Under review as a conference paper at ICLR 2026

TOKENSEEK: MEMORY EFFICIENT FINE TUNING VIA
INSTANCE-AWARE TOKEN DITCHING

Anonymous authors
Paper under double-blind review

ABSTRACT

Fine-tuning has been regarded as a de facto approach for adapting large language
models (LLMs) to downstream tasks. However, the high training memory consump-
tion inherited from LLMs makes this process generally inefficient. Among existing
memory efficient approaches, activation-related optimization has proven particu-
larly effective, as activations consistently dominate overall memory consumption.
Although prior arts offer various activation optimization strategies, they typically
adopt a uniform yet inflexible strategy across all instance. This data-agnostic nature
ultimately results in ineffective and unstable fine tuning. To solve this problem,
we propose TOKENSEEK, a universal plugin solution that is suitable for various
Transformer-based models through instance-aware token seeking and ditching. ToO-
KENSEEK achieves significant fine-tuning memory savings (e.g., requiring only 2.8
GB, 14.8% of the original memory on Llama3.2 1B) with on-par or even superior
performance. Furthermore, our interpretable token seeking process reveals the
underlying factors behind its effectiveness, offering valuable insights for future
research on token efficiency fine-tuning.

1 INTRODUCTION

wn
w

1. Parameters . II. Gradients & . II1.Activations TokenSeek (Ours)

Optimizer States <> - w/ LoHa
L 52 ((-w/ QLoRA
E TokenTune (Random)
E 51 - w/ LoHa
g - w/ QLoRA
Loss (3%) I~ 0 & LoHa
) 380, Gradients (3%) =
OI:;LT/%" 8/0 Loss (2%) Optimizer O ¢ QLoRA
° Gradients (5%) :
(12%) 40 O Baseline
Batch Size: 1 Batch Size: 8 10% Memory 100%
(a) Training Memory Breakdown of Llama3 8B (b) Performance-Memory Comparison

Figure 1: Motivation behind TOKENSEEK and its preliminary comparison. (a) Breakdown
of training memory under different batch side settings, revealing that activations are the primary
bottleneck in training memory consumption. (b) Effective and efficient TOKENSEEK (ours) vs.
concurrent arts in performance and memory consumption on Llama3.2 1B (detailed results in Tab. E[)

“Pretrain-then-Finetune” paradigm (Liu et al.2024a} |Yang et al.,2024; |Grattafiori et al.,|2024) has
been regarded as a de facto approach for downstream task adaptation, leveraging the knowledge
acquired during pre-training. However, fine tuning large language models (LLMs) still imposes
significant memory demands arising from multiple components (Zhang & Sul [2025} [Rajbhandari
et al.,2020) as showin in Fig.|l|(a), including the model I. parameters, II. gradients and optimizer
states, and intermediate III. activations. Current works optimize training memory usage by targeting
different components. Parameter-Efficient Fine-Tuning (PEFT) (Zeng et al.,[2024; [Han et al., 2023},
2024) reduces the number of tunable parameters required for adapting large models (component I).
Optimizer-Efficient Fine-Tuning (Rajbhandari et al.| [2020; |Anil et al., 2019) focuses on partitioning
or improving the efficiency of gradient updates and optimizer states to alleviate the training memory
burden (component II). Memory-Efficient Fine-Tuning (MEFT) (Simoulin et al.| 2024} |[Dettmers
et al.l 2023) , on the other hand, improves memory efficiency by recomputing, compressing, or

Under review as a conference paper at ICLR 2026

eliminating activation-related memory costs (component IIT). Among the three paradigms that address
the memory challenge from different perspectives, MEFT stands out as a more effective one. The
reason is that activations consistently dominate memory consumption (e.g., 87% in Llama3 8B as
shown in Tab. E] (a), and 60GB of activations for GPT-2 1.5B (Rajbhandari et al.,[2020)), making
them a critical bottleneck in the memory efficiency of training deep models (Zhang & Sul [2025)).

However, existing MEFT methods generally unaware of or ignore the abundant information contained
in the fine tuning training instances, i.e., they operate as data-agnostic optimizations. Previous
works are predominantly model-oriented optimizations (see — they adopt a uniform efficiency
strategy across all instances, without accounting for the rich variability inherent within each individual
instance. This results in a lack of fine-grained control over memory reduction at the instance level,
leading to ineffective (see Fig.[T](b) and and unstable fine-tuning (see §4.3). Naturally, two key
challenges arise on the path toward instance-aware activation efficient optimization: 1. how fo identify
the salient tokens that represent the key information of each instance (solved through §3.2.T); and II.
how to leverage them to achieve effective and stable memory optimization (solved through §3.2.2).

In light of this view, we introduce TOKENSEEK, a universally applicable plugin designed to achieve
a win-win of performance and memory efficiency without altering their inherent architecture under
the “Pretrain-then-Finetune” pradigm. In order to kill two birds with one stone, our approach can
be unfolded into two aspects to respectively tackle the challenges above: @ Instance-Aware Token
Seeking. TOKENSEEK first leverages context and gradient information at the token level to evaluate
and score individual tokens, selectively retaining more informative ones to mitigate performance
degradation and fluctuation. @ Efficient Token Ditching. TOKENSEEK then significantly decreases
the memory footprint for activations by updating model parameters exclusively on selected tokens,
thereby ditching the gradients of the others and thus eliminating these activations. Our method
facilitates an adaptive, instance-aware activation optimization without compromising performance
and stability (sce more discussions in §S57). Our key contributions include:

* Significant Memory Reduction: Benefit from the potent instance awareness, TOKENSEEK
can achieve substantial memory savings with only 10% tokens (i.e., 65.7% maximum memory
reduction on Llama3.2 1B, see §4.2)) while maintaining competitive performance (i.e., 41.13 vs.
40.82). Our approach can further significantly surpass full token fine-tuning with only 14.8%
memory consumption under the QLoRA settings (i.e., 52.61 vs. 40.82 shown in Fig. [I] (b)).

* Generalizable Solution: Attributed to its architecture-agnostic design, our method generalizes
well across various Transformer-based models (i.e., Qwen-0.5B, Llama-1B and Llama-3B) and can
be seamlessly integrated with other PEFT techniques (i.e., LoHa and QLoRA) to embrace both
performance effectiveness and memory efficiency (see Tab. [I).

* Interpretable Token Seeking: We provide a comprehensive analysis (see of how token-level
ditching influences the fine-tuning process, achieving significant memory reductions through our
proposed transparent and explainable token selection strategy (see §3.2]and §4.3).

2 RELATED WORK
2.1 MEMORY-EFFICIENT FINE-TUNING

MEPT (Simoulin et al., 2023} [Vucetic et al.,|2022; Ryu et al.| [2024; Zhang et al., [2023; Zhao et al.|
2024; |Ardakani et al.| [2023) directly tragets on reducing memory footprints during fine tuning. It can
be broadly categorized into the recomputation, compression, and reversible network paradigms.

Recomputation. The core idea of recomputation methods (Korthikanti et al., 2023} |Chen et al.| |2024b;
Tang et al.| 2024) is to recompute certain operations instead of storing all intermediate activations —
a technique also known as gradient checkpointing. (Chen et al.|[2016) first applied this idea to deep
neural networks, proposing a method that stores only a subset of activations and recomputes others
during the backward pass, achieving sublinear memory cost. Subsequent improvements optimized
the checkpointing schedule (Jain et al., 2020), introduced dynamic runtime strategies (Kirisame
et al.| 2020), and combined offloading with recomputation (Rajbhandari et al.,|2020). Compression.
Compression methods (Y1 et al., [2024; |Yang et al., [2025} |Leconte et al., | 2024) focus on reducing the
size of the model states, optimizer states, gradients, and activations, which can further divided into
methods using sparsified and quantized representations. Specifically, sparsity methods include LoRA
(Hu et al.}2022a)), which freezes pre-trained weights and trains low-rank adapters, and diff pruning

Under review as a conference paper at ICLR 2026

(Guo et al.| [2020), which learns sparse task-specific updates. Recently, TokenTune (Simoulin et al.|
2024) reveals the feasibility of token pruning during backpropagation to further reduces memory
by selectively dropping token activations. Quantization-based methods, on the other hand, use
lower numerical precision to minimize memory usage. Mixed-precision training (Micikevicius et al.|
2017) with FP16 or BF16 became standard, and further advancements introduced 8-bit optimizer
quantization. QLoRA (Dettmers et al.| 2023) extends this by applying 4-bit quantization to model
weights during fine-tuning. Reversible Networks. Reversible network designs eliminate the need
to cache activations during training by reconstructing them from outputs. RevNets (Gomez et al.,
2017) demonstrated reversible residual blocks for image models, while Reformer (Kitaev et al.,
2020) extended this idea to Transformers with reversible layers. Recent methods adapt reversible
computation to fine-tuning pre-trained models by inserting reversible adapters (Liao et al., 2023b)),
significantly reducing activation memory without modifying the pre-trained weights.

TOKENSEEK, a sparsified gradient updating method under compression paradigm , leverages both
context and gradient information in each sample to enable instance-aware activation sparsification
with performance on par with dense models, bridging the performance gap.

2.2 PARAMETER-EFFICIENT FINE-TUNING

PEFT (Hu et al., [2022b}, |Aghajanyan et al.,|2020; Yang et al., 2023} Huang et al., [2023; [Zadouri et al.,
2023)) aims to optimize model parameter usage and thus can reduce memory consumption to varying
degrees. It can be generally categorized into four paradigms (see more in §S7).

Partial Tuning methods (Lawton et al., 2023 Xu et al., [2021)) update only a subset of the backbone
model parameters using weight masking or partial tuning strategies. A common strategy is to
fine-tune only the final few layers or sorely the output head. However, its simplistic strategy may
directly result in performance degradation, motivating further research into targeted masked tuning
approaches (Sung et al., 2021} |Chen et al.| 2024a} Liao et al.| 2023a). Additional Tuning methods
introduce a small number of new parameters to a frozen pre-trained model, fine-tuning only the
added modules. These methods can be further categorized into adapter-based (Houlsby et al.|[2019;
Pfeiffer et al.| 2020; Wang et al., [2022a)) and prompt-based approaches (Jia et al. [2022; [Wang
et al., [2024;2023)), which inject lightweight learnable modules into the model architecture or the
model input, respectively. Reparameterized Tuning methods reparameterize the model updates in a
low-dimensional subspace (Liu et al.2025)), leveraging the low intrinsic dimensionality of LLMs.
LoRA (Hu et al,|2022a) learns low-rank matrices to model weight updates without modifying the
original weights. Subsequent works have extended LoRA to alternative reparameterization variants
(Hyeon-Woo et al.,[2021)) and incorporated quantization techniques for additional memory savings
(Dettmers et al., 2023). Hybrid Tuning methods (He et al.,2021;Zhang et al.|[2024) combine multiple
PEFT strategies, aiming to unify their advantages. UniPELT (Mao et al.| |2021) stands out as a
representative method that jointly incorporates adapters, prefix tuning, and LoRA-style low-rank
updates as submodules, and learns to activate those best suited to the current task via gating.

While PEFT methods primarily focus on parameter efficiency (i.e., reducing component I storage),
their impact on overall memory efficiency is limited (e.g., the activation memory of most PEFT
methods remains over 75% of that in full fine-tuning, even with less than 1% trainable parameters
(Liao et al., 2023b)). Leveraging our architecture-agnostic design, TOKENSEEK can be seamlessly
integrated with PEFT methods, further embracing both parameter and memory efficiency (see Tab. [I)).

3 METHODOLOGY

In §3.1] we first analyze activations, the primary bottleneck in training memory, from two perspectives:
(i) why storing activations is necessary, and (ii) why they incur large memory consumption in LLMs.
Our method, TOKENSEEK, is presented in which is decomposed into two key components:
instance-aware token seeking and efficient token ditching. The overall framework is shown in Fig.[2]

3.1 PRELIMINARY

The Necessity of Storing Activations. Given a multilayer deep neural network, we first analyse the
memory consumption of activations, in which the transformation and nonlinear activation at layer [
are defined by oV = z(=DW® 4 p® and 2O = O'(Cl(l)>, respectively. Here, the weight matrix
WO projects the output z(!~1) of the previous layer into the current layer’s pre-activation a*), to
which we add the bias b before applying the activation function . By extending to deeper layers

Under review as a conference paper at ICLR 2026

Forward - » Backward

Requires grad 00000000
Oraimexd (56600000 00000000
O Does Not Require grad l
¥ Random ¢ Selection
Token Selection
000 g g ' 00000000
5 & Data-agnostic!
°o8 : : 00000000
ol o & g I A RO There are []
“ of two
Context Information Gradient Information . ' N
v 1 ! Can't learn anythingg
Token Evaluation: 9= aO+ B :'
""""""""" Unstable!
00000000 00000000 Ineffective!
(a) Instance-aware Token Seeking (b) Efficient Token Ditching (c) TokenTune

Figure 2: Overview of TOKENSEEK (ours) vs. TOKENTUNE frameworks. (a) Instance-aware
token seeking using context and gradient information (see §3.2.1and Eq. [5)). (b) Efficient token
ditching (see §3.2.2). (¢) TOKENTUNE for random token selection (see analysis in Tab. [T|and §4.3).

and applying the differentiation rules along with the chain rule, we can decompose the gradient with
respect to the weight in the first layer in simplicity as:

oL oL il 920 K a0
D~ 5.0 (g 5T |) G M
9z 0z 9a® ; .
020-1 | = 94 9.0-1) o' (@) wi. 2

The computation of the back-prop term o’ (a(l)) w® requires the intermediate value ") to further

evaluate o’ (a(l)). By caching each pre-activation ") during the forward pass, the model can avoid
recomputing to obtain these intermediates, thereby efficiently forming the full chain of derivatives.

