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ABSTRACT

Domain generalization aims to build generalized models that perform well on
unseen domains when only source domains are available for model optimiza-
tion. Recent studies have demonstrated that large-scale pre-trained models could
play an important role in domain generalization by providing their generaliza-
tion power. However, large-scale pre-trained models are not fully equipped with
target task-specific knowledge due to a discrepancy between the pre-training ob-
jective and the target task. Although the task-specific knowledge could be learned
from source domains by fine-tuning, this hurts the generalization power of the pre-
trained models because of gradient bias toward the source domains. To address
this issue, we propose a new domain generalization method that estimates unob-
servable gradients that reduce potential risks in unseen domains, using a large-
scale pre-trained model. Our proposed method allows the pre-trained model to
learn task-specific knowledge further while preserving its generalization ability
with the estimated gradients. Experimental results show that our proposed method
outperforms baseline methods on DOMAINBED, a standard benchmark in domain
generalization. We also provide extensive analyses to demonstrate that the esti-
mated unobserved gradients relieve the gradient bias, and the pre-trained model
learns the task-specific knowledge without sacrificing its generalization power.

1 INTRODUCTION

Many machine learning studies assume that training and test data are independent and identically
distributed (i.i.d). However, this i.i.d assumption does not always hold in real-world scenarios where
distribution shifts between training and test data occur frequently. Thus, traditional machine learn-
ing models often show poor performance on unseen domains shifted from source (training) do-
mains (Quinonero-Candela et al., 2008; Torralba & Efros, 2011). To tackle this problem, domain
generalization has attracted much attention recently.

The main goal of domain generalization is to build generalized models that also perform the target
task (e.g., classification) well on unseen domains (e.g., painted images) when only source domains
(e.g., realistic images) are accessible during model optimization. Early domain generalization stud-
ies (Muandet et al., 2013; Ganin et al., 2016; Li et al., 2018b) have focused on learning domain-
invariant representations across the source domains. However, Gulrajani & Lopez-Paz (2021) have
recently shown that simple empirical risk minimization (ERM) (Vapnik, 1999) outperforms the pre-
vious methods on DOMAINBED, a benchmark for domain generalization, with pre-trained ResNet-
50 (He et al., 2016). Moreover, Yu et al. (2021) provide empirical evidence that large-scale pre-
trained models could play an important role in domain generalization by providing their generaliza-
tion power.

Motivated by this, several studies have begun to leverage the generalization power of large-scale
pre-trained models. Cha et al. (2022) employ a pre-trained model for regularization, considering
it as an approximation of the oracle model on any domain, and Li et al. (2022) utilize a frozen
pre-trained model as a feature extractor. These studies have proven the usefulness of pre-trained
models in domain generalization. However, the pre-trained models used in those studies cannot
learn task-specific knowledge further since they are frozen during model optimization to preserve
their generalization ability. To learn the task-specific knowledge, one can choose fine-tuning that
updates all the parameters of pre-trained models by optimizing the models on the source domains.
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(b) Gradient conflict between g and gu

Figure 1: (a): model optimization is influenced by the gradient g biased toward the source domains,
neglecting the unobservable gradient gu that could minimize risks in the unseen domains. (b):
Gradient “conflicts” (Yu et al., 2020; Mansilla et al., 2021) between g and gu (i.e., g · gu < 0)
constantly occur throughout the whole fine-tuning iterations due to the gradient bias. Our proposed
method reduces the number of gradient conflicts by adding the estimated unobservable gradient
g̃u to the biased gradient g. This observation indicates that the gradient bias is relieved with the
estimated gradient during model optimization. The more details are described in § 3.4.

However, Kumar et al. (2022) demonstrate that fine-tuning distorts generalized representations of
the pre-trained models. Namely, fine-tuning hurts the generalization ability of pre-trained models.

In this paper, we interpret the above issue in terms of gradient bias during model optimization. As
shown in Figure 1a, the gradient of naive fine-tuning is biased toward the source domains because
it is computed by only the source domains, disregarding unseen domains. Although this biased
gradient reduces empirical risks in the source domains with the learning of task-specific knowledge,
it probably increases risks in the unseen domains. We argue that the gradient bias would be relieved
if gradients that lower the risks in the unseen domains are observable.

To this end, we propose a new domain generalization method, called GESTUR, which estimates
the unobservable gradients with a large-scale pre-trained model. GESTUR consists of two key
components: a task expert (TE) and a generalization expert (GE). Based on ERM where gradients
tend to be biased to the source domains, TE learns task-specific knowledge from source domains
directly to transfer the knowledge to GE. Meanwhile, GE learns the task-specific knowledge from
TE indirectly via exponential moving average (EMA) while preserving the generalization ability of
a large-scale pre-trained model. Still, the gradient bias of TE might impair the generalization ability
of GE. To mitigate this, GE is utilized to estimate the unobservable gradient that minimizes risks
in unseen domains for TE based on the assumption that large-scale pre-trained models could act as
a loose approximation of the oracle model of unseen domains (§ 2). As shown in Figure 1b, the
biased gradient of TE is relieved by simply adding the estimated unobservable gradient to the biased
gradient, improving domain generalization performance (§ 3). Extensive experiments and analyses
demonstrate that GESTUR outperforms baseline methods by learning the task-specific knowledge
appropriately from source domains while preserving the generalization ability of large-scale pre-
trained models.

Contributions: (1) We propose a simple yet effective domain generalization method that learns
task-specific knowledge while preserving the generalization ability of large-scale pre-trained mod-
els. Our proposed method estimates the unobservable gradients that reduce potential risks in unseen
domains to relieve the gradient bias toward source domains, based on the two experts, TE and GE.
(2) We conduct extensive experiments to show the effectiveness of our proposed method in domain
generalization. By providing careful analyses, we demonstrate that the unobservable gradients could
be estimated with a large-scale pre-trained model, and it relieves the gradient bias. We also demon-
strate that our proposed method learns task-specific knowledge without sacrificing the generalization
ability of the large-scale pre-trained model.
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2 METHODOLOGY

2.1 PRELIMINARIES

Problem formulation. Let Ds and Du be sets of source domains and unseen domains, respec-
tively. Each domain D contains the total number of nD data samples, {(xi, yi)}nD

i=1 ∼ D, where
each data sample (xi, yi) consists of an input xi and its target label yi. The nD data samples are
i.i.d over some probability distribution. The main goal of domain generalization is to build a model
θ that performs well on the unseen domains Du when the source domains Ds are only available:

min
θ

ED∼Du
E(x,y)∼D[ℓ((x, y); θ)], (1)

where ℓ((x, y); θ) is the loss function defined for the model θ on the data sample (x, y). Note that this
study focuses on solving classification tasks. Hence, we denote the model in detail as θ = {θf ; θc}
consisting of its feature extractor θf and classifier θc.

