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ABSTRACT

Mixture-of-Experts (MoE) has been a prevalent method for scaling up large lan-
guage models at a reduced computational cost. Despite its effectiveness, the
routing mechanism of MoE still lacks a clear understanding from the perspective
of cross-layer mechanistic interpretability. We propose a light-weight methodology
at which we can break down the routing decision for MoE to contribution of model
components, in a recursive fashion. We use our methodology to dissect the routing
mechanism by decomposing the input of routers into model components. We study
how different model components contribute to the routing in different widely used
open models. Our findings on four different production models reveal common
patterns such as: a) MoE layer outputs contribute more than attention layer outputs
to the routing decisions of latter layers, b) MoE entanglement at which MoE firing
up in layers consistently correlate with firing up of MoE in latter layers, and c)
some components can persistently influence the routing in many following layers.
Our study also includes findings on how different models have different patterns
when it comes to long range and short range inhibiting/promoting effects that
components can have over MoE in latter layers. Our results indicate importance
of quantifying the impact of components across different layers on MoE, and
highlights the opportunities of using cross-layer contributions for effective model
design and model serving.

1 INTRODUCTION

Transformer-based Large Language Models (LLMs) (Vaswani et al., 2017) have demonstrated
powerful and versatile capabilities in recent years (Achiam et al., 2023; Comanici et al., 2025). To
improve their capabilities, researchers have attempted to increase the model size as encouraged by
scaling laws (Kaplan et al., 2020) and emergent abilities (Wei et al., 2022) of LLMs. However, this
can lead to high computational cost. Mixture-of-Experts (MoE)(Jacobs et al., 1991; Shazeer et al.,
2017; Fedus et al., 2022) has been applied in LLMs as an effective method to scale up models and
alleviate those unfavorable effects, as it can reduce computation by routing the input to a subset of
experts instead of using all model parameters to process it.

Although MoE have achieved great success in many advanced LLMs such as GPT (Achiam et al.,
2023) and Gemini (Comanici et al., 2025), there is still a lack of understanding of how components
in different layers affect how the routing mechanism works, from the perspective of cross-layer
mechanistic interpretability. Previous studies mainly investigated the routing mechanism at the
expert-level. Muennighoff et al. (2025) and Jiang et al. (2024) performed analyses on the domain
or token specialization of experts. Muennighoff et al. (2025) studied the co-activation of experts in
the same layer. Lo et al. (2025) inspected the weights of MoE (including routers and experts), gate
scores, and expert outputs using similarity and norm metrics. These studies heavily investigated the
correlation between experts or between experts and tokens and overlooked the interaction between
routers and other components in the model1.

In this work, we aim to explore and understand the routing mechanism by recursively decomposing
the input of routers into components and studying how they contribute to the routing. In summary,
our observations and conclusions, from studying four different models, are as follows:

• Our results reveal that MoE routing cannot be understood as a purely local process; rather, it
emerges from intricate cross-layer interactions among model components.

1In this work, we mainly use the word “component” in a layer to refer to any of the following:, individual
attention head, attention layer, individual expert in an MoE, and a full MoE FFN inclusive of all its experts.
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• MoE layer output usually has the strongest and persistent influence on the routing rather than other
components. However, tokens and attention layer output may have a stronger influence in a small
group area such as the bottom and the top layers.

• Routing is shaped not just by local computations, but also by long-range cross-layer entanglements,
challenging the assumption that MoE decisions are primarily local.

• A few experts have a significant influence on the routing decisions, consistent with the effect
reported in (Su et al., 2025).

• The findings suggest new opportunities for interpretable, efficient, and robust MoE design, with
implications for both training-time architecture optimization and inference-time system scheduling.

2 RELATED WORK

Mixture of Experts. Mixture-of-Experts (MoE) was first introduced in Jacobs et al. (1991) and has
been studied for decades. Shazeer et al. (2017) proposed sparsely-gated MoE (SMoEs) as a method to
scale up deep learning models with reduced inference overheads. They introduced the top-k routing
algorithm, which has become a dominant paradigm nowadays for its simplicity and effectiveness.
Researchers have put much effort in optimizing the design of SMoEs (Fedus et al., 2022). Recent
studies have also attempted to understand the mechanism of the MoE layer (Chen et al., 2022) and
have discovered the routing scores can be applied in model compression (Li et al., 2024) or used as an
embedding model (Li & Zhou, 2025). Lo et al. (2025) made an early attempt to analyze MoE-based
language models by observing the correlation and norm of some components related to MoE layer,
such as experts and gate scores.

Decomposition of Transformers. The output of Transformer blocks can be decomposed as a linear
combination of outputs of its internal components, facilitating the dissection and understanding of
Transformer-based language models (Elhage et al., 2021; Geva et al., 2021; Yu & Ananiadou, 2024;
Ferrando & Voita, 2024). These methods decompose the outputs of attention or Feed-Forward Net-
work (FFN) layers into smaller component vectors that can be further studied.The assignment scores
assigned to experts can also be decomposed as the sum of sub-scores assigned by the components.
Hence, we can study the distribution of the sub-scores to understand how these components influence
routing decisions.