The Reason of Large Activations. Current Transformer-based LLMs follow this rule to store
activations during backpropagation. Taking DeepSeek-v3 (Liu et al.l 2024a}; Zhang & Sul [2025)) as
an example, the activations in each layer have a space complexity of O(Bny,s* + BsH), where B
is the batch size, ny, is the number of attention heads, s is the sequence length, and H is the hidden
dimension. The space complexity required for activations significantly outweighs that of the weights
(Bnys® + BsH > H? given B = 1, ny = 128, s = 4096 and H = 7168 (Zhang & Sul 2025)).

3.2 TOKENSEEK
3.2.1 INSTANCE-AWARE TOKEN SEEKING

The key insight behind TOKENSEEK is that not all training tokens within LLMs contribute equally to
model fine-tuning, known as token redundancy. Token redundancy has long been recognized as a
fundamental challenge to LLM efficiency (Hou et al., [2022)), drawing increasing research attention
across various domains, including efficient chain-of-thought reasoning (Xia et al.l 2025) and prompt
optimization (Li et al.,[2023). This observation greatly inspires us to explore the potential of memory-
efficient fine-tuning by reducing token redundancy. Then the critical problem turns to determine the
importances of each token. Here, we propose a comprehensive evaluation of tokens by leveraging
both context and gradient information captured within Transformer blocks (see Fig. |Z| (a)).

» Context Information. Most LLMs are built upon the Transformer architecture, which funda-
mentally relies on the attention mechanism (Vaswani et al.,|2017). The attention maps in decoder
layers directly reflect the importance of each token in context, thereby guiding and shaping the
transformation process. More specifically, given input embeddings t € R™*¢, we first project them
into queries and keys with learnable matrices W&, W¥ € R4*4 to obtain Q = tW®, K =tWkK.
We then form the attention scores and apply a causal mask for language modeling, computing

A = softmax (mask(QKT / \/dk)). Each entry A;; denotes the attention weight from token ¢ to

token j. Owing to the row-wise softmax normalization, each row A ;. forms a probability distribution
over all tokens, capturing how much attention token ¢ allocates to others. Conversely, each column

Under review as a conference paper at ICLR 2026

A..; reflects the cumulative attention received by a token j from all other tokens in the sequence. In
this way, attention mechanism provides an intuitive and direct measure of a token’s importance within
a given instance. The context importance of each token (Singh et al.l 2024; |Liao et al., 2025 |Kong
et al.| 2023) is computed as: "
Li(t) =) Ay 3)
1=1

» Gradient Information. However, context-based evaluation above only reflects the importance of
a token within a given instance and does not necessarily indicate its contribution to model fine-tuning.
Therefore, in order to better quantify the contribution of each token during the fine tuning, we further
assess token importance by examining the gradient magnitude of the loss w.r.t. the activations. This
idea is inspired by (Jain & Wallace, 2019), which shows that attention weights are often uncorrelated
with gradient-based measures of feature importance. The study positions gradient-based attribution
as a more reliable yardstick of “true” token importance, highlighting that gradient-based saliency
can substantially differ from attention-based explanations (see more discussion in §4.3). Given the
gradient matrix G = [9£/92L~1] € R™* for the activations in the penultimate layer (i.e., the
input to the final decoder layer) computed during backpropagation, the gradient-based importance of
each token is computed by summing the gradient magnitudes across the hidden dimension as:

I (t;) = Accumulate[%},
z

d
Accumulate[-] = Z G-)
k=1
» Token Evaluation. To obtain a comprehensive evaluation of token importance, we integrate both
context and gradient information, weighted by scalars « and 3, respectively as:

I(t;) = alog[li(t;)] + B Norm|Iz(t;)],)

where we apply a log-like transformation to address the long-tail distribution of contextual importance
scores, and use min-max normalization to scale the gradient-based importance scores to a comparable
range (see more discussions in §4.3). By incorporating both information, our method is able to
robustly evaluate tokens within each instance (distinct from random selection in Fig.[2](c)), leading
to more effective and stable fine-tuning (see §4.2]and §4.3). This enables us to select the tokens that
contribute most to model fine tuning in the subsequent memory-efficient token ditching (see §3.2.2).

3.2.2 EFFICIENT TOKEN DITCHING

To improve training memory efficiency, we propose ditching the gradients of less informative tokens
from the dataset, and fine-tuning LLMs using only the selected tokens. Following (Simoulin et al.|
2024), by backpropagating the loss through the selected tokens in ¢ only, and ditching the gradient
computation of unselected tokens ¢ in Eq.[2|(see Fig. [2|(b)) after regrouping them, we have:

92"

2,0 |~ [U’(agl)), Ol(ag)) } wo — [U/<a§l))v 0 } w ©)

Based on Eq. El, we only need to cache aEl) to apply the chain rule, rather than storing the full

activation a(!). We provide a detailed discussion in and §57.1

3.2.3 ANALYSIS AND DISCUSSION

As shown in §3.2.T] in contrast to other token importance evaluation strategies that require additional
annotations or auxiliary networks (Xia et al.,2025), TOKENSEEK only requires a forward pass (e.g.,
Llama3 8B requires only 13.3% of the training memory during inference under the FP8 setting) and
a partial backward pass (i.e., freeze all layers except the output head and the final decoder block)
to assess token importance, resulting in simplicity. Presented in tuning only 10% of tokens
theoretically requires just ~1% of the activation memory, based on the space complexity analysis in
§3.1] resulting in a highly efficient fine-tuning process. Beside enjoying the appealing characteristics
of simplicity and efficiency, TOKENSEEK also has merits in generality and interpretability. For
generality, our method relies solely on context and gradient information, making it architecture-
agnostic and broadly applicable to a more wide range of Transformer-based models (see Tab[T). For
interpretability, both context and gradient information provide intuitive and direct evaluations of
token importance, thereby further enhancing the interpretability of our evaluation process (see §4.3).

Under review as a conference paper at ICLR 2026

Table 1: Few-shot evaluation on question-answering benchmarks. This includes ARC (25-shot) ,
MMLU (5-shot) , HellaSwag (10-shot) , Truthful QA (0-shot) , and WinoGrande (0-shot). We report
the average accuracy on five MMLU ethics tasks and WinoGrande, the normed accuracy on ARC
and HellaSwag, and the MC2 score on TruthfulQA. The number reported in [-] is the “Tuned/Total”
parameters in each setting. The same training settings are highlighted in blue, red, and for
full-parameter tuning, LoHa, and QLoRA, respectively. Relative memory consumption percentages
compared with the settting of full token tuning are transformed and reported in each scale. Same for
Tab2] We highlight the best average performance and memory savings in bold. For TOKENTUNE
and TOKENSEEK, only 10% of the input tokens are selected for gradient computation.

Ave. Max. Hella Truthful Wino Average

Method Mem. Mem. ARC Swag MMLU QA Grande Score
Qwen2.5 (0.5B)

Full Parameter/Token Tuning 100% 100% | 34.89 51.70 59.20 39.86 56.51 48.43

- w/ TOKENTUNE (Random) 483% 25.6% | 2526 2578 51.07 49.93 47.36 39.88

- w/ TOKENSEEK (Ours) 483% 25.6% | 25.17 2552 58.14 50.13 50.75 41.94

1A3 (Liu et al.|[2022) 84.3% 72.8% | 3498 51.66 56.81 40.08 56.51 48.01

LoRA (Hu et al.[|2022a) 81.2% 71.8% | 3473 51.67 56.30 41.08 56.51 48.06

LoKr (Hyeon-Woo et al.|[2021) 91.6% 793% | 3549 5154 58.64 39.83 55.88 48.28

BOFT (Liu et al.[[2024b) 145.1% 100.6% | 34.64 51.70 58.18 39.57 56.43 48.10

Bone (Kang/[2024) 858% 762% | 28.50 43.54 4239 43.35 54.62 42.48

LoHa [1.33%] (Hyeon-Woo et al.|[2021) | 86.6% 76.9% | 34.73 5190 57.53 40.75 55.96 48.17

- w/ TOKENTUNE (Random) 39.5% 22.5% | 23.81 2634 5753 50.26 47.36 41.06

- w/ TOKENSEEK (Ours) 39.5% 22.5% | 26.54 2596 @ 58.14 50.26 50.51 42.28

QLORA [1.04%] (Dettmers et al.{2023) | 51.7% 45.6% | 34.64 50.10 58.05 4041 55.09 47.66

- w/ TOKENTUNE (Random) 19.2% 134% | 31.06 4592 57.60 41.56 55.56 46.34

- w/ TOKENSEEK (Ours) 192% 13.4% | 34.56 50.09 57.52 41.51 58.56 48.45
Llama3.2 (1B)

Full Parameter/Token Tuning 100% 100% | 23.72 26.11 57.53 48.68 48.07 40.82

- w/ TOKENTUNE (Random) 64.6% 343% | 2432 2580 58.14 47.90 47.59 40.75

- w/ TOKENSEEK (Ours) 64.6% 343% | 2398 2573 58.14 48.09 49.72 41.13

LoHa [0.63%] 923% 99.4% | 3925 6593 57.60 37.87 60.77 52.28

- w/ TOKENTUNE (Random) 459% 28.4% | 3848 64.21 50.34 43.89 59.91 51.37

- w/ TOKENSEEK (Ours) 459% 28.4% | 38.57 65.89 58.18 39.34 60.93 52.58

QLoRA [0.52%] 45.6% 348% | 38.82 6526 56.39 38.85 61.33 52.13

- w/ TOKENTUNE (Random) 14.8% 143% | 3933 6297 41.76 41.36 60.69 49.22

- w/ TOKENSEEK (Ours) 14.8% 14.3% | 39.08 6598 58.03 38.65 61.33 52.61
Llama3.2 (3B)

Full Parameter/Token Tuning 100% 100% | 23.98 2572 58.62 49.53 49.80 41.53

- w/ TOKENTUNE (Random) 73.1% 393% | 24.15 2543 57.64 50.86 4791 41.20

- w/ TOKENSEEK (Ours) 73.1% 393% | 27.30 2596 58.14 48.65 49.72 41.95

LoHa [0.47%] 90.7% 96.5% | 49.06 7596 63.50 42.08 69.46 60.01

- w/ TOKENTUNE (Random) 49.6% 30.0% | 50.34 7570 56.65 43.37 69.61 59.13

- w/ TOKENSEEK (Ours) 49.6% 30.0% | 53.24 76.81 64.31 41.75 68.98 61.02

QLoRA [0.42%] 33.6% 26.5% | 51.37 75.88 63.95 42.31 68.43 60.39

- w/ TOKENTUNE (Random) 13.3% 11.1% | 4991 73.04 5991 45.25 68.43 59.31

- w/ TOKENSEEK (Ours) 133% 11.1% | 50.00 7630 63.43 43.37 68.98 60.42

4 EXPERIMENT
4.1 EXPERIMENTAL SETUP

Under the “Pretrain-then-Finetune” paradigm, pre-trained LLMs are further fine-tuned on specialized
datasets to adapt them to domain-specific tasks and improve instruction-following capabilities (Wang
et al., [2022b; |Taori et al.| [2023)). In this section, we apply instruction tuning and benchmarking under
the few-shot setting. We provide additional experimental details in §ST]and

Instruction Tuning. Following (Simoulin et al., [2024)), we fine-tune the Qwen2.5 0.5B (Yang et al.,
2024), Llama3.2 1B and 3B (Grattafiori et al.,2024) models using the Open-Platypus dataset (Lee
et al.| 2023). It comprises 11 open-source instruction datasets. See more details in

Few-Shot Evaluation. We assess performance across few-shot benchmarks including MMLU
(Hendrycks et al., 2020), ARC (easy and challenge) (Clark et al.,2018)), HellaSwag (Zellers et al.,
2019), Truthful QA (Lin et all 2021), and WinoGrande (Sakaguchi et al., [2021)), using the “lm
evaluation harness” (Gao et al.,|2024)). For each task, the model ranks answer options by probability,
and the highest one is selected. See more discussions and experiments in and

Under review as a conference paper at ICLR 2026

4.2 MAIN RESULTS

The main performance and memory comparison results across various models, scales and PEFT
settings are shown in Tab. [T} leading to three key observations. First, Significant Memory Reduction.
TOKENSEEK demonstrates exceptional efficiency in reducing both average and peak memory usage
during fine-tuning. Specifically, for the Llama3.2 3B model, peak memory usage is reduced by
60.7% with TOKENSEEK alone (i.e., Llama3.2 3B + TOKENSEEK), and further down to just 11.1%
when combined with QLoRA (i.e., Llama3.2 3B + QLoRA + TOKENSEEK), enabling training on a
single A100 GPU without triggering OOM issues. Similarly, average memory usage is reduced by
26.9% and 86.7%, respectively. These results highlight TOKENSEEK ’s strong capability in achieving
extreme memory compression during fine-tuning (more experiments in §4.4). Second, Competitive
or Superior Performance. Despite memory efficiency, TOKENSEEK maintains competitive or even
superior performance compared to full-token tuning: The average score of TOKENSEEK with QLoRA
in Qwen 0.5B marginally surpasses the full token tuning baseline (48.45 vs. 48.43). In Llama3.2 1B,
TOKENSEEK consistently outerperforms baseline across all settings (i.e., TOKENSEEK, w/ LoHa,
and w/ QLoRA achieve scores of 41.13, 52.58, and 52.61, respectively, compared to 40.82 from
full token tuning.). This indicates that the memory compression achieved by TOKENSEEK does not
compromise, and may even slightly enhance, model performance (detailed discussions in §4.3)). Third,
Generalizable Across Different Scales. Generally, TOKENSEEK'’s effectiveness in both memory
reduction and performance stability is generalizable across various model scales ranging from 0.5B to
3B. However, we observe a distinct pattern across model scales: TOKENSEEK exhibits performance
degradation on Qwen under plain settings, whereas Llama does not. This suggests that TOKENSEEK
may be more sensitive to smaller-scale models, likely due to their limited representational capacity.
In conclusion, TOKENSEEK demonstrates itself as an universal memory efficient solution, effectively
achieving memory efficiency with competitive model accuracy (see more comparison in §57).