Motivation. With success in many downstream tasks, it has become a convention to initialize
the feature extractor θf with a large-scale pre-trained model. Although pre-trained models provide
better feature representations than randomly initialized parameters, they do not fully equip task-
specific knowledge yet. It is because there is a discrepancy between the pre-training objective and
the target task. For example, CLIP (Radford et al., 2021) is pre-trained to match web-crawled image-
caption pairs, whereas the target task is to classify data into seven classes (e.g., horse and dog), in
the case of PACS (Li et al., 2017). Therefore, many studies have adopted fine-tuning that updates
all the parameters of the feature extractor θf to learn the task-specific knowledge by optimizing
the model on source domains Ds. However, Kumar et al. (2022) observe that fine-tuning impairs
generalization ability of pre-trained models during the learning of task-specific knowledge.

We try to interpret this issue at the gradient level. Based on ERM (Vapnik, 1999), the gradient g of
fine-tuning is computed for the model θ on the source domains Ds, as follows:

g = ∇θE(x,y)∼B[ℓ((x, y); θ)], (2)

where B is a mini-batch sampled from the source domains Ds. The gradient g is influenced by only
the source domains Ds because the unseen domains Du are not accessible. Namely, the gradient
is biased toward the source domains. We presume that this gradient bias degrades generalization
performance in the unseen domains.

2.2 GESTUR: GRDIENT ESTIMATION FOR UNSEEN DOMAIN RISK MINIMIZATION WITH
PRE-TRAINED MODELS

We hypothesize that the gradient bias mentioned above could be relieved if the unobservable gra-
dient gu minimizing risks in the unseen domains is computable. To achieve this, we borrow the
assumption of Cha et al. (2022) that large-scale pre-trained models are the approximation of the
oracle model θ∗ which is optimally generalized for any domain D. Since the unobservable gradi-
ent gu cannot be computed from the unseen domains Du directly, we consider the direction from
the current model θ to the oracle model θ∗ as the unobservable gradient gu. However, the oracle
model is inaccessible in practice. Hence, we estimate the unobservable gradient using a large-scale
pre-trained model as the approximation of the oracle model.

Note that we aim to estimate the unobservable gradient gu for the unseen domains Du to alleviate
the gradient bias, so the above assumption needs to be more elaborate due to the following rea-
sons. First, we intend to design the unobservable gradient for the unseen domains only rather than
any domain. Second, pre-trained models do not have task-specific knowledge yet, as described in
§ 2.1. Therefore, we slightly modify the assumption as follows: pre-trained models are the loose
approximation of the oracle model θ∗u of the unseen domains Du, and they could get closer to the
oracle model by learning task-specific knowledge. Based on this assumption, we propose a simple
yet effective domain generalization method, GESTUR, which estimates the unobservable gradient
gu for unseen domain risk minimization with a large-scale pre-trained model.

Task expert and generalization expert. GESTUR consists of two classification models: a task
expert (TE, θTE) and a generalization expert (GE, θGE), which are complementary to each other.
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Their feature extractors are both initialized with a large-scale pre-trained model θ0, respectively.
TE learns task-specific knowledge from the source domains Ds directly to transfer the knowledge
to GE. Meanwhile, GE also learns task-specific knowledge from TE via EMA, but it preserves the
generalization ability of the pre-trained model deliberately. Here, the gradient bias of TE might hurt
the generalization ability of GE because the knowledge of TE is injected into GE. To relieve the
gradient bias, GE is used to estimate the unobservable gradient gu as the loose approximation of the
oracle model θ∗u for the unseen domains Du. Our proposed GESTUR is summarized in Algorithm 1.

Algorithm 1 GESTUR
1: Input: task expert θTE, generalization expert θGE, gradient

scale factor λ, and moving average coefficient m.
2: Init: initialize the feature extractors θfTE and θfGE with a

pre-trained model θ0 and randomly initialize the classi-
fiers θcTE and θcGE.

3: Output: the updated generalization expert θGE
4: for sampled mini-batch B from the source domains Ds do
5: g = ∇θE(x,y)∼B[ℓ((x, y); θTE)]

6: g̃f
u = θfGE − θfTE

7: g̃f
u = λ∥gf∥2 ·

g̃f
u

∥g̃f
u∥2

8: gf = (gf + g̃f
u)/2

9: update θfTE with gf and update θcTE with gc

10: update θGE = mθGE + (1−m)θTE
11: end for

Gradient estimation. Using Equa-
tion 2, the gradient g for TE is computed
as g = ∇θE(x,y)∼B[ℓ((x, y); θTE)] while
learning task-specific knowledge. The
gradient g is biased toward the source
domains Ds. A gradient that minimizes
risks in the unseen domains could relieve
the gradient bias, but it is unobservable.
When we have access to the oracle model
θ∗u of the unseen domains Du, we can
direct the current model to head to the
oracle model instead of empirically cal-
culating the unobservable gradient from
the unseen domains. Hence, we treat the
direction from the current model θTE to
the oracle model θ∗u as the unobservable
gradient gu:

gu = θ∗u − θTE. (3)

In fact, it is infeasible to access the oracle model. Thus, we estimate the unobservable gradient using
GE that approximates the oracle model loosely, as follows:

g̃u = θGE − θTE. (4)

This estimated gradient g̃u is used to relieve the gradient bias during the parameter optimization.

Parameter optimization. We want to emphasize again that GESTUR leverages the generalization
power of large-scale pre-trained models to relieve the gradient bias which distorts the generalized
feature representations of the feature extractor θf . Hence, we limit the scope of usage of the esti-
mated unobservable gradient g̃u only to the feature extractor θf , not the classifier θc.

For TE, the estimated gradient g̃f
u for the feature extractor θfTE is added to the biased gradient gf for

the same feature extractor, as follows:

gf =
1

2

(
gf + λ∥gf∥2 ·

g̃f
u

∥g̃f
u∥2

)
, (5)

where λ is a gradient scale factor that controls the influence of the normalized g̃f
u. The feature

extractor θfTE is updated with the gradient gf adjusted by g̃f
u. On the other hand, the classifier θcTE

of TE is updated with its original gradient gc.

As our assumption, GE can get closer to the oracle model θ∗ by learning task-specific knowledge.
However, the generalization ability of GE decreases when we optimize GE on the source domains
Ds directly to learn the task-specific knowledge. Therefore, we inject the learned task-specific
knowledge of TE into GE delicately via EMA:

θGE = mθGE + (1−m)θTE, (6)

where m is the moving average coefficient. By encouraging the parameters of GE to change slowly,
EMA is helpful in preserving the generalization ability of GE. Since the goal of domain generaliza-
tion is to build a model that minimizes the risk of the unseen domains, we choose GE, designed to
approximate the oracle model of the domains, as our final model θ.
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Table 1: Evaluation results (%) on the five datasets with the three different pre-trained models.