3 BACKGROUND

In this section, we present a recursive decomposition of the architecture of the MoE-based Transformer
into components that together comprise the assignment score of MoE routing.

MoE-based Transformer. An MoE-based decoder-only Transformer consists of L blocks. Each
block consists of an attention layer, followed by a Mixture-of-Experts (MoE) layer. Given an input
token embedding sequence T = [t1, t2, ..., tu] to the model, the first layer input x0

in,i ∈ Rde is the
token embedding ti, where de is embedding dimension. The block output xℓ

out,i (Token i, Block ℓ)
is formulated as follows:

xℓ
out,i = xℓ

in,i + aℓ
out,i +mℓ

out,i, (1)

where xℓ
in,i is the input of Block ℓ (xℓ

in,i := xℓ−1
out,i for ℓ > 0), aℓ

out,i and mℓ
out,i are the outputs

of attention and MoE Layer ℓ, respectively. The final block output xL−1
out,i is normalized by layer

normalization and then projected onto the vocabulary space to yield the probability distribution of the
next token.

Attention Layer. The attention layer output aℓ
out,i ∈ Rde can be decomposed into the linear

combination of head outputs aℓ,h
out,i’s, which can be further decomposed at the token level:

aℓ
out,i =

H∑
h=1

aℓ,h
out,i =

H∑
h=1

i∑
p=1

W ℓ,h
O Aℓ,h

i,pv
ℓ,h
p . (2)

The element of attention map Aℓ,h ∈ Ru×u is computed by:

Aℓ,h
i,p =

softmax
1≤p≤i

(
q
ℓ,h
i ·kℓ,h

p√
dk

) p ≤ i

0 p > i
, (3)
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where dk is key dimension, qℓ,h
i ,kℓ,h

p ∈ Rdk ,vℓ,h
p ∈ Rdh are query, key, value vectors, respec-

tively. Mathematically, qℓ,h
i = W ℓ,h

Q aℓ
in,i, kℓ,h

p = W ℓ,h
K aℓ

in,p, vℓ,h
p = W ℓ,h

V aℓ
in,p, where

W ℓ,h
Q ,W ℓ,h

K ∈ Rdh×dk ,W ℓ,h
V ∈ Rdh×de , W ℓ,h

O ∈ Rde×dh are query, key, value and output weight
matrices of Head h in attention Layer ℓ, dh is head dimension, aℓ

in,i is attention layer input:

aℓ
in,i = LNℓ

i(x
ℓ
in,i), (4)

where LNℓ
i(·) is layer normalization. RMS layer normalization is applied in the tested models in

this work, hence LNℓ
i(z) :=

z·γℓ

RMS(z) , where z ∈ Rde , RMS(·) is the root mean square function, and
γℓ ∈ Rde is a learnable parameter.

MoEs Layer. The MoEs layer consists of a router and N experts, i.e., N parallel sub-FFN layers.
The router assigns a score to each expert and selects the top-k experts to process the MoE layer input
mℓ

in,i, where k is a hyperparameter. Mathematically,

mℓ
in,i = LNℓ

i(x
ℓ
in,i + aℓ

out,i). (5)

Typically, the scores of all N experts are computed by W ℓ
Gm

ℓ
in,i, where W ℓ

G ∈ RN×de is the routing
weight matrix.2 Each row vector g ∈ Rde of the routing weight matrix WG corresponds to one
expert. We call these row vectors “routing weight vectors”. The assignment score S of Expert (ℓ, n),
i.e., Expert n in MoE Layer ℓ is essentially the dot product of its corresponding routing weight vector
gℓ,n and the MoE layer input mℓ

in,i:

S(gℓ,n,mℓ
in,i) = gℓ,n ·mℓ

in,i. (6)

The assignment scores are passed through a Softmax function to yield expert weights. The MoE layer
output mℓ

out,i is the weighted sum of outputs of selected experts:

mℓ
out,i =

∑
j∈J

rℓ,j(mℓ
in,i)e

ℓ,j
out,i, (7)

where rℓ,j(·) = softmax
j∈J

(S(gℓ,j , ·)) is the expert weight, eℓ,jout,i is the expert output, and J is the

set of indices of selected experts.

4 METHODOLOGY

For each given input token, The MoE router assigns scores to experts and selects the top-k experts to
process the input. Assignment scores have two determinants: the routing weight vectors and the MoE
layer inputs (Equation 6). Intuitively, assignment scores are decomposable since the MoE layer input
can be decomposed into components (Equations 1 and 5). To understand the routing mechanism, we
can study the patterns of scores “assigned” by the components.3 In this section, we delineate the
decomposition method in Section 4.1 and discuss some basics of scoring patterns in Section 4.2.

