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Abstract

Machine unlearning algorithms are increasingly important as legal concerns arise1

around the provenance of training data, but verifying the success of unlearning is2

often difficult. Provable guarantees for unlearning are often limited to supervised3

learning settings. In this paper, we provide the first theoretical guarantees for un-4

learning in the pre-training and fine-tuning paradigm by studying topic models,5

simple bag-of-words language models that can be adapted to solve downstream6

tasks like retrieval and classification. First, we design a provably effective unlearn-7

ing algorithm for topic models that incurs a computational overhead independent8

of the size of the original dataset. Our analysis additionally quantifies the dele-9

tion capacity of the model – i.e., the number of examples that can be unlearned10

without incurring a significant cost in model performance. Finally, we formally11

extend our analyses to account for adaptation to a given downstream task. In par-12

ticular, we design an efficient algorithm to perform unlearning after fine-tuning13

the topic model via a linear head. Notably, we show that it is easier to unlearn14

pre-training data from models that have been fine-tuned to a particular task, and15

one can unlearn this data without modifying the base model.16

1 Introduction17

Modern-day machine learning has shifted from single-stage supervised learning on manually con-18

structed datasets to a paradigm in which models are pre-trained and subsequently fine-tuned (Bom-19

masani et al., 2022). In this setting, a model initially learns a good representation of the data using20

a self-supervised objective on a large unstructured corpus. The resulting pre-trained model is later21

adapted to solve specific tasks for which it is difficult or costly to curate a large dataset. This22

blueprint has yielded strong performance in text (e.g., Devlin et al., 2019; Brown et al., 2020), vi-23

sion (e.g., Oquab et al., 2024; He et al., 2022), and multimodal (e.g., Radford et al., 2021; Zhai et al.,24

2023) settings. It is well-known that the scale of the pre-training data is strongly correlated with the25

final performance of the model (Hoffmann et al., 2022), leading to the construction of larger datasets26

via broad internet scrapes (Gao et al., 2020; Schuhmann et al., 2022; Soldaini et al., 2024; Penedo27

et al., 2023). Such datasets have been found to often inadvertently include private, sensitive, and28

unsafe data (Birhane et al., 2021; Longpre et al., 2024; He et al., 2024).29

Unsafe data can generally degrade model performance and introduce biases, making the model less30

useful for various applications (McKenna et al., 2023; Birhane & Prabhu, 2021; Choenni et al., 2021;31

Naous et al., 2024). Using private and sensitive data, even unknowingly, poses legal risks (Bom-32

masani et al., 2022; Henderson et al., 2023). In particular, recent works have shown that models can33

memorize and thus permit the extraction of training data (Somepalli et al., 2023; Carlini et al., 2021,34

2023). Moreover, one may be requested to remove data in accordance with GDPR’s right to be35

forgotten (European Parliament & Council of the European Union), or as part of a copyright-related36

lawsuit (Tremblay v. OpenAI, Inc.,, 2023; DOE 1 v. GitHub, Inc., N.D. Cal. 2022).37

Submitted to the Mathematics of Modern Machine Learning Workshop at NeurIPS 2024. Do not distribute.



Therefore, there is great empirical interest in developing machine unlearning algorithms that can38

surgically remove portions of the training data from an already learned model without harming per-39

formance. The gold standard for machine unlearning is for the model to behave as though it had40

never been trained on that datapoint (Cao & Yang, 2015). As it is often undesirable to completely41

retrain models, especially as they grow larger, many works have proposed computationally cheaper42

heuristics for solving this problem (e.g., Jang et al., 2023; Foster et al., 2024; Kurmanji et al., 2023;43

Zhang et al., 2024b; Eldan & Russinovich, 2023; Gandikota et al., 2023). In the absence of theoret-44

ical guarantees, it is common to use empirics to measure the success of these algorithms. However,45

recent works have shown that such evaluations often overestimate the success of these unlearning46

methods (Hayes et al., 2024; Shi et al., 2024; Maini et al., 2024) and thus it has proven difficult47

to confidently ascertain whether the proposed methods meet the necessary compliance standards.48

In this context, it is highly desirable to design efficient unlearning algorithms with well-motivated49

guarantees that are salient to the pre-training and finetuning paradigm (Thudi et al., 2022; Lee et al.,50

2024).51

While there are some instances of such algorithms for linear models (Guo et al., 2020; Izzo et al.,52

2021; Mahadevan & Mathioudakis, 2023), general convex models (Ullah et al., 2021; Sekhari et al.,53

2021; Neel et al., 2021), Bayesian models (Nguyen et al., 2020), and GANs (Liu et al., 2024), there54

are no works on the paradigm of pre-training and fine-tuning algorithms. One of the most classical55

such algorithms is topic modeling (Hofmann et al., 1999; Blei et al., 2003; Blei & Lafferty, 2006;56

Li & McCallum, 2006), which can also be thought of as the simplest language model. In this paper,57

we present the first provably effective and efficient unlearning algorithms for topic models.58

Topic models are generally pre-trained to extract latent structure (i.e., a small set of underlying top-59

ics) from a large corpus of documents. This feature extractor is then used for a variety of downstream60

applications, including retrieval, classification, and recommendation (Boyd-Graber et al., 2017). De-61

spite their simplicity, topic models can be used to effectively solve many real-world natural language62

problems — see a survey in Churchill & Singh (2022).63

1.1 Overview of Results64

We focus on the setting in Arora et al. (2012b), because it admits an efficient learning algorithm with65

provable guarantees (Arora et al., 2012a). The corpus is assumed to contain r underlying topics,66

where each topic defines a distribution over words. Let D be a distribution over topic distributions.67

Then, each document d is generated by sampling a topic distribution Wd ∼ D over topics, and then68

sampling words according to Wd. The dataset of m documents is a matrix M ∈ Rn×m, where M69

permits a non-negative matrix factorization M = A∗X . Here, A∗ ∈ Rn×r is the distribution of70

words in each of the r unknown underlying topics, and X ∈ Rr×m is the sampled distribution of71

topics in each document. In particular, A⋆,X have columns on the probability simplex. We seek to72

learn the embedding function A∗ and the topic-topic covariance R⋆ = ED[XX⊤].73

To derive provable guarantees on the success of unlearning, we adapt the notion of (ϵ, δ)-unlearning74

introduced in Sekhari et al. (2021) to the topic modeling setting. The unlearned model is required75

to behave indistinguishably from a model that was retrained on the modified dataset. We define a76

notion of utility-preserving unlearning that combines this condition with an analysis on the deletion77

capacity – i.e., the number of datapoints that can be unlearned without performance degradation78

(Definition 4). We now state our main result on utility-preserving unlearning in topic models.79

Main Result 1 (Informal version of Theorem 2). Suppose we trained a topic model AS ,XS on a
training set S containing m documents. Algorithm 1 can perform utility-preserving unlearning of

mU = Õ
(

m

r2
√
nr

)
documents from the pre-trained topic model, where Õ(·) hides constants depending on the learning80

and unlearning algorithm.81

To adapt a topic model to a downstream topic classification task, we learn a head w ∈ Rr on top82

of A to minimize a strongly convex loss function (Definition 2). When A and w are both released,83

one would necessarily have to first unlearn from A, which makes unlearning just as hard as it was84

in pre-training (Theorem 3). This setting is rather unrealistic, because there is no obvious case in85

which one would want to use w without A or vice versa. We thus advocate for viewing fine-tuned86
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model B = Aw as a whole i.e. it is not allowed to access outputs of A solely, and we show that it87

is easier to perform utility-preserving unlearning of pre-training data in this case.88

Main Result 2 (Informal version of Theorem 4). After adapting the model to a downstream task89

(Definitions 1 and 2), Algorithm 2 can perform utility-preserving unlearning of Ω̃
(

mq
r
√
nr

)
doc-90

uments, where q ∈ [1/r, 1] is a task-dependent quantity, without modifying the base model A.91

Simpler downstream tasks have a larger q, increasing the separation from the pre-training result.92

We demonstrate that our unlearning algorithms run substantially faster than retraining the model93

(Table 1). Overall, our results imply the following takeaways in the context of topic models. (1) It is94

possible to effectively and efficiently unlearn datapoints from a pre-trained model without retraining95

it (Algorithm 1 and Theorem 2). (2) One can effectively unlearn more pre-training data from a96

model that has been adapted to a downstream task without harming the utility of the base and fine-97

tuned models (Theorem 4). (3) One can unlearn pre-training data from a fine-tuned model without98

modifying the base model (Algorithm 2 and Theorem 4).99

2 Topic Models100

As we previously discussed, topic models can be considered as one of the simplest language models101

that one can pre-train in a self-supervised fashion and later fine-tune for other language-related102

tasks. This pipeline mirrors the modern-day paradigm of pre-training large language models to103

build a general understanding of natural language and later fine-tuning them to solve a variety of104

tasks ranging from classification to code generation.105

2.1 Problem Description106

Topic modeling is a classical, bag-of-words method to discover structure in a corpus of docu-107

ments (Hofmann et al., 1999). One assumes that each document contains a convex combination108

of topics, each of which can be described in terms of a distribution over the vocabulary. Different109

assumptions on the structure of this distribution and the topics have yielded a variety of topic mod-110

eling methodologies (Blei & Lafferty, 2006; Li & McCallum, 2006) – perhaps most famous among111

these is the latent Dirichlet allocation (LDA, Blei et al. (2003)). Many early works established the112

statistical learnability of topic models under such assumptions, but the learning algorithms generally113

were not efficient in real-world settings (Arora et al., 2012b; Recht et al., 2012).114

Our paper focuses on the setting in Arora et al. (2012b), for which Arora et al. (2012a) provided an115

empirically efficient learning algorithm. The dataset consists of a set of m documents d1, ..., dm,116

where each document contains L words from a vocabulary V with |V| = n.1 The corpus contains r117

different underlying topics, each of which defines a distribution over words. Each word in document118

d is generated by: (1) sampling a distribution over topics Wd ∼ D, and then (2) sampling L words119

independently according to Wd.120

We represent the corpus as a matrix M ∈ Rn×m, where M permits a non-negative matrix factoriza-121

tion M = A⋆X . Here, A⋆ ∈ Rn×r is the distribution of words in each of the r topics, X ∈ Rr×m122

is the distribution of topics in each document, and hence M is the distribution of words in each123

document. While there are several algorithms for learning the feature extractor A⋆, it is well-known124

that it is hard to recover X exactly (Arora et al., 2012b). Instead, it is desirable to learn how the125

topics co-occur together, denoted as R⋆ = ED[XX⊤]. This quantity is termed the topic-topic126

covariance. Further discussion of this has been included in Appendix A.127

The topic modeling setting generally determines D (e.g., in LDA, D is a Dirichlet distribution). In128

order to recover A∗ and R∗ efficiently and accurately from an observed corpus M ∼ D, we need129

to make the following assumption on the underlying data distribution.130

Assumption 1 (p-separability, Arora et al. (2012b)). The topic matrix A⋆ is p-separable for p > 0131

if for every topic k ∈ [r], there exists a word i ∈ [n] such that A∗
i,k ≥ p and A∗

i,k′ = 0 for all132

k′ ̸= k. Such words are called anchor words.133

Without this separability assumption, maximum likelihood estimation of a topic model is NP-134

hard (Arora et al., 2012b). Assumption 1 requires that A⋆ contains a diagonal matrix, up to row135