Method PACS VLCS OfficeHome TerraInc DomainNet Avg.

Using ResNet-50 pre-trained on ImageNet.

ERM 84.2 ±0.1 77.3 ±0.1 67.6 ±0.2 47.8 ±0.6 44.0 ±0.1 64.2
SagNet 86.3 ±0.2 77.8 ±0.5 68.1 ±0.1 48.6 ±1.0 40.3 ±0.1 64.2
SelfReg 85.6 ±0.4 77.8 ±0.9 67.9 ±0.7 47.0 ±0.3 42.8 ±0.0 64.2
CORAL 86.2 ±0.3 78.8 ±0.6 68.7 ±0.3 47.6 ±1.0 41.5 ±0.1 64.5
mDSDI 86.2 ±0.2 79.0 ±0.3 69.2 ±0.4 48.1 ±1.4 42.8 ±0.1 65.1
GVRT 85.1 ±0.3 79.0 ±0.2 70.1 ±0.1 48.0 ±1.4 44.1 ±0.1 65.2
MIRO 85.4 ±0.4 79.0 ±0.0 70.5 ±0.4 50.4 ±1.1 44.3 ±0.2 65.9
SMA 87.5 ±0.2 78.2 ±0.2 70.6 ±0.1 50.3 ±0.5 46.0 ±0.1 66.5
SWAD 88.1 ±0.1 79.1 ±0.1 70.6 ±0.2 50.0 ±0.3 46.5 ±0.1 66.9
GESTUR 88.0 ±0.2 80.1 ±0.2 71.1 ±0.0 51.3 ±0.2 46.3 ±0.1 67.4

Using ViT-B/16 with CLIP.

ERM 83.4 ±0.5 75.9 ±1.3 66.4 ±0.5 35.3 ±0.8 44.4 ±0.6 61.1
SWAD 91.3 ±0.1 79.4 ±0.4 76.9 ±0.1 45.4 ±0.5 51.7 ±0.8 68.9
MIRO 95.6 ±0.8 82.2 ±0.3 82.5 ±0.1 54.3 ±0.4 54.0 ±0.3 73.7
GESTUR 96.0 ±0.0 82.8 ±0.1 84.2 ±0.1 55.7 ±0.2 58.9 ±0.1 75.5

Using RegNetY-16GF with SWAG.

ERM 89.6 ±0.4 78.6 ±0.3 71.9 ±0.6 51.4 ±1.8 48.5 ±0.6 68.0
SWAD 94.7 ±0.2 79.7 ±0.2 80.0 ±0.1 57.9 ±0.7 53.6 ±0.6 73.2
MIRO 97.4 ±0.2 79.9 ±0.6 80.4 ±0.2 58.9 ±1.3 53.8 ±0.1 74.1
SMA 95.5 ±0.0 80.7 ±0.1 82.0 ±0.0 59.7 ±0.0 60.0 ±0.0 75.6
GESTUR 96.9 ±0.1 83.5 ±0.1 83.1 ±0.0 61.1 ±0.4 60.1 ±0.0 76.9

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Datasets. We conduct experiments using five popular domain generalization benchmark datasets:
PACS (Li et al., 2017) (4 domains & 7 classes), VLCS (Fang et al., 2013) (4 domains & 5 classes),
OfficeHome (Venkateswara et al., 2017) (4 domains & 65 classes), TerraIncognita (Beery et al.,
2018) (4 domains & 10 classes), and DomainNet (Peng et al., 2019) (6 domains & 345 classes).

Pre-trained models. GESTUR heavily relies on pre-trained models. Therefore, we employ three
pre-trained models of different sizes to verify that the proposed method performs well with various
pre-trained models generally: ResNet-50 (He et al., 2016) pre-trained on ImageNet (Deng et al.,
2009) (RN50), ViT-B/16 (Dosovitskiy et al., 2021) with CLIP (Radford et al., 2021) (CLIP), and
RegNetY-16GF (Radosavovic et al., 2020) with SWAG (Singh et al., 2022) (SWAG).

Evaluation protocol. We adopt the experimental protocol of DOMAINBED, which enforces fair
and realistic evaluations (e.g., same model selection criterion) across competitors. We divide the
data from each domain into 80% and 20% splits and follow training-domain validation set strategy
for the model selection and the hyperparameter search in every experiment. We also repeat every
experiment three times to reduce the randomness in dataset splits and parameter initialization, sim-
ilar to Gulrajani & Lopez-Paz (2021), and report the mean and standard error of the experimental
results.

Implementation details. Our implementation is built on the codebase of Cha et al. (2022). We
use Adam optimizer (Kingma & Ba, 2015) for parameter optimization. GESTUR has two hyperpa-
rameters, the gradient scale factor (λ) and the moving average coefficient (m). In every experiment,
we search the optimal λ from {0.01, 0.05, 0.1, 0.5} and fix m as 0.999. Other hyperparameters such
as learning rate, weight decay, and dropout are searched in the same way as Cha et al. (2022). We
explain more details of implementation in Appendix A.
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Table 2: Evaluation results (%) on the four datasets with the three different pre-trained models. We
separate the cases where GESTUR uses TE and GE as the final model, respectively.

Method PACS VLCS OfficeHome TerraInc Avg.

Using ResNet-50 pre-trained on ImageNet.

ERM 84.2 ±0.1 77.3 ±0.1 67.6 ±0.2 47.8 ±0.6 69.2
GESTUR w/ TE 84.9 ±0.1 79.2 ±0.5 66.3 ±0.2 45.6 ±1.3 69.0
GESTUR w/ GE 88.0 ±0.2 80.1 ±0.2 71.1 ±0.0 51.3 ±0.2 72.6

Using ViT-B/16 with CLIP.

ERM 83.4 ±0.5 75.9 ±1.3 66.4 ±0.5 35.3 ±0.8 65.3
GESTUR w/ TE 90.7 ±0.9 82.4 ±0.4 76.9 ±0.5 50.4 ±0.2 75.1
GESTUR w/ GE 96.0 ±0.1 82.8 ±0.1 84.2 ±0.1 55.7 ±0.2 79.7

Using RegNetY-16GF with SWAG.

ERM 89.6 ±0.4 78.6 ±0.3 71.9 ±0.6 51.4 ±1.8 72.9
GESTUR w/ TE 94.8 ±0.5 82.5 ±0.4 77.7 ±0.2 54.7 ±2.0 77.4
GESTUR w/ GE 96.9 ±0.1 83.5 ±0.1 83.1 ±0.0 61.1 ±0.4 81.2

Baselines. We exhaustively compare our proposed method with various baseline methods in the
experiment. For simplicity, we report only the experimental results of baseline methods that show
the higher performance than ERM (Vapnik, 1999), the simplest baseline method. We describe the
baseline methods and report the full version of the results in Appendix B.1.

