh,α

∥2
Sample ϵg ∼ N (0, Id)
while ∃α such that ϵg⊤ψsgkh,α

> ϵg⊤ψsgkh,a
do

Sample ϵg ∼ N (0, Id)
end while
// Draw sample and select a greedy action
Compute θ̃gkh = θ̄kh +Dkhϵ

g

Sample agkh ∈ argmaxα∈A

(
Φhθ̃

g
kh

)
(sgkh, α)

Observe rgkh and sgk,h+1

end for
end for

end for

rely on a penalty – such as a constraint on stationary state distributions – to enforce diversity between
policies (Liu et al., 2017; Conti et al., 2017; Eysenbach et al., 2018; Gangwani et al., 2019; Masood
& Doshi-Velez, 2019; Jung et al., 2020; Kumar et al., 2020). These approaches usually trade off
diversity with the optimality of the policies. They do not guaranty that all policies will converge to an
optimal policy, or even that the set of policies will indeed be diverse when possible.

Multi-player bandits. Our setup is also related to the multi-player bandits literature (Lai et al., 2008;
Besson & Kaufmann, 2018; Branzei & Peres, 2021). In this framework cooperating players select
arms then they get to observe the corresponding rewards, however if two players choose the same
arm they receive a zero reward instead.

APPENDIX B PROOFS

Theorem 1. The mean Bayes regret of Algorithm 1 is bounded by

MeanBayesRegret(T, π, ϕ) ≤ Õ(HS

√
AT

G
). (6)

Proof. To simplify notations, we write:

12
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• VM∗,π∗

h = V ∗
h

• VM∗,π
h = V ∗,π

h

• V
Mk

g ,πg
k

h = V k,g
h

We have:

Eϕ(·|Hk1)

[
Es∼ρ1

[
V ∗
1 (s)− V

∗,πg
k

1 (s)
]]

= Eϕ(·|Hk1)

[
Es∼ρ1

[
V ∗
1 (s)− V

k,g
1 (s) + V k,g

1 (s)− V ∗,πg
k

1 (s)
]]

= Eϕ(·|Hk1)

[
Es∼ρ1

[
V k,g
1 (s)− V ∗,πg

k
1 (s)

]]
The second equality is true since Mk,g and M∗ are identically distributed given the history Hk1.
Hence the average Bayesian regret can be written as:

MeanBayesRegret(T,K, ϕ,G) =
1

G

G∑
g=1

EM∗∼ϕ

[ K∑
k=1

Es∼ρ1

[
V k,g
1 (s)− V ∗,πg

k
1 (s)

]]
(14)

This new term can then decomposed as, with xgk,h := (sgkh, a
g
kh)

Es∼ρ1

[
V k,g
1 (s)−V ∗,πg

k
1 (s)

]
= Es∼ρ1

[
(rM

k
g − r∗)(xgk1) + PMk

g (xgk1)
⊤V k,g

2 − PM∗
(xgk1)

⊤V
∗,πk

g

2

]
= Es∼ρ1

[
(rM

k
g − r∗)(xgk1) + (PMk

g − PM∗
)(xgk1)

⊤V k,g
2 + Exg

k2∼PM∗ (xg
k1)

(V k,g
2 − V ∗,πk

g

2 )(xgk2)
]

= · · ·

= Es∼ρ1

[ H∑
h=1

(rM
k
g − r∗)(xgkh) + (PMk

g − PM∗
)(xgkh)

⊤V k,g
h

]

Let r̄k and P̄k be the empirical reward and transition at timestep k. Wede fine the confidence set Mk

for episode k:

Mk :=
{
M : ∀(s, a), |rM (s, a)− r̄k(s, a)| ≤ βk

1 (s, a) and (15)∥∥PM (·|s, a)− P̄k(·|s, a)
∥∥
1
≤ βk

2 (s, a)
}
. (16)

Where β1
k :=

√
7 log(2SAtk/δ)

