

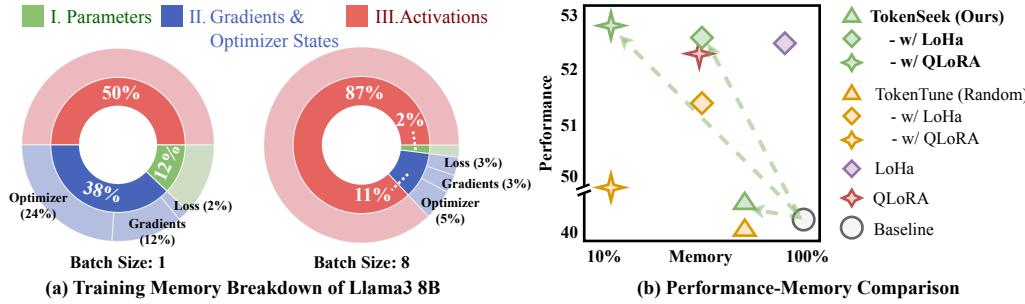
000 001 002 003 004 005 TOKENSEEK: MEMORY EFFICIENT FINE TUNING VIA 006 INSTANCE-AWARE TOKEN DITCHING 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024

ABSTRACT

025 Fine-tuning has been regarded as a *de facto* approach for adapting large language
026 models (LLMs) to downstream tasks. However, the high training memory consump-
027 tion inherited from LLMs makes this process generally inefficient. Among existing
028 memory efficient approaches, activation-related optimization has proven particu-
029 larly effective, as activations consistently dominate overall memory consumption.
030 Although prior arts offer various activation optimization strategies, they typically
031 adopt a uniform yet inflexible strategy across all instance. This data-agnostic nature
032 ultimately results in ineffective and unstable fine tuning. To solve this problem,
033 we propose TOKENSEEK, a universal plugin solution that is suitable for various
034 Transformer-based models through instance-aware token seeking and ditching. To-
035 KENSEEK achieves significant fine-tuning memory savings (*e.g.*, requiring only 2.8
036 GB, 14.8% of the original memory on Llama3.2 1B) with on-par or even superior
037 performance. Furthermore, our interpretable token seeking process reveals the
038 underlying factors behind its effectiveness, offering valuable insights for future
039 research on token efficiency fine-tuning.

1 INTRODUCTION



040 Figure 1: **Motivation behind TOKENSEEK and its preliminary comparison.** (a) Breakdown
041 of training memory under different batch size settings, revealing that activations are the primary
042 bottleneck in training memory consumption. (b) Effective and efficient TOKENSEEK (ours) *vs.*
043 concurrent arts in performance and memory consumption on Llama3.2 1B (detailed results in Tab. 1)

044 “Pretrain-then-Finetune” paradigm (Liu et al., 2024a; Yang et al., 2024; Grattafiori et al., 2024) has
045 been regarded as a *de facto* approach for downstream task adaptation, leveraging the knowledge
046 acquired during pre-training. However, fine tuning large language models (LLMs) still imposes
047 significant memory demands arising from multiple components (Zhang & Su, 2025; Rajbhandari
048 et al., 2020) as shown in Fig. 1 (a), including the model **I**. parameters, **II**. gradients and optimizer
049 states, and intermediate **III**. activations. Current works optimize training memory usage by targeting
050 different components. Parameter-Efficient Fine-Tuning (PEFT) (Zeng et al., 2024; Han et al., 2023;
051 2024) reduces the number of tunable parameters required for adapting large models (component I).
052 Optimizer-Efficient Fine-Tuning (Rajbhandari et al., 2020; Anil et al., 2019) focuses on partitioning
053 or improving the efficiency of gradient updates and optimizer states to alleviate the training memory
burden (component II). Memory-Efficient Fine-Tuning (MEFT) (Simoulin et al., 2024; Dettmers et al., 2023), on the other hand, improves memory efficiency by recomputing, compressing, or

054 eliminating activation-related memory costs (component III). Among the three paradigms that address
 055 the memory challenge from different perspectives, MEFT stands out as a more effective one. The
 056 reason is that activations consistently dominate memory consumption (*e.g.*, 87% in Llama3 8B as
 057 shown in Tab. 1 (a), and 60GB of activations for GPT-2 1.5B (Rajbhandari et al., 2020)), making
 058 them a critical bottleneck in the memory efficiency of training deep models (Zhang & Su, 2025).

059 However, existing MEFT methods generally unaware of or ignore the abundant information contained
 060 in the fine tuning training instances, *i.e.*, they operate as **data-agnostic** optimizations. Previous
 061 works are predominantly model-oriented optimizations (see §2) — they adopt a uniform efficiency
 062 strategy across all instances, without accounting for the rich variability inherent within each individual
 063 instance. This results in a lack of fine-grained control over memory reduction at the instance level,
 064 leading to ineffective (see Fig. 1 (b) and §4.2) and unstable fine-tuning (see §4.3). Naturally, two key
 065 challenges arise on the path toward instance-aware activation efficient optimization: I. *how to identify*
 066 the salient tokens that represent the key information of each instance (solved through §3.2.1); and II.
 067 *how to leverage* them to achieve effective and stable memory optimization (solved through §3.2.2).

068 In light of this view, we introduce TOKENSEEK, a universally applicable plugin designed to achieve
 069 a win-win of performance and memory efficiency without altering their inherent architecture under
 070 the “Pretrain-then-Finetune” pradigm. In order to kill two birds with one stone, our approach can
 071 be unfolded into two aspects to respectively tackle the challenges above: **① Instance-Aware Token**
 072 **Seeking.** TOKENSEEK first leverages context and gradient information at the token level to evaluate
 073 and score individual tokens, selectively retaining more informative ones to mitigate performance
 074 degradation and fluctuation. **② Efficient Token Ditching.** TOKENSEEK then significantly decreases
 075 the memory footprint for activations by updating model parameters exclusively on selected tokens,
 076 thereby ditching the gradients of the others and thus eliminating these activations. Our method
 077 facilitates an adaptive, instance-aware activation optimization without compromising performance
 078 and stability (see more discussions in §S7). Our key contributions include:

- 079 • **Significant Memory Reduction:** **Benefit** from the potent instance awareness, TOKENSEEK
 080 can **achieve** substantial memory savings with only 10% tokens (*i.e.*, 65.7% maximum memory
 081 reduction on Llama3.2 1B, see §4.2) while maintaining competitive performance (*i.e.*, 41.13 *vs.*
 082 40.82). Our approach can further significantly surpass full token fine-tuning with only 14.8%
 083 memory consumption under the QLoRA settings (*i.e.*, 52.61 *vs.* 40.82 shown in Fig. 1 (b)).
- 084 • **Generalizable Solution:** Attributed to its architecture-agnostic design, our method generalizes
 085 well across various Transformer-based models (*i.e.*, Qwen-0.5B, Llama-1B and Llama-3B) and can
 086 be seamlessly integrated with other PEFT techniques (*i.e.*, LoHa and QLoRA) to embrace both
 087 performance effectiveness and memory efficiency (see Tab. 1).
- 088 • **Interpretable Token Seeking:** We provide a comprehensive analysis (see §4.3) of how token-level
 089 ditching influences the fine-tuning process, achieving significant memory reductions through our
 090 proposed transparent and explainable token selection strategy (see §3.2 and §4.3).

091 2 RELATED WORK

092 2.1 MEMORY-EFFICIENT FINE-TUNING

095 MEFT (Simoulin et al., 2023; Vucetic et al., 2022; Ryu et al., 2024; Zhang et al., 2023; Zhao et al.,
 096 2024; Ardakani et al., 2023) directly tragents on reducing memory footprints during fine tuning. It can
 097 be broadly categorized into the *recomputation*, *compression*, and *reversible network* paradigms.

098 *Recomputation.* The core idea of recomputation methods (Korthikanti et al., 2023; Chen et al., 2024b;
 099 Tang et al., 2024) is to recompute certain operations instead of storing all intermediate activations —
 100 a technique also known as gradient checkpointing. (Chen et al., 2016) first applied this idea to deep
 101 neural networks, proposing a method that stores only a subset of activations and recomputes others
 102 during the backward pass, achieving sublinear memory cost. Subsequent improvements optimized
 103 the checkpointing schedule (Jain et al., 2020), introduced dynamic runtime strategies (Kirisame
 104 et al., 2020), and combined offloading with recomputation (Rajbhandari et al., 2020). *Compression.*
 105 Compression methods (Yi et al., 2024; Yang et al., 2025; Leconte et al., 2024) focus on reducing the
 106 size of the model states, optimizer states, gradients, and activations, which can further divided into
 107 methods using sparsified and quantized representations. Specifically, sparsity methods include LoRA
 (Hu et al., 2022a), which freezes pre-trained weights and trains low-rank adapters, and diff pruning

(Guo et al., 2020), which learns sparse task-specific updates. Recently, TokenTune (Simoulin et al., 2024) reveals the feasibility of token pruning during backpropagation to further reduces memory by selectively dropping token activations. Quantization-based methods, on the other hand, use lower numerical precision to minimize memory usage. Mixed-precision training (Micikevicius et al., 2017) with FP16 or BF16 became standard, and further advancements introduced 8-bit optimizer quantization. QLoRA (Dettmers et al., 2023) extends this by applying 4-bit quantization to model weights during fine-tuning. *Reversible Networks*. Reversible network designs eliminate the need to cache activations during training by reconstructing them from outputs. RevNets (Gomez et al., 2017) demonstrated reversible residual blocks for image models, while Reformer (Kitaev et al., 2020) extended this idea to Transformers with reversible layers. Recent methods adapt reversible computation to fine-tuning pre-trained models by inserting reversible adapters (Liao et al., 2023b), significantly reducing activation memory without modifying the pre-trained weights.

TOKENSEEK, a sparsified gradient updating method under *compression* paradigm, leverages both context and gradient information in each sample to enable instance-aware activation sparsification with performance on par with dense models, bridging the performance gap.

2.2 PARAMETER-EFFICIENT FINE-TUNING

PEFT (Hu et al., 2022b; Aghajanyan et al., 2020; Yang et al., 2023; Huang et al., 2023; Zadouri et al., 2023) aims to optimize model parameter usage and thus can reduce memory consumption to varying degrees. It can be generally categorized into four paradigms (see more in §S7).

Partial Tuning methods (Lawton et al., 2023; Xu et al., 2021) update only a subset of the backbone model parameters using weight masking or partial tuning strategies. A common strategy is to fine-tune only the final few layers or solely the output head. However, its simplistic strategy may directly result in performance degradation, motivating further research into targeted masked tuning approaches (Sung et al., 2021; Chen et al., 2024a; Liao et al., 2023a). *Additional Tuning* methods introduce a small number of new parameters to a frozen pre-trained model, fine-tuning only the added modules. These methods can be further categorized into adapter-based (Houlsby et al., 2019; Pfeiffer et al., 2020; Wang et al., 2022a) and prompt-based approaches (Jia et al., 2022; Wang et al., 2024; 2023), which inject lightweight learnable modules into the model architecture or the model input, respectively. *Reparameterized Tuning* methods reparameterize the model updates in a low-dimensional subspace (Liu et al., 2025), leveraging the low intrinsic dimensionality of LLMs. LoRA (Hu et al., 2022a) learns low-rank matrices to model weight updates without modifying the original weights. Subsequent works have extended LoRA to alternative reparameterization variants (Hyeon-Woo et al., 2021) and incorporated quantization techniques for additional memory savings (Dettmers et al., 2023). *Hybrid Tuning* methods (He et al., 2021; Zhang et al., 2024) combine multiple PEFT strategies, aiming to unify their advantages. UniPELT (Mao et al., 2021) stands out as a representative method that jointly incorporates adapters, prefix tuning, and LoRA-style low-rank updates as submodules, and learns to activate those best suited to the current task via gating.

While PEFT methods primarily focus on parameter efficiency (*i.e.*, reducing component I storage), their impact on overall memory efficiency is limited (*e.g.*, the activation memory of most PEFT methods remains over 75% of that in full fine-tuning, even with less than 1% trainable parameters (Liao et al., 2023b)). Leveraging our architecture-agnostic design, TOKENSEEK can be seamlessly integrated with PEFT methods, further embracing both parameter and memory efficiency (see Tab. 1).

3 METHODOLOGY

In §3.1, we first analyze activations, the primary bottleneck in training memory, from two perspectives: (i) why storing activations is necessary, and (ii) why they incur large memory consumption in LLMs. Our method, TOKENSEEK, is presented in §3.2, which is decomposed into two key components: instance-aware token seeking and efficient token ditching. The overall framework is shown in Fig. 2.

3.1 PRELIMINARY

The Necessity of Storing Activations. Given a multilayer deep neural network, we first analyse the memory consumption of activations, in which the transformation and nonlinear activation at layer l are defined by $a^{(l)} = z^{(l-1)}W^{(l)} + b^{(l)}$ and $z^{(l)} = \sigma(a^{(l)})$, respectively. Here, the weight matrix $W^{(l)}$ projects the output $z^{(l-1)}$ of the previous layer into the current layer’s pre-activation $a^{(l)}$, to which we add the bias b before applying the activation function σ . By extending to deeper layers

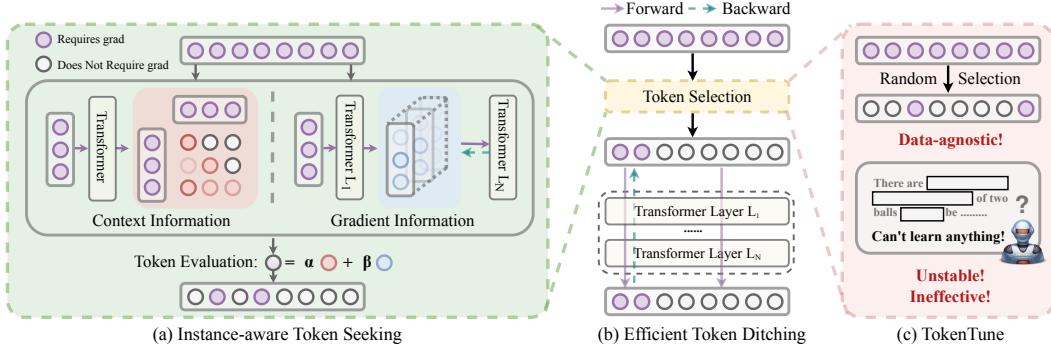


Figure 2: **Overview of TOKENSEEK (ours) vs. TOKENTUNE frameworks.** (a) Instance-aware token seeking using context and gradient information (see §3.2.1 and Eq. 5). (b) Efficient token ditching (see §3.2.2). (c) TOKENTUNE for random token selection (see analysis in Tab. 1 and §4.3).

and applying the differentiation rules along with the chain rule, we can decompose the gradient with respect to the weight in the first layer in simplicity as:

$$\frac{\partial \mathcal{L}}{\partial W^{(1)}} = \frac{\partial \mathcal{L}}{\partial z^{(L)}} \left(\prod_{\ell=2}^L \frac{\partial z^{(\ell)}}{\partial z^{(\ell-1)}} \right) \frac{\partial z^{(1)}}{\partial W^{(1)}}. \quad (1)$$

$$\frac{\partial z^{(l)}}{\partial z^{(l-1)}} = \frac{\partial z^{(l)}}{\partial a^{(l)}} \frac{\partial a^{(l)}}{\partial z^{(l-1)}} = \sigma'(a^{(l)}) W^{(l)}. \quad (2)$$

The computation of the back-prop term $\sigma'(a^{(l)}) W^{(l)}$ requires the intermediate value $a^{(l)}$ to further evaluate $\sigma'(a^{(l)})$. By caching each pre-activation $a^{(l)}$ during the forward pass, the model can avoid recomputing to obtain these intermediates, thereby efficiently forming the full chain of derivatives.