3.2 MAIN RESULTS

Results on RN50. The first part of Table 1 shows the experimental results where RN50 is used to
initialize the feature extractor. GESTUR achieves the best performance for all the datasets except
DomainNet. In detail, the proposed method outperforms ERM by an average of 3.2%p. Further-
more, our proposed method improves the runner-up by: 1.0%p in VLCS, 0.5%p in OfficeHome, and
1.3%p in TerraIncognita. Especially, the proposed method outperforms the state-of-the-art method
(SWAD (Cha et al., 2021)) by an average of 0.5%p.

Results on CLIP and SWAG. In the second and third parts of Table 1, we show the experimental
results where the larger pre-trained models, CLIP and SWAG, are used to initialize the feature extrac-
tor, respectively. In summary, GESTUR achieves the best performance in all the datasets. In detail,
the proposed method outperforms MIRO that also leverages generalization power of large-scale pre-
trained models by 1.8%p and 2.8%p on CLIP and SWAG, respectively. From this, we verify that the
proposed method successfully leverages the generalization ability of pre-trained models compared
to other baseline methods. Interestingly, we observe that the performance gap between the proposed
method and ERM increases as the size of the pre-trained model increases.

3.3 COMPARISON BETWEEN THE TASK EXPERT AND THE GENERALIZATION EXPERT

Setup. GESTUR consists of two essential components: the task expert (TE) and the generalization
expert (GE). In this paper, we use GE as the final model based on the assumption that GE is set as the
approximation of the oracle model of unseen domains. Nevertheless, TE is also designed to preserve
the generalization ability of pre-trained models since it also considers the estimated unobservable
gradient in every update to relieve its gradient bias. Therefore, we compare the performance of
ERM, GESTUR w/ GE, and its variant GESTUR w/ TE based on the hyperparameters searched in
§ 3.2 to show that they preserve the generalization ability of large-scale pre-trained models.

Results. As shown in Table 2, GESTUR w/ GE achieves the best performance in all experiments.
Also, GESTUR w/ TE outperforms ERM by averages of 9.8%p and 4.5%p when using CLIP and
SWAG, respectively. The performance of GESTUR w/ TE is higher when the larger pre-trained mod-
els are given, similar to the observation in § 3.2. These observations demonstrate that GESTUR w/
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TE could preserve the generalization ability of the pre-trained models with the estimated unobserv-
able gradient, i.e., the gradient bias of TE is relieved. Moreover, GESTUR w/ GE shows a higher
performance than GESTUR w/ TE, which indicates that EMA ensures the model preserves gener-
alization ability during the learning of task-specific knowledge stable. From these, we reaffirm the
justification for our choice of GE as the final model.

3.4 COMPARISON WITH ERM IN TERMS OF GRADIENT BIAS

Table 3: The percentage (%) of gradient conflicts
between g and gu to the whole training iterations.

Method PACS VLCS OH TI Avg.

Using ResNet-50 pre-trained on ImageNet.

ERM 28.6 37.3 20.3 35.4 30.4
GESTUR 26.2 29.8 21.0 30.7 26.9

Using ViT-B/16 with CLIP.

ERM 35.3 43.1 33.4 42.6 38.6
GESTUR 28.7 37.4 25.0 30.8 30.5

Using RegNetY-16GF with SWAG.

ERM 31.7 39.7 30.0 37.5 34.7
GESTUR 24.5 34.8 16.5 23.7 24.9

Setup. As described in § 1, we suspect that
the gradient bias degrades the domain gen-
eralization performance. We further conduct
analysis to check how much gradient bias oc-
curs during the fine-tuning and how much
gradient bias is alleviated by our proposed
method. To quantify the gradient bias, we
borrow the concept of gradient conflict (Yu
et al., 2020; Mansilla et al., 2021): there is
a conflict between two gradients gi and gj

if gi · gj < 0. For every iteration, we first
sample two mini-batches from both source
domains and an unseen domain, respectively.
We then compute losses of the mini-batches,
and calculate gradients g and gu from the
losses, respectively. Finally, we count the
number of iterations where the gradient conflict (g · gu < 0) occurs, for ERM and GESTUR. Here,
we update the model using only the gradient g since unseen domains are inaccessible in practice.

Results. As shown in Table 3, GESTUR reduces the gradient conflicts of ERM by around 11.5%,
21%, and 28.2% for the pre-trained models, respectively. From this, we verify that our proposed
method relieves gradient bias by estimating unobservable gradients with the pre-trained model. We
observe that gradient conflicts occur more often in GESTUR than ERM on only the experimental
setup (OfficeHome w/ RN50), which is consistent with the performance in Table 2 where ERM out-
performs GESTUR w/ TE. This observation indicates that the domain generalization performance is
affected by the gradient bias represented as the gradient conflicts in this analysis. Additional analysis
on the similarity of the true and estimated unobservable gradients is provided in Appendix C.3.

3.5 TASK-SPECIFIC KNOWLEDGE LEARNED BY THE GENERALIZATION EXPERT

Table 4: Linear probing performance (%) with the two different pre-trained feature extractors: frozen
pre-trained model θ0 and the feature extractor θfGE of GE.

Model PACS VLCS OfficeHome TerraInc Avg.

Using ViT-B/16 with CLIP.

frozen 98.5 ±0.1 88.5 ±0.2 89.3 ±0.1 83.4 ±0.2 89.9
GE 98.7 ±0.1 90.0 ±0.6 89.4 ±0.3 88.3 ±0.1 91.6

Using RegNetY-16GF with SWAG.

frozen 98.9 ±0.1 87.1 ±0.2 89.6 ±0.0 89.3 ±0.0 91.2
GE 98.7 ±0.1 88.8 ±0.2 90.1 ±0.2 90.2 ±0.1 92.0

Setup. We conduct additional experiments to show that the feature extractor θfGE of GE learns task-
specific knowledge successfully. Linear probing that updates parameters of only the classifier while
freezing those of the feature extractor is common practice for assessing representation quality. We
assume that the more task-specific knowledge the feature extractor learns, the better linear probing
performance it exhibits in unseen domains targeting the same task. In detail, we first train GE on
source domains and then evaluate linear probing performance on an unseen domain with the trained
feature extractor of GE. We compare it with the case that a frozen pre-trained model is used as the
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feature extractor. For linear probing, we simply train a logistic regression classifier on the output
feature representations of each feature extractor using the unseen domain only. Note that, in this
analysis, we use CLIP and SWAG which are pre-trained with objectives significantly different from
the target task to demonstrate the effectiveness of the newly learned task-specific knowledge clearly.