2max{1,Ntk
(s,a)} and β2 :=

√
14S log(2Atk/δ)
max{1,Ntk

(s,a)} are chosen so that M∗ and Mk,g

belong to Mk with high probability and tk = (k − 1)H + 1

Lemma 5. Lemma 17 from Auer et al. (2008). Let δ ∈ (0, 1), β1
k , β2 chosen as previously, then we

have

P (M∗ /∈Mk) = P (Mk,g /∈Mk) ≤
δ

15t6k
(17)

1

G

G∑
g=1

K∑
k=1

EHk1
Eϕ(·|Hk1)

[
Es∼ρ1

[
V ∗
1 (s)− V

∗,πg
k

1 (s)
]]

≤ 1

G

G∑
g=1

K∑
k=1

EHk1
Eϕ(·|Hk1)

[
Es∼ρ1

[
V ∗
1 (s)− V

∗,πg
k

1 (s)
]
1{Mk,g,M∗∈Mk} +H(1{Mk,g /∈Mk} + 1{M∗/∈Mk

})
]

=
1

G

G∑
g=1

K∑
k=1

EHk1
Eϕ(·|Hk1)

[
Es∼ρ1

[
V ∗
1 (s)− V

∗,πg
k

1 (s)
]
1{Mk,g,M∗∈Mk}

]
+ 2H

K∑
k=1

P (M∗ /∈Mk)
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Because M∗ and Mk,g are identically distributed we have 1{Mk,g /∈Mk} = 1{M∗/∈Mk} = P (M∗ /∈
Mk). By choosing δ = 1

K we have

2H

K∑
k=1

P (M∗ /∈Mk) ≤ 2H

For the other term we have

Eϕ(·|Hk1)

[
Es∼ρ1

[
V ∗
1 (s)− V

∗,πg
k

1 (s)
]
1{Mk,g,M∗∈Mk}

]
= Eϕ(·|Hk1)

[(
Es∼ρ1

H∑
h=1

(rM
k
g − r∗)(xgkh) + (PMk

g − PM∗
)(xgkh)

⊤V k,g
h

)
1{Mk,g,M∗∈Mk}

]
≤ Eϕ(·|Hk1)

[ H∑
h=1

Exg
k,h∼ρg

k,h

[
2β1

k(x
g
k,h) + 2β2

k(x
g
k,h)H

]]
where ρgk,h(s) is the probability to reach state s at depth h following policy πg

k . We have

β1
k(x

g
k,h) + β2

k(x
g
k,h)H ≤ csnt ·H

√
S log(SAHT )

max{1, Ntk(x
g
k,h)}

(18)

Now, what remains is bounding the term

1

G

G∑
g=1

K∑
k=1

H∑
h=1

EHk1
Eϕ(·|Hk1)

[√ 1

max{1, Ntk(x
g
k,h)}

]

We have

1

G

G∑
g=1

K∑
k=1

H∑
h=1

[√ 1

max{1, Ntk(x
g
k,h)}

]
≤ 1

G

∑
x∈S×A

nK
H (x)∑
i=1

√
1

i

≤ 1

G

∑
x∈S×A

∫ nK
H (x)

y=1

y−1/2 dy

≤ 1

G

∑
x∈S×A

√
nKH(x)

≤ 1

G

√
SA

√ ∑
x∈S×A

nKH(x)
=GT

≤
√
SAT

G
.

Which gives the desired result.

Lemma 1. We define

Pk =
(∑

g 1{fk(g)=a}

G

)
a∈A

, Qk =
(∑

g 1{ag
k=a}

G

)
a∈A

. (9)

Pk and Qk correspond to the distribution of preferences and actions at timestep k. Then, Algorithm
3 maximizes the entropy of Pk. Furthermore, when all arms have the same distribution under the
posterior then the entropy of Qk is also maximized.