1Without loss of generality, we assume L = 2.
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permutations; intuitively, the appearance of an anchor word in a document perfectly indicates the136

document has nonzero probability of the corresponding topic. As we will detail in Section 4, this ob-137

servation inspires a two-phase learning algorithm, whereby one first approximates the anchor words138

for each topic and then leverages them to identify patterns among the topics.139

2.2 Downstream Adaptation140

Topic models are frequently trained on a general corpus, and the embeddings can be later used141

to classify documents. The classification problem usually involves only a subset of topics. For142

example, after training a topic model on a large corpus of news articles with diverse topics (e.g.,143

sports, politics, technology, finance, etc.), one relevant downstream task is to classify the subject of144

a given news article as sports or politics. We formalize the topic classification task below.145

Definition 1 (Topic Classification Task). A topic classification task T = (Tclf,w
⋆) is defined by a146

subset of topics Tclf ⊂ [r] on which the task is defined and a ground-truth labelling vector w⋆ ∈ Rr147

with bounded norm. Importantly, w⋆ only has non-zero coordinates in the positions corresponding148

to Tclf.149

The classification task is defined on the latent features of a given document, so it is necessary to first150

identify the salient topics as they occur in the text. Fitting a topic model to the corpus yields such a151

feature extractor A that embeds a document into the r-dimensional topic space. In order to adapt a152

topic model to a particular classification task, we perform head tuning on the feature extractor A.153

Definition 2 (Head Tuning). For a given labelled document classification dataset Dclf = {(di, yi)}
representing a topic classification task T , embed each document di as a vector xi ∈ Rn containing
the word counts in the document. To perform head tuning on a pre-trained topic model A, we learn
w ∈ Rr to minimize

ℓT (w;A) =
1

|Dclf|
∑

(x,y)∈Dclf

f(x⊤Aw, y)

where f is strongly convex in w.154

One example of f is the logistic loss with ℓ2 regularization. For ease of exposition, we primarily155

consider binary classification tasks, but we point out that the definition can extend to multi-class156

tasks solved via the one-vs-all scheme (Rifkin & Klautau, 2004).157

We note that head tuning, also referred to as linear probing, is a simpler adaptation technique than158

fine-tuning A alongside w. Nonetheless, recent works on popular language models have demon-159

strated that head tuning can substantially improve the ability of general pre-trained language models160

to solve complex classification tasks (Malladi et al., 2023a,b). Head tuning thus serves as a con-161

venient yet effective adaptation method that avoids updating the pre-trained model, which is often162

desirable. For example, if a single pre-trained model needs to be separately adapted to solve many163

different tasks, then it is desirable to minimize the number of parameters that are fine-tuned to min-164

imize the memory needed to store all of the adapted models.2165

3 Unlearning166

As we mentioned previously, there is increased interest in machine unlearning due to the growing167

scale of modern datasets and the difficulty of manually inspecting each datapoint. Theoretically,168

the gold standard for unlearning is that the model should behave identically to one that was trained169

without the datapoint in its corpus (Cao & Yang, 2015). We first define what it means for two models170

θ1, θ2 ∈ Θ to behave almost identically, where Θ denotes the parameter space of a hypothesis class.171

Due to randomness in learning, θ1, θ2 are random variables.172

Definition 3 ((ϵ, δ)-indistinguishable models, Dwork et al. (2014)). Two models denoted by random173

variables θ1, θ2 ∈ Θ are (ϵ, δ)-indistinguishable if for all possible subsets of models T ⊆ Θ,174

Pr (θ1 ∈ T ) ≤ eϵ Pr (θ2 ∈ T ) + δ

Pr (θ2 ∈ T ) ≤ eϵ Pr (θ1 ∈ T ) + δ

2This motivation has driven widespread development and adoption of parameter-efficient fine-tuning meth-
ods for large language models. Liu et al. (2021) contains a survey of such techniques.
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We denote this as θ1
ϵ,δ
≈ θ2.175

We adapt the definitions from Sekhari et al. (2021) to the topic modeling setting. A learning algo-176

rithm A takes in a set of m documents S and returns a topic model θ = (A,R). Analogously, an177

unlearning algorithm U takes in the learned topic model θ, a set of documents to unlearn Sf ⊆ S,178

and some statistics on the training set T (S), and outputs a model. The set of datapoints to unlearn Sf179

is often referred to as the forget set. With this in mind, we now define a notion of utility-preserving180

unlearning, whereby the unlearning algorithm needs to not only effectively simulate retraining the181

model from scratch but also maintain the model’s performance.182

Definition 4 (Utility-preserving (ϵ, δ)-Unlearning with Deletion Capacity). Let m0 ∈ N be a con-183

stant that depends on the topic modeling distribution D satisfying Assumption 1. For any training184

dataset S i.i.d.∼ D of size at least m0, and ϵ, δ > 0, we say that a pair of learning and unlearning185

algorithms (A,U) performs utility-preserving unlearning with deletion capacity TA,U
ϵ,δ (m) if186

1. With probability at least 0.9 over draws from D, for any forget set Sf ⊆ S of size at most
TA,U
ϵ,δ (m), model trained on S \Sf is indistinguishable from that resulting from unlearning

with U .
U(Sf ,A(S), T (S))

ϵ,δ
≈ U(∅,A(S \ Sf ), T (S \ Sf ))

2. Even for an adversarially chosen Sf , the unlearned model does not suffer a large perfor-
mance degradation. Formally,

EA,U

[
max

|Sf |≤TA,U
ϵ,δ (m)

h(U(Sf ,A(S), T (S)))− h⋆

]
≤ 0.01

where h : Θ→ R is the loss of the topic model, and h⋆ = minw∈W h(w) is the irreducible loss.187

The above definition can be applied to both the pre-training and the downstream adaptation stages188

of training a topic model. Of particular notice is that (1) does not guarantee (2), since the former189

only concerns indistinguishability between the unlearned and retrained models, while the latter is190

a statement about utility preservation. Moreover, unless T (S) contains the entire dataset, we note191

that the unlearning algorithm U cannot be as simple as retraining the model. In this paper, we will192

design an unlearning algorithm for topic models that satisfies this definition of provable unlearning,193

and the number of statistics T (S) will not depend on the initial dataset size m.194

To show (ϵ, δ)-indistinguishability, we utilize the Gaussian mechanism, a classic tool from differen-195

tial privacy. Given a particular function, the Gaussian mechanism essentially prescribes how much196

noise one must add to the output in order for the input to be indistinguishable from a similar one.197

The guarantee of the Gaussian mechanism is described in the following lemma.198

Lemma 1 (Gaussian Mechanism, Dwork et al. (2014)). Let f be an arbitrary d-dimensional func-199

tion, and define its ℓ2-sensitivity to be ∆2f := max
adjacent x,y

∥f(x)− f(y)∥2. Then, for c2 > 2 log 1.25
δ ,200

the Gaussian mechanism with parameter σ ≥ c∆2f/ϵ is (ϵ, δ)-differentially private.201

In our case, we define adjacent inputs (i.e., training datasets) as the case where y is a superset of x.202

4 Learning and Unlearning Topic Models203

In this section, we present the learning and unlearning algorithms and guarantees for topic models.204

Notation. We use A⋆ to refer to the ground-truth topic model, AS to refer to a topic model trained205

on S, and AF to denote a topic model retrained with the forget set removed S \ Sf . We also use Ā206

to denote the unlearned topic model before applying the Gaussian mechanism and Ã to denote the207

model after the mechanism is applied. Analogous notations are used for R.208

4.1 Learning Algorithm and Guarantees209

Per Arora et al. (2012a), the learning algorithm Abase takes in a corpus of documents S =210

{d1, ..., dm} and consists of the following three phases to learn a topic model θ = (AS ,RS).211
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1. Measure the word co-occurrences. Compute the word co-occurrence matrix Q ∈ Rn×n,212

where Qij is the number of times word i appears in the same document as word j. We also213

compute Q̄, which normalizes the rows of Q to sum to 1. A detailed discussion of the con-214

struction of Q and its relationship to the factorization M = A⋆X is included in Appendix A.215

2. Identify the anchor words P . Recall that in order to be able to learn topic models efficiently,216

there must exist a set of anchor words P with |P | = r, and each anchor word must appear217

exclusively in a single topic (Assumption 1). This subroutine uses Q̄ to approximately identify218

the r anchor words P .219

3. Learn the feature extractor AS and the topic-topic covariance RS . The algorithm uses the220

anchor words P and the word co-occurrences Q̄ to learn AS and RS . Each word is expressed221

as a convex combination of anchor words, and thus, topics. With appropriate normalization222

and by cross-referencing information with the co-occurrence matrix, one can recover A⋆,R⋆223

in the infinite data limit.224

We sketch how this algorithm recovers the ground truth A⋆,R⋆ when one has infinitely many doc-225

uments in Appendix A. Arora et al. (2012a) gives the following finite-document guarantee.226

Theorem 1 (Learning Guarantee). Running Abase on a dataset S of size m, where m is at least227

max

{
O
(
ar3 log n

L(γp)6ϵ0

)
,O
(
a3r3 log n

Lϵ30(γp)
4

)
,O
(
r2 log r

Lϵ20

)}
recovers AS and RS with entrywise additive error up to ϵ0 from the ground truth A⋆,R⋆, respec-228

tively. Here, a is the topic imbalance parameter, and γ is the condition number of the ground truth229

R⋆. Formally, we have a = maxi,j∈[r] PrD[z = i]/PrD[z = j].230

Approximating the anchor words. We defer a precise description of the anchor word identification231

algorithm to Appendix A and instead focus here on the intuitions driving its design and the guar-232

antees we will use throughout the paper. First, we note the relationship between Q̄ and the set of233

anchor words. If we had infinitely many documents, then the convex hull of the rows in Q̄ will be a234

simplex with vertices corresponding to the anchor words, because each anchor word corresponds to235

a topic, and each topic prescribes a distribution over words. However, in the finite document setting,236

each row of Q̄ only approximates their expected value, and so one must approximate the vertices of237

a convex hull when given access to a perturbation of the points that define it.238

We start by requiring that each topic is distinctly different from any mixture on the other topics.239