Results. As shown in Table 4, GE outperforms frozen in all benchmark datasets except the one case
where the two models reach the near 99% performance. This shows that GE is learning task-specific
knowledge further during training, which makes it a better approximation of the oracle model. The
result supports our claim that pre-trained models are not fully equipped with target task-specific
knowledge, and injecting the knowledge further increases performance.

3.6 RELATIONSHIP BETWEEN λ AND THE SIZE OF THE PRE-TRAINED MODEL

Table 5: Evaluation results (%) on PACS with the three different pre-trained models varying λ.

Dataset (size) Pre-training Architecture λ
0.01 0.05 0.1 0.5

ImageNet (1.3M) ERM ResNet-50 88.0 ±0.2 86.0 ±0.2 82.1 ±0.2 73.4 ±0.4

CLIP (400M) CLIP ViT-B/16 94.8 ±0.2 96.0 ±0.0 96.2 ±0.1 96.0 ±0.0

Instagram (3.6B) SWAG RegNetY-16GF 96.3 ±0.2 96.9 ±0.1 97.6 ±0.1 97.9 ±0.1

Setup. Our proposed GESTUR controls the scale of the estimated unobservable gradients that
reduce risks in unseen domains using the gradient scale factor λ. To verify the effect of the scale
factor, we observe the performance change varying the scale factor.

Results. In Table 5, RN50 achieves the best performance with λ = 0.01. On the other hand, the
larger pre-trained models, CLIP and SWAG achieve the best performance with the relatively larger
λ = 0.1 and λ = 0.5, respectively. We summarize more results on other datasets (i.e., VLCS,
OfficeHome, and TerraIncognita) in Appendix C.1, and they show the similar pattern as in PACS.

Intuitively, the larger pre-trained models act as a better approximation of the oracle model than the
small one because they are likely to encounter various domains from the huge web-crawled datasets
during pre-training. They help to estimate unobservable gradients more accurately. The larger
gradient scale factor, gradients g of TE is more affected by the estimated unobservable gradients g̃u

while optimizing the model on source domains. From this, we can conclude that the larger scale
factor improves the generalization performance when larger pre-trained models are given.

4 RELATED WORK

4.1 DOMAIN GENERALIZATION

Domain alignment. Domain alignment is to learn domain-invariant feature representations by
removing domain-specific knowledge in the representations. Adversarial training is widely adopted
to learn domain invariant features through a min-max game between a feature extractor and a domain
discriminator (Ganin et al., 2016; Li et al., 2018c; Matsuura & Harada, 2020; Zhu et al., 2022).
On the other hand, several studies (Muandet et al., 2013; Sun & Saenko, 2016; Li et al., 2018b)
aim to minimize feature divergence across source domains. Recently, contrastive learning-based
algorithms (Kim et al., 2021; Yao et al., 2022) have been proposed to minimize distances between
feature representations of samples in the same class, regardless their domains.

Data augmentation. Many studies have employed data augmentation techniques to improve do-
main generalization performance. For example, Gulrajani & Lopez-Paz (2021) apply simple data
augmentation techniques as a default setup in DOMAINBED and some studies (Wang et al., 2020;
Xu et al., 2020; Yan et al., 2020) utilize Mixup (Zhang et al., 2017). Recently, a few works (Zhou
et al., 2021; Nam et al., 2021; Kang et al., 2022) focus on image style, based on the idea that domain
gap is closely related to image style. On the other side, some works on single domain generalization
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introduce adversarial data augmentation (Volpi et al., 2018; Fan et al., 2021; Qiao et al., 2020) to
generate hard samples adversarially while assuring their reliability.

Gradient-based. Recently, several studies utilize gradients to build generalized models, especially
by aligning gradients from different domains. Mansilla et al. (2021) exploit gradient agreement for
gradient surgery, based on the hypothesis that conflicting gradients contain domain-specific infor-
mation. Shi et al. (2022) propose a training method that maximizes inner product between source
domain gradients to match optimization paths across domains. Similarly, Rame et al. (2022) try
to match domain-level Hessian to align loss landscapes across domains. As another line of work,
Huang et al. (2020) introduce the self-challenging algorithm that iteratively masks dominant fea-
tures, which are selected by the scale of the gradients.

Meta-learning-based. Since simulating domain shift by dividing source domains into meta-train
and meta-test domains was first introduced in MLDG (Li et al., 2018a), several approaches have
been proposed in a similar setting. For example, Balaji et al. (2018) propose to learn a regularizer
for classifier weights and Zhang et al. (2021a) bring the idea of Reptile (Nichol et al., 2018) to
MLDG to further increase performance with a multi-view framework. On the other hand, Zhang
et al. (2021b) employ meta-learning to adaptively predict model parameters from a batch of inputs.

Others. Some of the works bring concepts of causality (Lv et al., 2022), optimize the worst-case
performance (Sagawa et al., 2019; Krueger et al., 2021), utilize text labels (Min et al., 2022), or
average model weights from different epochs (Cha et al., 2021; Arpit et al., 2022).

Our work differs from aforementioned approaches in that we mainly concentrate on effectively
utilizing large-scale pre-trained models.

4.2 DOMAIN GENERALIZATION WITH PRE-TRAINED MODELS

Recently, Gulrajani & Lopez-Paz (2021) empirically show that simple ERM (Vapnik, 1999) outper-
forms most of early methods with pre-trained ResNet-50 (He et al., 2016). Yu et al. (2021) show that
using large-scale models pre-trained on massive datasets improves out-of-distribution performance.
Kumar et al. (2022) find that fine-tuning distorts pre-trained features and propose the linear-probing
then fine-tuning to mitigate the feature distortion. Wortsman et al. (2022) find that linearly interpo-
lating the zero-shot and fine-tuned parameters of a pre-trained model improves performance in both
source and unseen domains. Although GESTUR’s EMA (Equation 6) looks similar to their inter-
polation, GESTUR updates the pre-trained model to inject task-specific knowledge. Li et al. (2022)
propose a method to efficiently leverage a pool of large-scale pre-trained models through specialty-
aware ensemble learning. Cha et al. (2022) propose MIRO, a regularization method that targets to
minimize mutual information with pre-trained models which approximate the oracle model. In this
work, we share similar motivation with MIRO in that we initially approximate the oracle model
with a large-scale pre-trained model. However, we iteratively inject task-specific knowledge into
the approximation of the oracle model, resulting in a better approximation.

5 CONCLUSION AND FUTURE WORK

In this paper, we propose a new domain generalization method that learns task-specific knowledge
while preserving the generalization ability of large-scale pre-trained models. We point out that gra-
dient bias toward source domains hurts the generalization ability of pre-trained models during fine-
tuning. To alleviate the gradient bias, our proposed method estimates unobservable gradients that
minimize risk in unseen domains based on two key components: a task expert and a generalization
expert. Experimental results on DOMAINBED show that our proposed method outperforms baseline
methods in domain generalization. Through extensive analyses, we also demonstrate that the esti-
mated unobservable gradients effectively reduce gradient bias, thereby helping to learn task-specific
knowledge without hurting the generalization power of large-scale pre-trained models.