The Reason of Large Activations. Current Transformer-based LLMs follow this rule to store activations during backpropagation. Taking DeepSeek-v3 (Liu et al., 2024a; Zhang & Su, 2025) as an example, the activations in each layer have a space complexity of $\mathcal{O}(Bn_h s^2 + BsH)$, where B is the batch size, n_h is the number of attention heads, s is the sequence length, and H is the hidden dimension. The space complexity required for activations significantly outweighs that of the weights ($Bn_h s^2 + BsH \gg H^2$ given $B = 1$, $n_h = 128$, $s = 4096$ and $H = 7168$ (Zhang & Su, 2025)).

3.2 TOKENSEEK

3.2.1 INSTANCE-AWARE TOKEN SEEKING

The key insight behind TOKENSEEK is that not all training tokens within LLMs contribute equally to model fine-tuning, known as token redundancy. Token redundancy has long been recognized as a fundamental challenge to LLM efficiency (Hou et al., 2022), drawing increasing research attention across various domains, including efficient chain-of-thought reasoning (Xia et al., 2025) and prompt optimization (Li et al., 2023). This observation greatly inspires us to explore the potential of memory-efficient fine-tuning by reducing token redundancy. Then the critical problem turns to determine the importances of each token. Here, we propose a comprehensive evaluation of tokens by leveraging both **context** and **gradient information** captured within Transformer blocks (see Fig. 2 (a)).

► **Context Information.** Most LLMs are built upon the Transformer architecture, which fundamentally relies on the attention mechanism (Vaswani et al., 2017). The attention maps in decoder layers directly reflect the importance of each token in context, thereby guiding and shaping the transformation process. More specifically, given input embeddings $t \in \mathbb{R}^{n \times d}$, we first project them into queries and keys with learnable matrices $W^Q, W^K \in \mathbb{R}^{d \times d}$ to obtain $\mathbf{Q} = tW^Q$, $\mathbf{K} = tW^K$. We then form the attention scores and apply a causal mask for language modeling, computing $\mathbf{A} = \text{softmax}(\text{mask}(\mathbf{Q}\mathbf{K}^\top / \sqrt{d_k}))$. Each entry \mathbf{A}_{ij} denotes the attention weight from token i to token j . Owing to the row-wise softmax normalization, each row $\mathbf{A}_{i:}$ forms a probability distribution over all tokens, capturing how much attention token i allocates to others. Conversely, each column

$\mathbf{A}_{:j}$ reflects the cumulative attention received by a token j from all other tokens in the sequence. In this way, attention mechanism provides an intuitive and direct measure of a token’s importance within a given instance. The context importance of each token (Singh et al., 2024; Liao et al., 2025; Kong et al., 2023) is computed as:

$$I_1(t_j) = \sum_{i=1}^n \mathbf{A}_{ij}. \quad (3)$$

► **Gradient Information.** However, context-based evaluation above only reflects the importance of a token within a given instance and does not necessarily indicate its contribution to model fine-tuning. Therefore, in order to better quantify the contribution of each token during the fine tuning, we further assess token importance by examining the gradient magnitude of the loss *w.r.t.* the activations. This idea is inspired by (Jain & Wallace, 2019), which shows that attention weights are often uncorrelated with gradient-based measures of feature importance. The study positions gradient-based attribution as a more reliable yardstick of “true” token importance, highlighting that gradient-based saliency can substantially differ from attention-based explanations (see more discussion in §4.3). Given the gradient matrix $\mathbf{G} = [\partial \mathcal{L} / \partial z^{(L-1)}] \in \mathbb{R}^{n \times d}$ for the activations in the penultimate layer (*i.e.*, the input to the final decoder layer) computed during backpropagation, the gradient-based importance of each token is computed by summing the gradient magnitudes across the hidden dimension as:

$$I_2(t_j) = \text{Accumulate} \left[\frac{\partial \mathcal{L}}{\partial z^{(L-1)}} \right], \quad \text{Accumulate}[\cdot] = \sum_{k=1}^d \mathbf{G}_{jk}. \quad (4)$$

► **Token Evaluation.** To obtain a comprehensive evaluation of token importance, we integrate both context and gradient information, weighted by scalars α and β , respectively as:

$$I(t_j) = \alpha \log[I_1(t_j)] + \beta \text{Norm}[I_2(t_j)], \quad (5)$$

where we apply a log-like transformation to address the long-tail distribution of contextual importance scores, and use min-max normalization to scale the gradient-based importance scores to a comparable range (see more discussions in §4.3). By incorporating both information, our method is able to robustly evaluate tokens within each instance (distinct from random selection in Fig. 2 (c)), leading to more effective and stable fine-tuning (see §4.2 and §4.3). This enables us to select the tokens that contribute most to model fine tuning in the subsequent memory-efficient token ditching (see §3.2.2).

3.2.2 EFFICIENT TOKEN DITCHING

To improve training memory efficiency, we propose ditching the gradients of less informative tokens from the dataset, and fine-tuning LLMs using only the selected tokens. Following (Simoulin et al., 2024), by backpropagating the loss through the selected tokens in t only, and ditching the gradient computation of unselected tokens \bar{t} in Eq. 2 (see Fig. 2 (b)) after regrouping them, we have:

$$\boxed{\frac{\partial z^{(l)}}{\partial z^{(l-1)}}} = \left[\sigma'(a_t^{(l)}), \sigma'(a_{\bar{t}}^{(l)}) \right] W^{(l)} = \left[\sigma'(a_t^{(l)}), 0 \right] W^{(l)}. \quad (6)$$

Based on Eq. 6, we only need to cache $a_t^{(l)}$ to apply the chain rule, rather than storing the full activation $a^{(l)}$. We provide a detailed discussion in §S2 and §S7.1.

3.2.3 ANALYSIS AND DISCUSSION

As shown in §3.2.1, in contrast to other token importance evaluation strategies that require additional annotations or auxiliary networks (Xia et al., 2025), TOKENSEEK only requires a forward pass (*e.g.*, Llama3 8B requires only 13.3% of the training memory during inference under the FP8 setting) and a partial backward pass (*i.e.*, freeze all layers except the output head and the final decoder block) to assess token importance, resulting in *simplicity*. Presented in §3.2.2, tuning only 10% of tokens theoretically requires just $\sim 1\%$ of the activation memory, based on the space complexity analysis in §3.1, resulting in a highly *efficient* fine-tuning process. Beside enjoying the appealing characteristics of *simplicity* and *efficiency*, TOKENSEEK also has merits in *generality* and *interpretability*. For *generality*, our method relies solely on context and gradient information, making it architecture-agnostic and broadly applicable to a more wide range of Transformer-based models (see Tab.1). For *interpretability*, both context and gradient information provide intuitive and direct evaluations of token importance, thereby further enhancing the interpretability of our evaluation process (see §4.3).

Table 1: **Few-shot evaluation on question-answering benchmarks.** This includes ARC (25-shot) , MMLU (5-shot) , HellaSwag (10-shot) , TruthfulQA (0-shot) , and WinoGrande (0-shot). We report the average accuracy on five MMLU ethics tasks and WinoGrande, the normed accuracy on ARC and HellaSwag, and the MC2 score on TruthfulQA. The number reported in [·] is the “Tuned/Total” parameters in each setting. The same training settings are highlighted in **blue**, **red**, and **orange** for full-parameter tuning, LoHa, and QLoRA, respectively. Relative memory consumption percentages compared with the setting of full token tuning are transformed and reported in each scale. Same for Tab.2. We highlight the best average performance and memory savings in **bold**. For TOKENTUNE and TOKENSEEK, only 10% of the input tokens are selected for gradient computation.

Method	Ave. Mem.	Max. Mem.	ARC	Hella Swag	MMLU	Truthful QA	Wino Grande	Average Score
Qwen2.5 (0.5B)								
Full Parameter/Token Tuning	100%	100%	34.89	51.70	59.20	39.86	56.51	48.43
- w/ TOKENTUNE (Random)	48.3%	25.6%	25.26	25.78	51.07	49.93	47.36	39.88
- w/ TOKENSEEK (Ours)	48.3%	25.6%	25.17	25.52	58.14	50.13	50.75	41.94
IA3 (Liu et al., 2022)	84.3%	72.8%	34.98	51.66	56.81	40.08	56.51	48.01
LoRA (Hu et al., 2022a)	81.2%	71.8%	34.73	51.67	56.30	41.08	56.51	48.06
LoKr (Hyeon-Woo et al., 2021)	91.6%	79.3%	35.49	51.54	58.64	39.83	55.88	48.28
BOFT (Liu et al., 2024b)	145.1%	100.6%	34.64	51.70	58.18	39.57	56.43	48.10
Bone (Kang, 2024)	85.8%	76.2%	28.50	43.54	42.39	43.35	54.62	42.48
LoHa [1.33%] (Hyeon-Woo et al., 2021)	86.6%	76.9%	34.73	51.90	57.53	40.75	55.96	48.17
- w/ TOKENTUNE (Random)	39.5%	22.5%	23.81	26.34	57.53	50.26	47.36	41.06
- w/ TOKENSEEK (Ours)	39.5%	22.5%	26.54	25.96	58.14	50.26	50.51	42.28
QLoRA [1.04%] (Dettmers et al., 2023)	51.7%	45.6%	34.64	50.10	58.05	40.41	55.09	47.66
- w/ TOKENTUNE (Random)	19.2%	13.4%	31.06	45.92	57.60	41.56	55.56	46.34
- w/ TOKENSEEK (Ours)	19.2%	13.4%	34.56	50.09	57.52	41.51	58.56	48.45
Llama3.2 (1B)								
Full Parameter/Token Tuning	100%	100%	23.72	26.11	57.53	48.68	48.07	40.82
- w/ TOKENTUNE (Random)	64.6%	34.3%	24.32	25.80	58.14	47.90	47.59	40.75
- w/ TOKENSEEK (Ours)	64.6%	34.3%	23.98	25.73	58.14	48.09	49.72	41.13
LoHa [0.63%]	92.3%	99.4%	39.25	65.93	57.60	37.87	60.77	52.28
- w/ TOKENTUNE (Random)	45.9%	28.4%	38.48	64.21	50.34	43.89	59.91	51.37
- w/ TOKENSEEK (Ours)	45.9%	28.4%	38.57	65.89	58.18	39.34	60.93	52.58
QLoRA [0.52%]	45.6%	34.8%	38.82	65.26	56.39	38.85	61.33	52.13
- w/ TOKENTUNE (Random)	14.8%	14.3%	39.33	62.97	41.76	41.36	60.69	49.22
- w/ TOKENSEEK (Ours)	14.8%	14.3%	39.08	65.98	58.03	38.65	61.33	52.61
Llama3.2 (3B)								
Full Parameter/Token Tuning	100%	100%	23.98	25.72	58.62	49.53	49.80	41.53
- w/ TOKENTUNE (Random)	73.1%	39.3%	24.15	25.43	57.64	50.86	47.91	41.20
- w/ TOKENSEEK (Ours)	73.1%	39.3%	27.30	25.96	58.14	48.65	49.72	41.95
LoHa [0.47%]	90.7%	96.5%	49.06	75.96	63.50	42.08	69.46	60.01
- w/ TOKENTUNE (Random)	49.6%	30.0%	50.34	75.70	56.65	43.37	69.61	59.13
- w/ TOKENSEEK (Ours)	49.6%	30.0%	53.24	76.81	64.31	41.75	68.98	61.02
QLoRA [0.42%]	33.6%	26.5%	51.37	75.88	63.95	42.31	68.43	60.39
- w/ TOKENTUNE (Random)	13.3%	11.1%	49.91	73.04	59.91	45.25	68.43	59.31
- w/ TOKENSEEK (Ours)	13.3%	11.1%	50.00	76.30	63.43	43.37	68.98	60.42

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Under the “Pretrain-then-Finetune” paradigm, pre-trained LLMs are further fine-tuned on specialized datasets to adapt them to domain-specific tasks and improve instruction-following capabilities (Wang et al., 2022b; Taori et al., 2023). In this section, we apply instruction tuning and benchmarking under the few-shot setting. We provide additional experimental details in §S1 and §S7.

Instruction Tuning. Following (Simoulin et al., 2024), we fine-tune the Qwen2.5 0.5B (Yang et al., 2024), Llama3.2 1B and 3B (Grattafiori et al., 2024) models using the Open-Platypus dataset (Lee et al., 2023). It comprises 11 open-source instruction datasets. See more details in §S1.7.

Few-Shot Evaluation. We assess performance across few-shot benchmarks including MMLU (Hendrycks et al., 2020), ARC (easy and challenge) (Clark et al., 2018), HellaSwag (Zellers et al., 2019), TruthfulQA (Lin et al., 2021), and WinoGrande (Sakaguchi et al., 2021), using the “lm evaluation harness” (Gao et al., 2024). For each task, the model ranks answer options by probability, and the highest one is selected. See more discussions and experiments in §S1, §S3 and §S7.1.

324 4.2 MAIN RESULTS
325

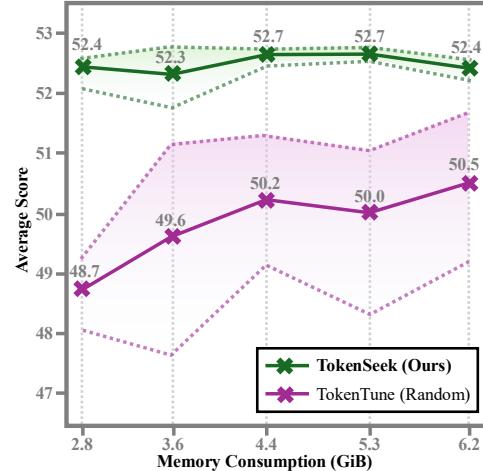
326 The main performance and memory comparison results across various models, scales and PEFT
327 settings are shown in Tab. 1, leading to three key observations. *First, Significant Memory Reduction.*
328 TOKENSEEK demonstrates exceptional efficiency in reducing both average and peak memory usage
329 during fine-tuning. Specifically, for the Llama3.2 3B model, peak memory usage is reduced by
330 60.7% with TOKENSEEK alone (*i.e.*, Llama3.2 3B + TOKENSEEK), and further down to just 11.1%
331 when combined with QLoRA (*i.e.*, Llama3.2 3B + QLoRA + TOKENSEEK), enabling training on a
332 single A100 GPU without triggering OOM issues. Similarly, average memory usage is reduced by
333 26.9% and 86.7%, respectively. These results highlight TOKENSEEK’s strong capability in achieving
334 extreme memory compression during fine-tuning (more experiments in §4.4). *Second, Competitive*
335 or *Superior Performance*. Despite memory efficiency, TOKENSEEK maintains competitive or even
336 superior performance compared to full-token tuning. The average score of TOKENSEEK with QLoRA
337 in Qwen 0.5B marginally surpasses the full token tuning baseline (48.45 *vs.* 48.43). In Llama3.2 1B,
338 TOKENSEEK consistently outperforms baseline across all settings (*i.e.*, TOKENSEEK, w/ LoHa,
339 and w/ QLoRA achieve scores of 41.13, 52.58, and 52.61, respectively, compared to 40.82 from
340 full token tuning.). This indicates that the memory compression achieved by TOKENSEEK does not
341 compromise, and may even slightly enhance, model performance (detailed discussions in §4.3). *Third,*
342 *Generalizable Across Different Scales*. Generally, TOKENSEEK’s effectiveness in both memory
343 reduction and performance stability is generalizable across various model scales ranging from 0.5B to
344 3B. However, we observe a distinct pattern across model scales: TOKENSEEK exhibits performance
345 degradation on Qwen under plain settings, whereas Llama does not. This suggests that TOKENSEEK
346 may be more sensitive to smaller-scale models, likely due to their limited representational capacity.
347 In conclusion, TOKENSEEK demonstrates itself as an universal memory efficient solution, effectively
348 achieving memory efficiency with competitive model accuracy (see more comparison in §S7).