Formally, this requires that the simplex is robust, in that each vertex (i.e., anchor word) is sufficiently240

far from any combination of the other topics. Most topic modeling settings define lower bounds on241

the robustness of the simplex. By a result in Arora et al. (2012b), the simplex defined by the r242

anchor word rows of the population Q̄ is γp-robust. We can now define exactly the sense in which243

a Q̄ computed on a finite dataset approximates the population co-occurrence matrix.244

Definition 5. Let {ai}ni=1 be a set of points whose convex hull P is a simplex with vertices {vi}ri=1.245

We say a set of r points is ϵ-close the vertex set {vi}ri=1 if each of the r points is ϵ-close in ℓ2246

distance to a different vertex in P . Moreover, we say that a simplex P is β-robust if for every vertex247

v of P , the ℓ2 distance between v and the convex hull of the rest of the vertices as at least β.248

In the context of this definition, P corresponds to the ground truth convex hull, and the finite sample249

Q̄ can be seen as a perturbation to it. In particular, Arora et al. (2012a) used this to established a250

guarantee on the accuracy of anchor word recovery.251

Lemma 2 (Approximation Guarantee on Anchor Words). Suppose each row of Q̄ is at most δ252

distance away from the ground truth γp-robust simplex Q̄⋆ in ℓ2 norm. If 20rδ/(γp)2 < γp, then253

the set of anchor words found by the algorithm is O(δ/γp)-close to the ground truth anchor words.254

We now describe how to use the recovered approximate anchor words to learn the topic model.255

Learning the topic model from anchor words. We are given the set of anchor words P , the word256

co-occurrence matrix Q ∈ Rn×n, and the normalized co-occurrence matrix Q̄. Our goal is to use257

these quantities to learn A ∈ Rn×r and R ∈ Rr×r. We will do so by first expressing each word258

i ∈ [n] as a convex combination of the anchor words (and thus, the topics). In particular, for each259

word i, we learn the coefficients Ci ∈ ∆r as260

Ci = argmin
v∈∆r

∥Q̄i − v⊤Q̄P ∥2 (1)
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Algorithm 1 Unlearning algorithm (Ubase)
Input: Forget set Sf ⊆ S, statistics T (S) which include {CS

i }ni=1, QS , P , normalization con-
stants pS

Output: Unlearned model Ã, R̃
Compute the updated co-occurrence matrix QF by subtracting documents in Sf

Store the updated normalization constants pF = QF1
for i in 1, . . . , n do

Newton step update on Ci’s:

C̄F
i ← CS

i −H−1
CS

i

∇L(CS
i , S \ Sf ) (2)

C̄F
i ← proj∆r

(C̄F
i ) (3)

where L(v, S \ Sf ) := ∥Q̄F
i − v⊤Q̄F

P ∥2 and HCS
i
= ∇2L(CS

i , S \ Sf )

end for
Ā′ = diag(pF )C̄
Ā = column normalized Ā′

R̄ = Ā†QF Ā†⊤ where Ā† is the pseudoinverse of Ā
Sample νA, νR from normal distribution defined by Gaussian mechanism guarantee
Ã = Project each column of Ā+ νA to ∆n.
R̃ = Project R̄+ νR onto the set of PSD matrices.
return The unlearned topic model Ã, R̃

where Q̄P is the P rows of Q̄ corresponding to the anchor words. Arora et al. (2012a) showed the261

following approximation guarantee for Ci compared to the ground-truth coefficients.262

Lemma 3. When 20rδ/(γp)2 < γp, for every word i, Ci has entrywise error O(δ/(γp)2) from C⋆
i .263

264

We then normalize this Ci by the total number of co-occurrences that word i is involved in. Note that265

the Ci can be assembled into a matrix C ∈ Rn×r. We set A to be C after normalizing the columns266

sum to 1, since the columns represent the topic-conditioned distribution over the vocabulary. We267

finally compute R = A†QA†⊤, where A† denotes the pseudoinverse of A.268

4.2 Unlearning Algorithm and Guarantees269

Learning Phase Retrain Time Unlearning Update Unlearning Time

Co-occurrence matrix computation O(m) Updating frequencies O(mU )
Identify anchor words O(n2 + nr/ϵ20) Use learned anchor words O(1)
Recover topics from anchors O(n2r + nr2/ϵ20) Projected Newton step O(nr2)

Head tuning w (Definition 2) ERM Newton step O(r3)

Table 1: Our unlearning algorithms generally have a runtime shorter than the retraining procedure.
ERM denotes empirical risk minimization, and we note the training time relies on the error tolerance.

We describe our unlearning algorithm Ubase to forget a set Sf from a trained model (Algorithm 1),270

which crucially updates Ci with a Newton step. We then compute Ā from the modified Ci and271

apply the Gaussian mechanism to ensure indistinguishability. We describe our formal guarantee on272

the unlearning algorithm below, sketching out our utility preserving guarantees with respect to A⋆.273

The arguments for R⋆ follow analogously; we defer the discussion to the appendix.274

Theorem 2 (Utility-Preserving Unlearning on the Base Model). Let Abase be the learning algo-275

rithm described in the prior sections and Ubase be the unlearning algorithm in Algorithm 1. Then,276

(Abase,Ubase) performs utility-preserving unlearning with deletion capacity277

TAbase,Ubase
ϵ,δ (m) ≥ c · m

r2
√
rn

(4)
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where m is the number of training documents, r is the number of topics, and c is a constant de-278

pendent on ϵ, δ, and D. The loss function h used in the utility-preserving definition is the maximum279

entrywise error from the ground truth topic model A⋆.280

Proof sketch. The full proof can be found in Appendix B.2. We delete mU ≤ 0.001mϵ0(γp)
3

a2r2 points.281

This upper bound ensures that the anchor words are likely unchanged per Lemma 2. Recall that282

utility-preserving unlearning requires: (1) that the unlearned model is indistinguishable from the283

retrained model, and (2) that the unlearned model is not too far from the ground-truth model.284

Indistinguishability. The Gaussian mechanism introduced in Lemma 1 allows us to make two models285

with a given ℓ2-sensitivity (ϵ, δ)-indistinguishable from each other. We bound the ℓ2-sensitivity of286

the feature extractor A by noting that Ā is a rescaled version of C̄.287

Lemma 4. For ϵ, δ > 0, the following holds for the C̄ and the topic matrix Ā:288

∥C̄ −CF ∥∞ ≤ c · armU

mϵ0γp
∥Ā−AF ∥∞ ≤ (ar) · ∥C̄ −CF ∥∞ (5)

289

Applying the Gaussian mechanism with noise σ = ∆
ϵ

√
2 log(1.25/δ), where ∆ = c

√
nr · (ar)

2mU

mϵ0γp
290

and followed by projecting the columns of Ā+ νA back to ∆n yields the desired result.291

Utility Preservation. We first apply Lemma 2 to show that, with high probability, the anchor words292

do not change when unlearning mU documents. Then, we use Lemma 8 to bound the distance293

between the unlearned C̄i and the ground truth C⋆
i . Accounting for the noise added via the Gaussian294

mechanism completes the proof.295

Lemma 5. For ϵ, δ > 0, denote the unlearned model after the Gaussian mechanism described above296

as Ã. Then, Ã satisfies:297

E
[
∥Ã−A⋆∥∞

]
≤ c · (ar)

2mU

mϵ0γp
·

(
√
nr ·

√
log(nr) ·

√
log(1/δ)

ϵ
+ 1

)
(6)

298

Each of the two terms in the above equation yield a constraint on mU . In particular, mU ≤299

min
{
Õ
(

m
r2

√
nr

)
,O
(
m
r2

)}
, so setting mU ≤ Õ

(
m

r2
√
nr

)
completes the proof.300

5 Unlearning with respect to a Downstream Task301

We are interested in unlearning a set of pre-training documents Sf ⊆ S. A topic classification task302

is usually defined on a subset of the topics in the dataset — for example, if the pre-training corpus303

contained diverse news articles, one plausible downstream task is to classify the content of a given304

document as containing politics or sports. Definition 1 formalizes this: a topic classification task305

T = (Tclf,w
∗) is defined on a subset of the topics Tclf and a r-length ground-truth labelling vector306

w∗ ∈ Whead, where w∗ only has non-zero values in positions corresponding to Tclf. We describe307

two possible settings under which we can show utility-preserving unlearning.308

5.1 Naive Setting309

In the first setting, the learning algorithm Ahead, naive returns the pre-trained feature extractor A and310

the head w separately. So, we must ensure that the forget set Sf ⊆ S cannot be recovered from either311

A or w. As such, we must necessarily perform unlearning on A as described in Algorithm 1, which312

means that unlearning the fine-tuned model is exactly as difficult as unlearning the base model.313

Theorem 3 (Unlearning when releasing A and w). For a downstream task T with loss func-314

tion ℓT , consider the unlearning algorithm Uhead, naive that first runs Algorithm 1 to compute315

Ã = Ubase(Sf ,Abase(S), T (S)), where (Abase,Ubase) performs utility-preserving unlearning (Theo-316

rem 2). Then, it fits a head w = argminw∈Whead
ℓT (w; Ã) and returns Ã and w. We assert that317

(Ahead, naive,Uhead, naive) performs utility-preserving unlearning (Definition 4).318
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Algorithm 2 Unlearning algorithm for task T (Uhead)
Input: Document deletion requests Sf ⊆ S, statistics T (S) which include AS , {CS

i }ni=1, QS , P ,
diag(pS), wS = argminw∈Whead

ℓT (w;AS)

Ā, R̄ = Run Algorithm 1 (Ubase) up to the Gaussian mechanism
w̄ = wS −H−1

wS∇wℓT (w
S ; Ā) where HwS = ∇2

wℓT (w
S ; Ā)

return (AS)†Āw̄ + ξ, in accordance with the Gaussian mechanism

Given the guarantee on Ã from Theorem 2, we show that this result extends to w by the well-319

known fact: for ϵ, δ > 0, post-processing indistinguishable quantities (Definition 3) preserves320

(ϵ, δ)-indistinguishability (Dwork et al., 2014). The full proof of utility preservation can be found321

in Appendix C, which essentially boils down to a Lipschitz condition. However, there are some322

downsides to this algorithm. First, it requires retraining the head w for each unlearning request, but323

we want to perform unlearning without access to Dclf. Second, repeatedly noising the base model324

via the Gaussian mechanism will erode its utility. We address these issues in the realistic setting.325

5.2 Realistic Setting326

There is little reason to release A and w separately after fine-tuning the model, because it is unclear327

why one would want to use A without w or vice versa. One can obtain A directly after pre-training328

instead of relying on a fine-tuned model, and there is little use for w alone, because it is highly329

sensitive to the specific topics extracted by A and their ordering. As such, we argue for releasing330

the fine-tuned model as a single matrix3 B = Aw, where B ∈ Rn×1.331

Theorem 4 (Utility-Preserving Unlearning on the Downstream Task). Suppose that the downstream332

task T only depends on a subset of topics Tclf ⊆ [r]; that is, w⋆ = argminv∈Wbase
ℓT (v;A