4.3 ANALYSIS OF TOKEN SEEKING

Contributions of Instance-aware Token Seeking.
We further conduct experiments to quantitatively eval-
uate the impact of instance-aware token seeking (i.e.,
addressing the drawbacks of data-agnostic optimiza-
tion: inefficiency and instability) by comparing per- _
formance across multiple runs under varying memory
settings (i.e., with the ratio of tunable tokens ranging
from 10% to 50%) on Llama3.2 1B with QLoRA.
As shown in Fig. [3] we observed that TOKENSEEK
consistently enhances both effectiveness and stability.
For effectiveness, our method (green curve), consis-
tently outperforms the random baseline (purple curve)
(Xia et al.,[2025) across various memory settings. The
accuracy achieved by our approach remains higher at
all memory saving levels, clearly demonstrating its A " X s
effectiveness in optimizing performance under mem-

50

Average Score

49 =

48=

=3¢— TokenSeek (Ours)
=9¢— TokenTune (Random)

474

Memory Con:ﬁ4mption (Gilij‘
ory constraints. For stability, our method showcases
superior stability. This is evident from the notably
narrower shaded regions (i.e., variance) in Fig. EL in-
dicating a lower standard deviation compared to the

Figure 3: The performance for the Llama3.2
1B with QLoRA setting, where the upper,
lower and middle line indicate the maximum,
minimum and the average results.

random baseline. The results clearly show TOKENSEEK’s capability to maintain higher accuracy
with narrower fluctuations, emphasizing its robustness under varying memory constraints.

Study of Interpretability. One key advantage of TOKENSEEK is the transparency and interpretability
of its token seeking and ditching process. To illustrate this, we conduct a case study on a training
instance to visualize token evaluation and highlight common patterns (see more visualizations
in §S8). TOKENSEEK leverages both contextual and gradient information for token selection.
Context Information: while token selection varies across instances, our analysis reveals several
consistent patterns illustrated in Fig[d](b). Specifically, unidirectional attention enforces causality,
resulting in an upper-triangular attention mask. Diagonal patterns indicate self-focused attention,
emphasizing local context as shown in the blue localized accumulation. Attention Sink (Xiao et al.,
2024) refers to the tendency of attention to disproportionately concentrate on a single position,
effectively acting as a global anchor (evident as the brown line in first column). The context scores

Under review as a conference paper at ICLR 2026

0.08
(Selected Tokens by Context Score Selected Tokens by Gradient Score\

Below is an instruction that describes a task. Write a response that
appropriately completes the request.

#t Instruction: Y ?"‘n,.‘ 10.2
A box contains 5 white balls and 6 black balls. Two balls are drawn out |140 e E0.0 -0.08
of the box at random. What is the probability that they both are white? O(b) Attention M a;m O(C) Gradient M a;‘ 0
0.08
Response: 0

There are $\binom{11} {2} = 55$ combinations of two balls that can be
drawn. There are $\binom{5} {2} = 10$ combinations of two white balls
that can be drawn. So the probability that two balls pulled out are both
white is $\dfrac{10} {55} = \dfrac{2} {11}§. /

-

0 -0.08
140 0 140

0
(a) Visualization of Token Seeking (d) Context Score (e) Gradient Score

Figure 4: Case study of a training instance. (a) Visualization of the top 50% selected tokens using
context and gradient information, highlighted in red and blue, respectively. (b) Average attention
map from the final layer. (c) Accumulated gradient map of activations in the penultimate layer. (d)
Context importance scores obtained by column-wise accumulation. (e) Gradient importance scores
obtained by summing across the hidden dimension. Additional visualizations are provided in @

exhibit a long-tail distribution caused by the attention sink effect, with higher scores concentrated
in earlier positions—amplified by the causal mask (see zoom-in area of Fig[4](d)). This results in a
preference for earlier tokens, as reflected in the red-highlighted regions of Fig.[d](a), which retain
semantically meaningful tokens (e.g., those related to mathematical learning) while filtering out less
informative ones, such as definite articles and prepositions. Gradient Information: to enhance
interpretability, we aggregate the gradient map along the hidden dimension, producing G e R™*1,
which is visualized as a color map in FigH](c). As illustrated in FigH](e), the gradient information
predominantly focuses on later positions—typically corresponding to the “Response” portion of
a training instance (highlighted in blue in Fig. 4] (a)), underscoring the importance of learning the
answer generation process. In summary, our findings highlight the interpretability of TOKENSEEK,
showing that context and gradient information exhibit distinct but complementary patterns (see more
in §57). Their integration enables a more comprehensive and robust approach to token evaluation.

Study of Optimization. We further investigate 17 TokenSeck 10%
the reason of superior performance under the ‘ _va‘;i“::likl;"//
PEFT settings and discuss the potential impact 150 et o T fTaS0%
of the percentage of tunable tokens during fine - W/ QLORA 10%
tuning. By comparing different tunable token ¢ ~w/ QLoRA 0%
ratios within each group (i.e., lighter vs. darker

. 2 2 W
llpes) and across cl.lfferem tuning strategies (i.e., Sioo i /\/\/V,VJ\\/VM\/\J
different colored lines), we have two key obser- sy & @ W W
vations. i) TOKENSEEK favors PEFT: Consid- £
ering PEFT methods (i.e., LoHa and), E’ 3
we observe that full parameter tuning yields

50

lower training loss, which may indicate potential
overfitting (i.e., lower training loss but poorer
downstream performance). In contrast, PEFT 25
methods, which update only a subset of param-
eters, are less prone to overfitting and there-

M'WWN'WMWW.WMM |

. . 0 100 200 300 400 500 600
fore remain more robust and better suited for Steps
token ditching (i.e., 47.66 on QLoRA vs. 48.85 Figure 5: Training loss curves of six settings on
on QLoRA + TOKENSEEK). ii) Tokens Con- Qwen2.5 0.5B. Blue, red, and lines rep-

tribute Fine Tuning: As more tunable tokens resent full parameter, LoHa, and QLoRA tuning,
are incorporated into fine-tuning (i.e., from 10% respectively. Lighter lines in each group indicate
to 50%), we consistently observe lower opti- 10% token tuning, while darker lines indicate 50%.
mization loss, which indicates that fine tuning is Detailed performance and memory usage results
sensitive to training data volume. Low-quality are provided in Tab. |I| and

token selection under extremely limited token training may thus lead to optimization collapse and
performance degradation, emphasizing the need for our instance-aware token seeking approach.

Under review as a conference paper at ICLR 2026

Table 2: Ablation study on token evaluation in Eq.[5| analyzing the impact of scalar weighting and
threshold selection on both memory consumption and model performance (See more in .

. Ave. Max. Hella Truthful Wino Average
Settings Mem. Mem. MMLU ~ ARC Swag QA Grande Score

Sensitivity to Scalar (Qwen2.5 0.5B with QLoRA)

a=1, =0 3456 50.09 57.52 41.51 58.56 48.45
a=0, p=1 30.72 4420 57.62 43.98 55.41 46.39
a=5,0=51192% 13.4% | 3515 5020 58.49 41.48 57.93 48.65
a=3, =7 34.64 48.77 58.33 42.18 57.46 48.28
o=7, =3 35.58 50.10 58.59 41.13 57.22 48.53

Ratio of Tunable Token (Llama3.2 1B with QLoRA)

100% 100% 100% 2372 26.11 57.53 48.68 48.07 40.82
50% 32.6% 53.1% | 39.42 6534 55.00 40.53 61.01 52.26
40% 280% 299% | 3942 6551 5692 39.89 61.56 52.66
30% 232% 23.7% | 4027 65.60 54.63 41.46 61.80 52.75
20% 18.8% 18.6% | 3942 6573 53.24 39.86 60.77 51.80
10% 148% 14.3% | 39.08 6598 58.03 38.65 61.33 52.61

4.4 ABLATION STUDY

Sensitivity to Scalar. As stated in Eq.[3] the scalars 40+
o and ﬁ determine the relative emphasis placed on) Maximum memory of full token luning
context and gradient information during token evalua- -86.7%
tion, respectively. As shown in Tab. 2] configurations
that balance both information (e.g., [5, 5]) achieve
higher performance compared to those relying on a
single evaluation (e.g., [0, 1]) . Notably, TOKENSEEK

2
|

- w/ QLoRA

)
n
1

Memory Consumption (GiB)
I

performance remains stable across various settings, | Average memory of full token e
indicating low sensitivity within certain range. 5]) T i i i
Ratio of Tunable Token. We then investigate the ’ '88-"3;/" __i"E L i | il
ratio of tunable tokens w.r.t. model performance, 10 :——E E i ! E i i E ! i E
particularly under scenarios with extremely limited o | | | | | R N
gradient tokens. Tab.[2]shows that TOKENSEEK main- syttt a . R
tains stable performance across a range of ratios (i.e., o | i i N bl R
from 51.80 to 52.75), while memory usage decreases /S R A A T
substantially as the ratio reduces (i.e., from 32.6% to Ratio of Tunable Token (%)
14.8%). Given the observed Stability, we suggest a Figure 6: Training memory under different
default ratio of 10% for overall efficiency. settings and token ratio selections. Bars rep-

GPU Memory Impact. The motivation behind resent average memory usage, while dashed
memory—efﬁcient ﬁne—tuning stems from the mis- lines indicate peak memory Consumption'
match between limited GPU memory (e.g., 40GB

on A100, 24GB on RTX 4090) and the growing size of LLMs. In this context, peak memory deter-
mines whether a model can be fine-tuned on a single GPU without encountering OOM issues. Benefit
from our model-agnostic design, TOKENSEEK provides faithfully cumulative memory savings when
combined with PEFT methods. For example, when integrated with QLoRA, the peak memory usage
ranges from 14.2 GiB to as low as 5.5 GiB depending on the ratio selected for tunable tokens —
substantially lower than the 38.8 GiB required by full token tuning.

5 CONCLUSION

We propose TOKENSEEK, a universal plugin solution for effective and stable Transformer-based
memory efficient fine tuning. It has merits in: i) significant memory reduction via token ditching
without sacrificing performance; ii) strong generalizability across various LLMs and compatibility
with existing PEFT methods; and iii) interpretable instance-aware seeking for effective and stable
fine tuning. As a whole, we conclude that the outcomes elucidated in this paper impart essential
understandings and thus necessitate further exploration within the field of MEFT.

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Armen Aghajanyan, Luke Zettlemoyer, and Sonal Gupta. Intrinsic dimensionality explains the
effectiveness of language model fine-tuning. arXiv preprint arXiv:2012.13255, 2020.

Roee Aharoni and Yoav Goldberg. Unsupervised domain clusters in pretrained language models. In
ACL, 2020.

Paul Albert, Frederic Z Zhang, Hemanth Saratchandran, Cristian Rodriguez-Opazo, Anton van den
Hengel, and Ehsan Abbasnejad. Randlora: Full-rank parameter-efficient fine-tuning of large
models. In ICLR, 2025.

Rohan Anil, Vineet Gupta, Tomer Koren, and Yoram Singer. Memory-efficient adaptive optimization
for large-scale learning. arXiv preprint arXiv:1901.11150, 4, 2019.

Alan Ansell, Ivan Vuli¢, Hannah Sterz, Anna Korhonen, and Edoardo M Ponti. Scaling sparse
fine-tuning to large language models. arXiv preprint arXiv:2401.16405, 2024.

Arash Ardakani, Altan Haan, Shangyin Tan, Doru Thom Popovici, Alvin Cheung, Costin Iancu, and
Koushik Sen. Slimfit: Memory-efficient fine-tuning of transformer-based models using training
dynamics. arXiv preprint arXiv:2305.18513, 2023.