4.1 DECOMPOSITION OF EXPERTS ASSIGNMENT SCORES

In this section we discuss how the experts assignment score can be decomposed into components of
different granularities, from entire layers to individual neurons. We can recursively apply Equations 1
and 5 to decompose the score assigned to the Expert (ℓ, n):

S(gℓ,n,mℓ
in,i) = gℓ,n ·mℓ

in,i = gℓ,n · LNℓ
i(x

ℓ
in,i + aℓ

out,i)

= gℓ,n · LNℓ
i(x

0
in,i +

ℓ∑
c=1

ac
out,i +

ℓ−1∑
c=1

mc
out,i)

= gℓ,n · LNℓ
i(x

0
in,i) + gℓ,n ·

ℓ∑
c=1

LN
ℓ
i(a

c
out,i) + gℓ,n ·

ℓ−1∑
c=1

LN
ℓ
i(m

c
out,i)

(8)

2Some MoE models use more sophisticated mechanisms such as MLP layers to obtain scores. Our method is
also applicable to those models, but for simplicity, we discuss only the most widely used implementation of the
routing mechanism.

3When we say the score assigned by a component to an expert, we refer to the portion of the expert’s score
contributed by the component.
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Figure 1: Overview of the decomposition of experts assignment scores.

where LN
ℓ

i(z) =
z·γℓ

RMS(xℓ
in,i+aℓ

out,i)
. Equation 8 indicates that the assignment score can be decom-

posed into multiple sub-scores, i.e., the scores assigned by the token embedding (S(gℓ,n,x0
in,i) =

gℓ,n · LNℓ

i(x
0
in,i)), attention layer outputs, and MoE layer outputs. Both attention and MoE layer

outputs can be further decomposed. According to Equation 2, the score S(gℓ,n,ac
out,i) assigned by

attention layer output ac
i can be further decomposed as follows:

S(gℓ,n,ac
out,i) = gℓ,n · LNℓ

i(a
c
out,i) = gℓ,n ·

H∑
h=1

LN
ℓ
i(a

c,h
out,i) = gℓ,n ·

H∑
h=1

i∑
p=1

LN
ℓ
i(W

c,h
O Ac,h

i,p v
c,h
p ) (9)

From this perspective, we can regard the score assigned by an attention layer output to an expert
as the sum of the scores assigned by tuples like (head, query, key) (Equations 3 and 9). Similarly,
we can decompose the scores S(gℓ,n,mc

out,i) assigned by the MoE layer output mc
i into the scores

assigned by the selected experts (Equation 7):

S(gℓ,n,mc
out,i) = gℓ,n · LNℓ

i(m
c
in,i) = gℓ,n ·

∑
j∈J

LN
ℓ
i(r

c,j(mc
in,i)e

c,j
out,i) (10)

It is possible to further decompose the expert (i.e., sub-FFN) outputs at the neuron level (Geva et al.,
2021; Dai et al., 2022; Geva et al., 2022):

eℓ,j
out,i =

de∑
z=1

Wd
ℓ,j
(:,z) · [σ(Wg

ℓ,j
(z,:) ·m

ℓ
in,i) · (Wu

ℓ,j
(z,:) ·m

ℓ
in,i)], (11)

where all of the matrices correspond to Expert (ℓ, j), Wd
ℓ,j
(:,z) is the z-th column of down-projection

matrix, Wg
ℓ,j
(z,:) and Wu

ℓ,j
(z,:) are the z-th row of gating matrix and up-projection matrix, respectively.

σ(·) is an activation function. We leave it for further study, considering its potential complexity.

4.2 BASICS OF SCORING

In Section 4.1, we proposed a method for determining the scores of experts assigned by the compo-
nents. In this section, we discuss what can be learned from the contribution of different components
into the assignment scoring of experts. The proofs of our propositions is in Appendix A.

Proposition 1: Variance of scores assigned by a component measures its influence on the routing
decision. Suppose a component assigns a constant score to all experts, which means its scoring
variance is 0, then it does not influence the routing decisions because if the scores it assigns are
dropped, the differences between the scores of experts are unchanged. Intuitively, we posit that a
component with higher scoring variance has a stronger influence on the routing decisions and thus is
more important. Based on this postulate, we can further infer that the length (i.e., L2-norm) of the
component controls the upper and lower bounds of the scores assigned by it, which indicates that
strong influences are caused by components with a large norm.

Proposition 2: Positive scores promote experts, negative scores inhibit experts. The degree is
measured by the score magnitude. Since the scoring operation is a dot product of a gating weight

4
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vector and a component vector (Equations 6, 8, 9, and 10), the angle between them controls the
sign of the score. When the angle is acute (obtuse), the score assigned by the component to the
corresponding expert is positive (negative), indicating the component promotes (inhibits) the expert
to be selected. When the two vectors are orthogonal, the score is zero, indicating the component has
no opinion on the corresponding expert. The magnitude of the score is controlled by the length of the
two vectors and the angle between them. Hence, if we fix a gating weight vector, then a component
with a smaller angle and larger length will assign a higher score to the corresponding expert.

5 SCORE DISTRIBUTION

In this section, we show empirical results on the assignment score distribution of experts assigned by
tokens, attention layer outputs, and MoE layer outputs, respectively.