⋆) has333

non-zero entries only in the index set Tclf. Denote q := mink∈Tclf PrD[z = k], and let Ahead be334

the head tuning algorithm (Definition 2) and Uhead be Algorithm 2. Then, (Ahead,Uhead) performs335

utility-preserving unlearning with deletion capacity336

TAhead,Uhead
ϵ,δ (m) ≥ c′ · mq

r
√
nr

(7)

where c′ is a constant dependent on ϵ, δ, D, and T .337

The full proof is in Appendix C, including the worst case of Tclf = [r]. When the task relies heavily338

on every single topic (i.e., q = 1/ar), the above guarantee is equivalent to the one in the pre-training339

phase. However, in most realistic settings, the downstream task will only depend on a subset of340

the latent topics in the corpus. In this case, q > 1/ar, and we can unlearn more points without341

degrading the utility of the model. Intuitively this makes sense too; the more reliance T has on a342

rare topic, the less adversarial deletion it can tolerate.343

Proof sketch. We again assume that we are deleting mU ≤ 0.001mϵ0(γp)
3

a2r2 points. For any mod-344

ification made to A, there is an equivalent modification that can be made to w instead such that345

B = Aw is preserved, so we do not need to update A. We look for v ∈ Whead such that346

ASv = AFwF , where wF is the head learned on AF . It can be shown that ĀS has a unique347

pseudoinverse since it is full rank; naturally, we set v = AS†
AFwF , thereby ensuring privacy even348

if one recovers a part of A from B = Aw. We furthermore define v̄ that is fit to the unlearned349

model before the Gaussian mechanism, v̄ = AS†
Āw̄. We now need to show v and v̄ satisfy both350

the indistinguishability and utility preservation conditions in Definition 4.351

Indistinguishability. Let w̄⋆ = argminv∈Whead
ℓT (v; Ā) denote the result of head tuning Ā, and let352

w̄ be the result of taking a Newton step on w (see Algorithm 2). Then by triangle inequality,353

∥Āw̄ −AFwF ∥2 ≤ ∥Āw̄ − Āw̄⋆∥2 + ∥Āw̄⋆ −AF w̄⋆∥2 + ∥AF w̄⋆ −AFwF ∥2 (8)

Informally, the first term is controlled by the error in the Newton step approximation, and the third354

term is bounded by the error to the retrained wF . The remaining term can be rewritten as ∥(Ā −355

3One can generalize this to the case where the downstream task is a C-way classification, in which case
B ∈ Rn×C .
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AF )(w̄⋆ − w⋆) + (Ā −AF )w⋆∥, where the first term can be bounded using the same technique356

use to prove Lemmas 4 and 5. The second term can be bounded by noting that w⋆ is sparse, which357

yields the below lemma that plays a crucial role in establishing the improved deletion capacity.358

Lemma 6 (Modification of Lemma 4 for downstream task). For ϵ, δ > 0,

∥Ā−AF ∥∞ ≤
1

q
· ∥C̄ −CF ∥∞ = c · 1

q
· armU

mϵ0γp

As in the pre-training case, we can now set the noise scale in the Gaussian mechanism and complete359

the proof. In the worst case, when the downstream task depends on every topic, then q = 1/ar, and360

we recover Lemma 4; however, this is unlikely to happen in practice.361

Utility Preservation. We compare the value of v after the Gaussian mechanism ṽ = v̄ + νv̄ to what362

it would be for the ground-truth model v⋆ = (AS)†A⋆w⋆. We again rely the sparsity of w⋆ and363

bound E[∥v̄ − v⋆∥∞] in Lemma 31.364

6 Related Works365

Provable unlearning. One ideally wants the unlearned model to behave identically to one that366

was retrained from scratch with the forget set removed from the training data (Cao & Yang, 2015;367

Bourtoule et al., 2021; Gupta et al., 2021). This is difficult to achieve in many settings, so there are368

several notions of approximate unlearning (Ginart et al., 2019; Guo et al., 2020; Neel et al., 2021)369

reminiscent of differential privacy (Dwork et al., 2014). Most relevant to our work is the notion370

of (ϵ, δ)-unlearning introduced in Sekhari et al. (2021), which we adapt to construct Definition 4.371

Our work focuses on deriving unlearning guarantees in the pre-training and fine-tuning pipeline.372

Golatkar et al. (2020) is closest to our work. They show considerably weaker guarantees on un-373

learning information with respect to probes fit to the weights. In contrast, our work is focused on374

realistic topic classification tasks and demonstrates strong guarantees (Definition 4). Recent works375

have extended notions of certified unlearning to nonconvex settings. Zhang et al. (2024a); Mu &376

Klabjan (2024); Chien et al. (2024) provide unlearning algorithms without deletion capacity guar-377

antees. Qiao et al. (2024) also proposes an unlearning method for non-convex settings but analyzes378

its deletion capacity in a convex setting. Our work extends beyond the convex setting to provide379

provable unlearning methods and corresponding deletion capacity analysis for non-convex models.380

Theoretical analysis of pre-training and fine-tuning. Our downstream task definition (Sec-381

tion 2.2) is inspired by works on transfer learning in language models (Saunshi et al., 2021; Wei382

et al., 2021; Wu et al., 2023; Kumar et al., 2022), contrastive learning (Lee et al., 2021; HaoChen &383

Ma, 2023), and meta-learning (Chua et al., 2021; Collins et al., 2022; Yüksel et al., 2024).384

7 Conclusion385

This work uses topic models to develop the first provable guarantees on unlearning in the modern-386

day pre-training and fine-tuning paradigm. We propose two unlearning algorithms that can effec-387

tively and efficiently unlearn from both the pre-trained model (Algorithm 1 and Theorem 2) and388

the fine-tuned model (Algorithm 2 and Theorem 4). Notably, we find that it is easier, in terms of389

the deletion capacity (Definition 4), to unlearn pre-training data from the fine-tuned model, and we390

can do so without modifying the pre-trained base model. Our findings suggest that task-specific un-391

learning is easier than full model unlearning, providing a promising path forward to design efficient392

algorithms for large-scale models.393

The most notable limitation of our work is that our usage of topic models, which permit a tractable394

analysis but cannot capture interesting features of modern-day language models (e.g., their autore-395

gressive nature). Moreover, with the growing popularity of foundation models, there is scholarly396

discussion around meaningful definitions of unlearning and how they can be measured (Thudi et al.,397

2022; Lee et al., 2024). Our work focuses on traditional notions of unlearning centered on differen-398

tial privacy (see Definition 4), but we hope to extend these definitions to capture additional features399

of generative models that are salient to their real-world uses.400
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Christopher Ré, Dorsa Sadigh, Shiori Sagawa, Keshav Santhanam, Andy Shih, Krishnan Srini-432

vasan, Alex Tamkin, Rohan Taori, Armin W. Thomas, Florian Tramèr, Rose E. Wang, William433
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and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Cur-505

ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/506

paper/2019/file/cb79f8fa58b91d3af6c9c991f63962d3-Paper.pdf.507

Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Eternal sunshine of the spotless net:508

Selective forgetting in deep networks. In Proceedings of the IEEE/CVF Conference on Computer509

Vision and Pattern Recognition, pp. 9304–9312, 2020.510

Chuan Guo, Tom Goldstein, Awni Hannun, and Laurens Van Der Maaten. Certified data removal511

from machine learning models. In International Conference on Machine Learning, pp. 3832–512

3842. PMLR, 2020.513

Varun Gupta, Christopher Jung, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi, and Chris Waites.514

Adaptive machine unlearning. Advances in Neural Information Processing Systems, 34:16319–515

16330, 2021.516

Jeff Z. HaoChen and Tengyu Ma. A theoretical study of inductive biases in contrastive learning.517

In The Eleventh International Conference on Learning Representations, 2023. URL https:518

//openreview.net/forum?id=AuEgNlEAmed.519

Jamie Hayes, Ilia Shumailov, Eleni Triantafillou, Amr Khalifa, and Nicolas Papernot. Inex-520

act unlearning needs more careful evaluations to avoid a false sense of privacy, 2024. URL521

https://arxiv.org/abs/2403.01218.522

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-523

toencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer524

vision and pattern recognition, pp. 16000–16009, 2022.525

Luxi He, Yangsibo Huang, Weijia Shi, Tinghao Xie, Haotian Liu, Yue Wang, Luke Zettlemoyer,526

Chiyuan Zhang, Danqi Chen, and Peter Henderson. Fantastic copyrighted beasts and how (not)527

to generate them. arXiv preprint arXiv:2406.14526, 2024.528

Peter Henderson, Xuechen Li, Dan Jurafsky, Tatsunori Hashimoto, Mark A Lemley, and Percy529

Liang. Foundation models and fair use. Journal of Machine Learning Research, 24(400):1–79,530

2023.531

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza532

Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-533

ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.534

Thomas Hofmann et al. Probabilistic latent semantic analysis. In UAI, volume 99, pp. 289–296,535

1999.536

Zachary Izzo, Mary Anne Smart, Kamalika Chaudhuri, and James Zou. Approximate data deletion537

from machine learning models, 2021.538

Joel Jang, Dongkeun Yoon, Sohee Yang, Sungmin Cha, Moontae Lee, Lajanugen Logeswaran, and539

Minjoon Seo. Knowledge unlearning for mitigating privacy risks in language models, 2023. URL540

https://openreview.net/forum?id=zAxuIJLb38.541

Ananya Kumar, Aditi Raghunathan, Robbie Matthew Jones, Tengyu Ma, and Percy Liang. Fine-542

tuning can distort pretrained features and underperform out-of-distribution. In International Con-543

ference on Learning Representations, 2022. URL https://openreview.net/forum?544

id=UYneFzXSJWh.545

13

https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://proceedings.neurips.cc/paper_files/paper/2019/file/cb79f8fa58b91d3af6c9c991f63962d3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/cb79f8fa58b91d3af6c9c991f63962d3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/cb79f8fa58b91d3af6c9c991f63962d3-Paper.pdf
https://openreview.net/forum?id=AuEgNlEAmed
https://openreview.net/forum?id=AuEgNlEAmed
https://openreview.net/forum?id=AuEgNlEAmed
https://arxiv.org/abs/2403.01218
https://openreview.net/forum?id=zAxuIJLb38
https://openreview.net/forum?id=UYneFzXSJWh
https://openreview.net/forum?id=UYneFzXSJWh
https://openreview.net/forum?id=UYneFzXSJWh