349 4.3 ANALYSIS OF TOKEN SEEKING
350351 **Contributions of Instance-aware Token Seeking.**
352

353 We further conduct experiments to quantitatively evaluate the impact of instance-aware token seeking (*i.e.*,
354 addressing the drawbacks of data-agnostic optimization: inefficiency and instability) by comparing per-
355 formance across multiple runs under varying memory settings (*i.e.*, with the ratio of tunable tokens ranging
356 from 10% to 50%) on Llama3.2 1B with QLoRA. As shown in Fig. 3, we observed that TOKENSEEK
357 consistently enhances both *effectiveness* and *stability*. For *effectiveness*, our method (green curve), con-
358 sistently outperforms the random baseline (purple curve) (Xia et al., 2025) across various memory settings.
359 The accuracy achieved by our approach remains higher at all memory saving levels, clearly demon-
360 strating its effectiveness in optimizing performance under memory constraints. For *stability*, our method show-
361 cases superior stability. This is evident from the notably
362 narrower shaded regions (*i.e.*, variance) in Fig. 3, in-
363 dicating a lower standard deviation compared to the
364 random baseline. The results clearly show TOKENSEEK’s capability to maintain higher accuracy
365 with narrower fluctuations, emphasizing its robustness under varying memory constraints.

366 **Study of Interpretability.** One key advantage of TOKENSEEK is the transparency and interpretability
367 of its token seeking and ditching process. To illustrate this, we conduct a case study on a training
368 instance to visualize token evaluation and highlight common patterns (see more visualizations
369 in §S8). TOKENSEEK leverages both contextual and gradient information for token selection.

370 **Context Information:** while token selection varies across instances, our analysis reveals several
371 consistent patterns illustrated in Fig.4 (b). Specifically, *unidirectional* attention enforces causality,
372 resulting in an upper-triangular attention mask. *Diagonal* patterns indicate self-focused attention,
373 emphasizing local context as shown in the blue localized accumulation. *Attention Sink* (Xiao et al.,
374 2024) refers to the tendency of attention to disproportionately concentrate on a single position,
375 effectively acting as a global anchor (evident as the brown line in first column). The context scores



376 Figure 3: The performance for the Llama3.2
377 1B with QLoRA setting, where the upper,
378 lower and middle line indicate the maximum,
379 minimum and the average results.

380 The results clearly show TOKENSEEK’s capability to maintain higher accuracy
381 with narrower fluctuations, emphasizing its robustness under varying memory constraints.

378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431

Selected Tokens by Context Score Selected Tokens by Gradient Score

Below is an instruction that describes a task. Write a response that appropriately completes the request.

Instruction:
 A box contains 5 white balls and 6 black balls. Two balls are drawn out of the box at random. What is the probability that they both are white?

Response:
 There are $\binom{11}{2} = 55$ combinations of two balls that can be drawn. There are $\binom{5}{2} = 10$ combinations of two white balls that can be drawn. So the probability that two balls pulled out are both white is $\frac{10}{55} = \frac{2}{11}$.

(a) Visualization of Token Seeking

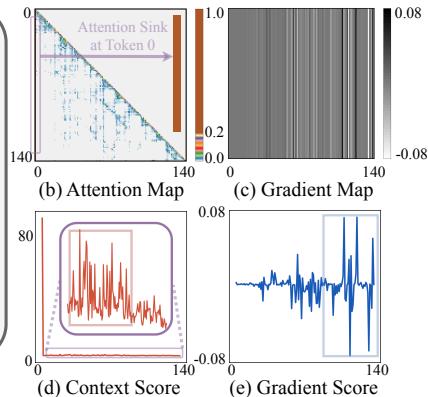


Figure 4: **Case study of a training instance.** (a) Visualization of the top 50% selected tokens using **context** and **gradient** information, highlighted in **red** and **blue**, respectively. (b) Average attention map from the final layer. (c) Accumulated gradient map of activations in the penultimate layer. (d) Context importance scores obtained by column-wise accumulation. (e) Gradient importance scores obtained by summing across the hidden dimension. Additional visualizations are provided in §S8.

exhibit a long-tail distribution caused by the attention sink effect, with higher scores concentrated in earlier positions—amplified by the causal mask (see zoom-in area of Fig.4 (d)). This results in a preference for earlier tokens, as reflected in the red-highlighted regions of Fig. 4 (a), which retain semantically meaningful tokens (e.g., those related to mathematical learning) while filtering out less informative ones, such as definite articles and prepositions. **Gradient Information:** to enhance interpretability, we aggregate the gradient map along the hidden dimension, producing $G' \in \mathbb{R}^{n \times 1}$, which is visualized as a color map in Fig.4 (c). As illustrated in Fig.4 (e), the gradient information predominantly focuses on later positions—typically corresponding to the “Response” portion of a training instance (highlighted in blue in Fig. 4 (a)), underscoring the importance of learning the answer generation process. In summary, our findings highlight the interpretability of TOKENSEEK, showing that context and gradient information exhibit distinct but complementary patterns (see more in §S7). Their integration enables a more comprehensive and robust approach to token evaluation.

Study of Optimization. We further investigate the reason of superior performance under the PEFT settings and discuss the potential impact of the percentage of tunable tokens during fine tuning. By comparing different tunable token ratios within each group (*i.e.*, lighter *vs.* darker lines) and across different tuning strategies (*i.e.*, different colored lines), we have two key observations. **i) TOKENSEEK favors PEFT:** Considering PEFT methods (*i.e.*, LoHa and QLoRA), we observe that **full parameter** tuning yields lower training loss, which may indicate potential overfitting (*i.e.*, lower training loss but poorer downstream performance). In contrast, PEFT methods, which update only a subset of parameters, are less prone to overfitting and therefore remain more robust and better suited for token ditching (*i.e.*, 47.66 on QLoRA *vs.* 48.85 on QLoRA + TOKENSEEK). **ii) Tokens Contribute Fine Tuning:** As more tunable tokens are incorporated into fine-tuning (*i.e.*, from 10% to 50%), we consistently observe lower optimization loss, which indicates that fine tuning is sensitive to training data volume. Low-quality token selection under extremely limited token training may thus lead to optimization collapse and performance degradation, emphasizing the need for our instance-aware token seeking approach.

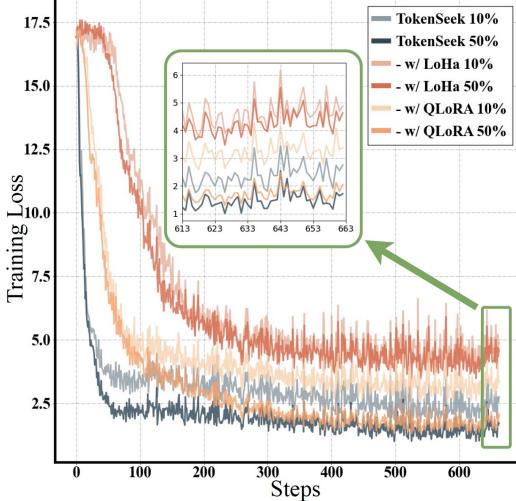


Figure 5: **Training loss curves of six settings on Qwen2.5 0.5B.** Blue, red, and orange lines represent full parameter, LoHa, and QLoRA tuning, respectively. Lighter lines in each group indicate 10% token tuning, while darker lines indicate 50%. Detailed performance and memory usage results are provided in Tab. 1 and 2.

432
433
434
435 Table 2: **Ablation study on token evaluation in Eq. 5**, analyzing the impact of scalar weighting and
436 threshold selection on both memory consumption and model performance (See more in §S7).
437

438 Settings	439 Ave.	440 Max.	441 MMLU	442 ARC	443 Hella	444 Truthful	445 Wino	446 Average
447 Sensitivity to Scalar (Qwen2.5 0.5B with QLoRA)								
448 $\alpha=1, \beta=0$			34.56	50.09	57.52	41.51	58.56	48.45
449 $\alpha=0, \beta=1$			30.72	44.20	57.62	43.98	55.41	46.39
450 $\alpha=5, \beta=5$	19.2%	13.4%	35.15	50.20	58.49	41.48	57.93	48.65
451 $\alpha=3, \beta=7$			34.64	48.77	58.33	42.18	57.46	48.28
452 $\alpha=7, \beta=3$			35.58	50.10	58.59	41.13	57.22	48.53
453 Ratio of Tunable Token (Llama3.2 1B with QLoRA)								
454 100%	100%	100%	23.72	26.11	57.53	48.68	48.07	40.82
455 50%	32.6%	53.1%	39.42	65.34	55.00	40.53	61.01	52.26
456 40%	28.0%	29.9%	39.42	65.51	56.92	39.89	61.56	52.66
457 30%	23.2%	23.7%	40.27	65.60	54.63	41.46	61.80	52.75
458 20%	18.8%	18.6%	39.42	65.73	53.24	39.86	60.77	51.80
459 10%	14.8%	14.3%	39.08	65.98	58.03	38.65	61.33	52.61

450 4.4 ABLATION STUDY

451 **Sensitivity to Scalar.** As stated in Eq. 5, the scalars
452 α and β determine the relative emphasis placed on
453 context and gradient information during token evalua-
454 tion, respectively. As shown in Tab. 2, configura-
455 tions that balance both information (e.g., [5, 5]) achieve
456 higher performance compared to those relying on a
457 single evaluation (e.g., [0, 1]). Notably, TOKENSEEK
458 performance remains stable across various settings,
459 indicating low sensitivity within certain range.

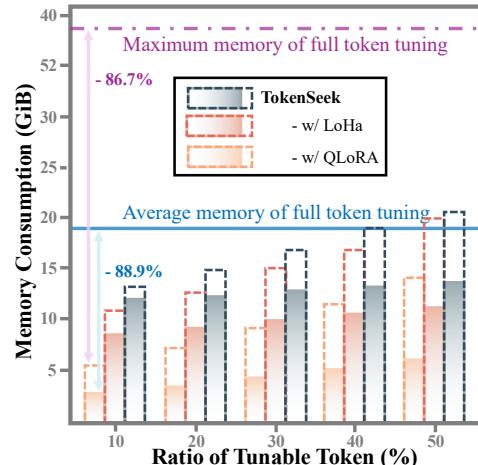
460 **Ratio of Tunable Token.** We then investigate the
461 ratio of tunable tokens *w.r.t.* model performance,
462 particularly under scenarios with extremely limited
463 gradient tokens. Tab. 2 shows that TOKENSEEK main-
464 tains stable performance across a range of ratios (*i.e.*,
465 from 51.80 to 52.75), while memory usage decreases
466 substantially as the ratio reduces (*i.e.*, from 32.6% to
467 14.8%). Given the observed stability, we suggest a
468 default ratio of 10% for overall efficiency.

469 **GPU Memory Impact.** The motivation behind
470 memory-efficient fine-tuning stems from the mis-
471 match between limited GPU memory (*e.g.*, 40GB

472 on A100, 24GB on RTX 4090) and the growing size of LLMs. In this context, peak memory deter-
473 mines whether a model can be fine-tuned on a single GPU without encountering OOM issues. Benefit
474 from our model-agnostic design, TOKENSEEK provides faithfully cumulative memory savings when
475 combined with PEFT methods. For example, when integrated with QLoRA, the peak memory usage
476 ranges from 14.2 GiB to as low as 5.5 GiB depending on the ratio selected for tunable tokens —
477 substantially lower than the 38.8 GiB required by full token tuning.

478 5 CONCLUSION

479 We propose TOKENSEEK, a universal plugin solution for effective and stable Transformer-based
480 memory efficient fine tuning. It has merits in: **i**) significant memory reduction via token ditching
481 without sacrificing performance; **ii**) strong generalizability across various LLMs and compatibility
482 with existing PEFT methods; and **iii**) interpretable instance-aware seeking for effective and stable
483 fine tuning. As a whole, we conclude that the outcomes elucidated in this paper impart essential
484 understandings and thus necessitate further exploration within the field of MEFT.



485 Figure 6: **Training memory under different**
486 **settings and token ratio selections.** Bars repre-
487 sent average memory usage, while dashed lines indicate peak memory consumption.

486 REFERENCES
487

488 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
489 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
490 *arXiv preprint arXiv:2303.08774*, 2023.

491 Armen Aghajanyan, Luke Zettlemoyer, and Sonal Gupta. Intrinsic dimensionality explains the
492 effectiveness of language model fine-tuning. *arXiv preprint arXiv:2012.13255*, 2020.

493 Roe Aharoni and Yoav Goldberg. Unsupervised domain clusters in pretrained language models. In
494 *ACL*, 2020.

495 Paul Albert, Frederic Z Zhang, Hemanth Saratchandran, Cristian Rodriguez-Opazo, Anton van den
496 Hengel, and Ehsan Abbasnejad. Randlora: Full-rank parameter-efficient fine-tuning of large
497 models. In *ICLR*, 2025.

498 Rohan Anil, Vineet Gupta, Tomer Koren, and Yoram Singer. Memory-efficient adaptive optimization
499 for large-scale learning. *arXiv preprint arXiv:1901.11150*, 4, 2019.

500 Alan Ansell, Ivan Vulić, Hannah Sterz, Anna Korhonen, and Edoardo M Ponti. Scaling sparse
501 fine-tuning to large language models. *arXiv preprint arXiv:2401.16405*, 2024.

502 Arash Ardakani, Altan Haan, Shangyin Tan, Doru Thom Popovici, Alvin Cheung, Costin Iancu, and
503 Koushik Sen. Slimfit: Memory-efficient fine-tuning of transformer-based models using training
504 dynamics. *arXiv preprint arXiv:2305.18513*, 2023.

505 Brian Bartoldson, Ari Morcos, Adrian Barbu, and Gordon Erlebacher. The generalization-stability
506 tradeoff in neural network pruning. In *NeurIPS*, 2020.

507 Changyu Chen, Xiting Wang, Ting-En Lin, Ang Lv, Yuchuan Wu, Xin Gao, Ji-Rong Wen, Rui
508 Yan, and Yongbin Li. Masked thought: Simply masking partial reasoning steps can improve
509 mathematical reasoning learning of language models. *arXiv preprint arXiv:2403.02178*, 2024a.

510 Ping Chen, Wenjie Zhang, Shuibing He, Weijian Chen, Siling Yang, Kexin Huang, Yanlong Yin,
511 Xuan Zhan, Yingjie Gu, Zhiwei Peng, et al. Optimizing large model training through overlapped
512 activation recomputation. *arXiv preprint arXiv:2406.08756*, 2024b.

