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ABSTRACT

Fine-tuning has been regarded as a de facto approach for adapting large language
models (LLMs) to downstream tasks. However, the high training memory consump-
tion inherited from LLMs makes this process generally inefficient. Among existing
memory efficient approaches, activation-related optimization has proven particu-
larly effective, as activations consistently dominate overall memory consumption.
Although prior arts offer various activation optimization strategies, they typically
adopt a uniform yet inflexible strategy across all instance. This data-agnostic nature
ultimately results in ineffective and unstable fine tuning. To solve this problem,
we propose TOKENSEEK, a universal plugin solution that is suitable for various
Transformer-based models through instance-aware token seeking and ditching. TO-
KENSEEK achieves significant fine-tuning memory savings (e.g., requiring only 2.8
GB, 14.8% of the original memory on Llama3.2 1B) with on-par or even superior
performance. Furthermore, our interpretable token seeking process reveals the
underlying factors behind its effectiveness, offering valuable insights for future
research on token efficiency fine-tuning.

1 INTRODUCTION
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Figure 1: Motivation behind TOKENSEEK and its preliminary comparison. (a) Breakdown
of training memory under different batch side settings, revealing that activations are the primary
bottleneck in training memory consumption. (b) Effective and efficient TOKENSEEK (ours) vs.
concurrent arts in performance and memory consumption on Llama3.2 1B (detailed results in Tab. 1)

“Pretrain-then-Finetune” paradigm (Liu et al., 2024a; Yang et al., 2024; Grattafiori et al., 2024) has
been regarded as a de facto approach for downstream task adaptation, leveraging the knowledge
acquired during pre-training. However, fine tuning large language models (LLMs) still imposes
significant memory demands arising from multiple components (Zhang & Su, 2025; Rajbhandari
et al., 2020) as showin in Fig. 1 (a), including the model I. parameters, II. gradients and optimizer
states, and intermediate III. activations. Current works optimize training memory usage by targeting
different components. Parameter-Efficient Fine-Tuning (PEFT) (Zeng et al., 2024; Han et al., 2023;
2024) reduces the number of tunable parameters required for adapting large models (component I).
Optimizer-Efficient Fine-Tuning (Rajbhandari et al., 2020; Anil et al., 2019) focuses on partitioning
or improving the efficiency of gradient updates and optimizer states to alleviate the training memory
burden (component II). Memory-Efficient Fine-Tuning (MEFT) (Simoulin et al., 2024; Dettmers
et al., 2023) , on the other hand, improves memory efficiency by recomputing, compressing, or
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eliminating activation-related memory costs (component III). Among the three paradigms that address
the memory challenge from different perspectives, MEFT stands out as a more effective one. The
reason is that activations consistently dominate memory consumption (e.g., 87% in Llama3 8B as
shown in Tab. 1 (a), and 60GB of activations for GPT-2 1.5B (Rajbhandari et al., 2020)), making
them a critical bottleneck in the memory efficiency of training deep models (Zhang & Su, 2025).

However, existing MEFT methods generally unaware of or ignore the abundant information contained
in the fine tuning training instances, i.e., they operate as data-agnostic optimizations. Previous
works are predominantly model-oriented optimizations (see §2) — they adopt a uniform efficiency
strategy across all instances, without accounting for the rich variability inherent within each individual
instance. This results in a lack of fine-grained control over memory reduction at the instance level,
leading to ineffective (see Fig. 1 (b) and §4.2) and unstable fine-tuning (see §4.3). Naturally, two key
challenges arise on the path toward instance-aware activation efficient optimization: I. how to identify
the salient tokens that represent the key information of each instance (solved through §3.2.1); and II.
how to leverage them to achieve effective and stable memory optimization (solved through §3.2.2).