Brian Bartoldson, Ari Morcos, Adrian Barbu, and Gordon Erlebacher. The generalization-stability
tradeoff in neural network pruning. In NeurIPS, 2020.

Changyu Chen, Xiting Wang, Ting-En Lin, Ang Lv, Yuchuan Wu, Xin Gao, Ji-Rong Wen, Rui
Yan, and Yongbin Li. Masked thought: Simply masking partial reasoning steps can improve
mathematical reasoning learning of language models. arXiv preprint arXiv:2403.02178, 2024a.

Ping Chen, Wenjie Zhang, Shuibing He, Weijian Chen, Siling Yang, Kexin Huang, Yanlong Yin,
Xuan Zhan, Yingjie Gu, Zhuwei Peng, et al. Optimizing large model training through overlapped
activation recomputation. arXiv preprint arXiv:2406.08756, 2024b.

Tianqgi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost. arXiv preprint arXiv:1604.06174, 2016.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. In NeurIPS, 2023.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In ICLR, 2019.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model evaluation
harness, 07 2024. URL https://zenodo.org/records/12608602.

Aidan N Gomez, Mengye Ren, Raquel Urtasun, and Roger B Grosse. The reversible residual network:
Backpropagation without storing activations. In NeurIPS, 2017.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

10

https://zenodo.org/records/12608602

Under review as a conference paper at ICLR 2026

Demi Guo, Alexander M Rush, and Yoon Kim. Parameter-efficient transfer learning with diff pruning.
arXiv preprint arXiv:2012.07463, 2020.

Cheng Han, Qifan Wang, Yiming Cui, Zhiwen Cao, Wenguan Wang, Siyuan Qi, and Dongfang Liu.
E2vpt: An effective and efficient approach for visual prompt tuning. In ICCV, 2023.

Cheng Han, Qifan Wang, Yiming Cui, Wenguan Wang, Lifu Huang, Siyuan Qi, and Dongfang Liu.
Facing the elephant in the room: Visual prompt tuning or full finetuning? In /CLR, 2024.

Haoze He, Juncheng Billy Li, Xuan Jiang, and Heather Miller. Sparse matrix in large language model
fine-tuning. arXiv preprint arXiv:2405.15525, 2024.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards a
unified view of parameter-efficient transfer learning. arXiv preprint arXiv:2110.04366, 2021.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Le Hou, Richard Yuanzhe Pang, Tianyi Zhou, Yuexin Wu, Xinying Song, Xiaodan Song, and Denny
Zhou. Token dropping for efficient bert pretraining. arXiv preprint arXiv:2203.13240, 2022.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
NLP. In ICML, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. In /CLR, 2022a.

Shengding Hu, Zhen Zhang, Ning Ding, Yadao Wang, Yasheng Wang, Zhiyuan Liu, and Maosong
Sun. Sparse structure search for parameter-efficient tuning. arXiv preprint arXiv:2206.07382,
2022b.

Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu Pang, Chao Du, and Min Lin. Lorahub:
Efficient cross-task generalization via dynamic lora composition. arXiv preprint arXiv:2307.13269,
2023.

Nam Hyeon-Woo, Moon Ye-Bin, and Tae-Hyun Oh. Fedpara: Low-rank hadamard product for
communication-efficient federated learning. arXiv preprint arXiv:2108.06098, 2021.

Paras Jain, Ajay Jain, Aniruddha Nrusimha, Amir Gholami, Pieter Abbeel, Joseph Gonzalez, Kurt
Keutzer, and Ion Stoica. Checkmate: Breaking the memory wall with optimal tensor rematerializa-
tion. Proceedings of Machine Learning and Systems, 2:497-511, 2020.

Sarthak Jain and Byron C Wallace. Attention is not explanation. In ACL, 2019.

Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and
Ser-Nam Lim. Visual prompt tuning. In ECCV, 2022.

Jean Kaddour. The minipile challenge for data-efficient language models. arXiv preprint
arXiv:2304.08442, 2023.

Jiale Kang. Bone: Block affine transformation as parameter efficient fine-tuning methods for large
language models. arXiv preprint arXiv:2409.15371,2024.

Marisa Kirisame, Steven Lyubomirsky, Altan Haan, Jennifer Brennan, Mike He, Jared Roesch, Tianqi
Chen, and Zachary Tatlock. Dynamic tensor rematerialization. arXiv preprint arXiv:2006.09616,
2020.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020.

Zhenglun Kong, Haoyu Ma, Geng Yuan, Mengshu Sun, Yanyue Xie, Peiyan Dong, Xin Meng, Xuan
Shen, Hao Tang, Minghai Qin, et al. Peeling the onion: Hierarchical reduction of data redundancy
for efficient vision transformer training. In AAAI, 2023.

11

Under review as a conference paper at ICLR 2026

Vijay Anand Korthikanti, Jared Casper, Sangkug Lym, Lawrence McAfee, Michael Andersch,
Mohammad Shoeybi, and Bryan Catanzaro. Reducing activation recomputation in large transformer
models. Proceedings of Machine Learning and Systems, 5:341-353, 2023.

Neal Lawton, Anoop Kumar, Govind Thattai, Aram Galstyan, and Greg Ver Steeg. Neural architecture
search for parameter-efficient fine-tuning of large pre-trained language models. arXiv preprint
arXiv:2305.16597, 2023.

Louis Leconte, Lisa Bedin, Van Minh Nguyen, and Eric Moulines. Reallm: A general framework for
IIm compression and fine-tuning. arXiv preprint arXiv:2405.13155, 2024.

Ariel N Lee, Cole J Hunter, and Nataniel Ruiz. Platypus: Quick, cheap, and powerful refinement of
llms. arXiv preprint arXiv:2308.07317, 2023.

Yucheng Li, Bo Dong, Chenghua Lin, and Frank Guerin. Compressing context to enhance inference
efficiency of large language models. arXiv preprint arXiv:2310.06201, 2023.

Baohao Liao, Yan Meng, and Christof Monz. Parameter-efficient fine-tuning without introducing
new latency. arXiv preprint arXiv:2305.16742, 2023a.

Baohao Liao, Shaomu Tan, and Christof Monz. Make pre-trained model reversible: From parameter
to memory efficient fine-tuning. In NeurIPS, 2023b.

Yi Liao, Yongsheng Gao, and Weichuan Zhang. Dynamic accumulated attention map for interpreting
evolution of decision-making in vision transformer. Pattern Recognition, 165:111607, 2025.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulga: Measuring how models mimic human
falsehoods. arXiv preprint arXiv:2109.07958, 2021.

Zicheng Lin, Tian Liang, Jiahao Xu, Qiuzhi Lin, Xing Wang, Ruilin Luo, Chufan Shi, Siheng Li,
Yujiu Yang, and Zhaopeng Tu. Critical tokens matter: Token-level contrastive estimation enhances
1Im’s reasoning capability. In ICML, 2024.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024a.

Haokun Liu, Derek Tam, Mohammed Mugeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
Colin A Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context
learning. In NeurIPS, 2022.

Weiyang Liu, Zeju Qiu, Yao Feng, Yuliang Xiu, Yuxuan Xue, Longhui Yu, Haiwen Feng, Zhen
Liu, Juyeon Heo, Songyou Peng, Yandong Wen, Michael J. Black, Adrian Weller, and Bernhard
Scholkopf. Parameter-efficient orthogonal finetuning via butterfly factorization. In ICLR, 2024b.

Yiyang Liu, James Chenhao Liang, Ruixiang Tang, Yugyung Lee, Majid Rabbani, Sohail Dianat,
Raghuveer Rao, Lifu Huang, Dongfang Liu, Qifan Wang, et al. Re-imagining multimodal instruc-
tion tuning: A representation view. In ICLR, 2025.

Yuning Mao, Lambert Mathias, Rui Hou, Amjad Almahairi, Hao Ma, Jiawei Han, Wen-tau Yih, and
Madian Khabsa. Unipelt: A unified framework for parameter-efficient language model tuning.
arXiv preprint arXiv:2110.07577, 2021.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed precision
training. arXiv preprint arXiv:1710.03740, 2017.

Jonas Pfeiffer, Ivan Vuli¢, Iryna Gurevych, and Sebastian Ruder. MAD-X: An adapter-based
framework for multi-task cross-lingual transfer. In EMNLP, 2020.

Chen Qian, Dongrui Liu, Haochen Wen, Zhen Bai, Yong Liu, and Jing Shao. Demystifying reasoning
dynamics with mutual information: Thinking tokens are information peaks in 1lm reasoning. arXiv
preprint arXiv:2506.02867, 2025.

12

Under review as a conference paper at ICLR 2026

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models. In IEEE Supercomputing Conference, 2020.

Hyogon Ryu, Seohyun Lim, and Hyunjung Shim. Memory-efficient fine-tuning for quantized
diffusion model. In ECCYV, 2024.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99-106,
2021.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemat-
ical reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Antoine Simoulin, Namyong Park, Xiaoyi Liu, and Grey Yang. Memory-efficient selective fine-tuning.
In ICML Workshop, 2023.

Antoine Simoulin, Namyong Park, Xiaoyi Liu, and Grey Yang. Memory-efficient fine-tuning of
transformers via token selection. In EMNLP, 2024.

Manish Kumar Singh, Rajeev Yasarla, Hong Cai, Mingu Lee, and Fatih Porikli. Tosa: Token selective
attention for efficient vision transformers. arXiv preprint arXiv:2406.08816, 2024.

Yi-Lin Sung, Varun Nair, and Colin A Raffel. Training neural networks with fixed sparse masks. In
NeurlIPS, 2021.

Yu Tang, Qiao Li, Lujia Yin, Dongsheng Li, Yiming Zhang, Chenyu Wang, Xingcheng Zhang, Linbo
Qiao, Zhaoning Zhang, and Kai Lu. Delta: Memory-efficient training via dynamic fine-grained
recomputation and swapping. ACM Transactions on Architecture and Code Optimization, 21(4):
1-25, 2024.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Stanford alpaca: An instruction-following llama model, 2023.

Vithursan Thangarasa, Ganesh Venkatesh, Nish Sinnadurai, and Sean Lie. Self-data distillation for
recovering quality in pruned large language models. In NeurlPS Workshop, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Fukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

Danilo Vucetic, Mohammadreza Tayaranian, Maryam Ziaeefard, James J Clark, Brett H Meyer, and
Warren J Gross. Efficient fine-tuning of bert models on the edge. In ISCAS, 2022.

Qifan Wang, Yuning Mao, Jingang Wang, Hanchao Yu, Shaoliang Nie, Sinong Wang, Fuli Feng,
Lifu Huang, Xiaojun Quan, Zenglin Xu, et al. Aprompt: Attention prompt tuning for efficient
adaptation of pre-trained language models. In EMNLP, 2023.

Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
Jianxin Yang, Zhenru Zhang, et al. Beyond the 80/20 rule: High-entropy minority tokens drive
effective reinforcement learning for llm reasoning. arXiv preprint arXiv:2506.01939, 2025.

Taowen Wang, Yiyang Liu, James Chenhao Liang, Yiming Cui, Yuning Mao, Shaoliang Nie, Jiahao
Liu, Fuli Feng, Zenglin Xu, Cheng Han, et al. M2pt: Multimodal prompt tuning for zero-shot
instruction learning. In EMNLP, 2024.

Yaqing Wang, Sahaj Agarwal, Subhabrata Mukherjee, Xiaodong Liu, Jing Gao, Ahmed Hassan
Awadallah, and Jianfeng Gao. Adamix: Mixture-of-adaptations for parameter-efficient model
tuning. arXiv preprint arXiv:2205.12410, 2022a.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions.
arXiv preprint arXiv:2212.10560, 2022b.

Heming Xia, Yongqi Li, Chak Tou Leong, Wenjie Wang, and Wenjie Li. Tokenskip: Controllable
chain-of-thought compression in llms. arXiv preprint arXiv:2502.12067, 2025.

13

Under review as a conference paper at ICLR 2026

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In ICLR, 2024.

Runxin Xu, Fuli Luo, Zhiyuan Zhang, Chuangi Tan, Baobao Chang, Songfang Huang, and Fei Huang.
Raise a child in large language model: Towards effective and generalizable fine-tuning. arXiv
preprint arXiv:2109.05687, 2021.

Adam X Yang, Maxime Robeyns, Xi Wang, and Laurence Aitchison. Bayesian low-rank adaptation
for large language models. arXiv preprint arXiv:2308.13111, 2023.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

David H Yang, Mohammad Mohammadi Amiri, Tejaswini Pedapati, Subhajit Chaudhury, and Pin-
Yu Chen. Sparse gradient compression for fine-tuning large language models. arXiv preprint
arXiv:2502.00311, 2025.

Kai Yi, Georg Meinhardt, Laurent Condat, and Peter Richtdrik. Fedcomloc: Communication-efficient
distributed training of sparse and quantized models. arXiv preprint arXiv:2403.09904, 2024.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does
reinforcement learning really incentivize reasoning capacity in llms beyond the base model? arXiv
preprint arXiv:2504.13837, 2025.