Meghdad Kurmanji, Peter Triantafillou, Jamie Hayes, and Eleni Triantafillou. Towards unbounded546

machine unlearning. In Thirty-seventh Conference on Neural Information Processing Systems,547

2023. URL https://openreview.net/forum?id=OveBaTtUAT.548

Jason D Lee, Qi Lei, Nikunj Saunshi, and Jiacheng Zhuo. Predicting what you already know helps:549

Provable self-supervised learning. Advances in Neural Information Processing Systems, 34:309–550

323, 2021.551

Katherine Lee, A. Cooper, Christopher Choquette-Choo, Ken Liu, Matthew Jagielski, Niloofar552

Mireshghallah, Lama Ahmed, James Grimmelmann, David Bau, Christopher De Sa, Fernando553

Delgado, Vitaly Shmatikov, Katja Filippova, Seth Neel, Miranda Bogen, Amy Cyphert, Mark554

Lemley, and Nicolas Papernot. Extended abstract: Machine unlearning doesn’t do what you555

think, 04 2024.556

Wei Li and Andrew McCallum. Pachinko allocation: Dag-structured mixture models of topic corre-557

lations. In Proceedings of the 23rd international conference on Machine learning, pp. 577–584,558

2006.559

Jiaqi Liu, Jian Lou, Zhan Qin, and Kui Ren. Certified minimax unlearning with generalization rates560

and deletion capacity. Advances in Neural Information Processing Systems, 36, 2024.561

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. Pre-562

train, prompt, and predict: A systematic survey of prompting methods in natural language pro-563

cessing, 2021. URL https://arxiv.org/abs/2107.13586.564

Shayne Longpre, Robert Mahari, Anthony Chen, Naana Obeng-Marnu, Damien Sileo, William565

Brannon, Niklas Muennighoff, Nathan Khazam, Jad Kabbara, Kartik Perisetla, et al. A large-566

scale audit of dataset licensing and attribution in ai. Nature Machine Intelligence, 6(8):975–987,567

2024.568

Ananth Mahadevan and Michael Mathioudakis. Cost-effective retraining of machine learning mod-569

els. arXiv preprint arXiv:2310.04216, 2023.570

Pratyush Maini, Zhili Feng, Avi Schwarzschild, Zachary C. Lipton, and J. Zico Kolter. Tofu: A task571

of fictitious unlearning for llms, 2024. URL https://arxiv.org/abs/2401.06121.572

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D. Lee, Danqi Chen, and San-573

jeev Arora. Fine-tuning language models with just forward passes. In Thirty-seventh Confer-574

ence on Neural Information Processing Systems, 2023a. URL https://openreview.net/575

forum?id=Vota6rFhBQ.576

Sadhika Malladi, Alexander Wettig, Dingli Yu, Danqi Chen, and Sanjeev Arora. A kernel-based577

view of language model fine-tuning. In International Conference on Machine Learning, pp.578

23610–23641. PMLR, 2023b.579

Nick McKenna, Tianyi Li, Liang Cheng, Mohammad Javad Hosseini, Mark Johnson, and Mark580

Steedman. Sources of hallucination by large language models on inference tasks. arXiv preprint581

arXiv:2305.14552, 2023.582

Siqiao Mu and Diego Klabjan. Rewind-to-delete: Certified machine unlearning for nonconvex func-583

tions, 2024. URL https://arxiv.org/abs/2409.09778.584

Tarek Naous, Michael Ryan, Alan Ritter, and Wei Xu. Having beer after prayer? measuring585

cultural bias in large language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar586

(eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational Lin-587

guistics (Volume 1: Long Papers), pp. 16366–16393, Bangkok, Thailand, August 2024. As-588

sociation for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.862. URL https:589

//aclanthology.org/2024.acl-long.862.590

Seth Neel, Aaron Roth, and Saeed Sharifi-Malvajerdi. Descent-to-delete: Gradient-based methods591

for machine unlearning. In Algorithmic Learning Theory, pp. 931–962. PMLR, 2021.592

Quoc Phong Nguyen, Bryan Kian Hsiang Low, and Patrick Jaillet. Variational bayesian unlearning.593

Advances in Neural Information Processing Systems, 33:16025–16036, 2020.594

14

https://openreview.net/forum?id=OveBaTtUAT
https://arxiv.org/abs/2107.13586
https://arxiv.org/abs/2401.06121
https://openreview.net/forum?id=Vota6rFhBQ
https://openreview.net/forum?id=Vota6rFhBQ
https://openreview.net/forum?id=Vota6rFhBQ
https://arxiv.org/abs/2409.09778
https://aclanthology.org/2024.acl-long.862
https://aclanthology.org/2024.acl-long.862
https://aclanthology.org/2024.acl-long.862
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A Precise Description of Abase669

A.1 Complete Description670

Algorithm 3 High level learning algorithm (A)
Input: document corpus S = {di}mi=1, anchor word tolerance ϵ0
Output: matrices A,R
Q = word co-occurrences
Q̄ = row-normalized Q
P = RecoverAnchors({Q̄1, . . . , Q̄n})
A,R = RecoverTopics(Q, S)
return A,R

Algorithm 4 RecoverAnchors, same as Arora et al. (2012a)
Input: Row-normalized co-ocurrence matrix Q̄ and ϵ0 tolerance parameter
Output: r points of this perturbed simplex close to the vertices of the actual simplex
Project the rows to a randomly chosen 4 log n/ϵ20 dimensional subspace
S ← {Q̄i} where Q̄i is the furthest point from the origin
for i in 1, . . . , r − 1 do

Let Q̄j be the row of Q with largest distance to span(S)
S ← S ∪ {Q̄j}

end forS = {Q̄s1 , . . . , Q̄sr}
for i in 1, . . . , r do

Let Q̄j be the point that has largest distance to span(S \ {Q̄si})
Remove Q̄si from S and insert Q̄j into S

end for
return S

Algorithm 5 Recover Topics, from Arora et al. (2012a)
Input: Co-ocurrence matrix Q, anchor words P = {s1, . . . , sk}, tolerance parameter ϵ0
Output: Matrices A,R
Q̄ = row normalized Q
Store the normalization constants p = Q1
for i in 1, . . . , n do

Solve Ci = argmin
v∈∆r

∥Q̄i − v⊤Q̄P )∥2

up to ϵ0 accuracy
end for
A′ = diag(p)C
A = column-sum-one normalized A′

R = A†QA†⊤ where A† is the pseudoinverse of A
return A,R

More formally, the co-occurrence matrix is constructed as follows. For each document, let Hd ∈ Rn671

be the frequency vector of each word in the document; the sum of its entries should be L. Then, for672

a document d, consider the matrix673

Gd := H̃dH̃
⊤
d − Ĥd (9)

where674

H̃d :=
Hd√

L(L− 1)
(10)

Ĥd :=
diag(Hd)

L(L− 1)
(11)
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In particular, the denominator term L(L − 1) is precisely the number of co-occurences in each675

document, by simple combinatorics, and it can be seen that the sum of the entries of Gd is always676

1. Our co-ocurrence matrix Q is defined to be677

Q :=
1

m

m∑
i=1

Gd (12)

so that Q also has entries that sum to 1. By linearity of expectation, we have678

E[Q] = E[Gd] = A⋆E[XdX
⊤
d ]A⋆⊤ (13)

which implies that as the number of documents increases, Q concentrates around AE[XX⊤]A⊤ =679

E[MM⊤]. Therefore, we should expect A†QA†⊤ to concentrate around E[XX⊤] = R⋆.680

A.2 Sketch: Population Analysis681

To understand this algorithm, consider the setting where we have infinitely many documents. Specif-682

ically, consider two words w1, w2 in a document and their respective topics z1, z2. Then, this683

population co-occurrence matrix Q will have elements Qi,j = Pr[w1 = i, w2 = j], and the row-684

normalized co-occurrence matrix Q̄ will have entries Q̄i,j = Pr[w2 = j|w1 = i]. Moreover, we685

have that Ai,k = Pr[w1 = i|z1 = k] = Pr[w2 = i|z2 = k].686

Consider the set of anchor words P = {s1, . . . , sr} ⊆ [n], where sk is the anchor word for topic k.687

Then, observe that for an anchor word row sk of Q̄, it holds that688

Q̄sk,j = Pr[w2 = j|w1 = sk] =
∑
k′

Pr[z1 = k′|w1 = sk] Pr[w2 = j|w1 = sk, z1 = k′] (14)

= Pr[w2 = j|w1 = sk, z1 = k] (15)
= Pr[w2 = j|z1 = k] (16)

where the second line follows from only Pr[z1 = k|w1 = sk] = 1 in the summation, and the last689

line follows from w2, w1 are conditionally independent given z1. Furthermore, for non-anchor word690

rows i of Q̄, it holds that691

Q̄i,j =
∑
k

Pr[z1 = k|w1 = i] Pr[w2 = j|z1 = k] (17)

where again we use that w2, w1 are conditionally independent z1. For a word i, let Ci ∈ Rr be692

the vector such that Ci,k := Pr[z1 = k|w1 = i]. Then, it holds that Q̄i = c⊤i Q̄S , where Q̄S is693

the submatrix of Q̄ constrained to the anchor word rows. In other words, for every word i, Q̄i is a694

convex combination of rows of Q̄S .695

In the algorithm, one can see that A′
i,k = Ci,kpi. Normalizing this along each column, we obtain696

Ai,k =
Ci,kpi∑
i′ Ci′,kpi′

=
Pr[z1 = k|w1 = i] Pr[w1 = i]∑
i′ Pr[z1 = k|w1 = i′] Pr[w1 = i′]

= Pr[w1 = i|z1 = k] (18)

Hence, in the infinite document limit, this algorithm recovers the ground truth A⋆,R⋆.697

B From properties of the learning algorithm to the proof of Theorem 2698

We first give the formal statement of Theorem 2.699

Theorem 5 (Formal statement of Theorem 2). Let Abase be the learning algorithm described in the700

prior sections and Ubase be the unlearning algorithm in Algorithm 1. Then, (Abase,Ubase) performs701

utility-preserving unlearning with deletion capacity702

TAbase,Ubase
ϵ,δ (m) ≥ c ·min

{
mϵ

r2
√

rn log 1/δ
,
0.001m

r2

}
(19)

where m is the number of training documents, r is the number of topics, and c is a constant depen-703

dent on D. The loss function h used in the utility-preserving definition is the maximum entrywise704

error from the ground truth topic model A⋆.705
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B.1 Preliminaries706