5.1 EXPERIMENTAL SETUP

Models and dataset. We adopt four MoE-based language models, scaling from OLMoE (Muen-
nighoff et al., 2025), DeepSeek-V2-Lite (Liu et al., 2024), Qwen3-30B-A3B (Yang et al., 2025),
to Mixtral-8x7B (Jiang et al., 2024). Their basic information is summarized in Appendix B. We
randomly select samples with at least 32 tokens from C4 dataset (Raffel et al., 2020) and truncate each
to the first 32 tokens to simplify the experiments. We use 1000 and 5000 samples for the experiments
in Section 5.2 and 5.3, respectively. In this section, we report the results from OLMoE in the main
text. The results of the other three models are reported in Appendix D.

Metrics. We use the variance of scores assigned by a component c to the experts in an MoE layer
to measure the contribution of the component to the routing decisions of that layer: The variance
of scores s1, s2, ..., sN is 1

N

∑N
n=1(sn − µ)2, where µ = 1

N

∑N
n=1 sn. To find the scoring tendency

(promotion or inhibition) of a component to a set of specified experts, we use the average positive
score (APS) and average negative score (ANS) assigned to those experts by the component:

APS =
1

N

N∑
n=1

S(gj , c)1S(gj ,c)>0, ANS =
1

N

N∑
n=1

S(gj , c)1S(gj ,c)<0, (12)

where N is the number of experts and 1 is the indicator function. We separate the positive and
negative scores to avoid cancellation.

5.2 TOKENS SCORING DISTRIBUTION

Token scoring is influenced by its part-of-speech (POS). We pack the scores of all experts assigned
by each token into a vector and apply t-SNE(Maaten & Hinton, 2008) to visualize them. 4 From
Figure 2a, we find that most scores assigned by tokens are clustered according to the POS tags of
tokens, which implies that the POS influences token scoring. Furthermore, most function words are
clustered into isolated lumps. In contrast, content words are entangled, which is possibly because
function words may have multiple POS, e.g., “drink” can be a noun or a verb, whereas the semantics
of function words is more stable.

The lead token is special. In Figure 2b, the lead tokens of each prompt appear clustered, whereas
other tokens, in comparison, are not, indicating that the lead position has a noticeable influence on
scoring. We find the scoring distribution of attention and MoE layers at the lead position also has
a typical pattern. We speculate that the attention layers capture the position information, lead to
the norm of MoE layer output at the lead position to being typically larger than that at other tokens,
which influences the RMS term of layer normalization and finally influences the scoring distribution.
In light of this, we report the results excluding the lead position in the main text henceforth and report
the results related to the lead position in Appendix E.

In Figure 2c, the average variance of scores assigned by tokens decreases rapidly as the layer goes
deeper, showing that the influence of tokens on routing decisions decreases rapidly. Furthermore,
the variance of scores in the first two MoE layers assigned by tokens is typically high, indicating the

4If a word is split into multiple tokens, each token inherits the POS of the word.
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(a) Token Part-of-Speech Distribution (b) Token Position Distribution
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(c) Token Routing Variance

Figure 2: (a) t-SNE of scores assigned by token embeddings, colored by POS. (b) t-SNE of scores
assigned by token embeddings, colored by position. (c) Average variances of scores assigned by
tokens to MoE layers.

tokens have a strong influence on the routing decisions in them, which is in line with intuition. The
magnitude of ANS and APS also decreases as the layer goes deeper (see Appendix D).

5.3 RESULT ON ATTENTION/MOE LAYER OUTPUTS

In this subsection, we analyze the variance and the average positive/negative scores assigned by the
attention and the MoE layer output to study their influence on the routing decisions.

Average variance. As shown in Figure 3a, the highest variance of attention layer scoring occurs
at A0 → M0, i.e., the assignment from sending attention Layer 0 to receiving MoE Layer 0. The
variance diminishes gradually as the receiving layer appears deeper. Comparatively, the first two
attention layers (A0 and A1) exhibit a higher variance than the intermediate sending attention layers.
We compare the four models we tested and find that the early sending attention layers generally
have a high average variance to their neighbor receiving layers. Surprisingly, a few MoE layers have
a pronounced entangled influence on the routing decisions on following MoE layers (Figure 3d):
Sending layers M1 and M4 have a notably higher variance compared with others, indicating they have
a higher importance. It is also unique that their variance does not decrease monotonically. We will
show that two experts with typically high variance in these two layers cause the “stripes” (Section
7). We also find such stripes in DeepSeek, Qwen and Mixtral, but some of them may just have an
apparently higher variance compared with neighbor sending layers, instead of having an increasing
average variance on the receiving layers. The stripes also occur in sending attention layers in Qwen.
Finally, the variance of sending MoE layers is usually comparatively higher than that of sending
attention layers.

These findings suggest two key implications. First, load balancing of expert parallelism can be
improved by prefetching and preloading experts in high-variance layers, leveraging cross-layer
entanglement to reduce contention. Second, post-NAS approximation strategies Gu et al. (2025) can
selectively compress low-variance attention layers while preserving influential ones, enabling more
efficient yet accurate architectures.