513 Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
514 memory cost. *arXiv preprint arXiv:1604.06174*, 2016.

515 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
516 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
517 *arXiv preprint arXiv:1803.05457*, 2018.

518 Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
519 of quantized llms. In *NeurIPS*, 2023.

520 Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
521 networks. In *ICLR*, 2019.

522 Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
523 Laurence Golding, Jeffrey Hsu, Alain Le Noac'h, Haonan Li, Kyle McDonell, Niklas Muenninghoff,
524 Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
525 Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model evaluation
526 harness, 07 2024. URL <https://zenodo.org/records/12608602>.

527 Aidan N Gomez, Mengye Ren, Raquel Urtasun, and Roger B Grosse. The reversible residual network:
528 Backpropagation without storing activations. In *NeurIPS*, 2017.

529 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
530 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
531 models. *arXiv preprint arXiv:2407.21783*, 2024.

540 Demi Guo, Alexander M Rush, and Yoon Kim. Parameter-efficient transfer learning with diff pruning.
 541 *arXiv preprint arXiv:2012.07463*, 2020.

542

543 Cheng Han, Qifan Wang, Yiming Cui, Zhiwen Cao, Wenguan Wang, Siyuan Qi, and Dongfang Liu.
 544 E²vpt: An effective and efficient approach for visual prompt tuning. In *ICCV*, 2023.

545 Cheng Han, Qifan Wang, Yiming Cui, Wenguan Wang, Lifu Huang, Siyuan Qi, and Dongfang Liu.
 546 Facing the elephant in the room: Visual prompt tuning or full finetuning? In *ICLR*, 2024.

547

548 Haoze He, Juncheng Billy Li, Xuan Jiang, and Heather Miller. Sparse matrix in large language model
 549 fine-tuning. *arXiv preprint arXiv:2405.15525*, 2024.

550 Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards a
 551 unified view of parameter-efficient transfer learning. *arXiv preprint arXiv:2110.04366*, 2021.

552

553 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
 554 Jacob Steinhardt. Measuring massive multitask language understanding. *arXiv preprint
 555 arXiv:2009.03300*, 2020.

556 Le Hou, Richard Yuanzhe Pang, Tianyi Zhou, Yuexin Wu, Xinying Song, Xiaodan Song, and Denny
 557 Zhou. Token dropping for efficient bert pretraining. *arXiv preprint arXiv:2203.13240*, 2022.

558

559 Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
 560 Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
 561 NLP. In *ICML*, 2019.

562 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 563 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. In *ICLR*, 2022a.

564 Shengding Hu, Zhen Zhang, Ning Ding, Yadao Wang, Yasheng Wang, Zhiyuan Liu, and Maosong
 565 Sun. Sparse structure search for parameter-efficient tuning. *arXiv preprint arXiv:2206.07382*,
 566 2022b.

567

568 Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu Pang, Chao Du, and Min Lin. Lorahub:
 569 Efficient cross-task generalization via dynamic lora composition. *arXiv preprint arXiv:2307.13269*,
 570 2023.

571 Nam Hyeon-Woo, Moon Ye-Bin, and Tae-Hyun Oh. Fedpara: Low-rank hadamard product for
 572 communication-efficient federated learning. *arXiv preprint arXiv:2108.06098*, 2021.

573

574 Paras Jain, Ajay Jain, Aniruddha Nrusimha, Amir Gholami, Pieter Abbeel, Joseph Gonzalez, Kurt
 575 Keutzer, and Ion Stoica. Checkmate: Breaking the memory wall with optimal tensor rematerializa-
 576 tion. *Proceedings of Machine Learning and Systems*, 2:497–511, 2020.

577 Sarthak Jain and Byron C Wallace. Attention is not explanation. In *ACL*, 2019.

578

579 Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and
 580 Ser-Nam Lim. Visual prompt tuning. In *ECCV*, 2022.

581 Jean Kaddour. The minipile challenge for data-efficient language models. *arXiv preprint
 582 arXiv:2304.08442*, 2023.

583

584 Jiale Kang. Bone: Block affine transformation as parameter efficient fine-tuning methods for large
 585 language models. *arXiv preprint arXiv:2409.15371*, 2024.

586 Marisa Kirisame, Steven Lyubomirsky, Altan Haan, Jennifer Brennan, Mike He, Jared Roesch, Tianqi
 587 Chen, and Zachary Tatlock. Dynamic tensor rematerialization. *arXiv preprint arXiv:2006.09616*,
 588 2020.

589

590 Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. *arXiv
 591 preprint arXiv:2001.04451*, 2020.

592

593 Zhenglun Kong, Haoyu Ma, Geng Yuan, Mengshu Sun, Yanyue Xie, Peiyan Dong, Xin Meng, Xuan
 Shen, Hao Tang, Minghai Qin, et al. Peeling the onion: Hierarchical reduction of data redundancy
 for efficient vision transformer training. In *AAAI*, 2023.

594 Vijay Anand Korthikanti, Jared Casper, Sangkug Lym, Lawrence McAfee, Michael Andersch,
 595 Mohammad Shoeybi, and Bryan Catanzaro. Reducing activation recomputation in large transformer
 596 models. *Proceedings of Machine Learning and Systems*, 5:341–353, 2023.

597

598 Neal Lawton, Anoop Kumar, Govind Thattai, Aram Galstyan, and Greg Ver Steeg. Neural architecture
 599 search for parameter-efficient fine-tuning of large pre-trained language models. *arXiv preprint*
 600 *arXiv:2305.16597*, 2023.

601 Louis Leconte, Lisa Bedin, Van Minh Nguyen, and Eric Moulines. Reallm: A general framework for
 602 llm compression and fine-tuning. *arXiv preprint arXiv:2405.13155*, 2024.

603

604 Ariel N Lee, Cole J Hunter, and Nataniel Ruiz. Platypus: Quick, cheap, and powerful refinement of
 605 llms. *arXiv preprint arXiv:2308.07317*, 2023.

606 Yucheng Li, Bo Dong, Chenghua Lin, and Frank Guerin. Compressing context to enhance inference
 607 efficiency of large language models. *arXiv preprint arXiv:2310.06201*, 2023.

608

609 Baohao Liao, Yan Meng, and Christof Monz. Parameter-efficient fine-tuning without introducing
 610 new latency. *arXiv preprint arXiv:2305.16742*, 2023a.

611 Baohao Liao, Shaomu Tan, and Christof Monz. Make pre-trained model reversible: From parameter
 612 to memory efficient fine-tuning. In *NeurIPS*, 2023b.

613

614 Yi Liao, Yongsheng Gao, and Weichuan Zhang. Dynamic accumulated attention map for interpreting
 615 evolution of decision-making in vision transformer. *Pattern Recognition*, 165:111607, 2025.

616

617 Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
 618 falsehoods. *arXiv preprint arXiv:2109.07958*, 2021.

619

620 Zicheng Lin, Tian Liang, Jiahao Xu, Qiuzhi Lin, Xing Wang, Ruilin Luo, Chufan Shi, Siheng Li,
 621 Yujiu Yang, and Zhaopeng Tu. Critical tokens matter: Token-level contrastive estimation enhances
 622 llm’s reasoning capability. In *ICML*, 2024.

623

624 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 625 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*
 626 *arXiv:2412.19437*, 2024a.

627

628 Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
 629 Colin A Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context
 630 learning. In *NeurIPS*, 2022.

631

632 Weiyang Liu, Zeju Qiu, Yao Feng, Yuliang Xiu, Yuxuan Xue, Longhui Yu, Haiwen Feng, Zhen
 633 Liu, Jyeon Heo, Songyou Peng, Yandong Wen, Michael J. Black, Adrian Weller, and Bernhard
 634 Schölkopf. Parameter-efficient orthogonal finetuning via butterfly factorization. In *ICLR*, 2024b.

635

636 Yiyang Liu, James Chenhao Liang, Ruixiang Tang, Yugyung Lee, Majid Rabbani, Sohail Dianat,
 637 Raghuveer Rao, Lifu Huang, Dongfang Liu, Qifan Wang, et al. Re-imagining multimodal instruc-
 638 tion tuning: A representation view. In *ICLR*, 2025.

639

640 Yuning Mao, Lambert Mathias, Rui Hou, Amjad Almahairi, Hao Ma, Jiawei Han, Wen-tau Yih, and
 641 Madien Khabsa. Unipelt: A unified framework for parameter-efficient language model tuning.
 642 *arXiv preprint arXiv:2110.07577*, 2021.

643

644 Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
 645 Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed precision
 646 training. *arXiv preprint arXiv:1710.03740*, 2017.

647

648 Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Sebastian Ruder. MAD-X: An adapter-based
 649 framework for multi-task cross-lingual transfer. In *EMNLP*, 2020.

650

651 Chen Qian, Dongrui Liu, Haochen Wen, Zhen Bai, Yong Liu, and Jing Shao. Demystifying reasoning
 652 dynamics with mutual information: Thinking tokens are information peaks in llm reasoning. *arXiv*
 653 *preprint arXiv:2506.02867*, 2025.

648 Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
 649 toward training trillion parameter models. In *IEEE Supercomputing Conference*, 2020.
 650

651 Hyogon Ryu, Seohyun Lim, and Hyunjung Shim. Memory-efficient fine-tuning for quantized
 652 diffusion model. In *ECCV*, 2024.

653 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
 654 adversarial winograd schema challenge at scale. *Communications of the ACM*, 64(9):99–106,
 655 2021.

656 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 657 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical
 658 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

659

660 Antoine Simoulin, Namyong Park, Xiaoyi Liu, and Grey Yang. Memory-efficient selective fine-tuning.
 661 In *ICML Workshop*, 2023.

662 Antoine Simoulin, Namyong Park, Xiaoyi Liu, and Grey Yang. Memory-efficient fine-tuning of
 663 transformers via token selection. In *EMNLP*, 2024.

664

665 Manish Kumar Singh, Rajeev Yasarla, Hong Cai, Mingu Lee, and Fatih Porikli. Tosa: Token selective
 666 attention for efficient vision transformers. *arXiv preprint arXiv:2406.08816*, 2024.

667 Yi-Lin Sung, Varun Nair, and Colin A Raffel. Training neural networks with fixed sparse masks. In
 668 *NeurIPS*, 2021.

669

670 Yu Tang, Qiao Li, Lujia Yin, Dongsheng Li, Yiming Zhang, Chenyu Wang, Xingcheng Zhang, Linbo
 671 Qiao, Zhaoning Zhang, and Kai Lu. Delta: Memory-efficient training via dynamic fine-grained
 672 recomputation and swapping. *ACM Transactions on Architecture and Code Optimization*, 21(4):
 673 1–25, 2024.

674 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
 675 Liang, and Tatsunori B Hashimoto. Stanford alpaca: An instruction-following llama model, 2023.

676

677 Vithursan Thangarasa, Ganesh Venkatesh, Nish Sinnadurai, and Sean Lie. Self-data distillation for
 678 recovering quality in pruned large language models. In *NeurIPS Workshop*, 2024.

679

680 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 681 Kaiser, and Illia Polosukhin. Attention is all you need. In *NeurIPS*, 2017.

682

683 Danilo Vucetic, Mohammadreza Tayaranian, Maryam Ziaeefard, James J Clark, Brett H Meyer, and
 684 Warren J Gross. Efficient fine-tuning of bert models on the edge. In *ISCAS*, 2022.

685

686 Qifan Wang, Yuning Mao, Jingang Wang, Hanchao Yu, Shaoliang Nie, Sinong Wang, Fuli Feng,
 687 Lifu Huang, Xiaojun Quan, Zenglin Xu, et al. Aprompt: Attention prompt tuning for efficient
 688 adaptation of pre-trained language models. In *EMNLP*, 2023.

689

690 Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
 691 Jianxin Yang, Zhenru Zhang, et al. Beyond the 80/20 rule: High-entropy minority tokens drive
 692 effective reinforcement learning for llm reasoning. *arXiv preprint arXiv:2506.01939*, 2025.

693

694 Taowen Wang, Yiyang Liu, James Chenhao Liang, Yiming Cui, Yuning Mao, Shaoliang Nie, Jiahao
 695 Liu, Fuli Feng, Zenglin Xu, Cheng Han, et al. M2pt: Multimodal prompt tuning for zero-shot
 696 instruction learning. In *EMNLP*, 2024.

697

698 Yaqing Wang, Sahaj Agarwal, Subhabrata Mukherjee, Xiaodong Liu, Jing Gao, Ahmed Hassan
 699 Awadallah, and Jianfeng Gao. Adamix: Mixture-of-adaptations for parameter-efficient model
 700 tuning. *arXiv preprint arXiv:2205.12410*, 2022a.

701

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
 Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions.
arXiv preprint arXiv:2212.10560, 2022b.

Heming Xia, Yongqi Li, Chak Tou Leong, Wenjie Wang, and Wenjie Li. Tokenskip: Controllable
 chain-of-thought compression in llms. *arXiv preprint arXiv:2502.12067*, 2025.

702 Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
 703 language models with attention sinks. In *ICLR*, 2024.

704

705 Runxin Xu, Fuli Luo, Zhiyuan Zhang, Chuanqi Tan, Baobao Chang, Songfang Huang, and Fei Huang.
 706 Raise a child in large language model: Towards effective and generalizable fine-tuning. *arXiv*
 707 preprint *arXiv:2109.05687*, 2021.

708 Adam X Yang, Maxime Robeyns, Xi Wang, and Laurence Aitchison. Bayesian low-rank adaptation
 709 for large language models. *arXiv preprint arXiv:2308.13111*, 2023.

710

711 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 712 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint*
 713 *arXiv:2412.15115*, 2024.

714 David H Yang, Mohammad Mohammadi Amiri, Tejaswini Pedapati, Subhajit Chaudhury, and Pin-
 715 Yu Chen. Sparse gradient compression for fine-tuning large language models. *arXiv preprint*
 716 *arXiv:2502.00311*, 2025.

717

718 Kai Yi, Georg Meinhart, Laurent Condat, and Peter Richtárik. Fedcomloc: Communication-efficient
 719 distributed training of sparse and quantized models. *arXiv preprint arXiv:2403.09904*, 2024.

720 Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does
 721 reinforcement learning really incentivize reasoning capacity in llms beyond the base model? *arXiv*
 722 preprint *arXiv:2504.13837*, 2025.

723

724 Ted Zadouri, Ahmet Üstün, Arash Ahmadian, Beyza Ermiş, Aycı̄ Locatelli, and Sara Hooker. Pushing
 725 mixture of experts to the limit: Extremely parameter efficient moe for instruction tuning. *arXiv*
 726 preprint *arXiv:2309.05444*, 2023.

727

728 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
 729 really finish your sentence? *arXiv preprint arXiv:1905.07830*, 2019.

730

731 Runjia Zeng, Cheng Han, Qifan Wang, Chunshu Wu, Tong Geng, Lifu Huangg, Ying Nian Wu, and
 732 Dongfang Liu. Visual fourier prompt tuning. In *NeurIPS*, 2024.

733

734 Yongcheng Zeng, Guoqing Liu, Weiyu Ma, Ning Yang, Haifeng Zhang, and Jun Wang. Token-level
 735 direct preference optimization. In *ICML*, 2025.

736

737 Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen Chu, and Bo Li. Lora-fa: Memory-efficient
 738 low-rank adaptation for large language models fine-tuning. *arXiv preprint arXiv:2308.03303*,
 739 2023.