Ted Zadouri, Ahmet Ustiin, Arash Ahmadian, Beyza Ermis, Acyr Locatelli, and Sara Hooker. Pushing
mixture of experts to the limit: Extremely parameter efficient moe for instruction tuning. arXiv
preprint arXiv:2309.05444, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Runjia Zeng, Cheng Han, Qifan Wang, Chunshu Wu, Tong Geng, Lifu Huangg, Ying Nian Wu, and
Dongfang Liu. Visual fourier prompt tuning. In NeurlIPS, 2024.

Yongcheng Zeng, Guoqing Liu, Weiyu Ma, Ning Yang, Haifeng Zhang, and Jun Wang. Token-level
direct preference optimization. In ICML, 2025.

Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen Chu, and Bo Li. Lora-fa: Memory-efficient
low-rank adaptation for large language models fine-tuning. arXiv preprint arXiv:2308.03303,
2023.

Ping Zhang and Lei Su. Memory analysis on the training course of deepseek models. arXiv preprint
arXiv:2502.07846, 2025.

Yuanhan Zhang, Kaiyang Zhou, and Ziwei Liu. Neural prompt search. TPAMI, 2024.

Chen Zhao, Shuming Liu, Karttikeya Mangalam, Guocheng Qian, Fatimah Zohra, Abdulmohsen
Alghannam, Jitendra Malik, and Bernard Ghanem. Dr2net: Dynamic reversible dual-residual
networks for memory-efficient finetuning. In CVPR, 2024.

Wenxuan Zhou, Shujian Zhang, Lingxiao Zhao, and Tao Meng. T-reg: Preference optimization with
token-level reward regularization. In ACL, 2025.

14

Under review as a conference paper at ICLR 2026

SUMMARY OF THE APPENDIX

This appendix contains additional experimental results and discussions of our ICLR 2026 submission:
TOKENSEEK: Memory Efficient Fine Tuning via Instance-Aware Token Ditching, organized as
follows:

* §S1]provides additional implementation details of TOKENSEEK, complementing the overall
methodology and results presented in the main paper.

* §S2] offers a detailed analysis of efficient token ditching, expanding on the motivations and
complexity analysis discussed in the main paper.

* §S3|presents additional experiments of TOKENSEEK on larger LLMs, extending the smaller-
scale evaluations included in the main paper.

o §S4]shows related asset license and consent to our work.

¢ §S5|claims reproducibility of our approach.

» §S6]discusses the social impact of our research.

. adds more discussions, and points out potential directions of our future work.

+ §S§includes further visualization results, covering case studies, attention maps, and gradient
score distributions.

S1 IMPLEMENTATION DETAILS

S1.1 INSTRUCTION TEMPLATE

For instruction tuning of large LLMs, we apply the Alpaca (Taori et al., [2023) prompt template
without incorporating step-by-step reasoning following (Simoulin et al.,|2024)), as shown below.

“Below is an instruction that describes a task, paired with an input that provides
further context. Write a response that appropriately completes the request.

Instruction: {instruction}

#i## Input: {input}

Response:

S1.2 TRAINING AND EVALUATION DATA

For instruction tuning, we fine-tuned Qwen and Llama on 21,221 samples from the Open-Platypus
dataset (Lee et al.,[2023). Although Open-Platypus comprises 11 open-source datasets, we excluded
two—Ieetcode-solutions-python-testgen-gpt4 and airoboros-gpt4-1.4.1—as they contain outputs
generated by GPT models (Achiam et al.[2023)). We used the remaining 9 datasets for fine-tuning,
following (Simoulin et al.| 2024).

S1.3 TRAINING SETTINGS

We do not use any checkpointing, ZeRO or offloading techniques. Below are other training settings
details.

bf16: true

fp16: false

fp16_opt_level: "0O1"
1r_scheduler_type: "cosine"
warmup_steps: 100
weight_decay: 0.01

optim: "adamw_torch”

For QLoRA and LoHa, we use the below same configuration in all experiments.
alpha:16

dropout:9.05
r:8

15

Under review as a conference paper at ICLR 2026

For other baselines such as IA3 and BOFT, we use the default PEFT configuration across all runs.

Regarding the resulting peak/average memory, we would be happy to provide the original numbers
for full parameter/token tuning in each setting for more comprehensive understanding. Other baseline
memory usage can be calculated using the original numbers below and their relative memory
percentages reported in Tab.

Table S1: Memory usage summary for Qwen2.5 and Llama3.2 models under full parameter/token
tuning.

Model \ Average Memory (MB) \ Maximum Memory (MB)
Qwen2.5 (0.5B) 12,070 27,300
Llama3.2 (1B) 19,462 39,688
Llama3.2 (3B) 40,100 83,927

S1.4 HYPERPARAMETER SETTINGS

Given the hyperparameters « and 3 introduced in Eq.[5} we perform a linear search over the set
{[1,0], [O,11, [5,5]} for each LLM. The optimal settings are: [1,0] for Qwen2.5 0.5B and Llama3.2
1B, and [5,5] for Llama3.2 3B. A linear search over {[1,0], [0,1], [5,5]} reveals that smaller models
(Qwen2.5 0.5B, Llama3.2 1B) benefit from context-only information, while the larger Llama3.2 3B
performs the best when combining both context and gradient information. This suggests that larger
models may better utilize multi-information token evaluation.

S1.5 STANDARD ERROR FOR MAIN RESULTS

We report standard errors in Tab. [S2|for the main evaluation results presented in Tab[I] It is important
to note that these values are derived from the “lm evaluation harness” (Gao et al., [2024), which yields
consistent standard error across repeated evaluations on the same task and dataset. Consequently,
all PEFT baselines (e.g., LoHa, QLoRA) and TOKENTUNE variants share similar standard errors
for each benchmark under the same task setting. This consistency ensures a fair and controlled
comparison across methods. As shown, the average standard errors across all tasks remain low (e.g.,
~1.0), indicating stable performance estimates. Therefore, the conclusions drawn from accuracy
improvements and memory savings remain robust under the evaluation framework, further supporting
the reliability of TOKENSEEK ’s performance gains.

Table S2: Standard error for the main results in Tab.

Hella Truthful Wino

Method ARC Swag MMLU QA Grande Average
Qwen2.5 (0.5B)
TOKENSEEK (Ours) | 1.216 0438 0.339 1.640 1.405 1.008
- w/ LoHa 1.252 0439 0.338 1.631 1.405 1.013
- w/ QLoRA 1.395 0499 0.337 1.436 1.387 1.011
Llama3.2 (1B)
TOKENSEEK (Ours) | 1.245 0437 0.338 1.623 1.405 1.009
- w/ LoHa 1.433 0473 0.345 1.421 1.367 1.008
- w/ QLoRA 1.434 0477 0.342 1.455 1.372 1.016
Llama3.2 (3B)
TOKENSEEK (Ours) | 1.237 0442 0.337 1.613 1.404 1.007
- w/ LoHa 1461 0427 0.330 1.474 1.287 0.996
- w/ QLoRA 1450 0432 0.331 1.497 1.290 1.000

S1.6 TRAINING TIME FOR MAIN RESULTS

We further analyze the training time (measured in GPU hours on one NVIDIA A100-40GB GPU)
to assess the computational efficiency of TOKENSEEK compared to other methods. Notably, To-

16

Under review as a conference paper at ICLR 2026

KENSEEK exhibits similar training time overhead to TOKENTUNE across all model scales and PEFT
settings. Specifically, both TOKENSEEK and TOKENTUNE incur a modest increase of approximately
11-15% in GPU hours compared to baseline full-token tuning. For example, on Qwen2.5 0.5B,
the baseline takes 0.43 GPU hours, while TOKENSEEK requires 0.49; similarly, on Llama3.2 1B,
the baseline uses 0.35 hours vs. 0.39 hours for TOKENSEEK. This overhead is likely attributed to
the irregularity introduced by selective gradient computation, as we split the tokens into gradient
and non-gradient segments for token-level control (see §3.2.2). While this adds minimal overhead,
the trade-off is justified by the substantial memory savings and performance gains achieved by TO-
KENSEEK. In sum, TOKENSEEK maintains training time efficiency comparable to other lightweight
fine-tuning methods, while delivering superior performance and memory benefits.

Table S3: Training time for the main results in Tab.

Baseline + Tg?(sggge]i}EK LoHa + TOIIJ(‘;ZI;;EEK QLoRA + T(?IEEE?EEK
Qwen2.5 (0.5B)
GPU Hours | 043 0.49 0.62 0.69 0.77 0.86
Llama3.2 (1B)
GPU Hours \ 0.35 0.39 0.73 0.82 0.55 0.63
Llama3.2 (3B)
GPU Hours \ 0.67 0.75 1.63 1.85 1.03 1.18

S1.7 DETAILS OF INSTRUCTION TUNING

All experiments are conducted on NVIDIA A100-40GB GPUs, except for the full token tuning
settings on Llama3.2 3B due to the out-of-memory (OOM) issues. We train for one epoch using a
learning rate of 4 x 10~* for all fine-tuning. A batch size of 1 is used with 32 gradient accumulation
steps. Adapters are inserted into the feed-forward layers of each Transformer block following (He
et al., [2021). The model is prompted using the Alpaca-style format (Taori et al.l 2023)) without
explicit reasoning

S2 DETAILS OF EFFICIENT TOKEN DITCHING

In this section, we present the implementation details of the efficient Token Ditching. Different from
previous approaches, e.g., (Simoulin et al.,[2024), TOKENSEEK introduces an instance-aware token
selection framework, TOKENSEEK, which prioritizes tokens based on context and gradient-based
information (see §3.2.1)), thereby replacing random sampling with a principled, data-driven process.
To facilitate understanding of the token ditching mechanism, we adopt the mathematical formulation
below.

S2.1 TOKEN DITCHING FOR DENSE AND NORMALIZATION LAYERS

For implementation, we adopt Algorithm E] following (Simoulin et al., [2024), which explicitly
partitions the hidden states into two subsets: h; for tokens selected for fine-tuning, and hz for those
gradient excluded. As illustrated in Eq[7)and Eq[8] the forward computation remains consistent with
standard fine-tuning, with the key difference being that gradients are disabled for i using PyTorch’s
“torch.no_grad()” context, as shown in Eq.[§]

he =hW +0b @)
hf=hiW +b ®)

where W represents the weights W5 and W5 of the feed-forward layers. A similar approach is applied
to the normalization layers as well.

17

1

2

3

4

Under review as a conference paper at ICLR 2026

Algorithm 1 Token Ditching (To maintain clarity and focus, we simplify the model by removing
layer normalization, skip connections, non-linear activations, and multi-head attention.)

Input: input tokens X

Output: selected tokens h:, and unselected tokens hz

Compute token embeddings for the input sequence h
Divide the input tokens into two groups of selected and unselected tokens (h: and hg) via Token Seeking.

for each transformers’ layers do
// Attention computation
[Qe; Kb, Vil = heWig i, v) + bio,x,v]

_ T
h: = softmax (%) [VB Vt]

// No gradients for unselected tokens
with torch.no_grad():
L [Qt, K&, Vi] = hiWiq,r,v] + big,x,v)

_ _ T
hi = softmax (7%[}(\‘/’;“) Vi, Vi]

// No gradients for unselected tokens
// Feed-forward computation
he = Wi + b1
hy = hiWa + ba
with torch.no_grad():
L hi = hiW1 + by
hi = hiWa + b2

Re-organize input tokens into the original order

S2.2 TOKEN DITCHING FOR ATTENTION LAYERS

For attention layers, we compute the attention as:

Qe K, Vi] = hiWig, k,v] + bjo,k,v] 9
Qs Kz, Vi] = hiWq. ke v) + bjQ.xv) (10)
h, = softmax (Q:(Ke.K:" /va) [V, V] (11
hi = softmax (Qf[Kf=Kt]T/ﬂ) Vi, Vil (12)

where Wig kv € R?*34 represents the concatenated weights for the query, key, and value pro-
jections. For the unselected token positions in Eq[I0] and Eq[T2] gradient computation is again
disabled using PyTorch. The complete forward pass procedure for the transformer model is detailed
in Algorithm 1]

S3 EXPERIMENTS ON LARGER LLMS

We further evaluate the potential of TOKENSEEK on larger models (7B scale) shown in Tab Due
to resource constraints, only a subset of configurations is included in the results. As shown in the
table, TOKENSEEK consistently outperforms TOKENTUNE across both full parameter/token tuning
and QLoRA settings in terms of average score. Specifically, under full-token tuning, TOKENSEEK
achieves an average score of 60.97, slightly improving over baseline (60.73), while reducing both
average and peak memory by 22.1% and 54.4%, respectively. More notably, under the QLoRA
setting, TOKENSEEK attains the comparable performance (62.14) while requiring only 18.2% average
memory and 12.4% peak memory compared to full tuning, demonstrating a >80% memory saving.
These results validate the scalability and robustness of our method even in large-model scenarios,
reinforcing its value in memory-constrained training environments.

18

Under review as a conference paper at ICLR 2026

Table S4: Few-shot evaluation for Llama2 7B model. The experiments are performed under the same
settings as Tab t indicates the results reported from (Simoulin et al., 2024).