Scoring pattern of layers. We conducted an experiment to analyze the scores assigned to all the
experts, rather than the selected ones. By observing ANS and APS, we can learn which components
promote or inhibit the experts in a specific layer. We first look at the scoring pattern of sending
attention layers. Comparing Figure 3b and c, we note that the positive and negative scores occur
in different areas: positive scores occur at the early sending layers i.e., left side of x-axis (A0
and A1), whereas negative scores occur at A0, and most areas on or near the diagonal, and the
magnitude increases as the sending layer goes deeper. In other words, promotion effects—components
strongly enhancing expert layers—tend to be local, whereas inhibition effects are more global, with
components exerting stronger inhibition as the expert layer appears deeper in the model. Comparing
the tested models, we find that the negative scores tend to occur at the bottom or top sending attention
layers. The magnitude of APS is generally smaller than that of ANS, although Mixtral seems to be an
exception.

6
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Figure 3: Scores assigned by attention Layer x to MoE layer y: (a) variance, (b) Average positive
scores (APS), (c) Average negative scores (ANS); Scores assigned by MoE Layers x to MoE Layer y:
(d) variance, (e) APS, (f) ANS.

The scoring pattern of sending MoE layers is shown in Figure 3e and f. Sending M1 and M4 have
relatively high positive and negative scores, respectively, which conforms to the variance matrix
(Figure 3d). The positive scores mainly appear at sending M1, M4, deeper sending layers (M8 ∼
M14) and the diagonal, whereas the negative scores appear at sending M1, M4, and the area near the
diagonal. We also find the APS and ANS matrices in Qwen have a multi-stripe pattern, i.e., more
prominent entanglement effect, whereas other tested models just have a few or no stripes.

6 SCORING OF ATTENTION HEADS

In this section, we investigate the scores assigned by attention heads to the experts in different layers.
We continue to use C4 dataset to observe the general behavior of the scoring. Additionally, we
use Indirect Object Identification (IOI) (Wang et al., 2023) task to observe the connection between
attention maps and the scoring patterns.

6.1 EXPERIMENTAL SETUP

General test. We conduct the general test on OLMoE and DeepSeek (Appendix G) since they have
fewer heads (256 and 432), facilitating our analysis. We follow the setting in Section 5.1 and use
5000 samples for experiments.

IOI task is to predict the next token of a prompt like “When Mary and John went to the store, John
gave a drink to ”, where the name that exists in the first clause but does not appear in the second
clause is expected to be the prediction result, i.e., “Mary”. We adopt this task to observe if function
heads have a noticeable influence on the routing decisions. We use path patching (Wang et al., 2023)
to find a portion of the function heads in OLMoE.5 We can regard the scores assigned by a head as a
“score map” once we determine a metric for tuples like (head, query, key). We use the variance of
scores assigned by the tuple (head, query, key) to all experts in a MoE layer as the metric. We refer to
it as the score variance map and compare it with the results from path patching, attention map, and
variance score map.

5For simplicity, we do not aim to discover all the function heads activated in the IOI task in this work.
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Figure 4: (a) Variance of scores assigned by heads to experts in the same block. (b) Average
positive scores (APS) of the heads. (c) Average negative scores (ANS) of the heads. All panels use
PowerNorm (γ=0.5) color scaling. Outliers in (a) marked with stars: 0.466 (red) and 0.103 (black).

6.2 RESULTS ON GENERAL TEST

Since attention layer outputs usually exert the strongest influence on the routing decisions in the same
block in OLMoE (Figure 3a), we examine the variance and mean of scores assigned by heads to the
experts in the same block to facilitate the observation. Henceforth, we use “AxHy” to denote Head y
at attention Layer x. Heads with high variance mainly occur at the early layers (typically A0 and
A1), conforming to the results in 3a. By comparing Figures 3b and c, we can find that many attention
heads tend to assign negative scores to the experts, and a small proportion of heads tend to generally
assign positive scores, such as A7H15 and A9H6. The scores assigned by some heads are apparently
polarized, such as A0H1. Finally, we observe that if a head has a relatively higher scoring variance,
the absolute magnitude of scores assigned by the head is usually larger.

6.3 RESULTS ON IOI TASK

We employ IOI task as an example to study the scoring pattern of function heads. The visualized
results are shown in Appendix F. Our main findings on this task are as follows:

Function heads have a noticeable influence on the routing decisions. We find that function heads,
i.e., attention heads that contribute to finish the IOI task, usually have a higher scoring variance,
compared with the heads do not show any functions in the task, indicating that the function heads
tend to have a stronger influence on the routing decisions than the other heads.

Scores variance of attention heads correlate with attention maps. We compare the “attention map”
Ax,y

i,p (where key token ti and query token tp are fixed, Layer x and Head y are variables), with the
“score variance map”, that is, variance of scores assigned by tuples (head=AxHy, key=ti, query=tp),
in other words, terms LN

c

i (W
x,y
O Ax,y

i,p v
x,y
p ) for AxHy (Equation 9), to the experts in a specific layer

c(c ≥ x). We find that they have a simillar pattern, which is in line with our intuition since attention
map can manipulate the attention output and thus influence the scoring.