When the norm is not specified, we assume that it is the Euclidean norm ∥ · ∥2. We now start off707

with a technical assumption on the precision of the learning algorithm.708

Assumption 2. ϵ0 ≤ O(1/
√
nr).709

Assumption 3. Every word appears with probability ϵ0/4ar without loss of generality; see discus-710

sion in Arora et al. (2012b). Essentially, less probable words can be combined in a sense to form a711

single category of ”rare” words.712

We recall the definitions from Arora et al. (2012a).713

Definition 6 (β-robust simplex). A simplex P is β-robust if for every vertex v of P , the ℓ2 distance714

between v and the convex hull of the rest of the vertices as at least β.715

Definition 7. Let {ai}ni=1 be a set of points whose convex hull is a simplex with vertices {vi}ri=1.716

We say a set of r points is ϵ-close the vertex set {vi}ri=1 if each of the r points is ϵ-close in ℓ2717

distance to a different vertex in this vertex set.718

The following result will be used throughout our proof.719

Proposition 1 (Arora et al. (2012b)). Q̄⋆
P in population is γp-robust.720

We now list the high probability events we condition on throughout our proof. These follow from721

previous results in Arora et al. (2012a); they concern the properties of the output of the learning722

algorithm.723

Proposition 2. With high probability, in our regime of m, the following hold:724

• The correct anchor words are selected.725

• Each word appears at least O
(
mϵ0
4ar

)
times.726

• The error in the empirical matrix Q̂ is entrywise at most Õ(1/
√
m) from the population727

Q⋆.728

We also utilize the following two key lemmas from Arora et al. (2012a) that we touched upon in the729

main paper.730

Lemma 7 (Approximation Guarantee on Anchor Words). Suppose each row of Q̄ is at most δ731

distance away from the ground truth γp-robust simplex Q̄⋆ in ℓ2 norm. If 20rδ/(γp)2 < γp, then732

the set of anchor words found by the algorithm is O(δ/γp)-close to the ground truth anchor words.733

Lemma 8. When 20rδ/(γp)2 < γp, it holds for every word i that Ci has entrywise error734

O(δ/(γp)2) from C⋆
i .735

B.2 Proof of Theorem 2736

The following are lemmas bounding the relation between Q̄S
i , Q̄

F
i , Q̄

⋆
i .737

Lemma 9. After training, the error of each row of Q̄S is at most δ2 := O
(√

4ar
mϵ0

)
. That is,738

∥Q̄S
i − Q̄⋆

i ∥ ≤ δ2 for all words i.739

Importantly, note that740

20rδ2/(γp)
2 < γp (20)

This implies that the anchor words of Q̄S
i are O(δ2/(γp)) close to the anchor words of Q̄⋆

i .741

742

Consequently, it holds that743

∥CS −C⋆∥∞ ≤ O(δ2/(γp)
2) (21)

Proof. The first part follows directly from the fact that if the number of documents m = Ω̃(1/ϵ2Q),744

then ∥Q̄S
i − Q̄⋆

i ∥ ≤ δ2 for each row i. To show that745

20rδ2/(γp)
2 < γp (22)
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we note that by the sample complexity guarantee,746

mϵ0 ≥ Õ

(
ar3

(γp)6

)
(23)

which implies that747

δ2 ≤ Õ

(
(γp)3

r

)
(24)

as desired.748

Lemma 10. When we delete mU ≤ 0.001mϵ0(γp)
3

a2r2 , it holds that749

∥Q̄F
i − Q̄S

i ∥ ≤
mU

mϵ0/4ar
=

4armU

mϵ0
(25)

In particular, this is smaller than750

0.001mϵ0(γp)
3

a2r2
· 1

mϵ0/4ar
=

0.004(γp)3

ar
(26)

Proof. For a word i, consider the change in Q̄i after deletion requests. Let F be the initial sum of751

the the ith row of Q. Each coordinate j ∈ [n] will change as follows:752

δj =
fj − tj
F −mU

− fj
F

=
mUfj − Ftj
F (F −mU )

(27)

where fj is the initial number of coocurrences of words i, j and tj is the number of documents753

removed that have this cooccurrence. Moreover, F is the number of initial occurrences of word i, and754

T is the number of deletions of the word i. From the previous lemma, it holds that F ≥ mϵ0/4ar,755

and that mU ≥
∑n

j=1 tj Hence, it follows that the squared Euclidean norm of the change is:756

n∑
j=1

δ2j =
1

F 2(F − T )2

n∑
j=1

(mUfj − Ftj)
2 ≤ 2F 2m2

U

F 2(F −mU )2
≤ 2

(
mU

F −mU

)2

(28)

Hence, for the regime where mU ≤ 0.001mϵ0(γp)
3

a2r2 , we have757

∥Q̄S
i − Q̄F

i ∥ ≤
√
2

mU

F −mU
≲

mU

F
≲

4armU

mϵ0
(29)

Of particular notice is that when mU is taken as large as possible, this is at most758

0.001mϵ0(γp)
3/a2r2

mϵ0/4ar
= 0.004(γp)3/ar (30)

759

We now combine the above two with triangle inequality.760

Lemma 11. Hence, it holds that761

∥Q̄F
i − Q̄⋆

i ∥ ≤
4armU

mϵ0
+ δ2 =

4armU

mϵ0
+O

(√
4ar

mϵ0

)
=: δ′2 (31)

Importantly, note that762

20rδ′2/(γp)
2 < γp (32)

This implies that the anchor words of Q̄F
i are O(δ′2/(γp)) close to the anchor words of Q̄⋆

i .763

764

Consequently, it holds that765

∥CF −C⋆∥∞ ≤ O(δ′2/(γp)
2) (33)
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Proof. The first part follows from triangle inequalityt, a766

We now bound what happens to ∥CF − CS∥∞. First, we have that the perturbed simplex Q̄S
P is767

γp/2-robust.768

Lemma 12. The perturbed simplex Q̄S
P is γp/2-robust.769

Proof. This is because of Lemma A.1 in Arora et al. (2012a). Since 10
√
rδ2 < γp, the result of that770

lemma applies.771

Hence, we will apply Lemma B.1 from Arora et al. (2012a) on CS to say something about ∥CF −772

CS∥∞.773

Lemma 13. Recall that when we delete mU ≤ 0.001mϵ0(γp)
3

a2r2 , it holds that774

∥Q̄F
i − Q̄S

i ∥ ≤
mU

mϵ0/4ar
=

4armU

mϵ0
(34)

Importantly, note that775

20r

(
4armU

mϵ0

)
/(γp/2)2 < γp/2 (35)

This implies that the anchor words of Q̄F
i are 4armU/mϵ0

γp/2 close to the anchor words of Q̄S
i . By776

lemma B.1 from Arora et al. (2012a), it holds that777

∥CF −CS∥∞ ≤ O

(
4armU

mϵ0
/(γp/2)2

)
(36)

Observe that this is smaller than O((γp)/ar).778

We now deal with the Hessian step that we had took to prevent retraining the Ci’s. In particular, we779

will denote C̄ to be our estimated new C.780

First, a lemma to say that our Hessian step is full rank and has a lower bound on its minimum781

singular value.782

Lemma 14. When we delete mU ≤ 0.001mϵ0(γp)
3

a2r2 samples, it holds that the minimum eigenvalue of783

Q̄F
P Q̄

F
P is at least γp/2.784

Proof. Follows from Lemma A.3 in Arora et al. (2012a).785

Lemma 15. When we delete mU ≤ 0.001mϵ0(γp)
3

a2r2 samples, it holds for all i,786

∥CF
i − C̄F

i ∥ ≤
4

γp

(
δ2 +

4armU

mϵ0

)
(37)

Proof. For the case of d(·, ·) being the squared loss, we will denote the following:787

Ci,uncon := argmin
C

∥Q̄F⊤
P C − Q̄F⊤

i ∥2 = (Q̄F
P Q̄

F⊤
P )−1Q̄F

P Q̄
F⊤
i (38)

C̄F
i := proj∆r

(Ci,uncon) (39)

CF
i := argmin

C∈∆r

∥Q̄F⊤
P C − Q̄F⊤

i ∥2 (40)

In particular, the Newton step plus projection outputs Ci,proj. First, observe that by one of the788

anchor word lemmas,789

min
C
∥Q̄F⊤

P C − Q̄F⊤
i ∥ = ∥Q̄F⊤

P Ci,uncon − Q̄F⊤
i ∥ ≤ ∥Q̄F⊤

P CF
i − Q̄F⊤

i ∥ ≤ δ2 +
4armU

mϵ0
(41)
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The last inequality follows from the fact that Q̄F
P is a perturbed version of Q̄S

P , and Q̄S
P is a perturbed790

version of Q̄⋆
P . Hence, we will bound791

∥C̄F
i −CF

i ∥ = ∥proj∆r
(Ci,uncon)− proj∆r

(CF
i )∥ (42)

≤ ∥Ci,uncon −CF
i ∥ (43)

≤ 1

σmin
∥Q̄F⊤

P (Ci,uncon −CF
i )∥ (44)

≤ 1

σmin

(
∥Q̄F⊤

i − Q̄F⊤
P CF

i ∥ + ∥Q̄F⊤
P Ci,uncon − Q̄F⊤

i ∥
)

(45)

≤ 2

σmin

(
δ2 +

4armU

mϵ0

)
(46)

where σmin is the smallest singular value of Q̄F⊤
i , which is guaranteed to be full rank per the792

previous lemma. Due to a result in Arora et al. (2012a), this σmin ≥ (γp)/2. This gives us that the793

whole thing is at most794

4

γp

(
δ2 +

4armU

mϵ0

)
(47)

795

Corollary 1. We have that796

∥CF − C̄F ∥∞ ≤
4

γp

(
δ2 +

4armU

mϵ0

)
(48)

since the ℓ∞ norm is upper bounded by the ℓ2 norm.797

Lemma 16. The following are true.798

• ∥CF − C̄F ∥∞ ≤ 4
γp

(
δ2 +

4armU

mϵ0

)
799

• ∥C̄F −C⋆∥∞ ≤ ∥C̄F −CF ∥∞ + ∥CF −C⋆∥∞ ≤ 4
γp

(
δ2 +

4armU

mϵ0

)
+O(δ′2/(γp)

2)800

From this, we can bound the errors on the topic matrix.801

Lemma 17. The following are true.802

• ∥AF − Ā∥∞ ≤ O(ar∥CF − C̄F ∥∞)803

• ∥Ā−A⋆∥∞ ≤ O(ar∥C̄F −C⋆∥∞)804

• ∥AS −AF ∥∞ ≤ O(ar∥CF −CS∥∞)805

Proof. Note that entries Ai,k are806

Ai,k =
Ci,k Pr[w = i]

Pr[z = k]
(49)

Therefore, the perturbation in A will be the perturbation in C multiplied by ar, since the denomi-807

nator is lower bounded by 1/ar due to the topic imbalance constant.808

Now, we give a new lemma.809

Proposition 3. When mU ≥ Ω(
√

mϵ0
4ar ), we have that810

δ′2 = δ2 +
4armU

mϵ0
=

√
4ar

mϵ0
+

4armU

mϵ0
≤ O

(
armU

mϵ0

)
(50)