Ave. Max. Hella Truthful Wino Average
Method Mem. Mem. ARC Swag MMLU QA Grande Score
Llama2 (7B)
Full Parameter/Token Tuningf | 100% 100% | 52.39 7897 64.44 38.97 68.90 60.73
- w/ TOKENTUNE} 779% 45.6% | 51.71 7835 61.56 41.88 70.01 60.70
- w/ TOKENSEEK 779% 45.6% | 52.22 7896 65.28 39.95 68.43 60.97
QLoRAT 532% 46.5% | 56.06 78.60 65.08 43.64 69.38 62.55
- w/ TOKENTUNE 182% 12.4% | 53.16 7876 63.64 39.58 69.22 60.87
- w/ TOKENSEEK 182% 12.4% | 53.50 78.82 65.26 44.62 68.51 62.14

S4 ASSET LICENSE AND CONSENT

The majority of TOKENSEEK is released under the CC-BY-NC license. However, portions of the
project are governed by separate license terms. Specifically, the Transformers library is licensed
under Apache 2.0. Other dependencies used in this work include the HuggingFace PEFT and Datasets
libraries, both under the Apache 2.0 license; the Im-evaluation-harness framework, which is licensed
under MIT; and PyTorch, which is distributed under the modified BSD-3 license. The Open-Platypus
dataset used for fine-tuning aggregates multiple datasets—detailed license information is available at
https://huggingface.co/datasets/garage-bAInd/Open-Platypus.

S5 REPRODUCIBILITY

Our implementation of TOKENSEEK is based on the HuggingFace Transformers librar (v4.33.1).
For LoHa and QLoRA, we utilized the HuggingFace PEFT libraryE] (v0.6.0). Datasets used for
fine-tuning were obtained via the HuggingFace Datasets libraryﬂ (v2.18.0), specifically using the
Open-Platypus dataseﬂ

For evaluation with the Qwen and Llama models, we employed the Im-evaluation-harness frameworkﬂ
(v0.4.2). All experiments were conducted using the PyTorch frameworkE] (v2.0.1).

To guarantee reproducibility, our full implementation shall be publicly released upon paper accep-
tance.

S6 SocIiAL IMPACT AND LIMITATIONS

TOKENSEEK presents a memory-efficient fine-tuning framework that significantly reduces training
memory consumption while maintaining or even improving model performance. By selectively
updating only the most informative tokens through an interpretable, instance-aware process, TO-
KENSEEK enables fine-tuning of LLMs on resource-constrained hardware. This advancement holds
strong potential for democratizing LLM adaptation, making personalized and domain-specific model
fine-tuning accessible in low-resource environments such as academic labs, startups, or edge devices.
Moreover, TOKENSEEK aligns with broader goals of green Al by reducing computational and energy
demands during training.

Despite these advantages, TOKENSEEK introduces a pre-stage evaluation that relies on two weighting
factors (o, [3) to balance context and gradient-based token importance. While we empirically show
in §4.4]that TOKENSEEK performs robustly across a wide range of settings, the selection of these
hyperparameters introduces an additional tuning burden. In addition, TOKENSEEK requires a token
evaluation step prior to training, which incurs additional computational overhead (i.e., a forward

'nttps://github.com/huggingface/transformers
Zhttps://github.com/huggingface/peft
3https://github.com/huggingface/datasets
4https://huggingface.co/datasets/garage—bAInd/Open—Platypus
5https://github.com/EleutherAI/1m—eva1uation—harness
6https://github.com/pytorch/pytorch

19

https://huggingface.co/datasets/garage-bAInd/Open-Platypus
https://github.com/huggingface/transformers
https://github.com/huggingface/peft
https://github.com/huggingface/datasets
https://huggingface.co/datasets/garage-bAInd/Open-Platypus
https://github.com/EleutherAI/lm-evaluation-harness
https://github.com/pytorch/pytorch

Under review as a conference paper at ICLR 2026

pass and partial backward pass as discussed in §3.2.3). However, this trade-off is justified by the
substantial memory savings and performance improvements achieved by TOKENSEEK. Furthermore,
TOKENSEEK may be more sensitive to smaller-scale models, which possess limited representational
capacity (Tab[I). These limitations suggest that a more lightweight and robust token evaluation could
further improve the generality of our method.

In summary, TOKENSEEK contributes meaningfully toward the goal of efficient and scalable LLM
adaptation, and we believe it offers valuable insights for future research in memory-efficient fine-
tuning and token-level optimization.

S7 DISCUSSION AND FUTURE WORK

S7.1 DISCUSSION

Regarding Token Selection Ratio Evaluation Gaps. We have extended the study to cover both the
low (<10%) and intermediate (50 — 100%) ranges under the Qwen2.5-0.5B QLoRA setting.

‘ 3% 7% 60% 80% 10% (comp.)

Average Score | 43.79 4778 4843 48.40 48.45
Max. Mem. 7% 10% 62% 79% 13%

Table S5: Average score and maximum memory usage under different token evaluation ratios.

For low-ratio: Even under overly aggressive sparsity settings, TOKENSEEK maintains over 90% and
98% performance at the 3% and 7% settings, respectively, with only slight memory savings compared
to the 10% setting. The observed performance degradation is likely due to the remaining tokens
carrying insufficient gradient signals. For mid-to-high: Scores remain stable between 60% and 80%,
indicating that TOKENSEEK continues to select high-quality tokens as the scale increases. However,
memory usage rises sharply in this range, reducing efficiency. Overall, we recommend a 10% ratio as
a balanced choice, considering both performance and memory efficiency.

Regarding the Performance on Larger Scale Models. We find that TOKENSEEK achieves more
substantial performance gains when applied to smaller-scale models. We attribute this to a potential
mismatch between model capacity and the training dataset size, since all models, regardless of scale,
are fine-tuned on the same Open-Platypus dataset (25K samples), which may not fully exploit the
capabilities of larger models. To investigate this, we conducted a preliminary experiment on the
Llama2-7B model using an expanded dataset that adds 100K randomly sampled examples from
MiniPile (Kaddour, [2023)).

Method | Dataset | Average Score
QLoRA Open-Platypus (25K) 62.55
QLoRA + TOKENSEEK | Open-Platypus (25K) 62.14
QLoRA + TOKENSEEK | Open-Platypus (25K) + MiniPile (100K) 63.26

Table S6: Average scores of QLoRA and QLoRA with TOKENSEEK on different datasets. Adding
MiniPile (100K) to the training corpus improves performance.

As shown, incorporating more training samples yields additional performance improvements, sup-
porting our hypothesis that the less favorable results on larger models may be due to the relatively
small fine-tuning dataset.

Regarding the Novelty and Differences. Prior works assess token significance for token skipping
in attention operations (Singh et al., [2024) or feature-importance explanations (Jain & Wallace,
2019). Conceptually different to these methods, TOKENSEEK evaluates tokens for gradient detaching,
targeting memory savings.

TOKENSEEK leverages both context and gradient information, grounded in theoretical analysis and
motivation. Initially, we use only context-based information to guide token selection, where we
observe that higher scores tend to concentrate in earlier positions, an effect amplified by the causal
mask. This bias may limit fine-tuning effectiveness, as the answer generation process is primarily

20

Under review as a conference paper at ICLR 2026

captured in later positions (i.e., the “Response” portion of a training instance). This observation
motivates the incorporation of gradient-based information to complement the context signals, enabling
a more balanced and comprehensive evaluation of tokens. Together, this dual-perspective approach
provides a flexible, plug-and-play solution for MEFT.

Regarding Performance Gap in Llama Models. Our implementations are based on Hugging Face
PEFT, which provides a reliable and strong baseline for comparison. Regarding the performance
gap observed in Llama but not in Qwen, this may stem from differences in how the two base
models were built. Qwen-2.5-0.5B was trained at its target size from scratch (SFT — DPO / GRPO)
2024), rather than being a pruned-and-distilled slice of a larger backbone. In contrast,
Llama-3.2-1B/3B was created by first incorporating logits from the Llama-3.1-8B and 70B models as
token-level targets. Knowledge distillation was then applied after pruning to recover performance
(Grattafiori et al.,[2024). This compression process results in sharper weights, which are therefore
more sensitive (Bartoldson et al.} [2020; [Thangarasa et al.,[2024) to gradient updates. As a result,
full-parameter fine-tuning on a tiny dataset might drift off manifold, while PEFT methods that keep
most weights frozen remain stable in Llama-3.2. These divergent construction pipelines account for
the different behaviors observed in Table 1. We are very interested in this direction and plan to further
investigate in the following work.

Regarding the Regarding Task Diversity in Experimental Evaluation. To further evaluate
TOKENSEEK ’s translation capability beyond code generation and mathematical reasoning, we use
(Aharoni & Goldberg, [2020) as the training dataset and randomly sample 10K training examples
from each domain (Medical, Law, IT, and Subtitles) to assess in-domain German-English translation
performance under the Llama-2-7B. The preliminary BLEU scores are reported below, where we
observe that TOKENSEEK consistently achieves comparable performance.

Method | BLEU
Llama-2-7B 33.13
Llama-2-7B + LoRA 40.16

Llama-2-7B + LoRA + TOKENSEEK (10%) | 41.63

Table S7: BLEU scores of Llama-2-7B with LoORA and TOKENSEEK.

More Baseline Comparison. Due to page limitations in the main paper, we provide additional
baseline comparisons here to offer a more complete view of memory usage and performance trends
across methods.

Metric ‘ LoRA (1B) 1A3(1B) LoRA(3B) IA3(3B) LoHa(7B) IA3(7B)
Max. Mem. 92.6% 88.9% 90.1% 85.2% 90.5% 84.2%
Average Score 51.95 52.33 59.88 60.69 61.93 60.21

Table S8: Comparison of maximum memory usage and average scores across different parameter-
efficient fine-tuning methods and model scales.

Novelty Clarification with TOKENTUNE. Although both methods aim to improve memory efficiency
in fine-tuning, their underlying motivations, scoring mechanisms, and empirical behaviors differ
fundamentally. TOKENTUNE relies on data-agnostic partial-gradient selection or random token
dropping inspired by an engineering perspective, which we found to be ineffective and unstable
across tasks. In contrast, TOKENSEEK is motivated by the observation that not all tokens contribute
equally to model updates, and therefore adopts a data-driven, instance-aware criterion.

Specifically, TOKENSEEK introduces a hybrid scoring mechanism that integrates both attention-
based contextual relevance and gradient-based optimization signals. This leads to substantially
improved stability, interpretability, and effectiveness compared to random or data-agnostic selection.
Beyond memory and performance metrics, TOKENSEEK also incorporates comprehensive analyses
on stability, interpretability, and optimization behavior, offering insights into token-level contribution
during efficient fine-tuning.

Finally, to the best of our knowledge, no prior MEFT method performs instance-aware token selection
for activation-memory—efficient training. This instance-aware perspective represents the core novelty
of TOKENSEEK and distinguishes it from TOKENTUNE’s engineering-oriented design.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

The Claims of Memory Efficiency and Generality. While TOKENSEEK adopts the same high-level
token-ditching paradigm as TOKENTUNE, its advantages are substantially amplified due to our
data-driven scoring design.

* Memory reduction. TOKENTUNE’s random dropping causes unstable and degraded performance,
forcing it to keep more tokens to stay competitive. In contrast, TOKENSEEK identifies truly salient
tokens, enabling us to discard far more activations without hurting accuracy. As a result, under
equal performance, TOKENSEEK consistently achieves significantly lower memory (i.e., with only
10% tunable tokens, we achieve even higher performance than TOKENTUNE’s 50% setting under
the same model configuration, as shown in Fig.[3).

¢ Generalizability. TOKENSEEK relies solely on inherent signals from the pretrained model (atten-
tion and gradients). It requires no auxiliary model, no task-specific knowledge, and no architectural
modification. This makes it compatible with any Transformer-based model and any PEFT method.
In contrast, several recent MEFT paradigms depend on customized modules (e.g., reversible net-
works), which limits their applicability. TOKENSEEK remains universally plug-and-play across
architectures and domains.

Comparison with Sparsity-based PEFT. Sparsity-based PEFT (Ansell et al}} 2024} [He et al| 024}
Frankle & Carbin| [2019) reduces memory use by updating only a small, selectively chosen subset of
parameters instead of the full model during fine-tuning. In our main paper, we included BOFT as a

representative sparsity-based PEFT method in Tab. [T} Here, we conducted additional experiments on
RanLoRA (Albert et al} 2023)) under the Qwen2.5 (0.5B) setting, as summarized below.

Table S9: Comparison of BOFT, RanLLoRA, QLoRA, and QLoRA with TOKENSEEK under the
Qwen2.5 0.5B setting.

Method | Ave. Mem. | Max. Mem. | ARC | HellaSwag | MMLU | TruthfulQA | WinoGrande | Average Score
BOFT 145.1% 100.6% 34.64 51.70 58.18 39.57 56.43 48.10
RanLoRA 95.4% 86.7% 29.18 50.10 58.33 45.21 57.22 48.01
QLoRA 51.7% 45.6% 34.64 50.10 58.05 40.41 55.09 47.66

- w/ TOKENSEEK 19.2% 13.4% 34.56 50.09 57.52 41.51 58.56 48.45

These results further enhance the comprehensiveness of our comparison and greatly deepen our paper
demonstrate the effectiveness of our approach under the requested setting.