7 SCORING OF EXPERTS

In this section, we use variance to measure the influence that experts have on routing decisions in later
layers. In Section 5.3, we have seen that the variance of scores assigned by M1 and M4 in OLMoE
has an unusual phenomenon: the variance does not decrease monotonically. We find that two experts
contribute to the phenomenon. Furthermore, a small subset of experts has a strong influence on the
routing decisions in OLMoE and Qwen3. Intriguingly, among these experts, some maintain their
influence on the routing decisions till the last layers rather than decreasing significantly.

OLMoE (Figure 5a). M1E9 (Experts 9 at MoE Layer 1) and M4E14 exhibit an unusual phenomenon
where their influence peaks around MoE Layer 6, followed by a secondary peak near MoE Layer 10,
then consistently decreases (with M1E9 dropping below M4E14 by the end). In contrast, M2E30
shows a steadily increasing influence that reaches its peak in the final layers.

8
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Figure 5: The variance of scores assigned by experts to the following layers.

Qwen (Figure 5b). M1E68 (circled in red) exhibits a strong but localized influence primarily on
the immediate next layer. M2E92 consistently maintains the highest impact across all subsequent
layers. M3E82 also shows persistent influence throughout, though with smaller magnitude. Other
highlighted experts (M21E69, M22E92, M24E111, M31E56, M33E69) from middle and late layers
generally follow the typical pattern of gradually building to peak influence before fading out.

We find some of these experts are the “Super Experts” found in (Su et al., 2025), which have an output
of extreme magnitude. We summarize the rank of variance of scores assigned by the Super Experts
to the experts in the next MoE layers in Appendix H. We find that not all the Super Experts have
typically large scoring variance, such as M2E54 in DeepSeek. Although M1E68 in Qwen has the
rank 1 variance among the experts in Layer 1, but its scoring variance decreases drastically (Figure
5b). The Super Experts in DeepSeek do not have a top rank nor a persistent high scoring variance.
The scoring variance of Super Expert in Mixtral (M1H3) has a unique distribution: it has a relatively
high variance in the layer 28 ∼ 31 (Appendix H).

8 SUMMARY OF FINDINGS AND CONCLUSION

In this work, we proposed a recursive decomposition framework to quantify how different components
contribute to routing decisions in Mixture-of-Experts (MoE) language models. By breaking down
expert assignment scores into contributions from tokens, attention layers, MoE outputs, and attention
heads, we provided the first cross-layer perspective on routing interpretability. Our analysis across
four production MoE models (OLMoE, DeepSeek-V2-Lite, Qwen3-30B-A3B, and Mixtral-8x7B)
revealed several consistent patterns. First, MoE outputs exert the strongest and most persistent
influence on downstream routing, while attention layers and tokens have more localized effects,
especially in the bottom and top layers. Second, routing decisions are shaped by both promotion and
inhibition: positive contributions typically act locally, while negative contributions inhibit experts
across longer ranges. Third, we identified cross-layer entanglement phenomena, where certain MoE
layers (e.g., M1, M4 in OLMoE) disproportionately affect routing in much deeper layers, forming
“stripes” of influence. At a finer granularity, we found that a small set of experts and attention heads
dominate routing behavior, with some maintaining their impact throughout the network. Notably, not
all previously identified “Super Experts” exhibit strong influence under our variance-based analysis.
These findings demonstrate that MoE routing is not solely a local mechanism, but instead emerges
from a complex interplay of components across layers. Our work highlights the importance of
quantifying cross-layer contributions, offering new opportunities to improve expert parallelism, guide
compression and architecture search, and design more interpretable and efficient MoE-based models.
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APPENDIX

A PROOF OF PROPOSITIONS

Variance of scores assigned by a component measures its influence on the routing decision.

Proposition 1 (Variance of component-contributed scores and norm of component). Fix a layer
ℓ and position i. Let zc ∈ Rde denote the contribution of a single component (e.g., token embedding,
an attention head output, or a previous MoE block output) to the MoE-input before normalization.
Define

LN
ℓ

i(z) =
γℓ ⊙ z

RMS
(
xℓ
in,i + aℓ

out,i

) ,
where A ∈ Rde×de is a fixed linear map for this (ℓ, i). Let G ∈ RN×de stack the routing weight

vectors as rows, G =

 (gℓ,1)⊤

· · ·
(gℓ,N )⊤

. The vector of expert scores contributed by this component is then

s(c) = GLN
ℓ

i(zc) = GAzc ∈ RN , i.e., s(c)n = (A⊤gℓ,n)⊤zc.

(i) Zero-variance implies no routing influence. If s(c) is constant across experts, i.e., s(c)1 = · · · =
s
(c)
N = c, then adding or removing this component shifts all experts by the same constant. For any

pair n,m,
(stotaln + c)− (stotalm + c) = stotaln − stotalm ,

so the ordering is unchanged. Hence a constant-score component has variance 0 and no influence on
routing.