740

741 Ping Zhang and Lei Su. Memory analysis on the training course of deepseek models. *arXiv preprint*
 742 *arXiv:2502.07846*, 2025.

743

744 Yuanhan Zhang, Kaiyang Zhou, and Ziwei Liu. Neural prompt search. *TPAMI*, 2024.

745

746 Chen Zhao, Shuming Liu, Karttikeya Mangalam, Guocheng Qian, Fatimah Zohra, Abdulmohsen
 747 Alghannam, Jitendra Malik, and Bernard Ghanem. Dr2net: Dynamic reversible dual-residual
 748 networks for memory-efficient finetuning. In *CVPR*, 2024.

749

750 Wenxuan Zhou, Shujian Zhang, Lingxiao Zhao, and Tao Meng. T-reg: Preference optimization with
 751 token-level reward regularization. In *ACL*, 2025.

752

753

754

755

756 **SUMMARY OF THE APPENDIX**
757758 This appendix contains additional experimental results and discussions of our ICLR 2026 submission:
759 **TOKENSEEK: Memory Efficient Fine Tuning via Instance-Aware Token Ditching**, organized as
760 follows:
761762 • §S1 provides **additional implementation details of TOKENSEEK**, complementing the overall
763 methodology and results presented in the main paper.
764 • §S2 offers a **detailed analysis of efficient token ditching**, expanding on the motivations and
765 complexity analysis discussed in the main paper.
766 • §S3 presents **additional experiments of TOKENSEEK on larger LLMs**, extending the smaller-
767 scale evaluations included in the main paper.
768 • §S4 shows related **asset license and consent** to our work.
769 • §S5 claims **reproducibility** of our approach.
770 • §S6 discusses the **social impact** of our research.
771 • §S7 adds more **discussions**, and points out potential directions of our **future work**.
772 • §S8 includes further **visualization results**, covering case studies, attention maps, and gradient
773 score distributions.
774775 **S1 IMPLEMENTATION DETAILS**
776777 **S1.1 INSTRUCTION TEMPLATE**
778779 For instruction tuning of large LLMs, we apply the Alpaca (Taori et al., 2023) prompt template
780 without incorporating step-by-step reasoning following (Simoulin et al., 2024), as shown below.
781782 “Below is an instruction that describes a task, paired with an input that provides
783 further context. Write a response that appropriately completes the request.
784 ### Instruction: {instruction}
785 ### Input: {input}
786 ### Response:
787 ”
788789 **S1.2 TRAINING AND EVALUATION DATA**
790791 For instruction tuning, we fine-tuned Qwen and Llama on 21,221 samples from the Open-Platypus
792 dataset (Lee et al., 2023). Although Open-Platypus comprises 11 open-source datasets, we excluded
793 two—*leetcode-solutions-python-testgen-gpt4* and *airoboros-gpt4-1.4.1*—as they contain outputs
794 generated by GPT models (Achiam et al., 2023). We used the remaining 9 datasets for fine-tuning,
795 following (Simoulin et al., 2024).
796797 **S1.3 TRAINING SETTINGS**
798799 We do not use any checkpointing, ZeRO or offloading techniques. Below are other training settings
800 details.
801802 bf16: true
803 fp16: false
804 fp16_opt_level: "01"
805 lr_scheduler_type: "cosine"
806 warmup_steps: 100
807 weight_decay: 0.01
808 optim: "adamw_torch"
809810 For QLoRA and LoHa, we use the below same configuration in all experiments.
811812 alpha:16
813 dropout:0.05
814 r:8
815

810 For other baselines such as IA3 and BOFT, we use the default PEFT configuration across all runs.
 811
 812 Regarding the resulting peak/average memory, we would be happy to provide the original numbers
 813 for full parameter/token tuning in each setting for more comprehensive understanding. Other baseline
 814 memory usage can be calculated using the original numbers below and their relative memory
 815 percentages reported in Tab. 1.

816 Table S1: Memory usage summary for Qwen2.5 and Llama3.2 models under full parameter/token
 817 tuning.
 818

Model	Average Memory (MB)	Maximum Memory (MB)
Qwen2.5 (0.5B)	12,070	27,300
Llama3.2 (1B)	19,462	39,688
Llama3.2 (3B)	40,100	83,927

824 S1.4 HYPERPARAMETER SETTINGS

825 Given the hyperparameters α and β introduced in Eq. 5, we perform a linear search over the set
 826 $\{[1,0], [0,1], [5,5]\}$ for each LLM. The optimal settings are: [1,0] for Qwen2.5 0.5B and Llama3.2
 827 1B, and [5,5] for Llama3.2 3B. A linear search over $\{[1,0], [0,1], [5,5]\}$ reveals that smaller models
 828 (Qwen2.5 0.5B, Llama3.2 1B) benefit from context-only information, while the larger Llama3.2 3B
 829 performs the best when combining both context and gradient information. This suggests that larger
 830 models may better utilize multi-information token evaluation.
 831

832 S1.5 STANDARD ERROR FOR MAIN RESULTS

833 We report standard errors in Tab. S2 for the main evaluation results presented in Tab.1. It is important
 834 to note that these values are derived from the “lm evaluation harness” (Gao et al., 2024), which yields
 835 consistent standard error across repeated evaluations on the same task and dataset. Consequently,
 836 all PEFT baselines (e.g., LoHa, QLoRA) and TOKENTUNE variants share similar standard errors
 837 for each benchmark under the same task setting. This consistency ensures a fair and controlled
 838 comparison across methods. As shown, the average standard errors across all tasks remain low (e.g.,
 839 ~ 1.0), indicating stable performance estimates. Therefore, the conclusions drawn from accuracy
 840 improvements and memory savings remain robust under the evaluation framework, further supporting
 841 the reliability of TOKENSEEK’s performance gains.
 842

843 Table S2: Standard error for the main results in Tab. 1.
 844
 845

Method	ARC	Hella Swag	MMLU	Truthful QA	Wino Grande	Average
Qwen2.5 (0.5B)						
TOKENSEEK (Ours)	1.216	0.438	0.339	1.640	1.405	1.008
- w/ LoHa	1.252	0.439	0.338	1.631	1.405	1.013
- w/ QLoRA	1.395	0.499	0.337	1.436	1.387	1.011
Llama3.2 (1B)						
TOKENSEEK (Ours)	1.245	0.437	0.338	1.623	1.405	1.009
- w/ LoHa	1.433	0.473	0.345	1.421	1.367	1.008
- w/ QLoRA	1.434	0.477	0.342	1.455	1.372	1.016
Llama3.2 (3B)						
TOKENSEEK (Ours)	1.237	0.442	0.337	1.613	1.404	1.007
- w/ LoHa	1.461	0.427	0.330	1.474	1.287	0.996
- w/ QLoRA	1.450	0.432	0.331	1.497	1.290	1.000

861 S1.6 TRAINING TIME FOR MAIN RESULTS

862 We further analyze the training time (measured in GPU hours on one NVIDIA A100-40GB GPU)
 863 to assess the computational efficiency of TOKENSEEK compared to other methods. Notably, To-

KENSEEK exhibits similar training time overhead to TOKENTUNE across all model scales and PEFT settings. Specifically, both TOKENSEEK and TOKENTUNE incur a modest increase of approximately 11–15% in GPU hours compared to baseline full-token tuning. For example, on Qwen2.5 0.5B, the baseline takes 0.43 GPU hours, while TOKENSEEK requires 0.49; similarly, on Llama3.2 1B, the baseline uses 0.35 hours *vs.* 0.39 hours for TOKENSEEK. This overhead is likely attributed to the irregularity introduced by selective gradient computation, as we split the tokens into gradient and non-gradient segments for token-level control (see §3.2.2). While this adds minimal overhead, the trade-off is justified by the substantial memory savings and performance gains achieved by TOKENSEEK. In sum, TOKENSEEK maintains training time efficiency comparable to other lightweight fine-tuning methods, while delivering superior performance and memory benefits.

Table S3: Training time for the main results in Tab. 1.

	Baseline	Baseline + TOKENSEEK	LoHa	LoHa + TOKENSEEK	QLoRA	QLoRA + TOKENSEEK
Qwen2.5 (0.5B)						
GPU Hours	0.43	0.49	0.62	0.69	0.77	0.86
Llama3.2 (1B)						
GPU Hours	0.35	0.39	0.73	0.82	0.55	0.63
Llama3.2 (3B)						
GPU Hours	0.67	0.75	1.63	1.85	1.03	1.18

S1.7 DETAILS OF INSTRUCTION TUNING

All experiments are conducted on NVIDIA A100-40GB GPUs, except for the full token tuning settings on Llama3.2 3B due to the out-of-memory (OOM) issues. We train for one epoch using a learning rate of 4×10^{-4} for all fine-tuning. A batch size of 1 is used with 32 gradient accumulation steps. Adapters are inserted into the feed-forward layers of each Transformer block following (He et al., 2021). The model is prompted using the Alpaca-style format (Taori et al., 2023) without explicit reasoning

S2 DETAILS OF EFFICIENT TOKEN DITCHING

In this section, we present the implementation details of the efficient Token Ditching. Different from previous approaches, e.g., (Simoulin et al., 2024), TOKENSEEK introduces an instance-aware token selection framework, TOKENSEEK, which prioritizes tokens based on context and gradient-based information (see §3.2.1), thereby replacing random sampling with a principled, data-driven process. To facilitate understanding of the token ditching mechanism, we adopt the mathematical formulation below.

S2.1 TOKEN DITCHING FOR DENSE AND NORMALIZATION LAYERS

For implementation, we adopt Algorithm 1 following (Simoulin et al., 2024), which explicitly partitions the hidden states into two subsets: h_t for tokens selected for fine-tuning, and $h_{\bar{t}}$ for those gradient excluded. As illustrated in Eq.7 and Eq.8, the forward computation remains consistent with standard fine-tuning, with the key difference being that gradients are disabled for $h_{\bar{t}}$ using PyTorch’s “`torch.no_grad()`” context, as shown in Eq. 8.

$$h_t = h_t W + b \quad (7)$$

$$h_{\bar{t}} = h_{\bar{t}} W + b \quad (8)$$

where W represents the weights W_1 and W_2 of the feed-forward layers. A similar approach is applied to the normalization layers as well.

918 **Algorithm 1** Token Ditching (To maintain clarity and focus, we simplify the model by removing
 919 layer normalization, skip connections, non-linear activations, and multi-head attention.)
 920
 921 **Input:** input tokens X
 922 **Output:** selected tokens h_t , and unselected tokens $h_{\bar{t}}$
 923
 1 Compute token embeddings for the input sequence h
 924
 2 Divide the input tokens into two groups of selected and unselected tokens (h_t and $h_{\bar{t}}$) via Token Seeking.
 925
 3 **for** each transformers' layers **do**
 926 // Attention computation
 927 $[Q_t, K_t, V_t] = h_t W_{[Q, K, V]} + b_{[Q, K, V]}$
 928 $h_t = \text{softmax} \left(\frac{Q_t [K_{\bar{t}}, K_t]^\top}{\sqrt{d}} \right) [V_{\bar{t}}, V_t]$
 929
 930 // No gradients for unselected tokens
 931 **with** torch.no_grad():
 932 $[Q_{\bar{t}}, K_{\bar{t}}, V_{\bar{t}}] = h_{\bar{t}} W_{[Q, K, V]} + b_{[Q, K, V]}$
 933 $h_{\bar{t}} = \text{softmax} \left(\frac{Q_{\bar{t}} [K_{\bar{t}}, K_t]^\top}{\sqrt{d}} \right) [V_{\bar{t}}, V_t]$
 934
 935 // No gradients for unselected tokens
 936 // Feed-forward computation
 937 $h_t = h_t W_1 + b_1$
 938 $h_t = h_t W_2 + b_2$
 939 **with** torch.no_grad():
 940 $h_{\bar{t}} = h_{\bar{t}} W_1 + b_1$
 941 $h_{\bar{t}} = h_{\bar{t}} W_2 + b_2$
 942
 943 9 Re-organize input tokens into the original order
 944
 945
 946

S2.2 TOKEN DITCHING FOR ATTENTION LAYERS

For attention layers, we compute the attention as:

$$[Q_t, K_t, V_t] = h_t W_{[Q, K, V]} + b_{[Q, K, V]} \quad (9)$$

$$[Q_{\bar{t}}, K_{\bar{t}}, V_{\bar{t}}] = h_{\bar{t}} W_{[Q, K, V]} + b_{[Q, K, V]} \quad (10)$$

$$h_t = \text{softmax} \left(\frac{Q_t [K_{\bar{t}}, K_t]^\top}{\sqrt{d}} \right) [V_{\bar{t}}, V_t] \quad (11)$$

$$h_{\bar{t}} = \text{softmax} \left(\frac{Q_{\bar{t}} [K_{\bar{t}}, K_t]^\top}{\sqrt{d}} \right) [V_{\bar{t}}, V_t] \quad (12)$$

955 where $W_{[Q, K, V]} \in \mathbb{R}^{d \times 3d}$ represents the concatenated weights for the query, key, and value pro-
 956 jections. For the unselected token positions in Eq.10 and Eq.12, gradient computation is again
 957 disabled using PyTorch. The complete forward pass procedure for the transformer model is detailed
 958 in Algorithm 1.

S3 EXPERIMENTS ON LARGER LLMs

963 We further evaluate the potential of TOKENSEEK on larger models (7B scale) shown in Tab.S4. Due
 964 to resource constraints, only a subset of configurations is included in the results. As shown in the
 965 table, TOKENSEEK consistently outperforms TOKENTUNE across both full parameter/token tuning
 966 and QLoRA settings in terms of average score. Specifically, under full-token tuning, TOKENSEEK
 967 achieves an average score of 60.97, slightly improving over baseline (60.73), while reducing both
 968 average and peak memory by 22.1% and 54.4%, respectively. More notably, under the QLoRA
 969 setting, TOKENSEEK attains the comparable performance (62.14) while requiring only 18.2% average
 970 memory and 12.4% peak memory compared to full tuning, demonstrating a >80% memory saving.
 971 These results validate the scalability and robustness of our method even in large-model scenarios,
 972 reinforcing its value in memory-constrained training environments.

972 Table S4: Few-shot evaluation for Llama2 7B model. The experiments are performed under the same
 973 settings as Tab.1. † indicates the results reported from (Simoulin et al., 2024).

Method	Ave. Mem.	Max. Mem.	ARC	Hella Swag	MMLU	Truthful QA	Wino Grande	Average Score
Llama2 (7B)								
Full Parameter/Token Tuning [†]	100%	100%	52.39	78.97	64.44	38.97	68.90	60.73
- w/ TOKENTUNE [†]	77.9%	45.6%	51.71	78.35	61.56	41.88	70.01	60.70
- w/ TOKENSEEK	77.9%	45.6%	52.22	78.96	65.28	39.95	68.43	60.97
QLoRA [†]	53.2%	46.5%	56.06	78.60	65.08	43.64	69.38	62.55
- w/ TOKENTUNE	18.2%	12.4%	53.16	78.76	63.64	39.58	69.22	60.87
- w/ TOKENSEEK	18.2%	12.4%	53.50	78.82	65.26	44.62	68.51	62.14

S4 ASSET LICENSE AND CONSENT

The majority of TOKENSEEK is released under the CC-BY-NC license. However, portions of the project are governed by separate license terms. Specifically, the Transformers library is licensed under Apache 2.0. Other dependencies used in this work include the HuggingFace PEFT and Datasets libraries, both under the Apache 2.0 license; the lm-evaluation-harness framework, which is licensed under MIT; and PyTorch, which is distributed under the modified BSD-3 license. The Open-Platypus dataset used for fine-tuning aggregates multiple datasets—detailed license information is available at <https://huggingface.co/datasets/garage-bAInd/Open-Platypus>.