Although we verify the effectiveness of our proposed method, it heavily relies on the capability of
pre-trained models. When unseen domains that pre-trained models did not encounter are given (e.g.
ResNet trained on ImageNet does not see medical images), the pre-trained models might not act as
an approximation of the oracle model of the domains. We will address this issue in future work.
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REPRODUCIBILITY STATEMENT

We provide the source code for reproduction in the supplementary materials. See Appendix A for
the hyperparameters used for the experiments.
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APPENDIX

A IMPLEMENTATION DETAILS

Hyperparameter search strategy. Similar to Cha et al. (2022), the hyperparameter tuning strat-
egy differs depending on which pre-trained model is used. In the experiments of this work, we use
three different pre-trained models: ResNet-50 (He et al., 2016) pre-trained on ImageNet (Deng et al.,
2009) (RN50), ViT-B/16 (Dosovitskiy et al., 2021) with CLIP (Radford et al., 2021) (CLIP), and
RegNetY-16GF (Radosavovic et al., 2020) with SWAG (Singh et al., 2022) (SWAG).

Table 6: Hyperparameters used for RN50 in the experiments.

Hyperparameter PACS VLCS OfficeHome TerraInc DomainNet

λ 0.01 0.05 0.01 0.01 0.01
Learning rate 5e-5 5e-5 5e-5 5e-5 5e-5
Weight decay 0.0 1e-4 1e-6 0.0 1e-4
Dropout 0.0 0.5 0.5 0.0 0.1

A two-stage hyperparameter search strategy is used for experiments with RN50. Here, the batch
size and the moving average coefficient (m) are fixed as 32 and 0.999 in the entire search procedure,
respectively. In the first stage, we search the gradient scale factor (λ) from {0.01, 0.05, 0.1, 0.5}.
In this stage, we fix the learning rate as 5e-5 and do not use weight decay and dropout (i.e., weight
decay and dropout are equal to 0). In the second stage, we fix λ as the one searched in the first stage.
Then, we search the learning rate from {1e-5, 3e-5, 5e-5}, weight decay from {0, 1e-6, 1e-4}, and
dropout from {0, 0.1, 0.5}. We provide the hyperparameters we use for RN50 in Table 6.

Table 7: λ used for CLIP and SWAG in the experiments.

Pre-trained Model PACS VLCS OfficeHome TerraInc DomainNet

CLIP 0.05 0.1 0.05 0.05 0.05
SWAG 0.05 0.1 0.05 0.05 0.05

Unlike the experiments with RN50, we apply single-stage hyperparameter search strategy to CLIP
and SWAG. Here, we only search λ from {0.01, 0.05, 0.1, 0.5} with hyperparameters such as the
batch size, learning rate, weight decay, and dropout fixed. In particular, we fix the learning rate,
weight decay, and dropout as the first stage of the hyperparameter search of RN50. For the batch
size, we fix the batch size as 32 except for the experiments with DomainNet (Peng et al., 2019)
where the batch size is fixed as 24 for the experiments with CLIP. For SWAG, we fix the batch size
as 16 for all experiments. In Table 7, we show what λ we use for CLIP and SWAG. Similar to Cha
et al. (2022), we fix the number of iterations as 15,000 for DomainNet and 5,000 for the others
regardless of pre-trained models.
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B ADDITIONAL RESULTS

B.1 MAIN RESULTS

Table 8: Domain generalization accuracy (%) on the five domain generalization benchmark datasets
with the three different pre-trained models. We mark ∗, †, and ‡ for the results from Gulrajani &
Lopez-Paz (2021), Cha et al. (2021) and Cha et al. (2022) respectively. We use the reported numbers
from each paper for Fish, Fishr, SelfReg, mDSDI, GVRT, and SMA.

Method PACS VLCS OfficeHome TerraInc DomainNet Avg.

Using ResNet-50 pre-trained on ImageNet.

MMD∗ 84.7 ±0.5 77.5 ±0.9 66.3 ±0.1 42.2 ±1.6 23.4 ±9.5 58.8
MixStyle† 85.2 ±0.3 77.9 ±0.5 60.4 ±0.3 44.0 ±0.7 34.0 ±0.1 60.3
GroupDRO∗ 84.4 ±0.8 76.7 ±0.6 66.0 ±0.7 43.2 ±1.1 33.3 ±0.2 60.7
IRM∗ 83.5 ±0.8 78.5 ±0.5 64.3 ±2.2 47.6 ±0.8 33.9 ±2.8 61.6
ARM∗ 85.1 ±0.4 77.6 ±0.3 64.8 ±0.3 45.5 ±0.3 35.5 ±0.2 61.7
VREx∗ 84.9 ±0.6 78.3 ±0.2 66.4 ±0.6 46.4 ±0.6 33.6 ±2.9 61.9
CDANN∗ 82.6 ±0.9 77.5 ±0.1 65.8 ±1.3 45.8 ±1.6 38.3 ±0.3 62.0
DANN∗ 83.6 ±0.4 78.6 ±0.4 65.9 ±0.6 46.7 ±0.5 38.3 ±0.1 62.6
RSC∗ 85.2 ±0.9 77.1 ±0.5 65.5 ±0.9 46.6 ±1.0 38.9 ±0.5 62.7
MTL∗ 84.6 ±0.5 77.2 ±0.4 66.4 ±0.5 45.6 ±1.2 40.6 ±0.1 62.9
Mixup∗ 84.6 ±0.6 77.4 ±0.6 68.1 ±0.3 47.9 ±0.8 39.2 ±0.1 63.4
MLDG∗ 84.9 ±1.0 77.2 ±0.4 66.8 ±0.6 47.7 ±0.9 41.2 ±0.1 63.6
Fish 85.5 ±0.3 77.8 ±0.3 68.6 ±0.4 45.1 ±1.3 42.7 ±0.2 63.9
Fishr 85.5 ±0.4 77.8 ±0.1 67.8 ±0.1 47.4 ±1.6 41.7 ±0.0 64.0
ERM† 84.2 ±0.1 77.3 ±0.1 67.6 ±0.2 47.8 ±0.6 44.0 ±0.1 64.2
SagNet∗ 86.3 ±0.2 77.8 ±0.5 68.1 ±0.1 48.6 ±1.0 40.3 ±0.1 64.2
SelfReg 85.6 ±0.4 77.8 ±0.9 67.9 ±0.7 47.0 ±0.3 42.8 ±0.0 64.2
CORAL∗ 86.2 ±0.3 78.8 ±0.6 68.7 ±0.3 47.6 ±1.0 41.5 ±0.1 64.5
mDSDI 86.2 ±0.2 79.0 ±0.3 69.2 ±0.4 48.1 ±1.4 42.8 ±0.1 65.1
GVRT 85.1 ±0.3 79.0 ±0.2 70.1 ±0.1 48.0 ±1.4 44.1 ±0.1 65.2
MIRO‡ 85.4 ±0.4 79.0 ±0.0 70.5 ±0.4 50.4 ±1.1 44.3 ±0.2 65.9
SMA 87.5 ±0.2 78.2 ±0.2 70.6 ±0.1 50.3 ±0.5 46.0 ±0.1 66.5
SWAD† 88.1 ±0.1 79.1 ±0.1 70.6 ±0.2 50.0 ±0.3 46.5 ±0.1 66.9
GESTUR 88.0 ±0.2 80.1 ±0.2 71.1 ±0.0 51.3 ±0.2 46.3 ±0.1 67.4