(ii) Variance as an influence measure. Define Var(s(c)) := 1
N

∑N
n=1(s

(c)
n − s(c))2, where s(c) =

1
N

∑
n s

(c)
n . Then Var(s(c)) = 0 iff s(c) is constant. Moreover, for any α ∈ R,

Var(GA(αzc)) = α2 Var(GAzc),

so larger component magnitudes yield quadratically larger variance, hence stronger influence on
routing.

(iii) Norm-controlled bounds. By Cauchy–Schwarz,

|s(c)n | =
∣∣(A⊤gℓ,n)⊤zc

∣∣ ≤ ∥A⊤gℓ,n∥2 ∥zc∥2.

Let M = maxn ∥A⊤gℓ,n∥2. Then

s(c)n ∈ [−M∥zc∥2, M∥zc∥2] ∀n,

so the range of component-contributed scores is bounded by 2M∥zc∥2. Consequently,

Var(s(c)) ≤ 1
N ∥GA∥2F ∥zc∥22,

showing that variance (and hence influence) is upper-bounded by a constant—depending on the router
and normalization—times the squared L2 norm of the component.

Conclusion. Components that assign constant scores exert no influence, while those with larger norms
admit wider score ranges and potentially larger variance across experts, thereby possessing greater
capacity to alter expert rankings and influence routing.
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Proposition 2 (Sign and magnitude of component-contributed scores). Fix a layer ℓ, position
i, and an expert n. Let the component contribution before routing be zc ∈ Rde and let u :=

LN
ℓ

i(zc) ∈ Rde denote its normalized contribution at this (ℓ, i) (cf. Eq. 8). The score contributed by
this component to expert n is

s(c)n = gℓ,n · u.
Let θn ∈ [0, π] be the angle between gℓ,n and u.

(i) Sign determines promotion vs. inhibition. By the cosine formula for the dot product,

s(c)n = ∥gℓ,n∥2 ∥u∥2 cos θn.

Hence s
(c)
n > 0 iff θn ∈ (0, π

2 ) (acute), s(c)n < 0 iff θn ∈ (π2 , π) (obtuse), and s
(c)
n = 0 iff θn = π

2
(orthogonal). Since (a) top-k selection depends only on score orderings and (b) the softmax used
to form expert weights is strictly increasing in each coordinate, adding a component with s

(c)
n > 0

increases expert n’s total score and softmax weight (promotes selection), while s
(c)
n < 0 decreases

them (inhibits selection); s(c)n = 0 leaves them unchanged.

(ii) Magnitude quantifies degree of influence. The absolute score satisfies

|s(c)n | = ∥gℓ,n∥2 ∥u∥2 | cos θn| ≤ ∥gℓ,n∥2 ∥u∥2,
with equality iff gℓ,n and u are colinear. For fixed gℓ,n, the dependence on angle and component
length is monotone:

∂s
(c)
n

∂θn
= −∥gℓ,n∥2 ∥u∥2 sin θn ≤ 0,

∂s
(c)
n

∂∥u∥2
= ∥gℓ,n∥2 cos θn.

Thus, for θn ∈ [0, π
2 ), decreasing the angle (better alignment) or increasing the component norm

strictly increases s(c)n ; for θn ∈ (π2 , π], the same operations make s
(c)
n more negative, strengthening

inhibition. Consequently, the degree of promotion/inhibition is exactly captured by the magnitude
|s(c)n |, which grows with both alignment (via | cos θn|) and component length ∥u∥2 (and hence with
∥zc∥2 up to the fixed normalization factor at (ℓ, i)).

Conclusion. The sign of the component-expert dot product governs whether the component pro-
motes or inhibits that expert’s selection, while its magnitude—∥gℓ,n∥2 ∥u∥2 | cos θn|—quantifies the
strength of this effect. □

B BASIC INFORMATION OF TESTED MODELS

Table 1: Basic information of tested models.

Information OLMoE DeepSeek-V2-Lite Qwen3-30B-A3B Mixtral-8x7B

Total Params 7B 16B 30B 47B
Activated Params 1B 3B 3B 7B
Number of Layers 16 27 48 32
Number of Routed Experts 64 64 128 8
Top-k 8 6 8 2

NOTE: Layer 0 in DeepSeek-V2-Lite is an FFN layer, not an MoE layer. Each MoE layer has two
shared experts in DeepSeek-V2-Lite.

C BRIEF INTRODUCTION TO IOI TASK

We apply the method (path patching) and the metric (logit difference) from Wang et al. (2023),
reproduce the experiment on OLMoE, and identify four types of heads, which are all active at END
token, as follows:
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• Name Mover Heads attend to the previous name tokens. They promote IO token as the
prediction result.

• Negative Name Mover Heads are similar to Name Mover Heads but inhibit IO token as the
prediction result.

• S-Inhibition Heads inhibit S token, and influence Name Mover Heads and Negative Name
Mover Heads.

• Backup Name Mover Heads are active when the Name Mover Heads are ablated. They
also show a weak influence when the regular Name Mover Heads work normally.