Proof. Let C =
{
p ∈ [0, 1]A|

∑
i pi = 1, ∀i, pi ∈ [0, 1

G , · · · ,
G−1
G , 1]

}
, C is the space of discrete

probability distribution with values in {0, 1
G , · · · ,

G−1
G , 1}. Let H be the entropy function, for any

distribution p, H(p) = −
∑

i pi log pi

14
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We define ν = ⌊GA⌋ and D =
{
p ∈ C|∀i, pi = ν

G or pi = ν+1
G

}
. It is easy to see that at each

timestep the distribution of preferences sampled by Algorithm 3 is an element of D. It is also clear
that the entropy is a constant over D.

We want to show that this constant is the maximum that can be attained for probability distributions in
C. Let p1, p2 ∈ [0, 1]A be two probability distributions, we define the distance ∥·∥∞ by ∥p1−p2∥∞ =
maxi |p1i − p2i |. We define also q = [ 1A , · · · ,

1
A ] the uniform distribution over [0, 1]A.

The set of distributions of C that minimizes the distance to the uniform distribution with the distance
∥ · ∥∞ is D

D = argmin
p∈C

∥p− q∥∞ (19)

If it was not the case, there would be a distribution p with pi > ν+1
G or pi < ν

G which minimizes
this distance. This is not possible because we would have ∥p− q∥∞ > 1

G and the distance between
probability distributions in D and p is less than 1

G . The solution is exactly D because all probability
distributions in D have the same distance to the uniform distribution.

For any distribution p ∈ C we have

H(q)−H(p) = −
∑
i

qi log qi +
∑
i

pi log pi

= −
∑
i

qi log qi +
∑
i

pi log qi +
∑
i

pi(log pi − log qi)

= KL(p||q)

Because the uniform distribution maximizes the entropy over all possible distributions in [0, 1]A, the
distribution p with maximal entropy in C minimizes the KL divergence KL(p||q). We can conclude
using Pinsker’s inequality by noting that argminp∈C ∥p− q∥∞ = argminp∈C KL(p||q).
When all arms have the same distribution under the posterior we have Qk = Pk and the entropy of
Qk is also maximized.

Lemma 3. Consider a team of G agents and Nk(Fi) the number of standard normal vectors sampled
at timestep k that belong to subspace Fi. Then, we have ∀i, j ∈ J1, ..., NK, |Nk(Fi)−Nk(Fj)| ≤ 1.

Proof. This lemma is a direct consequence of the previous lemma. Each preference fk(g) = ai leads
to a standard normal vector ϵ ∈ Fi. We have

∑
g 1{fk(g)=a} = ⌊GA⌋ or

∑
g 1{fk(g)=a} = ⌊GA⌋+ 1,

so for i ∈ J1, · · · , NK, Nk(Fi) = ⌊GA⌋ or ⌊GA⌋+ 1 which gives the desired result.

Lemma 2. LetX1, X2 be two iid random variables distributed according toN (0, 1). LetZ = (X,Y )
with X = max(X1, X2) and Y = min(X1, X2). Then X and Y follow a skew normal distribution
with scale +1 and−1 and Z follows a half-normal distribution with support on {(x, y) ∈ R2|x ≥ y}.

Proof. Let f and F denote the PDF and CDF of N (0, 1). For x ∈ R

FX(x) = P (X ≤ x)
= P (X1 ≤ x and X2 ≤ x)
= P (X1 ≤ x)P (X2 ≤ x)
= F (x)2.

The density function of X is now given by

fX(x) =
d

dx
FX(x) =

d

dx
F (x)2 = 2f(x)F (x).

15



Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

Which is the density function of a skew normal distribution with shape 1. Similarly for y ∈ R we
have

FY (y) = P (Y ≤ y)
= 1− P (Y > y)

= 1− P (X1 > y)P (X2 > y)

= 1− (1− F (y))2.

The density function of Y is now given by

fY (y) =
d

dy
FY (y) =

d

dy

(
1− (1− F (y))2

)
= 2f(y)(1− F (y)) = 2f(y)F (−y).