Now, we analyze what happens given that Ω
(√

mϵ0
4ar

)
≤ mU ≤ 0.001mϵ0(γp)

3

a2r2 .811
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Lemma 18. For ϵ, δ > 0, the deletion capacity satisfies812

TA,U
ϵ,δ (m) ≥ Ω̃

(
m

r2
√
nr

)
(51)

Proof. Recall that813

∥Ā−A⋆∥∞ ≤ O(arδ′2(1/γp+ 1/(γp)2)) ≤ O

(
(ar)2mU

mϵ0γp

)
(52)

Moreover, we also have that814

∥Ā−AF ∥∞ ≤ O(ar∥CF − C̄F ∥∞) (53)

≤ O

(
4arδ′2
γp

)
(54)

≤ O

(
(ar)2mU

mϵ0γp

)
(55)

Note that A has ℓ2 sensitivity O
(√

nr (ar)2mU

mϵ0γp

)
. We now apply the Gaussian mechanism to the815

matrix A entrywise with noise816

σ =
O
(√

nr (ar)2mU

mϵ0γp

)
ϵ

√
2 log(1.25/δ) (56)

From this, we obtain that817

E
[
∥Ã−A⋆∥∞

]
≤ E

[
max
i,k
|νi,k|

]
+ E

[
∥Ā−A⋆∥∞

]
(57)

≤ O

(
√
nr · (ar)

2mU

mϵ0γp
·
√
log(nr) ·

√
log(1/δ)

ϵ

)
+O

(
(ar)2mU

mϵ0γp

)
(58)

Finally, this says that when818

mU ≤ Ω̃

(
m

r2
√
nr

)
(59)

we have that the utility is preserved up to constant amount, say 0.01.819

This proves Theorem 2. It is straightforward to continue the perturbation analysis for the topic-topic820

covariance matrix R⋆ and prove similar deletion capacity rates.821

C Downstream task proofs822

Recall the algorithm for learning the downstream task head.

Algorithm 6 Learning algorithm for task T (Ahead)
Input: document corpus S = {di}mi=1, anchor word tolerance ϵ0
A,R = Abase(S)
return argminw∈Whead

ℓT (w;A)

823

Assumption 4. For any A, ℓT is λ-strongly convex with respect to w.824

Since our topic matrix A, can only take on a bounded support (i.e. the set of matrices where each825

row is on the probability simplex), it is natural to say that the set of values w⋆(A) takes on over all826

topic matrices A is bounded in a certain sense. As such, we also assume the following:827

23



Assumption 5. For any base model A, the vector v such that v = argminw ℓT (w;A) satisfies828

∥v∥2 ≤ B.829

Assumption 6. For any A, ℓT is L-Lipschitz with respect to w and the ℓ2 norm, and is L2-Hessian830

Lipschitz with respect to w and the ℓ2 norm. In other words,831

∥ℓT (A,w1)− ℓT (A,w2)∥2 ≤ L∥w1 −w2∥2 (60)

∥∇2
wℓT (A,w1)−∇2

wℓT (A,w2)∥2 ≤ L2∥w1 −w2∥2 (61)

Assumption 7. For any w,∇wℓT is L∞-Lipschitz with respect to A and the ℓ∞ norm; that is,832

∥∇wℓT (A,w)−∇wℓT (Ã,w)∥2 ≤ L∞∥A− Ã∥∞ (62)
(63)

We give a helper lemma that (ϵ, δ)-indistinguishability is immune to post processing.833

Lemma 19 (Post-processing immunity). Consider two random variables θ1, θ2 ∈ Θ that are (ϵ, δ)-834

indistinguishable. Then, for any arbitrary mapping f : Θ→ Θ′, it holds that f(θ1), f(θ2) ∈ Θ′ are835

(ϵ, δ)-indistinguishable.836

Proof. Consider an arbitrary set T ′ ⊆ Θ′; let T = {r ∈ Θ : f(r) ∈ T ′}. Then, it holds that837

Pr[f(θ1) ∈ T ′] = Pr[θ1 ∈ T ] (64)
≤ eϵ Pr[θ2 ∈ T ] + δ (65)

= eϵ Pr[f(θ2) ∈ T ′] + δ (66)

as desired.838

We now give a certifiable unlearning guarantee for the most naive retraining algorithm for the down-839

stream task, which we mentioned in the main text as Theorem 3.840

Theorem 6 (Unlearning when releasing A and w). For a downstream task T with loss func-841

tion ℓT , consider the unlearning algorithm Uhead, naive that first runs Algorithm 1 to compute842

Ã = Ubase(Sf ,Abase(S), T (S)), where (Abase,Ubase) perform utility-preserving unlearning (The-843

orem 2). Then, it fits a head w = argminw∈Whead
ℓT (w; Ã) and returns Ã and w. We assert that844

(Ahead, naive,Uhead, naive) performs utility-preserving unlearning (Definition 4).845

Proof. Intuitively, this is a result of post processing. More precisely, consider the (ϵ, δ)-846

indistinguishable base models Ã := Ubase(Sf ,Abase(S), T (S)) and Ã′ := Ubase(∅,Abase(S \847

Sf ), T (S \ Sf )). Then, since the head fitting is a deterministic post-processing of the original848

model, this proves the (ϵ, δ)-indistinguishability between the two.849

To prove the utility preservation, observe that in this setting850

E[∥Ã−A⋆∥∞] ≤ 0.01 (67)
(68)

We thus obtain by Lemma 20851

E[∥w⋆(Ã)−w⋆(A⋆)∥∞] ≤ E[∥w⋆(Ã)−w⋆(A⋆)∥2] (69)

≤ L∞

λ
E[∥Ã−A⋆∥∞] (70)

which is at most 0.01, up to constant rescaling.852

The above result is nice, and it follows from the fact that the training algorithm of the downstream853

task head is just a post-processing. However, a downside is that it still requires retraining of the854

downstream task head. We can show something stronger: even without provable unlearning of the855

base model (A and R), we can achieve provable unlearning of the downstream task head weights856

when the downstream task loss is convex in the trainable weights w.857

We will now consider an arbitrary task T . We first give the following notation.858
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Definition 8. For a base model A, let w⋆(A) := argminw ℓT (w;A).859

First, we give the following helper lemma that will be useful later on.860

Lemma 20. Consider two base models A1 and A2. Then, it holds that861

∥w⋆(A1)−w⋆(A2)∥2 ≤
L∞

λ
∥A1 −A2∥∞ (71)

Proof. Observe that862

λ∥w⋆(A1)−w⋆(A2)∥2 ≤ ∥∇wℓT (w
⋆(A1);A2)−∇wℓT (w

⋆(A2);A2)∥2 (72)
= ∥∇wℓT (w

⋆(A1);A2)−∇wℓT (w
⋆(A1);A1)∥2 (73)

≤ L∞∥A1 −A2∥∞ (74)
where the first line follows from strong convexity, the second line from the gradients being zero,863

and the third line from the definition of L∞ Lipschitz constant. Dividing both sides by λ gives the864

desired result.865

We now define the following notations for clarity.866

• wS := w⋆(AS)867

• wF := w⋆(AF )868

• w̄⋆ := w⋆(Ā)869

• w̄ := wS −H−1
wS∇wℓT (w

S ; Ā), which is the Newton step we take from wS to approxi-870

mate w̄⋆871

First, we give a bound on the approximation error of the Newton step.872

Lemma 21. It holds that873

∥w̄ − w̄⋆∥ ≤ L2L
2
∞

2λ3
∥AS − Ā∥2∞ (75)

Proof. We aim to bound the distance of the Newton step from w̄⋆:874

w̄ − w̄⋆ =
(
wS −H−1

wS∇wℓT (Ā,wS)
)
− w̄⋆ (76)

where HwS = ∇2
wℓT (Ā,wS). Then, it holds that875

wS −H−1
wS∇wℓT (Ā,wS)− w̄⋆ (77)

= wS − w̄⋆ −H−1
wS

(
∇wℓT (Ā,wS)−∇wℓT (Ā, w̄⋆)

)
(78)

= H−1
wS

(
HwS (wS − w̄⋆)−

∫ 1

0

Hw̄⋆+t(wS−w̄⋆)(w
S − w̄⋆)dt

)
(79)

= H−1
wS

∫ 1

0

(
HwS −Hw̄⋆+t(wS−w̄⋆)

)
dt · (wS − w̄⋆) (80)

The norm of this quantity is therefore bounded by876

∥H−1
wS∥2 ·

L2

2
∥wS − w̄⋆∥ · ∥wS − w̄⋆∥ (81)

=
L2

2λ
∥wS − w̄⋆∥22 (82)

≤ L2

2λ

(
1

λ
∥∇ℓT (Ā,wS)−∇ℓT (AS ,wS)∥2

)2

(83)

≤ L2

2λ

(
L∞

λ
∥Ā−AS∥∞

)2

(84)

Hence, we have that877

∥w̄ − w̄⋆∥2 ≤
L2L

2
∞

2λ3
∥AS − Ā∥2∞ (85)

878
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C.1 Instantiating for Tclf = [r]879

We first instantiate Theorem 4 for the case where Tclf = [r], or equivalently when q = 1/ar.880

Lemma 22. Recall our retrained model for the downstream task is AFwF . Then, it holds that881

∥Āw̄ −AFwF ∥2 ≤ O

(
√
r

(
(ar)2mU

mϵ0γp

)2

+B
√
nr

(ar)2mU

mϵ0γp

)
(86)

Proof. We rewrite as follows.882

Āw̄ −AFwF =
(
Āw̄ − Āw̄⋆

)
+
(
Āw̄⋆ −AF w̄⋆

)
+
(
AF w̄⋆ −AFwF

)
(87)

Now, we proceed to bound the ℓ2 norm of each of these individual terms separately. For the first883

term, we have that884

∥Āw̄ − Āw̄⋆∥2 = ∥Ā(w̄ − w̄⋆)∥2 (88)
≤ ∥w̄ − w̄⋆∥1 (89)

≤
√
r∥w̄ − w̄⋆∥2 (90)

≤
√
r
L2L

2
∞

2λ3
∥AS − Ā∥2∞ (91)

≤
√
r
L2L

2
∞

2λ3

(
(ar)2mU

mϵ0γp

)2

(92)

where second line follows from Ā having column sum 1, and the fourth line follows from Lemma 20885

For the third term, we have a similar analysis.886

∥AF w̄⋆ −AFwF ∥2 = ∥AF (w̄⋆ −wF )∥2 (93)

≤ ∥w̄⋆ −wF ∥1 (94)

≤
√
r∥w̄⋆ −wF ∥2 (95)

≤
√
r
L∞

λ
∥Ā−AF ∥∞ (96)