Code-Domain Generalization. We have conducted preliminary experiments under the Llama3.2
(1B) setting to evaluate the code-domain generalization as follows.

Table S10: Comparison of code-domain generalization under the Llama3.2 1B setting.

Method | Ave. Mem. | Max. Mem. | ARC | HellaSwag | MMLU | TruthfulQA | WinoGrande | Humaneval | Average Score
LoHa 92.3% 99.4% 39.25 65.93 57.60 37.87 60.77 13.41 4581
—w/ TOKENTUNE (Random) 45.9% 28.4% 38.48 64.21 50.34 43.89 59.91 10.97 44.63
— w/ TOKENSEEK (Ours) 45.9% 28.4% 38.57 65.89 58.18 39.34 60.93 14.02 46.16
QLoRA 45.6% 34.8% 38.82 65.26 56.39 38.85 61.33 14.02 45.78
—w/ TOKENTUNE (Random) 14.8% 14.3% 39.33 62.97 41.76 41.36 60.69 12.80 43.15
—w/ TOKENSEEK (Ours) 14.8% 14.3% 39.08 65.98 58.03 38.65 61.33 14.63 46.28

Although coding tasks may contain denser information than QA tasks, TOKENSEEK still performs
effectively, which may be because of our instance-aware token ditching and the strategy that we
preserve the full forward pass, allowing complete attention and contextual information to remain
intact.

Discussion under the Distributed Environments. We consider two major distributed fine-tuning set-
tings: (1) DP: data-parallel training (including ZeRO/FSDP variants), and (2) TP/SP: tensor/sequence
parallelism (model parallel training).

» For DP, each GPU holds a full copy of the model and only processes a different batch. Gradients
are all-reduced at the end. DP has minimal impact on TOKENSEEK because every GPU handles
its own local samples independently and only needs to synchronize parameters, not token-level
information.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

» For TP/SP, we would like to further analyze it separately since TOKENSEEK operates in two stages:
instance-aware token seeking and efficient token ditching. The former is performed offline before
training, while the latter is applied online during training.

— For scoring, we involve the calculation of gradient score, which is computed only at the penulti-
mate layer (all earlier layers are frozen), requiring substantially less memory than full fine-tuning
(i.e., requires only 13.2% memory of full fine tuning under qwen settings). It is inevitable
to communicate gradients across GPUs to assemble the final gradient. However, because we
compute gradients only in the penultimate layer, the additional memory cost remains manageable
compared with full fine-tuning.

— For training, we can distribute the token-score dictionary for each instance across GPUs before
training, which consumes only minimal memory to store the mapping (e.g., storing 50% of
token positions for Open-Platypus requires about 6.8 MB). During training, this regrouping and
reorganizing introduces an extra communication step for handling irregular gradient computation.
However, thanks to efficient token ditching, the amount of gradient that needs to be synchronized
is greatly reduced.

We are also looking forward to collaborating with extraordinary engineering teams to further optimize
TOKENSEEK for more complex large-scale training scenarios.

Reprouping Process under the Distributed Environments. In conclusion, we provide a preliminary
analysis of our unoptimized plain implementation and the communication challenges of applying
TOKENSEEK in distributed environments. While these factors may reduce some of the memory
savings observed in single-node training, the two-stage design combining partial-gradient scoring
and partial-gradient updating keeps the overhead controllable compared with full fine-tuning.

In tensor parallelism, hidden dimensions are split across GPUs, so token regrouping is purely a local
row reindexing operation. TP’s usual all-reduce pattern stays unchanged. In sequence parallelism,
however, the sequence dimension is sharded, so splitting tokens into selected and unselected sets
breaks the local-contiguous token assumption. Each layer therefore requires an all-to-all shuffle to
regroup tokens back to their original global order before proceeding. As a result, SP introduces small
but necessary per-layer communication for token restoration.

Complexity of Implementation. Our implementation is based on huggingface’s transformers and
PEFT, which allows a single integration on one model to be directly reused and combined with other
PEFT methods.

Specifically, we provide a detailed explanation of the modifications we make to each model below.
We regroup the input I into [I_selected, I_unselected], apply “torch.no_grad()” to all I_unselected, and
finally reorganize [O_selected, O_unselected] into the output O. This procedure is model-agnostic,
follows a common pattern, and does not require manual adaptation to different model architectures,
which can be handled by code agents that are highly capable of capturing these patterns, making the
extension to other models straightforward.

Selective Update Imbalance. Dropping gradients for less important tokens may bias training if
their importance is misestimated or varies across iterations. However, scoring and training designs
enable TOKENSEEK to achieve stable evaluation (see mode details in the Section @) align with the
empirical results from Fig. [}

We retain full-sequence attention and loss computation in the forward pass, and only zero out gradients
for unselected tokens during backpropagation. This keeps the training objective and context intact
while updating only the gradients deemed most important. This approach constitutes structured
gradient sparsification rather than sample dropping or parameter pruning, and all parameters are still
updated at every step, reducing the risk of systematic bias.

Beyond combining contextual and gradient-based signals to reduce potential misestimation from any
single indicator, the scoring is derived from the current sample. It is therefore an instance-aware,
dynamically updated selection mechanism rather than a fixed rule. Even if some iterations introduce
noise, subsequent training iterations across many examples will adaptively mitigate it.

Furthermore, we also investigate the influences of misestimating token importance. Under the
Llama3.2 (1B) QLoRA setup, we introduce an additional setting that selects Top 10% plus Top
40-50% tokens, instead of the standard Top 20%, to simulate misestimation.

23

Under review as a conference paper at ICLR 2026

Table S11: Ablation under misestimated token-importance settings for Llama3.2 1B QLoRA.

Settings | Tunable Token | MMLU | ARC | HellaSwag | TruthfulQA | WinoGrande | Average Score
Random 20% 20% 40.10 63.93 42.96 43.23 61.01 50.25
Top 20% 20% 39.42 65.73 53.24 39.86 60.77 51.80
Top 20% + Top 40-50% 20% 39.16 65.91 51.20 39.28 61.01 51.31

Although “Top 10% + Top 40-50%" underperforms “Top 20%,” it still outperforms “Random 20%,”
demonstrating the robustness of TOKENSEEK.

In the future, we plan to explore whether smoothing the scoring function or injecting a small portion
of randomly selected tokens as exploration can further improve TOKENSEEK.

Breakdown of Gradient Scoring. We have added further quantification of our gradient scoring as
summarized below.

Table S12: Gradient scoring breakdown for Qwen2.5 and Llama3.2 models.

Model | Average Memory | Time (s)
Qwen2.5 (0.5B) 13.2% 291
Llama3.2 (1B) 11.5% 377
Llama3.2 (3B) 10.9% 566

Storing 50% of token positions for Open-Platypus requires about 6.8 MB.

We have also added the variance tables below.

Table S13: Variance of performance under different token evaluation ratios.

10% | 20% | 30% | 40% | 50% |
0.05242 | 0.16229 | 0.01396 | 0.00669 | 0.01620 |

Automatic Learning of Hypeparameters. Regarding the potential of learning v and 3 automatically,
grid search over {[1,0], [5,5], [7,3], [3,7]} on a validation set is generally practical and sufficient. In
our case, Open-Platypus lacks a validation split, and our ablation in Tab.] shows that performance
remains stable across these settings, indicating low sensitivity within this range and limited marginal
benefit from learning them externally.

Regarding the potential of learning the token fraction r automatically, we clarify that r is a resource
controller, which determines the number of tokens retained per sequence under a given memory
budget. Our ablation in Fig. [f]shows that memory decreases sharply as moves from 50% down to
10%, making it more appropriate to choose r based on the memory budget rather than learn it via
a single objective such as validation loss. A budget-driven choice of 7 better reflects the tradeoff
between accuracy and memory savings.

Gradient Score. We conducted preliminary experiments under the Llama3.2 (1B) QLoRA setting
using gradients from different layers as follows.

Table S14: Performance using gradients from different layers under the Llama3.2 (1B) QLoRA
setting.

Settings | MMLU | ARC | HellaSwag | TruthfulQA | WinoGrande | Average Score
Random 39.33 62.97 41.76 41.36 60.69 49.22
N-1 layer (default) 39.08 65.98 58.03 38.65 61.33 52.61
N-2 layer 39.33 65.83 58.15 39.58 61.01 52.78
N-3 layer 39.08 65.60 57.55 39.27 61.17 52.53

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

From the results above, we do not observe obvious performance differences, and because using earlier
layers requires storing more activation memory and introduce a new hyperparameter, the default
setting is more practical.

Furthermore, we provide a deeper analysis of this pattern from a visualization perspective. We
plot gradient scores obtained from the N-1 layer (blue), N-2 layer (orange), and N-3 layer (green),
showing that the scoring pattern remains relatively stable across layers. It aligns with the empirical
results above.

—_— N1

— N3

1066

—_— N1

— N3

1 -0,
125 209

Figure S1: Additional visualization of gradient-based token scores across layers. The plot compares
gradients from the N-1 (blue), N-2 (orange), and N-3 (green) layers.

Attention Score. The “global anchor”, which is first introduced as attention sink phenomenon from
[ref1], that refers to the tendency of attention to disproportionately concentrate on a single position,
effectively acting as a global anchor. It serves as a reference token (i.e., the baseline) for scoring all
subsequent tokens.

In TOKENSEEK, the same attention sink effect emerges (see FigE| (b)) because the model naturally
assigns one position an abnormally large and stable amount of attention. This token becomes the
model’s internal reference point. Since TOKENSEEK scores tokens using both forward attention
signals and backward gradient signals, this “sink” position nearly always receives a high combined
score even after the normalization (see FigEl (d)). As a result, it is consistently preserved rather
than ditched. TOKENSEEK does not artificially enforce this behavior. It simply reflects the model’s
inherent dynamics, where the sink token provides a stable baseline that anchors attention patterns
across layers and steps.

Token Efficiency across Different Domains. A similar token efficiency phenomenon has been
observed in LLM reinforcement learning (RL) and supervised fine-tuning (SFT) reasoning research

(Wang et al'] 2025} [Qian et al] 2023).

Both domains converge on the observation that model behavior is disproportionately shaped by a
small subset of influential tokens. In the reasoning literature, this is reflected in localized spikes
in mutual information or high-entropy branching positions that largely determine the downstream
reasoning trajectory. TOKENSEEK arrives at a parallel conclusion from the training perspective: by
jointly examining gradient magnitude and attention allocation, we find that only a minority of tokens
make substantial stable contributions to parameter updates and thus to effective fine-tuning. In both
cases, the model does not treat all tokens equally. Instead, it implicitly concentrates its computational
and learning capacity on structurally or semantically pivotal positions.

25

Under review as a conference paper at ICLR 2026

Despite this shared principle, the operational signals, and scopes of the two lines of work are
fundamentally distinct. 1) Signal Source: reasoning work relies on inference-time indicators such
as mutual information spikes or entropy changes, while TOKENSEEK combines forward attention
and backward gradients to estimate how much each token contributes to loss reduction, and then
selectively allocates training budget accordingly. 2) Scope: reasoning research typically highlights a
handful of discrete “turning point” tokens, whereas TOKENSEEK evaluates the entire sequence to
identify all tokens that meaningfully influence parameter updates.

Consequently, although both areas reveal token-level sparsity in model computation, they capture
different facets of model behavior and operate under different optimization goals. In the future, we
would like to further explore how our token scoring strategy might be extended to reasoning.

Relation to RL-based Reasoning and Token-level Analyses. Recent work
[et al]l 2023} [Cin et al] 2024} [Zeng et al] 2025} [Yue et al] 2025} [Zhou et al| [2025) on RL-based
reasoning and chain-of-thought analyses consistently shows that only a small fraction of tokens carry
most of the useful learning or information signal. RLVR finds that high-entropy
“forking” tokens account for nearly all performance gains in mathematical reasoning, while gradients
on low-entropy tokens contribute little or even harm accuracy. Similarly, mutual-information analyses
identify sparse “MI peaks” whose “thinking tokens™ are crucial for final-answer
prediction, suppressing these tokens severely degrades reasoning. These studies collectively provide
a fine-grained view of where RL-style updates and inference-time computation actually matter.

DeepSeekMath further links SFT and RL by showing that RL methods like GRPO
can be interpreted as reshaping gradients while staying close to a supervised reference model. In this
view, both TOKENSEEK and RLVR adopt token-level importance as the core abstraction, but operate
at different stages and with different signals. RLVR prioritizes high-entropy tokens during policy
updates while TOKENSEEK reallocates the SFT gradient budget across tokens and prioritizes high-
score tokens during SFT. In this sense, TOKENSEEK addresses the problem of token-wise efficiency
from a complementary angle with current reasoning work: we focus on memory-efficient gradient
allocation in supervised fine-tuning, while prior RL-based reasoning studies focus on token-wise
credit assignment and information flow during policy optimization and inference.