Using ViT-B/16 with CLIP.

ERM‡ 83.4 ±0.5 75.9 ±1.3 66.4 ±0.5 35.3 ±0.8 44.4 ±0.6 61.1
SWAD 91.3 ±0.1 79.4 ±0.4 76.9 ±0.1 45.4 ±0.5 51.7 ±0.8 68.9
MIRO‡ 95.6 ±0.8 82.2 ±0.3 82.5 ±0.1 54.3 ±0.4 54.0 ±0.3 73.7
GESTUR 96.0 ±0.0 82.8 ±0.1 84.2 ±0.1 55.7 ±0.2 58.9 ±0.1 75.5

Using RegNetY-16GF with SWAG.

ERM‡ 89.6 ±0.4 78.6 ±0.3 71.9 ±0.6 51.4 ±1.8 48.5 ±0.6 68.0
SWAD‡ 94.7 ±0.2 79.7 ±0.2 80.0 ±0.1 57.9 ±0.7 53.6 ±0.6 73.2
MIRO‡ 97.4 ±0.2 79.9 ±0.6 80.4 ±0.2 58.9 ±1.3 53.8 ±0.1 74.1
SMA 95.5 ±0.0 80.7 ±0.1 82.0 ±0.0 59.7 ±0.0 60.0 ±0.0 75.6
GESTUR 96.9 ±0.1 83.5 ±0.1 83.1 ±0.0 61.1 ±0.4 60.1 ±0.0 76.9

In § 3.2, we only compare baselines superior to ERM (Vapnik, 1999) with GESTUR for simplicity.
Here, we provide the entire results of the main experiment in Table 8.

Baselines. In the main experiment, we compare GESTUR against a number of baselines:
MMD (Li et al., 2018b), MixStyle (Zhou et al., 2021), GroupDRO (Sagawa et al., 2019), IRM (Ar-
jovsky et al., 2019), ARM (Zhang et al., 2021b), VREx (Krueger et al., 2021), CDANN (Li et al.,
2018c), DANN (Ganin et al., 2016), RSC (Huang et al., 2020), MTL (Blanchard et al., 2021),
Mixup (Wang et al., 2020; Xu et al., 2020; Yan et al., 2020), MLDG (Li et al., 2018a), Fish (Shi
et al., 2022), Fishr (Rame et al., 2022), ERM (Vapnik, 1999), SagNet (Nam et al., 2021), Self-
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Reg (Kim et al., 2021), CORAL (Sun & Saenko, 2016), mDSDI (Bui et al., 2021), GVRT (Min
et al., 2022), MIRO (Cha et al., 2022), SWAD (Cha et al., 2021), and SMA (Arpit et al., 2022).

B.2 APPLICABILITY OF SWAD (CHA ET AL., 2021) TO GESTUR

Table 9: Evaluation results (%) of combination of SWAD and GESTUR on the four datasets with
the three different pre-trained models.

Method PACS VLCS OfficeHome TerraInc Avg.
Using ResNet-50 pre-trained on ImageNet.

GESTUR 88.0 ±0.2 80.1 ±0.2 71.1 ±0.0 51.3 ±0.2 72.6
GESTUR + SWAD 88.3 ±0.1 80.1 ±0.1 71.0 ±0.0 51.2 ±0.2 72.7

Using ViT-B/16 with CLIP.

GESTUR 96.0 ±0.0 82.8 ±0.1 84.2 ±0.1 55.7 ±0.2 79.7
GESTUR + SWAD 95.9 ±0.0 82.8 ±0.1 84.3 ±0.0 55.3 ±0.6 79.6

Using RegNetY-16GF with SWAG.

GESTUR 96.9 ±0.1 83.5 ±0.1 83.1 ±0.0 61.1 ±0.4 81.2
GESTUR + SWAD 96.8 ±0.0 83.0 ±0.1 83.4 ±0.1 60.6 ±0.8 81.0

Setup. The recent study (Cha et al., 2022) has observed that SWAD (Cha et al., 2021) that seeks the
flat minima is a good optimizer for domain generalization, improving the generalization performance
of several baselines by applying it to the baselines as a optimizer. Motivated by this observation,
we evaluate the performance of our GESTUR applied with SWAD as a optimizer to verify whether
GESTUR and SWAD are orthogonal directions to each other.

Results. Table 9 shows that SWAD does not improve the performance of GESTUR. We conjecture
that it is because EMA used to transfer the knowledge of TE to GE has a similar effect as SWAD to
find a flat minima by averaging the model’s weights.

B.3 COMPARISON WITH CLIP-BASED BASELINES

Table 10: Evaluation results (%) on the four datasets with CLIP. Here, we compare GESTUR with
CLIP-based baelines, CILP Zero-shot and WiSE-FT (Wortsman et al., 2022).

Method PACS VLCS OfficeHome TerraInc Avg.
CLIP Zero-shot 96.8 ±0.0 81.7 ±0.3 83.0 ±0.3 31.3 ±0.2 73.2
WiSE-FT (α = 0.5) 94.5 ±0.0 83.9 ±0.3 83.9 ±0.2 47.5 ±1.2 77.5
GESTUR 96.0 ±0.0 82.8 ±0.1 84.2 ±0.1 55.7 ±0.2 79.7

Setup. CLIP (Radford et al., 2021) is pre-trained on the huge web-crawled image-caption pair
dataset and has been widely adopted in various computer vision tasks due to its generalization abil-
ity. CLIP-based methods could be strong baselines in domain generalization because the text content
they used in pre-training could act as a robust anchor to the domain shift of images. Therefore, we
conduct additional experiments using CLIP-based methods, CLIP Zero-shot and WiSE-FT (Worts-
man et al., 2022). The CLIP-based methods require text-based queries to output text-based repre-
sentations of target classes. Following the previous study, we obtain the 80 text-based queries from
the official repository1 of CLIP and compute the final text-based representation of each target class

1https://github.com/openai/CLIP/blob/main/notebooks/Prompt_Engineering_
for_ImageNet.ipynb
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by averaging the text-based representations of the queries. Finally, the model predictions are com-
puted with the text-based representations and the representations of input images. For WiSE-FT, an
ensemble of the fine-tuned and zero-shot models, we set the balance factor α as 0.5 following its
original paper since target unseen domains are inaccessible in the domain generalization setting.