≤
√
r
L∞

λ

(
(ar)2mU

mϵ0γp

)
(97)

Finally, for the second term, we have that887

∥Āw̄⋆ −AF w̄⋆∥2 ≤ ∥Ā−AF ∥2∥w̄⋆∥2 (98)

≤ ∥Ā−AF ∥∞
√
nr∥w̄⋆∥2 (99)

≤ O

(
(ar)2mU

mϵ0γp

√
nrB

)
(100)

By triangle inequality, we obtain the desired result.888

First, we note show the following property of the learned topic model AS .889

Lemma 23. The minimum singular value of the ground truth topic matrix AS is at least Θ(p), since890

the perturbations in entries of ĀS are at most ϵ0 ≤ O(1/
√
nr). Hence, the singular values cannot891

change by more than a constant factor relative to p.892

Proof. We know that A⋆ is a p-separable topic model, and hence has smallest singular value at893

least p. For the given sample complexity of learning, AS will have smallest singular value at least894

Θ(p).895

The above result says that AS has a unique pseudoinverse, and has largest singular value at most896

O(1/p).897
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Recall that our goal for the downstream task is to approximate the vF such that898

ASv = AFwF (101)

in order to say we have approximated the unlearned fine-tuned model. Therefore, it suffices to obtain899

indistinguishability of our unlearning algorithm output w̃ with (AS)†AFwF . Our following claim900

is that we can use (AS)†Āw̄ as the approximation for this.901

Proposition 4. It holds that902

∥(AS)†Āw̄ − (AS)†AFwF ∥2 ≤ O

(
1

p
∥Āw̄ −AFwF ∥2

)
(102)

≤ O

(
1

p
·

[
√
r

(
(ar)2mU

mϵ0γp

)2

+B
√
nr

(ar)2mU

mϵ0γp

])
(103)

Let v̄ := (AS)†Āw̄ and v = (AS)†AFwF . We claim the following.903

Lemma 24. The unlearning algorithm Uhead that outputs904

ṽ := v̄ + νv (104)

where νv is the noise defined by the Gaussian mechanism using the above sensitivity satisfies prov-905

able (ϵ, δ) unlearning. In particular, we use906

σ =

O

(
1
p ·
[
√
r
(

(ar)2mU

mϵ0γp

)2
+B
√
nr (ar)2mU

mϵ0γp

])
ϵ

√
2 log(1.25/δ) (105)

where the numerator of the fraction is from the previous proposition.907

Proof. This follows from Gaussian mechanism.908

We now proceed to bound the deletion capacity. In this case, the utility is defined by the closeness909

of ṽ to (AS)†A⋆w⋆ in ℓ∞ norm, similar the way we defined this for the base model unlearning910

algorithm Ubase earlier.911

First, the following lemma to bound AFwF −A⋆w⋆.912

Lemma 25. We have that913

∥AFwF −A⋆w⋆∥2 ≤ O

(
B
√
nr

(ar)2mU

mϵ0γp

)
(106)

Proof. We decompose as follows.914

AFwF −A⋆w⋆ = (AFwF −AFw⋆) + (AFw⋆ −A⋆w⋆) (107)

The first term is bounded by915

∥AFwF −AFw⋆∥2 ≤
√
r∥wF −w⋆∥2 ≤ O(

√
r∥AF −A⋆∥∞) ≤ O

(√
r
(ar)2mU

mϵ0γp

)
(108)

The second term is bounded by916

∥AFw⋆ −A⋆w⋆∥2 ≤ O

(
(ar)2mU

mϵ0γp

√
nrB

)
(109)

by considering the spectral norm ∥AF −A⋆∥2. This gives the desired result.917

As a result, the following holds.918

Proposition 5. It holds that919

∥(AS)†AFwF − (AS)†A⋆w⋆∥2 ≤ O

(
1

p

[√
r
(ar)2mU

mϵ0γp
+B
√
nr

(ar)2mU

mϵ0γp

])
(110)
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This is once again from the bounded operator norm property of (AS)†.920

Finally, we can apply triangle inequality to get the following.921

Lemma 26. It holds that922

∥(AS)†Āw̄ − (AS)†A⋆w⋆∥2 ≤

(
1

p
·

[
√
r

(
(ar)2mU

mϵ0γp

)2

+B
√
nr

(ar)2mU

mϵ0γp

])
(111)

Then, we can get the following bound on deletion capacity.923

Lemma 27. For ϵ, δ > 0, the deletion capacity satisfies924

TAhead,Uhead

ϵ,δ (m) ≥ Ω̃

(
m

r2
√
nr

)
(112)

Proof. The calculation is as follows.925

E
[
∥ṽ − (AS)†A⋆w⋆∥∞

]
≤ E[∥νv∥∞] + E

[
∥(AS)†Āw̄ − (AS)†A⋆w⋆∥∞

]
(113)

≤

(
1

p
·

[
√
r

(
(ar)2mU

mϵ0γp

)2

+B
√
nr

(ar)2mU

mϵ0γp

])(√
log r log 1/δ

ϵ
+ 1

)
(114)

For this to be a small constant, we require926

(ar)2mU

mϵ0γp
≤ Õ

(
min

{
1

r1/4
,

1√
nr

})
(115)

Therefore, we should have927

mU ≤ Ω̃

(
m

r2
√
nr

)
(116)

928

C.2 Proof for general q929

The following is the formal statement of Theorem 4.930

Theorem 7 (Formal version of Theorem 4). Suppose that the downstream task T only depends on931

a subset of topics Tclf ⊆ [r]; that is, w⋆ = argminv∈Wbase
ℓT (v;A

⋆) has non-zero entries only in932

the index set Tclf. Denote q := mink∈Tclf PrD[z = k], and let Ahead be the head tuning algorithm933

(Definition 2) and Uhead be Algorithm 2. Then, (Ahead,Uhead) performs utility-preserving unlearning934

with deletion capacity935

TAhead,Uhead
ϵ,δ (m) ≥ c′ ·min

{
mqϵ

r
√

nr log 1/δ
,
0.001m

r2

}
(117)

where c′ is a constant dependent on D, and T .936

Lemma 28. Recall our retrained model for the downstream task is AFwF . Then, it holds that937

∥Āw̄ −AFwF ∥2 ≤ O

(√
r

(
(ar)2mU

mϵ0γp

))
+O

(
B
√
nr

(1/q)armU

mϵ0γp

)
+O

((
(ar)2mU

mϵ0γp

)2√
nr

)
(118)

Proof. Consider this decomposition again.938

Āw̄ −AFwF =
(
Āw̄ − Āw̄⋆

)
+
(
Āw̄⋆ −AF w̄⋆

)
+
(
AF w̄⋆ −AFwF

)
(119)

The first term is the same as old analysis; the second term is from considering q; the third is the939

same as the old analysis. In particular, when q = 1/ar, we recover the old bound. We have that the940

first term is941

∥Āw̄ − Āw̄⋆∥ ≤
√
r
L2L

2
∞

2λ3

(
(ar)2mU

mϵ0γp

)2

(120)
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The third term is942

∥AF w̄⋆ −AFwF ∥ ≤
√
r
L∞

λ

(
(ar)2mU

mϵ0γp

)
(121)

The second term is943

∥Āw̄⋆ −AF w̄⋆∥ ≤ ∥(Ā−AF )w̄⋆∥+ ∥(Ā−AF )(w⋆ − w̄⋆)∥ (122)

≤ O

(
B
√
nr

(1/q)armU

mϵ0γp

)
+O

((
(ar)2mU

mϵ0γp

)2√
nr

)
(123)

This gives the desired result using triangle inequality.944

Continuing, we have the following.945

Proposition 6. It holds that946

∥(AS)†Āw̄ − (AS)†AFwF ∥2 (124)

≤ O

(
1

p
∥Āw̄ −AFwF ∥2

)
(125)

≤ O
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p
·
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r
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)
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√
nr

(1/q)armU

mϵ0γp
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mϵ0γp

)2√
nr

])
(126)

This gives us the following.947

Lemma 29. The unlearning algorithm Uhead that outputs948

ṽ := v̄ + νv (127)

where νv is the noise defined by the Gaussian mechanism using the above sensitivity satisfies prov-949

able (ϵ, δ) unlearning. In particular, we use950

σ =

O

(
1
p ·
[
√
r
(

(ar)2mU

mϵ0γp

)
+B
√
nr (1/q)armU

mϵ0γp
+
(

(ar)2mU
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)2√
nr

])
ϵ

√
2 log(1.25/δ) (128)

where the numerator of the fraction is from the previous proposition.951

Proof. This follows from Gaussian mechanism.952

We now proceed to bound the deletion capacity. In this case, the utility is defined by the closeness953

of ṽ to (AS)†A⋆w⋆ in ℓ∞ norm, similar the way we defined this for the base model unlearning954

algorithm Ubase earlier.955

First, the following lemma to bound AFwF −A⋆w⋆.956

Lemma 30. We have that957

∥AFwF −A⋆w⋆∥2 ≤ O
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)
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)2√
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)
(129)

Proof. We decompose as follows.958

AFwF −A⋆w⋆ = (AFwF −AFw⋆) + (AFw⋆ −A⋆w⋆) (130)

The first term is bounded by959

∥AFwF −AFw⋆∥2 ≤
√
r∥wF −w⋆∥2 ≤ O(

√
r∥AF −A⋆∥∞) ≤ O
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(
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(131)
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The second term is bounded by960

∥AFw⋆ −A⋆w⋆∥2 ≤ B
√
nr

(1/q)armU

mϵ0γp
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(
(ar)2mU

mϵ0γp

)2√
nr (132)

Triangle inequality gives us the desired result.961

As a result, the following holds.962

Proposition 7. It holds that963

∥(AS)†AFwF − (AS)†A⋆w⋆∥2 ≤ O
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(133)

This is once again from the bounded operator norm property.964

Finally, we can apply triangle inequality to get the following.965

Lemma 31. It holds that966
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Then, we can get the following bound on deletion capacity.967

Lemma 32. For ϵ, δ > 0, the deletion capacity satisfies968

TAhead,Uhead

ϵ,δ (m) ≥ Ω̃

(
m

r2
√
nr

)
(135)

Proof. The calculation is as follows.969

E
[
∥ṽ − (AS)†A⋆w⋆∥∞

]
≤ E[∥νv∥∞] + E
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·

(√
log r log 1/δ

ϵ
+ 1

)
(138)

For this to be a small constant, we require970

(ar)2mU

mϵ0γp
≤ Õ

(
min

{
1

r1/2
,

1

(nr)1/4
,
arq√
nr

})
(139)

When n is at least r3, this bound will be tight. Therefore, we should have971

mU ≤ Ω̃
( mq

r1.5n0.5

)
(140)

972
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