S5 REPRODUCIBILITY

Our implementation of TOKENSEEK is based on the HuggingFace Transformers library¹ (v4.33.1). For LoHa and QLoRA, we utilized the HuggingFace PEFT library² (v0.6.0). Datasets used for fine-tuning were obtained via the HuggingFace Datasets library³ (v2.18.0), specifically using the Open-Platypus dataset⁴.

For evaluation with the Qwen and Llama models, we employed the lm-evaluation-harness framework⁵ (v0.4.2). All experiments were conducted using the PyTorch framework⁶ (v2.0.1).

To guarantee reproducibility, our full implementation shall be publicly released upon paper acceptance.

S6 SOCIAL IMPACT AND LIMITATIONS

TOKENSEEK presents a memory-efficient fine-tuning framework that significantly reduces training memory consumption while maintaining or even improving model performance. By selectively updating only the most informative tokens through an interpretable, instance-aware process, TOKENSEEK enables fine-tuning of LLMs on resource-constrained hardware. This advancement holds strong potential for democratizing LLM adaptation, making personalized and domain-specific model fine-tuning accessible in low-resource environments such as academic labs, startups, or edge devices. Moreover, TOKENSEEK aligns with broader goals of green AI by reducing computational and energy demands during training.

Despite these advantages, TOKENSEEK introduces a pre-stage evaluation that relies on two weighting factors (α, β) to balance context and gradient-based token importance. While we empirically show in §4.4 that TOKENSEEK performs robustly across a wide range of settings, the selection of these hyperparameters introduces an additional tuning burden. In addition, TOKENSEEK requires a token evaluation step prior to training, which incurs additional computational overhead (*i.e.*, a forward

¹<https://github.com/huggingface/transformers>

²<https://github.com/huggingface/peft>

³<https://github.com/huggingface/datasets>

⁴<https://huggingface.co/datasets/garage-bAInd/Open-Platypus>

⁵<https://github.com/EleutherAI/lm-evaluation-harness>

⁶<https://github.com/pytorch/pytorch>

1026 pass and partial backward pass as discussed in §3.2.3). However, this trade-off is justified by the
 1027 substantial memory savings and performance improvements achieved by TOKENSEEK. Furthermore,
 1028 TOKENSEEK may be more sensitive to smaller-scale models, which possess limited representational
 1029 capacity (Tab.1). These limitations suggest that a more lightweight and robust token evaluation could
 1030 further improve the generality of our method.

1031 In summary, TOKENSEEK contributes meaningfully toward the goal of efficient and scalable LLM
 1032 adaptation, and we believe it offers valuable insights for future research in memory-efficient fine-
 1033 tuning and token-level optimization.

1035 S7 DISCUSSION AND FUTURE WORK

1038 S7.1 DISCUSSION

1039 **Regarding Token Selection Ratio Evaluation Gaps.** We have extended the study to cover both the
 1040 low (<10%) and intermediate (50 – 100%) ranges under the Qwen2.5-0.5B QLoRA setting.

	3%	7%	60%	80%	10% (comp.)
Average Score	43.79	47.78	48.43	48.40	48.45
Max. Mem.	7%	10%	62%	79%	13%

1046 Table S5: Average score and maximum memory usage under different token evaluation ratios.

1047 For low-ratio: Even under overly aggressive sparsity settings, TOKENSEEK maintains over 90% and
 1048 98% performance at the 3% and 7% settings, respectively, with only slight memory savings compared
 1049 to the 10% setting. The observed performance degradation is likely due to the remaining tokens
 1050 carrying insufficient gradient signals. For mid-to-high: Scores remain stable between 60% and 80%,
 1051 indicating that TOKENSEEK continues to select high-quality tokens as the scale increases. However,
 1052 memory usage rises sharply in this range, reducing efficiency. Overall, we recommend a 10% ratio as
 1053 a balanced choice, considering both performance and memory efficiency.

1054 **Regarding the Performance on Larger Scale Models.** We find that TOKENSEEK achieves more
 1055 substantial performance gains when applied to smaller-scale models. We attribute this to a potential
 1056 mismatch between model capacity and the training dataset size, since all models, regardless of scale,
 1057 are fine-tuned on the same Open-Platypus dataset (25K samples), which may not fully exploit the
 1058 capabilities of larger models. To investigate this, we conducted a preliminary experiment on the
 1059 Llama2-7B model using an expanded dataset that adds 100K randomly sampled examples from
 1060 MiniPile (Kaddour, 2023).

Method	Dataset	Average Score
QLoRA	Open-Platypus (25K)	62.55
QLoRA + TOKENSEEK	Open-Platypus (25K)	62.14
QLoRA + TOKENSEEK	Open-Platypus (25K) + MiniPile (100K)	63.26

1067 Table S6: Average scores of QLoRA and QLoRA with TOKENSEEK on different datasets. Adding
 1068 MiniPile (100K) to the training corpus improves performance.

1069 As shown, incorporating more training samples yields additional performance improvements, sup-
 1070 porting our hypothesis that the less favorable results on larger models may be due to the relatively
 1071 small fine-tuning dataset.

1072 **Regarding the Novelty and Differences.** Prior works assess token significance for token skipping
 1073 in attention operations (Singh et al., 2024) or feature-importance explanations (Jain & Wallace,
 1074 2019). Conceptually different to these methods, TOKENSEEK evaluates tokens for gradient detaching,
 1075 targeting memory savings.

1076 TOKENSEEK leverages both context and gradient information, grounded in theoretical analysis and
 1077 motivation. Initially, we use only context-based information to guide token selection, where we
 1078 observe that higher scores tend to concentrate in earlier positions, an effect amplified by the causal
 1079 mask. This bias may limit fine-tuning effectiveness, as the answer generation process is primarily

1080 captured in later positions (*i.e.*, the “Response” portion of a training instance). This observation
 1081 motivates the incorporation of gradient-based information to complement the context signals, enabling
 1082 a more balanced and comprehensive evaluation of tokens. Together, this dual-perspective approach
 1083 provides a flexible, plug-and-play solution for MEFT.

1084 **Regarding Performance Gap in Llama Models.** Our implementations are based on Hugging Face
 1085 PEFT, which provides a reliable and strong baseline for comparison. Regarding the performance
 1086 gap observed in Llama but not in Qwen, this may stem from differences in how the two base
 1087 models were built. Qwen-2.5-0.5B was trained at its target size from scratch (SFT → DPO / GRPO)
 1088 (Yang et al., 2024), rather than being a pruned-and-distilled slice of a larger backbone. In contrast,
 1089 Llama-3.2-1B/3B was created by first incorporating logits from the Llama-3.1-8B and 70B models as
 1090 token-level targets. Knowledge distillation was then applied after pruning to recover performance
 1091 (Grattafiori et al., 2024). This compression process results in sharper weights, which are therefore
 1092 more sensitive (Bartoldson et al., 2020; Thangarasa et al., 2024) to gradient updates. As a result,
 1093 full-parameter fine-tuning on a tiny dataset might drift off manifold, while PEFT methods that keep
 1094 most weights frozen remain stable in Llama-3.2. These divergent construction pipelines account for
 1095 the different behaviors observed in Table 1. We are very interested in this direction and plan to further
 1096 investigate in the following work.

1097 **Regarding the Regarding Task Diversity in Experimental Evaluation.** To further evaluate
 1098 TOKENSEEK’s translation capability beyond code generation and mathematical reasoning, we use
 1099 (Aharoni & Goldberg, 2020) as the training dataset and randomly sample 10K training examples
 1100 from each domain (Medical, Law, IT, and Subtitles) to assess in-domain German-English translation
 1101 performance under the Llama-2-7B. The preliminary BLEU scores are reported below, where we
 1102 observe that TOKENSEEK consistently achieves comparable performance.

Method	BLEU
Llama-2-7B	33.13
Llama-2-7B + LoRA	40.16
Llama-2-7B + LoRA + TOKENSEEK (10%)	41.63

1103 Table S7: BLEU scores of Llama-2-7B with LoRA and TOKENSEEK.

1104 **More Baseline Comparison.** Due to page limitations in the main paper, we provide additional
 1105 baseline comparisons here to offer a more complete view of memory usage and performance trends
 1106 across methods.

Metric	LoRA (1B)	IA3 (1B)	LoRA (3B)	IA3 (3B)	LoHa (7B)	IA3 (7B)
Max. Mem.	92.6%	88.9%	90.1%	85.2%	90.5%	84.2%
Average Score	51.95	52.33	59.88	60.69	61.93	60.21

1107 Table S8: Comparison of maximum memory usage and average scores across different parameter-
 1108 efficient fine-tuning methods and model scales.

1109 **Novelty Clarification with TOKENTUNE.** Although both methods aim to improve memory efficiency
 1110 in fine-tuning, their underlying motivations, scoring mechanisms, and empirical behaviors differ
 1111 fundamentally. TOKENTUNE relies on data-agnostic partial-gradient selection or random token
 1112 dropping inspired by an engineering perspective, which we found to be ineffective and unstable
 1113 across tasks. In contrast, TOKENSEEK is motivated by the observation that not all tokens contribute
 1114 equally to model updates, and therefore adopts a data-driven, instance-aware criterion.

1115 Specifically, TOKENSEEK introduces a hybrid scoring mechanism that integrates both attention-
 1116 based contextual relevance and gradient-based optimization signals. This leads to substantially
 1117 improved stability, interpretability, and effectiveness compared to random or data-agnostic selection.
 1118 Beyond memory and performance metrics, TOKENSEEK also incorporates comprehensive analyses
 1119 on stability, interpretability, and optimization behavior, offering insights into token-level contribution
 1120 during efficient fine-tuning.

1121 Finally, to the best of our knowledge, no prior MEFT method performs instance-aware token selection
 1122 for activation-memory-efficient training. This instance-aware perspective represents the core novelty
 1123 of TOKENSEEK and distinguishes it from TOKENTUNE’s engineering-oriented design.

1134
 1135 **The Claims of Memory Efficiency and Generality.** While TOKENSEEK adopts the same high-level
 1136 token-ditching paradigm as TOKENTUNE, its advantages are substantially amplified due to our
 1137 data-driven scoring design.

1138 • **Memory reduction.** TOKENTUNE’s random dropping causes unstable and degraded performance,
 1139 forcing it to keep more tokens to stay competitive. In contrast, TOKENSEEK identifies truly salient
 1140 tokens, enabling us to discard far more activations without hurting accuracy. As a result, under
 1141 equal performance, TOKENSEEK consistently achieves significantly lower memory (*i.e.*, with only
 1142 10% tunable tokens, we achieve even higher performance than TOKENTUNE’s 50% setting under
 1143 the same model configuration, as shown in Fig. 3).
 1144 • **Generalizability.** TOKENSEEK relies solely on inherent signals from the pretrained model (attention
 1145 and gradients). It requires no auxiliary model, no task-specific knowledge, and no architectural
 1146 modification. This makes it compatible with any Transformer-based model and any PEFT method.
 1147 In contrast, several recent MEFT paradigms depend on customized modules (*e.g.*, reversible net-
 1148 works), which limits their applicability. TOKENSEEK remains universally plug-and-play across
 1149 architectures and domains.

1150 **Comparison with Sparsity-based PEFT.** Sparsity-based PEFT (Anselli et al., 2024; He et al., 2024;
 1151 Frankle & Carbin, 2019) reduces memory use by updating only a small, selectively chosen subset of
 1152 parameters instead of the full model during fine-tuning. In our main paper, we included BOFT as a
 1153 representative sparsity-based PEFT method in Tab. 1. Here, we conducted additional experiments on
 1154 RanLoRA (Albert et al., 2025) under the Qwen2.5 (0.5B) setting, as summarized below.

1155
 1156 **Table S9:** Comparison of BOFT, RanLoRA, QLoRA, and QLoRA with TOKENSEEK under the
 1157 Qwen2.5 0.5B setting.

Method	Ave. Mem.	Max. Mem.	ARC	HellaSwag	MMLU	TruthfulQA	WinoGrande	Average Score
BOFT	145.1%	100.6%	34.64	51.70	58.18	39.57	56.43	48.10
RanLoRA	95.4%	86.7%	29.18	50.10	58.33	45.21	57.22	48.01
QLoRA	51.7%	45.6%	34.64	50.10	58.05	40.41	55.09	47.66
- w/ TOKENSEEK	19.2%	13.4%	34.56	50.09	57.52	41.51	58.56	48.45

1163
 1164 These results further enhance the comprehensiveness of our comparison and greatly deepen our paper
 1165 demonstrate the effectiveness of our approach under the requested setting.

1166 **Code-Domain Generalization.** We have conducted preliminary experiments under the Llama3.2
 1167 (1B) setting to evaluate the code-domain generalization as follows.

1169 **Table S10:** Comparison of code-domain generalization under the Llama3.2 1B setting.

Method	Ave. Mem.	Max. Mem.	ARC	HellaSwag	MMLU	TruthfulQA	WinoGrande	Humaneval	Average Score
LoHa	92.3%	99.4%	39.25	65.93	57.60	37.87	60.77	13.41	45.81
- w/ TOKENTUNE (Random)	45.9%	28.4%	38.48	64.21	50.34	43.89	59.91	10.97	44.63
- w/ TOKENSEEK (Ours)	45.9%	28.4%	38.57	65.89	58.18	39.34	60.93	14.02	46.16
QLoRA	45.6%	34.8%	38.82	65.26	56.39	38.85	61.33	14.02	45.78
- w/ TOKENTUNE (Random)	14.8%	14.3%	39.33	62.97	41.76	41.36	60.69	12.80	43.15
- w/ TOKENSEEK (Ours)	14.8%	14.3%	39.08	65.98	58.03	38.65	61.33	14.63	46.28

1176
 1177 Although coding tasks may contain denser information than QA tasks, TOKENSEEK still performs
 1178 effectively, which may be because of our instance-aware token ditching and the strategy that we
 1179 preserve the full forward pass, allowing complete attention and contextual information to remain
 1180 intact.

1181 **Discussion under the Distributed Environments.** We consider two major distributed fine-tuning set-
 1182 tings: (1) DP: data-parallel training (including ZeRO/FSDP variants), and (2) TP/SP: tensor/sequence
 1183 parallelism (model parallel training).

1184 • For DP, each GPU holds a full copy of the model and only processes a different batch. Gradients
 1185 are all-reduced at the end. DP has minimal impact on TOKENSEEK because every GPU handles
 1186 its own local samples independently and only needs to synchronize parameters, not token-level
 1187 information.