These connections motivate us a future work extension in the spirit of (Wang et al] 2025} [Qian et al|
[2025). TOKENSEEK scoring function is deliberately restricted to signals available in a standard SFT
pipeline, but it would be natural in future work to augment TOKENSEEK with additional token-level
diagnostics (e.g., entropy or MI estimates) or to design hybrid schedules where SFT and RL share a
common token-importance backbone.

Ethics Statement. We conform to the ICLR Code of Ethics and further show the consent to our work
below. All datasets used in this study are publicly available and released under permissive licenses
(see §54), and all the models are publicly available (see §54]for Asset License and Consent). We
would like to state that the contents in the dataset do NOT represent our views or opinions and our
paper does not involve crowdsourcing or research with human subjects.

Al Disclosure. We acknowledge the use of GPT-5 for grammar correction and sentence-level
refinement only. The model was employed to enhance clarity, coherence, and fluency while ensuring
the original meaning and intent of the text remained unchanged.

S7.2 FUTURE WORK

In §2] we review existing PEFT and MEFT methods, highlighting their focus on optimizing different
components of the training pipeline. Unlike prior data-agnostic approaches, TOKENSEEK introduces
an instance-aware mechanism that combines context and gradient information to identify and retain the
most informative tokens during fine-tuning. Despite the effectiveness and generality of TOKENSEEK,
it raises several open questions and directions for future research. One current limitation lies in the
manual selection of weighting scalars « and /3, which control the influence of context and gradient
signals. While we provide empirical guidance on effective ranges (see §4.4), developing an automated
mechanism—such as a lightweight controller or hypernetwork—to learn these weights adaptively
could enhance performance and reduce tuning overhead.

Another promising direction lies in extending TOKENSEEK beyond instruction tuning and clas-
sification tasks to more complex settings such as multi-modal fine-tuning or continual learning.

26

Under review as a conference paper at ICLR 2026

Additionally, although TOKENSEEK integrates well with PEFT methods like LoHa and QLoRA
(see Tab[T)), further exploration is needed to evaluate its synergy with sparse or retrieval-augmented
architectures.

Lastly, while TOKENSEEK demonstrates strong interpretability and robustness across multiple LLMs,
deeper analysis of its token evaluation patterns across domains (e.g., code, biomedical texts) may
offer insights into task-specific redundancy and inform domain-adaptive pruning strategies.

In summary, TOKENSEEK presents a general and interpretable framework for memory-efficient
fine-tuning. Future work can build on this foundation by exploring automated token selection, broader
task applicability, and tighter integration with emerging efficient model designs.

27

Under review as a conference paper at ICLR 2026

Sample A

Sample E Sample D

Sample F

Figure S2: Additional visualizations of the attention map, context-based scores, and gradient-based
scores. For better observation, we omit the attention score of the first token (i.e., context scores start

1066

Attention Map

125

135

-

o

[
©
o

0.86

5 0.14

1.43

5 0.14

1.33

9 0.15

1.81

0 0.15

o

£
=

594

o

F
ES

4 0.12

3.11

1066 0-12

Context Score

Gradient Score

W‘WM m

-0.07

1 125 o 12
0.11

g
+=

-0.07

=

1

w

5

=]

1

w

5

F
£

0.05

-0.05

=
N
o

9

=]
N
o

9

F
ES

0.02

-0.02

[
[
©°

=]

59

0.02

-0.01

-
a
©
s

=]

594

0.01

-0.01

=

1066

o 1066

from position 1 instead of 0) due to the attention sink phenomenon discussed in @

28

Under review as a conference paper at ICLR 2026

S8 VISUALIZATION OF ATTENTION AND GRADIENT MAPS

Fig[S2] presents attention maps, context-based token scores, and gradient-based scores across six
randomly selected samples, ranging in length from 126 to 1067 tokens. These examples provide
further evidence supporting the key findings from the main paper in §4.3] Across all samples, we
observe a consistent pattern in context-based scores, where higher values are concentrated in the
earlier token positions (i.e., a manifestation of the commonly observed attention sink effect and causal
masking in autoregressive models). This phenomenon causes tokens in initial positions to accumulate
more attention, aligning with prior observations discussed in §4.3] In contrast, gradient-based token
scores tend to emphasize later positions, particularly toward the response segments in instruction
tuning tasks. This reflects the model’s training dynamics: gradients are more pronounced where
output predictions are made and optimized—typically in the latter portion of the sequence. Despite
differences in sequence lengths, this divergence in focus between the two signals remains stable across
all samples. These findings reinforce the motivation behind combining both context and gradient
signals in TOKENSEEK for a more comprehensive and balanced token importance evaluation.

Tokens selected by context score
Below is an instruction that describes a task. Write a response that appropriately completes the request.

Instruction:
Evaluate $(x+ y)(x-y)$ when $x= 15$ and $y= 5$.

Response:

To evaluate the expression, I need to plug in the given values of x and y and simplify using the order
of operations. So I get $(15+ 5)(15-5)8. I can do the addition and subtraction inside the parentheses first,
and get $(20)(10)$. Then I multiply 20 and 10 and get 200.

Tokens selected by gradient score
Below is an instruction that describes a task. Write a response that appropriately completes the request.

Instruction:
Evaluate $(x+ y)(x-y)$ when $x= 15$ and $y=58$.

Response:

To evaluate the expression, I need to plug in the given values of x and y and simplify using the order
of operations. So I get $(15+ 5)(15-5)$. I can do the addition and subtraction inside the parentheses first,
and get $(20)(10)$. Then I multiply 20 and 10 and get 200.

Figure S3: Visualization of the top 50% selected tokens in Sample A presented in Fig using
context and gradient information, highlighted in red and blue, respectively.

Fig[S3| presents a case study of a 126-token instruction-response Sample A presented in Fig[S2}
with the top 50% tokens highlighted based on importance scores derived from context and gradient
information, respectively. Tokens highlighted in red correspond to the top 50% according to context
importance, while those in blue correspond to the top 50% based on gradient-based importance.

From the Fig[S3] we observe a clear distributional pattern in the highlighted tokens: Context-
based selection (red) tends to emphasize tokens in the earlier part of the sequence—particularly the
instruction prompt and structural phrases such as “Below - - - instruction that describes - - - task” and
“Evaluate (x+y)(x-y) when - - -”. In contrast, gradient-based selection (blue) focuses more on the
response portion, especially on semantically meaningful action words such as “evaluate”, “plug in”,
“simplify”, and numerical reasoning steps like “multiply 20 - - - 10 and get 200”. These tokens are
closely tied to the model’s output prediction and loss computation, which naturally generate higher
gradients. Interestingly, while there is some overlap (e.g., tokens like “z”, “y”, and the equation),
the two selection strategies yield complementary subsets, justifying the motivation for combining
them in TOKENSEEK. This example visually supports the core hypothesis that instance-aware
token prioritization benefits from incorporating both structural (context) and optimization-relevant
(gradient) information.

29

Under review as a conference paper at ICLR 2026

Fig[S4] presents a long-form, math-intensive instruction-response pair consisting of 1067 tokens,
where the top 50% of tokens are selected solely based on gradient-based importance. This sam-
ple offers several interesting insights into the behavior of TOKENSEEK ’s gradient-driven token
prioritization mechanism. There are three Key Observations:

* Gradient Emphasis on Semantically Dense Mathematical Reasoning. Tokens receiv-
ing high gradient scores are concentrated around numerical reasoning, symbolic manipu-
lation, and step-by-step algebraic deduction. For example: @ The derivation and solv-
ing of equations such as “$x*2 + y*2 = 16.$". @ Geometry-specific calculations like
“$\frac{24\sqrt{233}{5} \cdot \frac{8\sqrt{7}}{5}$”, and ® Descriptions of intersec-
tions, area computation, and final results. This confirms that gradient-based importance scores
effectively highlight regions where model predictions are tightly coupled with loss, especially in
problem-solving and logic-intensive portions of the response.

Selective Attention in Code Blocks Surprisingly, some code comments and critical semantic
structures in the embedded code block are also assigned high gradient scores. This includes:
@ Function calls like draw(...), label(...), and array manipulations involving coordinates. @
Mathematical graphing logic, such as drawing a circle or intersecting paths with graph(...). This
suggests that gradient signals are not purely confined to natural language but can also prioritize
symbolic logic and programmatic structures that are critical to the correct final output.

* Omission of Setup and Template Tokens. The gradient-based selection intentionally avoids
early template phrases (e.g., ““ - - instruction - - - describes - - - task™) and instead defers attention
to content-bearing tokens, particularly in the response body. This is aligned with prior gradient
analysis (see §3.2.1)), and reinforces the idea that gradient prioritization aligns well with actual
supervision information.

30

Under review as a conference paper at ICLR 2026

Below is an instruction that describes a task. Write a response that appropriately completes the request.

Instruction:

Let \mathcal{H} be the hyperbola with foci at $(\pm 5, 0)$ and vertices at $(\pm 3, 0),$ and let

$\mathcal {C}$ be the circle with center $(0,0)$ and radius $4.$ Given that $\mathcal {H}$ and \mathcal{C}
intersect at four points, what is the area of the quadrilateral formed by the four points?

Response:

For the hyperbola $\mathcal {H},$ we have $a=3$ and $¢=5,$ so $b=\sqrt{c"2-a"2} = 4.§ Thus, the
hyperbola has equation \[\frac{x"2} {372} - [\frac{y”"2}{4*2} = 1,\Jor \[16x"2 - 9y"2 = 144.\|Meanwhile, the
equation for the circle is $x/2 + y*2 = 16.3 To find the points of intersection, we solve these two equations
simultaneously. Adding 9 times the second equation to the first equation gives $25x"2 = 288,$ so $x = \pm
\frac{12\sqrt2}{5}.$ Then we have \[y*2 =16 - x*2 = 16 - \frac{288}{25} = \frac{112}{25},\]so $y = \pm
\frac{4\sqrt7}{5}.$ Therefore, the four points of intersection form a rectangle with side lengths
$\rac{24\sqrt2} {5}$ and $\frac {8\sqrt7} {5},$ so its area is $\frac{24\sqrt2} {5} \cdot \frac{8\sqrt7}{5} =
\frac{192\sqrt{14}}{25}.§

[asy]

void axes(real x0, real x1, real y0, real y1)

{
draw((x0,0)--(x1,0),EndArrow);
draw((0,y0)--(0,y1),EndArrow);
label("x",(x1,0),E);
label("'y",(0,y1),N);
for (int i=floor(x0)+1; i<x1; ++i)
draw((i,.1)--(1,-.1));
for (int i=floor(y0)+1; i<yl; ++i)
draw((.Li)--(-.1,1));

path[] yh(real a, real b, real h, real k, real x0, real x1, bool upper=true, bool lower=true, pen color=black)

real f(real x) { return k +a / b * sqrt(b*2 + (x-h)"2); }
real g(real x) { return k - a/b * sqrt(b*2 + (x-h)"2); }
if (upper) { draw(graph(f, x0, x1),color, Arrows); }
if (lower) { draw(graph(g, x0, x1),color, Arrows); }
path [] arr = {graph(f, x0, x1), graph(g, x0, x1)};
return arr;

void xh(real a, real b, real h, real k, real y0, real y1, bool right=true, bool left=true, pen color=black)

{
path [] arr =yh(a, b, k, h, y0, y1, false, false);
if (right) draw(reflect((0,0),(1,1))*arr[0],color, Arrows);
if (left) draw(reflect((0,0),(1,1))*arr[1],color, Arrows);

void e(real a, real b, real h, real k)
draw(shift((h,k))*scale(a,b)*unitcircle);

size(8cm);
axes(-6,6,-6,0);
xh(3,4,0,0,-5,5);
€(4,4,0,0);
dot((5.0)*(-5,0 (3,0 (3,0);
for (int i=-1; i<=1; i+=2)
for (int j=-1; j<=1; j+=2)
dot((i*12*sqrt(2)/5,j*4*sqrt(7)/5));
draw((-1*12%sqrt(2)/5,-1 *4*sqrt(7)/5)—(12*sqrt(2)/5,-1*4*sqrt(7)/5)--(12*sqrt(2)/5,4*sqrt(7)/5)--(-
12*sqrt(2)/5,4*sqrt(7)/5)--cycle,dotted);
[/asy]

Figure S4: Visualization of the top 50% selected tokens in Sample F presented in Fig using
gradient information, highlighted in blue.

31

	Introduction
	Related Work
	Memory-Efficient Fine-Tuning
	Parameter-Efficient Fine-Tuning

	Methodology
	Preliminary
	TokenSeek
	Instance-Aware Token Seeking
	Efficient Token Ditching
	Analysis and Discussion

	Experiment
	Experimental Setup
	Main Results
	Analysis of Token Seeking
	Ablation Study

	Conclusion
	Implementation Details
	Instruction Template
	Training and Evaluation Data
	Training Settings
	Hyperparameter Settings
	Standard Error for Main Results
	Training Time for Main Results
	Details of instruction tuning

	Details of Efficient Token Ditching
	Token Ditching for Dense and Normalization Layers
	Token Ditching for Attention Layers

	Experiments on Larger LLMs
	Asset License and Consent
	Reproducibility
	Social Impact and Limitations
	Discussion and Future Work
	Discussion
	Future Work

	Visualization of Attention and Gradient Maps