Because we have 1−F (y) = F (−y). This density function corresponds to a skew normal distribution
with shape −1. Finally with support on (x, y) ∈ {(x, y) ∈ R2|x ≥ y}, the CDF joint distribution is
given by

FX,Y (x, y) = P (X ≤ x, Y ≤ y)
= P (X ≤ x)− P (Y > y,X ≤ x)
= F (x)2 − P (y < X1 ≤ x, y < X2 ≤ x)
= F (x)2 − P (y < X1 ≤ x)P (y < X2 ≤ x)

= F (x)2 −
(
(F (x)− F (y))

)2
.

And the density function is given by

fX,Y (x, y) =
d2

dxdy

(
FX,Y (x, y)

)
=

d

dx

(
2f(y)(F (x)− F (y))

)
= 2f(x)f(y).

Which concludes the proof.

Lemma 4. Let g be an agent in state s at timestep k. Let N (θ̄,Σ) be the posterior distribution over
value functions for the current timestep, ϵ ∼ N (0, Id) and θ̃ = θ̄ +Dϵ, where D is the square root
of Σ. If all actions in s are equally likely to be the greedy action chosen by RLSVI we have, with
a = fk(g, s):

a ∈ argmax
α∈A

(
Φθ̃

)
(s, α) iff

∀α ̸= a, ϵ⊤ψs,a ≥ ϵ⊤ψs,α,
(13)

where ψs,α =
D⊤ϕs,α

∥D⊤ϕs,α∥2
. If ψs,a is different from every other ψs,α, the greedy action a is unique.

Proof. For any action aj ∈ A, actions ai and aj having the same value under the posterior means
that

θ⊤ϕs,ai

D
= θ⊤ϕs,aj

(θ̄ +Dϵ)⊤ϕs,ai

D
= (θ̄ +Dϵ)⊤ϕs,aj

,

with equality in distribution. Taking the expectation and variance in the last equality gives

θ̄⊤ϕs,ai
= θ̄⊤ϕs,aj

Var((Dϵ)⊤ϕs,ai) = Var((Dϵ)⊤ϕs,aj ).

16
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The second equation can be simplified as

Var((Dϵ)⊤ϕs,ai) = Var(ϵ⊤D⊤ϕs,ai)

= Var((D⊤ϕs,ai
)⊤ϵ)

(
ϵ⊤(D⊤ϕs,ai

) = (D⊤ϕs,ai
)⊤ϵ

)
= (D⊤ϕs,ai

)⊤cov(ϵ)(D⊤ϕs,ai
)

= ϕ⊤s,ai
DD⊤ϕs,ai

= ∥D⊤ϕs,ai
∥22.

We get
∥D⊤ϕs,ai

∥22 = ∥D⊤ϕs,aj
∥22

Hence we have

ai = argmax
α∈A

(
Φθ̃

)
(s, α)⇐⇒ θ̃ ∼ N (θ̄,Σ),∀aj ∈ A, θ̃⊤ϕs,ai

> θ̃⊤ϕs,aj

⇐⇒ ϵ ∼ N (0, Id),∀aj ∈ A, (θ̄ +Dϵ)⊤ϕs,ai > (θ̄ +Dϵ)⊤ϕs,aj

⇐⇒ ϵ ∼ N (0, Id),∀aj ∈ A,
(Dϵ)⊤ϕs,ai

∥D⊤ϕs,ai∥2
>

(Dϵ)⊤ϕs,aj

∥D⊤ϕs,aj∥2

⇐⇒ ϵ ∼ N (0, Id),∀aj ∈ A, ϵ⊤
D⊤ϕs,ai

∥D⊤ϕs,ai∥2
> ϵ⊤

D⊤ϕs,aj

∥D⊤ϕs,aj∥2
⇐⇒ ϵ ∼ N (0, Id),∀aj ∈ A, ϵ⊤ψs,ai > ϵ⊤ψs,aj
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