- For TP/SP, we would like to further analyze it separately since TOKENSEEK operates in two stages: instance-aware token seeking and efficient token ditching. The former is performed offline before training, while the latter is applied online during training.
 - For scoring, we involve the calculation of gradient score, which is computed only at the penultimate layer (all earlier layers are frozen), requiring substantially less memory than full fine-tuning (*i.e.*, requires only 13.2% memory of full fine tuning under qwen settings). It is inevitable to communicate gradients across GPUs to assemble the final gradient. However, because we compute gradients only in the penultimate layer, the additional memory cost remains manageable compared with full fine-tuning.
 - For training, we can distribute the token-score dictionary for each instance across GPUs before training, which consumes only minimal memory to store the mapping (*e.g.*, storing 50% of token positions for Open-Platypus requires about 6.8 MB). During training, this regrouping and reorganizing introduces an extra communication step for handling irregular gradient computation. However, thanks to efficient token ditching, the amount of gradient that needs to be synchronized is greatly reduced.

We are also looking forward to collaborating with extraordinary engineering teams to further optimize TOKENSEEK for more complex large-scale training scenarios.

Regrouping Process under the Distributed Environments. In conclusion, we provide a preliminary analysis of our unoptimized plain implementation and the communication challenges of applying TOKENSEEK in distributed environments. While these factors may reduce some of the memory savings observed in single-node training, the two-stage design combining partial-gradient scoring and partial-gradient updating keeps the overhead controllable compared with full fine-tuning.

In tensor parallelism, hidden dimensions are split across GPUs, so token regrouping is purely a local row reindexing operation. TP’s usual all-reduce pattern stays unchanged. In sequence parallelism, however, the sequence dimension is sharded, so splitting tokens into selected and unselected sets breaks the local-contiguous token assumption. Each layer therefore requires an all-to-all shuffle to regroup tokens back to their original global order before proceeding. As a result, SP introduces small but necessary per-layer communication for token restoration.

Complexity of Implementation. Our implementation is based on huggingface’s transformers and PEFT, which allows a single integration on one model to be directly reused and combined with other PEFT methods.

Specifically, we provide a detailed explanation of the modifications we make to each model below. We regroup the input I into $[I_{\text{selected}}, I_{\text{unselected}}]$, apply “`torch.no_grad()`” to all $I_{\text{unselected}}$, and finally reorganize $[O_{\text{selected}}, O_{\text{unselected}}]$ into the output O . This procedure is model-agnostic, follows a common pattern, and does not require manual adaptation to different model architectures, which can be handled by code agents that are highly capable of capturing these patterns, making the extension to other models straightforward.

Selective Update Imbalance. Dropping gradients for less important tokens may bias training if their importance is misestimated or varies across iterations. However, scoring and training designs enable TOKENSEEK to achieve stable evaluation (see mode details in the Section 4.3), align with the empirical results from Fig. 3.

We retain full-sequence attention and loss computation in the forward pass, and only zero out gradients for unselected tokens during backpropagation. This keeps the training objective and context intact while updating only the gradients deemed most important. This approach constitutes structured gradient sparsification rather than sample dropping or parameter pruning, and all parameters are still updated at every step, reducing the risk of systematic bias.

Beyond combining contextual and gradient-based signals to reduce potential misestimation from any single indicator, the scoring is derived from the current sample. It is therefore an instance-aware, dynamically updated selection mechanism rather than a fixed rule. Even if some iterations introduce noise, subsequent training iterations across many examples will adaptively mitigate it.

Furthermore, we also investigate the influences of misestimating token importance. Under the Llama3.2 (1B) QLoRA setup, we introduce an additional setting that selects Top 10% plus Top 40–50% tokens, instead of the standard Top 20%, to simulate misestimation.

1242 Table S11: Ablation under misestimated token-importance settings for Llama3.2 1B QLoRA.
1243

1244 Settings	1245 Tunable Token	1246 MMLU	1247 ARC	1248 HellaSwag	1249 TruthfulQA	1250 WinoGrande	1251 Average Score
1245 Random 20%	1246 20%	1247 40.10	1248 63.93	1249 42.96	1250 43.23	1251 61.01	1252 50.25
1246 Top 20%	1247 20%	1248 39.42	1249 65.73	1250 53.24	1251 39.86	1252 60.77	1253 51.80
1247 Top 20% + Top 40–50%	1248 20%	1249 39.16	1250 65.91	1251 51.20	1252 39.28	1253 61.01	1254 51.31

1248
1249
1250 Although “Top 10% + Top 40-50%” underperforms “Top 20%,” it still outperforms “Random 20%,”
1251 demonstrating the robustness of TOKENSEEK.

1252 In the future, we plan to explore whether smoothing the scoring function or injecting a small portion
1253 of randomly selected tokens as exploration can further improve TOKENSEEK.

1254 **Breakdown of Gradient Scoring.** We have added further quantification of our gradient scoring as
1255 summarized below.

1257 Table S12: Gradient scoring breakdown for Qwen2.5 and Llama3.2 models.
1258

1259 Model	1260 Average Memory	1261 Time (s)
1260 Qwen2.5 (0.5B)	13.2%	291
1261 Llama3.2 (1B)	11.5%	377
1262 Llama3.2 (3B)	10.9%	566

1264 Storing 50% of token positions for Open-Platypus requires about 6.8 MB.

1265 We have also added the variance tables below.

1268 Table S13: Variance of performance under different token evaluation ratios.
1269

1270 10%	1271 20%	1272 30%	1273 40%	1274 50%
1271 0.05242	1272 0.16229	1273 0.01396	1274 0.00669	1275 0.01620

1276 **Automatic Learning of Hyperparameters.** Regarding the potential of learning α and β automatically,
1277 grid search over $\{[1,0], [5,5], [7,3], [3,7]\}$ on a validation set is generally practical and sufficient. In
1278 our case, Open-Platypus lacks a validation split, and our ablation in Tab. 2 shows that performance
1279 remains stable across these settings, indicating low sensitivity within this range and limited marginal
1280 benefit from learning them externally.

1281 Regarding the potential of learning the token fraction r automatically, we clarify that r is a resource
1282 controller, which determines the number of tokens retained per sequence under a given memory
1283 budget. Our ablation in Fig. 6 shows that memory decreases sharply as r moves from 50% down to
1284 10%, making it more appropriate to choose r based on the memory budget rather than learn it via
1285 a single objective such as validation loss. A budget-driven choice of r better reflects the tradeoff
1286 between accuracy and memory savings.

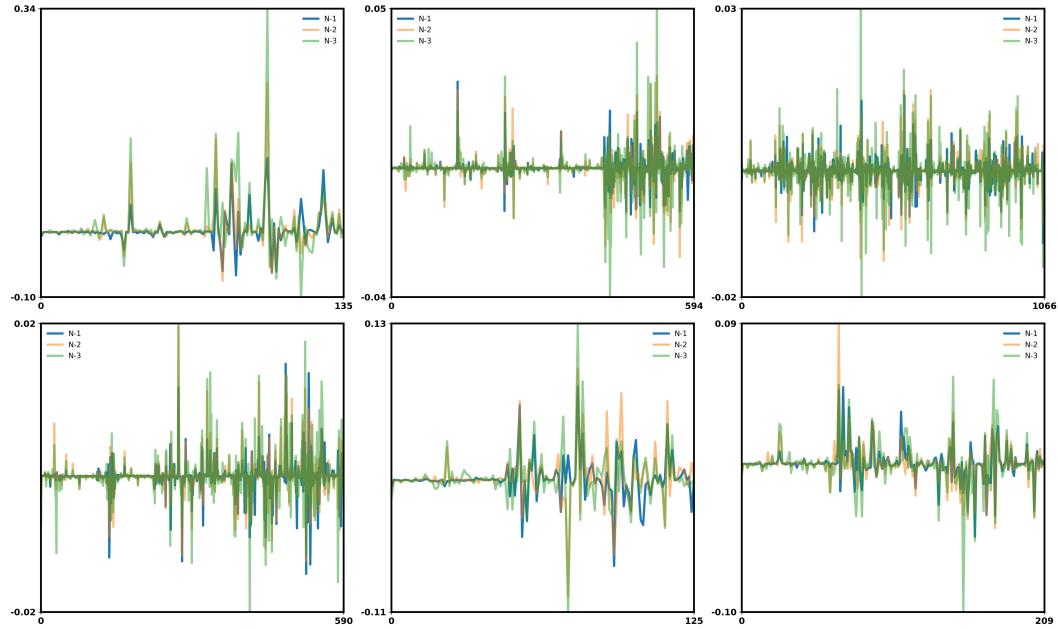
1287 **Gradient Score.** We conducted preliminary experiments under the Llama3.2 (1B) QLoRA setting
1288 using gradients from different layers as follows.

1288 Table S14: Performance using gradients from different layers under the Llama3.2 (1B) QLoRA
1289 setting.
1290

1291 Settings	1292 MMLU	1293 ARC	1294 HellaSwag	1295 TruthfulQA	1296 WinoGrande	1297 Average Score
1292 Random	1293 39.33	1294 62.97	1295 41.76	1296 41.36	1297 60.69	1298 49.22
1293 N-1 layer (default)	1294 39.08	1295 65.98	1296 58.03	1297 38.65	1298 61.33	1299 52.61
1294 N-2 layer	1295 39.33	1296 65.83	1297 58.15	1298 39.58	1299 61.01	1300 52.78
1295 N-3 layer	1296 39.08	1297 65.60	1298 57.55	1299 39.27	1300 61.17	1301 52.53

1296 From the results above, we do not observe obvious performance differences, and because using earlier
 1297 layers requires storing more activation memory and introduce a new hyperparameter, the default
 1298 setting is more practical.

1299 Furthermore, we provide a deeper analysis of this pattern from a visualization perspective. We
 1300 plot gradient scores obtained from the N-1 layer (blue), N-2 layer (orange), and N-3 layer (green),
 1301 showing that the scoring pattern remains relatively stable across layers. It aligns with the empirical
 1302 results above.



1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349

Figure S1: Additional visualization of gradient-based token scores across layers. The plot compares gradients from the N-1 (blue), N-2 (orange), and N-3 (green) layers.

Attention Score. The “global anchor”, which is first introduced as attention sink phenomenon from [ref1], that refers to the tendency of attention to disproportionately concentrate on a single position, effectively acting as a global anchor. It serves as a reference token (*i.e.*, the baseline) for scoring all subsequent tokens.

In TOKENSEEK, the same attention sink effect emerges (see Fig.4 (b)) because the model naturally assigns one position an abnormally large and stable amount of attention. This token becomes the model’s internal reference point. Since TOKENSEEK scores tokens using both forward attention signals and backward gradient signals, this “sink” position nearly always receives a high combined score even after the normalization (see Fig.4 (d)). As a result, it is consistently preserved rather than ditched. TOKENSEEK does not artificially enforce this behavior. It simply reflects the model’s inherent dynamics, where the sink token provides a stable baseline that anchors attention patterns across layers and steps.

Token Efficiency across Different Domains. A similar token efficiency phenomenon has been observed in LLM reinforcement learning (RL) and supervised fine-tuning (SFT) reasoning research (Wang et al., 2025; Qian et al., 2025).

Both domains converge on the observation that model behavior is disproportionately shaped by a small subset of influential tokens. In the reasoning literature, this is reflected in localized spikes in mutual information or high-entropy branching positions that largely determine the downstream reasoning trajectory. TOKENSEEK arrives at a parallel conclusion from the training perspective: by jointly examining gradient magnitude and attention allocation, we find that only a minority of tokens make substantial stable contributions to parameter updates and thus to effective fine-tuning. In both cases, the model does not treat all tokens equally. Instead, it implicitly concentrates its computational and learning capacity on structurally or semantically pivotal positions.

1350
 1351 Despite this shared principle, the operational signals, and scopes of the two lines of work are
 1352 fundamentally distinct. 1) Signal Source: reasoning work relies on inference-time indicators such
 1353 as mutual information spikes or entropy changes, while TOKENSEEK combines forward attention
 1354 and backward gradients to estimate how much each token contributes to loss reduction, and then
 1355 selectively allocates training budget accordingly. 2) Scope: reasoning research typically highlights a
 1356 handful of discrete “turning point” tokens, whereas TOKENSEEK evaluates the entire sequence to
 1357 identify all tokens that meaningfully influence parameter updates.

1358 Consequently, although both areas reveal token-level sparsity in model computation, they capture
 1359 different facets of model behavior and operate under different optimization goals. In the future, we
 1360 would like to further explore how our token scoring strategy might be extended to reasoning.

1361 **Relation to RL-based Reasoning and Token-level Analyses.** Recent work (Wang et al., 2025; Qian
 1362 et al., 2025; Lin et al., 2024; Zeng et al., 2025; Yue et al., 2025; Zhou et al., 2025) on RL-based
 1363 reasoning and chain-of-thought analyses consistently shows that only a small fraction of tokens carry
 1364 most of the useful learning or information signal. RLVR (Wang et al., 2025) finds that high-entropy
 1365 “forking” tokens account for nearly all performance gains in mathematical reasoning, while gradients
 1366 on low-entropy tokens contribute little or even harm accuracy. Similarly, mutual-information analyses
 1367 (Qian et al., 2025) identify sparse “MI peaks” whose “thinking tokens” are crucial for final-answer
 1368 prediction, suppressing these tokens severely degrades reasoning. These studies collectively provide
 1369 a fine-grained view of where RL-style updates and inference-time computation actually matter.

1370 DeepSeekMath (Shao et al., 2024) further links SFT and RL by showing that RL methods like GRPO
 1371 can be interpreted as reshaping gradients while staying close to a supervised reference model. In this
 1372 view, both TOKENSEEK and RLVR adopt token-level importance as the core abstraction, but operate
 1373 at different stages and with different signals. RLVR prioritizes high-entropy tokens during policy
 1374 updates while TOKENSEEK reallocates the SFT gradient budget across tokens and prioritizes high-
 1375 score tokens during SFT. In this sense, TOKENSEEK addresses the problem of token-wise efficiency
 1376 from a complementary angle with current reasoning work: we focus on memory-efficient gradient
 1377 allocation in supervised fine-tuning, while prior RL-based reasoning studies focus on token-wise
 1378 credit assignment and information flow during policy optimization and inference.

1379 These connections motivate us a future work extension in the spirit of (Wang et al., 2025; Qian et al.,
 1380 2025). TOKENSEEK scoring function is deliberately restricted to signals available in a standard SFT
 1381 pipeline, but it would be natural in future work to augment TOKENSEEK with additional token-level
 1382 diagnostics (e.g., entropy or MI estimates) or to design hybrid schedules where SFT and RL share a
 1383 common token-importance backbone.

1384 **Ethics Statement.** We conform to the ICLR Code of Ethics and further show the consent to our work
 1385 below. All datasets used in this study are publicly available and released under permissive licenses
 1386 (see §S4), and all the models are publicly available (see §S4 for Asset License and Consent). We
 1387 would like to state that the contents in the dataset do NOT represent our views or opinions and our
 1388 paper does not involve crowdsourcing or research with human subjects.

1389 **AI Disclosure.** We acknowledge the use of GPT-5 for grammar correction and sentence-level
 1390 refinement only. The model was employed to enhance clarity, coherence, and fluency while ensuring
 1391 the original meaning and intent of the text remained unchanged.

1392 S7.2 FUTURE WORK

1393 In §2, we review existing PEFT and MEFT methods, highlighting their focus on optimizing different
 1394 components of the training pipeline. Unlike prior data-agnostic approaches, TOKENSEEK introduces
 1395 an instance-aware mechanism that combines context and gradient information to identify and retain the
 1396 most informative tokens during fine-tuning. Despite the effectiveness and generality of TOKENSEEK,
 1397 it raises several open questions and directions for future research. One current limitation lies in the
 1398 manual selection of weighting scalars α and β , which control the influence of context and gradient
 1399 signals. While we provide empirical guidance on effective ranges (see §4.4), developing an automated
 1400 mechanism—such as a lightweight controller or hypernetwork—to learn these weights adaptively
 1401 could enhance performance and reduce tuning overhead.