We adapt the code provided in the original paper to generate 5000 samples for the IOI task experi-
ments.

D SUPPLEMNTARY RESULTS ON THE DECOMPOSITION AT THE LAYER LEVEL

We find that the scoring distribution at the lead tokens is completely different from other tokens
(Figures 6 ∼ 9. For example, In OLMoE, in the score assignment from sending attention layers
to receiving MoE layers, the high variance occurs at the bottom sending layers to their neighbor
receiving layers, and the last receiving layer. However, when sending and receiving layers are both
MoE layers, the high variance occurs at some sending MoE layers and the last receiving MoE layer.
The highest APS occur at A15 → M15, and M14 → M15. The highest ANS occur at A14 → M15
(A0 → M0), and M2 → M15. The four models at the lead token have different variance patterns. We
can observe that there are strides (e.g., Figure 8.(d)) in the score variance distribution, indicating that
some sending layers are more influential and have a persistent influence on the routing decisions.
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Figure 6: Scoring distribution at the lead tokens, OLMoE
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Figure 8: Scoring distribution at the lead tokens, Qwen
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Figure 12: Scoring distribution at other tokens (except the lead tokens), Mixtral
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E RESULTS OF T-SNE ON SCORES ASSIGNED BY TOKENS (QWEN)
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Figure 14: t-SNE of scores assigned by token embeddings in Qwen, colored by POS.
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Figure 15: t-SNE of scores assigned by token embeddings in Qwen, colored by position.
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F RESULTS ON IOI TASK
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Figure 16: Path patching: (a) IO to logits (logit difference). Variance of scores assigned by: (b)
(Head, Query=END, Key=S2), (c) (Head, END, S1), (d) (Head, END, IO) to the experts in the last
block. Attention map: (e) (Query=END, Key=S2), (f) (END, S1), (g) (END, IO).

We follow Wang et al. (2023) to use “IO” to denote the indirect object, “S1” and “S2” denote the first
and second occurrences of the subject, “END” denote the last token of the prompt. Additional details
are provided in Appendix C.

The direct effect on the logit difference logit(S) − logit(IO) found by path patching h to logits
for each head h at END token is shown in Figure 16d. We can observe the Name Mover Heads
(A13H1, A13H2, A13H5) and Negative Name Mover Heads (A12H12, A13H10, A13H11) have a
pronounced influence on the prediction. Some function heads have a weaker influence, indicating they
are probably S-inhibition heads or Backup Name Mover Heads. Since these function heads directly
focus on name tokens, we can study the attention map and score variance map on (Query=END,
Key=S2), (END, S1) and (END, IO) to find them.

Since the end of patching circuits is the layer L− 1 (the last layer), we can first observe the scores
assigned by (Head, END, S2), i.e., terms LN

L−1

END(W x,y
O Ax,y

END,S2v
x,y
S2 ) for any AxHy (Equation 9),

which depicted in Figure 16a. We can find that the Name Mover Heads have a comparatively high
influence on the routing decisions at the last layer, indicating the scores assigned by (Head=A13H1,
Query=END, Key=S2), (A13H2, END, S2) and (A13H5, END, S2) have a comparatively high
influence on the routing decisions in Layer L− 1 (last layer).

In contrast, the Negative Name Mover Heads influence more in the variance score maps of (END,
S1) and (END, IO) (Figures 16b and c). The S-inhibition heads (e.g., A11H13 and A12H3) and
Backup Name Mover Heads (e.g., A11H5 and A12H14) are also noticeable but their influence is
usually weaker than Name Mover Heads and Negative Name Mover Heads. Some heads appear to
have functions but do not appear in these three score variance maps (e.g., A14H12 and A15H10). We
speculate that these heads may attend to other keys instead of the name tokens.

We compare the attention maps (Figure 16e∼g) with the score variance maps. We can find that they
resemble each other. Although attention maps have some small non-zero activations in the early and
intermediate layers, they usually do not have a strong contribution on the routing decisions in the last
layers, which may due to the natural influence decay in deep layers, or the value vector cancels the
effect. In conclusion, we validate that the function heads can influence the assignment scores, and the
assignment scores correlate with the attention maps.
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G RESULTS ON SCORING OF ATTENTION HEADS IN DEEPSEEK
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Figure 17: DeepSeek: (a) Variance of scores assigned by heads to experts in the same block. (b)
Average positive scores (APS) of the heads. (c) Average negative scores (ANS) of the heads. Please
note that Layer 0 of DeepSeek is an FFN layer, not an MoE layer.

H SUPPLEMENTARY RESULTS ON SCORING OF EXPERTS. RESULTS

Table 2: The rank of variance of scores assigned by the Super Experts to the experts in the next MoE
layers.

Model Experts

DeepSeek M2E54 (#55), M3H38 (#7)
OLMoE Not Available
Qwen M1H68 (#1), M2E92 (#3),

M3E82 (#2)
Mixtral M1E3 (#8)
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Figure 18: In Mixtral, M1E3 is found to be a “Super Expert”, but it has a high variance at the top
layers, especially the last layer (circled in red).
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