Results. Table 10 shows the evaluation results where GESTUR achieves the best averaged per-
formance. In detail, GESTUR outperforms CLIP Zero-shot on VLCS, OfficeHome, and TerraInc,
and shows comparable performance on PACS. Likewise, GESTUR achieves better performance on
PACS, OfficeHome, and TerraInc than WiSE-FT and comparable performance on VLCS.

Interestingly, the CLIP-based methods exhibit severe performance degradation on TerraInc. We
conjecture that their performance is sensitive to pre-defined text-based queries. For example, the
query “a sketch of a {}” is helpful for the “Sketch” domain of PACS. On the other hand, the queries
“a plastic {}” and “a {} in a video game” are not helpful for TerraInc, which is composed of animal
images taken from the wild. These observations indicate that the CLIP-based methods require hard
prompt engineering for each target dataset. Moreover, the CLIP-based methods solely depend on
CLIP, which cannot be extended to other architecture or learning methods trained on only visual
modality, such as ResNet with ImageNet and RegNet with SWAG. Considering these, our GESTUR
achieves a meaningful performance.
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C FURTHER ANALYSIS

C.1 RELATIONSHIP BETWEEN λ AND THE TYPES OF THE PRE-TRAINED MODEL

Table 11: Evaluation results (%) on VLCS with the three different pre-trained models varying λ.

Dataset (size) Pre-training Architecture λ
0.01 0.05 0.1 0.5

ImageNet (1.3M) ERM ResNet-50 78.9 ±0.3 80.1 ±0.2 80.0 ±0.1 77.6 ±0.1

CLIP (400M) CLIP ViT-B/16 81.3 ±0.4 82.7 ±0.1 82.8 ±0.1 82.1 ±0.3

Instagram (3.6B) SWAG RegNetY-16GF 81.7 ±0.0 82.7 ±0.2 83.5 ±0.1 82.4 ±0.2

Table 12: Evaluation results (%) on OfficeHome with the three different pre-trained models varying
λ.

Dataset (size) Pre-training Architecture λ
0.01 0.05 0.1 0.5

ImageNet (1.3M) ERM ResNet-50 71.1 ±0.0 71.1 ±0.1 70.4 ±0.2 68.9 ±0.1

CLIP (400M) CLIP ViT-B/16 82.5 ±0.2 84.2 ±0.1 84.4 ±0.0 84.7 ±0.0

Instagram (3.6B) SWAG RegNetY-16GF 81.5 ±0.2 83.1 ±0.0 83.5 ±0.0 81.1 ±0.1

Table 13: Evaluation results (%) on TerraIncognita with the three different pre-trained models vary-
ing λ.

Dataset (size) Pre-training Architecture λ
0.01 0.05 0.1 0.5

ImageNet (1.3M) ERM ResNet-50 51.3 ±0.2 50.0 ±0.4 45.5 ±0.2 31.2 ±0.1

CLIP (400M) CLIP ViT-B/16 51.3 ±0.2 55.7 ±0.2 54.0 ±0.3 42.3 ±0.9

Instagram (3.6B) SWAG RegNetY-16GF 57.6 ±0.9 61.1 ±0.4 62.1 ±0.3 54.9 ±0.1

In § 3.6, we analyze the relationship between λ and the size of the pre-trained model. However,
we only present the results from PACS (Li et al., 2017) in Table 5 for simplicity. Here, we provide
the additional results from VLCS (Fang et al., 2013), OfficeHome (Venkateswara et al., 2017), and
TerraIncognita (Beery et al., 2018) in Table 11, Table 12, and Table 13, respectively.

C.2 PERFORMANCE ON SOURCE DOMAINS

Table 14: Evaluation results (%) on the four datasets with RN50. Here, we average the performances
in the source domains, not the performance in the unseen target domain.

Method PACS VLCS OfficeHome TerraInc Avg.
ERM 97.4 ±0.2 86.7 ±0.1 82.9 ±0.3 92.2 ±0.1 89.8
GESTUR w/ TE 97.1 ±0.1 86.9 ±0.2 81.7 ±0.2 89.4 ±0.1 88.8
GESTUR w/ GE 98.2 ±0.1 87.4 ±0.2 84.8 ±0.3 91.4 ±0.1 90.5

Setup. Domain generalization aims to improve the generalization performance on unseen domains
shifted from source domains. Thus, domain generalization studies often do not consider situations
where the source domains and the target domains are similar. To verify whether estimated unob-
servable gradients are useful when the unseen domains are similar to the source domains, we report
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the performance on the training-domain validation set, simulating the situations when the testing
domains are exactly the same as the training domains.

Results. The evaluation results are summarized in Table 14. GESTUR w/ TE shows worse per-
formance than ERM, indicating that the estimated unobservable gradients act as noisy gradients.
Namely, gradients biased toward the source domains are more helpful than estimated unobservable
gradients when the source domains and the target domains are similar. Nonetheless, GESTUR w/
GE performs better than ERM, demonstrating that our two-expert architecture is robust to various
situations even when source domains and unseen domains are similar or not.

C.3 SIMILARITY BETWEEN TRUE UNOBSERVABLE GRADIENTS gu AND ESTIMATED
UNOBSERVABLE GRADIENTS g̃u OF GESTUR

Setup. In this paper, we argue that gradient bias is a major culprit in degrading domain general-
ization performance (Figure 1a) and our proposed method relieves the gradient bias by estimating
unobservable gradients. To support this argument, we reported the number of iterations where gra-
dient conflicts exist in Figure 1b and Table 3. To examine whether the estimated unobservable
gradients g̃u are similar to the true unobservable gradients gu, we add the analysis calculating the
cosine similarity of the true and estimated unobservable gradients. Note that the true unobservable
gradients are computed by cross-entropy loss using true labels of unseen domain datasets Du. On
the other hand, the estimated unobservable gradients are just computed as the parameter difference
between GE and TE (θGE − θTE).

Results. Figure 2 shows that our estimated gradients display positive similarity scores with the
true gradients. This trend demonstrates that the estimated gradients reduce the number of gradient
conflicts, leading models to reduce the risks of unseen domains without accessing unseen domain
data.
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(d) TerraInc

Figure 2: Cosine similarity between the true unobservable gradients gu and the estimated unobserv-
able gradients g̃u
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