1402 Another promising direction lies in extending TOKENSEEK beyond instruction tuning and clas-
 1403 sification tasks to more complex settings such as multi-modal fine-tuning or continual learning.

1404 Additionally, although TOKENSEEK integrates well with PEFT methods like LoHa and QLoRA
1405 (see Tab.1), further exploration is needed to evaluate its synergy with sparse or retrieval-augmented
1406 architectures.

1407 Lastly, while TOKENSEEK demonstrates strong interpretability and robustness across multiple LLMs,
1408 deeper analysis of its token evaluation patterns across domains (*e.g.*, code, biomedical texts) may
1409 offer insights into task-specific redundancy and inform domain-adaptive pruning strategies.

1410 In summary, TOKENSEEK presents a general and interpretable framework for memory-efficient
1411 fine-tuning. Future work can build on this foundation by exploring automated token selection, broader
1412 task applicability, and tighter integration with emerging efficient model designs.

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

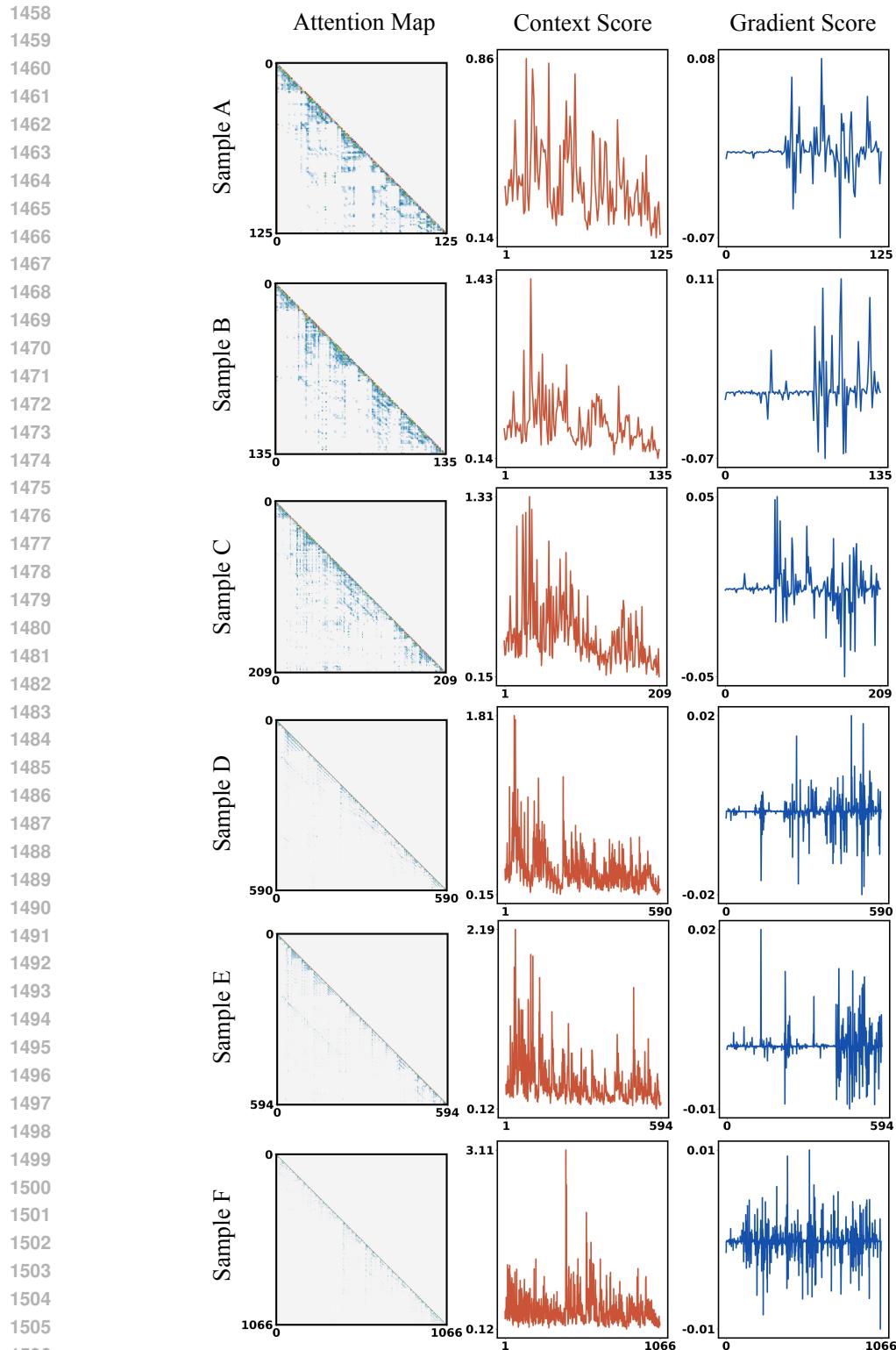


Figure S2: Additional visualizations of the attention map, **context**-based scores, and **gradient**-based scores. For better observation, we omit the attention score of the first token (*i.e.*, context scores start from position 1 instead of 0) due to the attention sink phenomenon discussed in §4.3.

1512 **S8 VISUALIZATION OF ATTENTION AND GRADIENT MAPS**
1513

1514 Fig.S2 presents attention maps, context-based token scores, and gradient-based scores across six
 1515 randomly selected samples, ranging in length from 126 to 1067 tokens. These examples provide
 1516 further evidence supporting the key findings from the main paper in §4.3. Across all samples, we
 1517 observe a consistent pattern in context-based scores, where higher values are concentrated in the
 1518 earlier token positions (*i.e.*, a manifestation of the commonly observed attention sink effect and causal
 1519 masking in autoregressive models). This phenomenon causes tokens in initial positions to accumulate
 1520 more attention, aligning with prior observations discussed in §4.3. In contrast, gradient-based token
 1521 scores tend to emphasize later positions, particularly toward the response segments in instruction
 1522 tuning tasks. This reflects the model’s training dynamics: gradients are more pronounced where
 1523 output predictions are made and optimized—typically in the latter portion of the sequence. Despite
 1524 differences in sequence lengths, this divergence in focus between the two signals remains stable across
 1525 all samples. These findings reinforce the motivation behind combining both context and gradient
 1526 signals in TOKENSEEK for a more comprehensive and balanced token importance evaluation.

1527
1528 **Tokens selected by context score**
1529 **Below** is an instruction that describes a task. Write a response that appropriately completes the request.
1530
1531 **### Instruction:**
1532 **Evaluate $(x+y)(x-y)$ when $x= 15$ and $y= 5$.**
1533
1534 **### Response:**
1535 **To evaluate the expression, I need to plug in the given values of x and y and simplify using the order**
1536 **of operations. So I get $(15+ 5)(15-5)$. I can do the addition and subtraction inside the parentheses first,**
1537 **and get $(20)(10)$. Then I multiply 20 and 10 and get 200.**
1538
1539 **Tokens selected by gradient score**
1540 **Below** is an instruction that describes a task. Write a response that appropriately completes the request.
1541
1542 **### Instruction:**
1543 **Evaluate $(x+y)(x-y)$ when $x= 15$ and $y= 5$.**
1544
1545 **### Response:**
1546 **To evaluate the expression, I need to plug in the given values of x and y and simplify using the order**
1547 **of operations. So I get $(15+ 5)(15-5)$. I can do the addition and subtraction inside the parentheses first,**
1548 **and get $(20)(10)$. Then I multiply 20 and 10 and get 200.**

1548 Figure S3: Visualization of the top 50% selected tokens in Sample A presented in Fig.S2 using
1549 context and gradient information, highlighted in red and blue, respectively.

1551 Fig.S3 presents a case study of a 126-token instruction-response Sample A presented in Fig.S2,
1552 with the top 50% tokens highlighted based on importance scores derived from context and gradient
1553 information, respectively. Tokens highlighted in red correspond to the top 50% according to context
1554 importance, while those in blue correspond to the top 50% based on gradient-based importance.

1555 From the Fig.S3, we observe a clear distributional pattern in the highlighted tokens: **Context-**
1556 **based selection** (red) tends to emphasize tokens in the earlier part of the sequence—particularly the
1557 instruction prompt and structural phrases such as “Below . . . instruction that describes . . . task” and
1558 “Evaluate $(x+y)(x-y)$ when . . .”. In contrast, **gradient-based selection** (blue) focuses more on the
1559 response portion, especially on semantically meaningful action words such as “evaluate”, “plug in”,
1560 “simplify”, and numerical reasoning steps like “multiply 20 . . . 10 and get 200”. These tokens are
1561 closely tied to the model’s output prediction and loss computation, which naturally generate higher
1562 gradients. Interestingly, while there is some overlap (*e.g.*, tokens like “ x ”, “ y ”, and the equation),
1563 the two selection strategies yield complementary subsets, justifying the motivation for combining
1564 them in TOKENSEEK. This example visually supports the core hypothesis that instance-aware
1565 token prioritization benefits from incorporating both structural (context) and optimization-relevant
(gradient) information.

1566 Fig.S4 presents a long-form, math-intensive instruction-response pair consisting of 1067 tokens,
 1567 where the top 50% of tokens are selected solely based on gradient-based importance. This sam-
 1568 ple offers several interesting insights into the behavior of TOKENSEEK 's gradient-driven token
 1569 prioritization mechanism. There are three Key Observations:
 1570

- 1571 • **Gradient Emphasis on Semantically Dense Mathematical Reasoning.** Tokens receiv-
 1572 ing high gradient scores are concentrated around numerical reasoning, symbolic manipu-
 1573 lation, and step-by-step algebraic deduction. For example: ① The derivation and solv-
 1574 ing of equations such as “ $x^2 + y^2 = 16.$ ”. ② Geometry-specific calculations like
 1575 “ $\frac{24\sqrt{2}}{5} \cdot \frac{8\sqrt{7}}{5}$ ”, and ③ Descriptions of intersec-
 1576 tions, area computation, and final results. This confirms that gradient-based importance scores
 1577 effectively highlight regions where model predictions are tightly coupled with loss, especially in
 1578 problem-solving and logic-intensive portions of the response.
- 1579 • **Selective Attention in Code Blocks** Surprisingly, some code comments and critical semantic
 1580 structures in the embedded code block are also assigned high gradient scores. This includes:
 1581 ① Function calls like `draw(...)`, `label(...)`, and array manipulations involving coordinates. ②
 1582 Mathematical graphing logic, such as drawing a circle or intersecting paths with `graph(...)`. This
 1583 suggests that gradient signals are not purely confined to natural language but can also prioritize
 1584 symbolic logic and programmatic structures that are critical to the correct final output.
- 1585 • **Omission of Setup and Template Tokens.** The gradient-based selection intentionally avoids
 1586 early template phrases (e.g., “· · · instruction · · · describes · · · task”) and instead defers attention
 1587 to content-bearing tokens, particularly in the response body. This is aligned with prior gradient
 1588 analysis (see §3.2.1), and reinforces the idea that gradient prioritization aligns well with actual
 1589 supervision information.

1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619

```

1620
1621 Below is an instruction that describes a task. Write a response that appropriately completes the request.
1622
1623 ### Instruction:
1624 Let  $\mathcal{H}$  be the hyperbola with foci at  $(\pm 5, 0)$  and vertices at  $(\pm 3, 0)$ , and let
1625  $\mathcal{C}$  be the circle with center  $(0,0)$  and radius  $4$ . Given that  $\mathcal{H}$  and  $\mathcal{C}$  intersect at four points, what is the area of the quadrilateral formed by the four points?
1626
1627 ### Response:
1628 For the hyperbola  $\mathcal{H}$ , we have  $a=3$  and  $c=5$ , so  $b = \sqrt{c^2-a^2} = 4$ . Thus, the
1629 hyperbola has equation  $\frac{x^2}{9} - \frac{y^2}{16} = 1$ , or  $16x^2 - 9y^2 = 144$ . Meanwhile, the
1630 equation for the circle is  $x^2 + y^2 = 16$ . To find the points of intersection, we solve these two equations
1631 simultaneously. Adding  $9y^2$  times the second equation to the first gives  $25x^2 = 288$ , so  $x = \pm \sqrt{\frac{12\sqrt{2}}{5}}$ . Then we have  $y^2 = 16 - x^2 = 16 - \frac{288}{25} = \frac{112}{25}$ , so  $y = \pm \sqrt{\frac{4\sqrt{7}}{5}}$ . Therefore, the four points of intersection form a rectangle with side lengths
1632  $\frac{24}{5}$  and  $\frac{8\sqrt{7}}{5}$ , so its area is  $\frac{24}{5} \cdot \frac{8\sqrt{7}}{5} = \frac{192\sqrt{14}}{25}$ .
1633
1634 [asy]
1635 void axes(real x0, real x1, real y0, real y1)
1636 {
1637     draw((x0,0)--(x1,0),EndArrow);
1638     draw((0,y0)--(0,y1),EndArrow);
1639     label("$x$",(x1,0),E);
1640     label("$y$",(0,y1),N);
1641     for (int i=floor(x0)+1; i<x1; ++i)
1642         draw((i,1)--(i,-1));
1643     for (int i=floor(y0)+1; i<y1; ++i)
1644         draw((.1,i)--(-.1,i));
1645 }
1646 path[] yh(real a, real b, real h, real k, real x0, real x1, bool upper=true, bool lower=true, pen color=black)
1647 {
1648     real f(real x) { return k + a / b * sqrt(b^2 + (x-h)^2); }
1649     real g(real x) { return k - a / b * sqrt(b^2 + (x-h)^2); }
1650     if (upper) { draw(graph(f, x0, x1),color, Arrows); }
1651     if (lower) { draw(graph(g, x0, x1),color, Arrows); }
1652     path [] arr = {graph(f, x0, x1), graph(g, x0, x1)};
1653     return arr;
1654 }
1655 void xh(real a, real b, real h, real k, real y0, real y1, bool right=true, bool left=true, pen color=black)
1656 {
1657     path [] arr = yh(a, b, k, h, y0, y1, false, false);
1658     if (right) draw(reflect((0,0),(1,1))*arr[0],color, Arrows);
1659     if (left) draw(reflect((0,0),(-1,1))*arr[1],color, Arrows);
1660 }
1661 void e(real a, real b, real h, real k)
1662 {
1663     draw(shift((h,k))*scale(a,b)*unitcircle);
1664 }
1665 size(8cm);
1666 axes(-6,6,-6,6);
1667 xh(3,4,0,0,-5,5);
1668 e(4,4,0,0);
1669 dot((5,0)^{(-5,0)}(3,0)^{(-3,0)}));
1670 for (int i=-1; i<=1; i+=2)
1671     for (int j=-1; j<=1; j+=2)
1672         dot((i*12*sqrt(2)/5,j*4*sqrt(7)/5));
1673 draw((-1*12*sqrt(2)/5,-1*4*sqrt(7)/5)-(12*sqrt(2)/5,-1*4*sqrt(7)/5)-(12*sqrt(2)/5,4*sqrt(7)/5)--(12*sqrt(2)/5,4*sqrt(7)/5)--cycle,dotted);
1674
1675 [asy]
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
35
```