In light of this view, we introduce TOKENSEEK, a universally applicable plugin designed to achieve
a win-win of performance and memory efficiency without altering their inherent architecture under
the “Pretrain-then-Finetune” pradigm. In order to kill two birds with one stone, our approach can
be unfolded into two aspects to respectively tackle the challenges above: ❶ Instance-Aware Token
Seeking. TOKENSEEK first leverages context and gradient information at the token level to evaluate
and score individual tokens, selectively retaining more informative ones to mitigate performance
degradation and fluctuation. ❷ Efficient Token Ditching. TOKENSEEK then significantly decreases
the memory footprint for activations by updating model parameters exclusively on selected tokens,
thereby ditching the gradients of the others and thus eliminating these activations. Our method
facilitates an adaptive, instance-aware activation optimization without compromising performance
and stability (see more discussions in §S7). Our key contributions include:

• Significant Memory Reduction: Benefit from the potent instance awareness, TOKENSEEK
can achieve substantial memory savings with only 10% tokens (i.e., 65.7% maximum memory
reduction on Llama3.2 1B, see §4.2) while maintaining competitive performance (i.e., 41.13 vs.
40.82). Our approach can further significantly surpass full token fine-tuning with only 14.8%
memory consumption under the QLoRA settings (i.e., 52.61 vs. 40.82 shown in Fig. 1 (b)).

• Generalizable Solution: Attributed to its architecture-agnostic design, our method generalizes
well across various Transformer-based models (i.e., Qwen-0.5B, Llama-1B and Llama-3B) and can
be seamlessly integrated with other PEFT techniques (i.e., LoHa and QLoRA) to embrace both
performance effectiveness and memory efficiency (see Tab. 1).

• Interpretable Token Seeking: We provide a comprehensive analysis (see §4.3) of how token-level
ditching influences the fine-tuning process, achieving significant memory reductions through our
proposed transparent and explainable token selection strategy (see §3.2 and §4.3).

2 RELATED WORK

2.1 MEMORY-EFFICIENT FINE-TUNING

MEPT (Simoulin et al., 2023; Vucetic et al., 2022; Ryu et al., 2024; Zhang et al., 2023; Zhao et al.,
2024; Ardakani et al., 2023) directly tragets on reducing memory footprints during fine tuning. It can
be broadly categorized into the recomputation, compression, and reversible network paradigms.

Recomputation. The core idea of recomputation methods (Korthikanti et al., 2023; Chen et al., 2024b;
Tang et al., 2024) is to recompute certain operations instead of storing all intermediate activations —
a technique also known as gradient checkpointing. (Chen et al., 2016) first applied this idea to deep
neural networks, proposing a method that stores only a subset of activations and recomputes others
during the backward pass, achieving sublinear memory cost. Subsequent improvements optimized
the checkpointing schedule (Jain et al., 2020), introduced dynamic runtime strategies (Kirisame
et al., 2020), and combined offloading with recomputation (Rajbhandari et al., 2020). Compression.
Compression methods (Yi et al., 2024; Yang et al., 2025; Leconte et al., 2024) focus on reducing the
size of the model states, optimizer states, gradients, and activations, which can further divided into
methods using sparsified and quantized representations. Specifically, sparsity methods include LoRA
(Hu et al., 2022a), which freezes pre-trained weights and trains low-rank adapters, and diff pruning
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(Guo et al., 2020), which learns sparse task-specific updates. Recently, TokenTune (Simoulin et al.,
2024) reveals the feasibility of token pruning during backpropagation to further reduces memory
by selectively dropping token activations. Quantization-based methods, on the other hand, use
lower numerical precision to minimize memory usage. Mixed-precision training (Micikevicius et al.,
2017) with FP16 or BF16 became standard, and further advancements introduced 8-bit optimizer
quantization. QLoRA (Dettmers et al., 2023) extends this by applying 4-bit quantization to model
weights during fine-tuning. Reversible Networks. Reversible network designs eliminate the need
to cache activations during training by reconstructing them from outputs. RevNets (Gomez et al.,
2017) demonstrated reversible residual blocks for image models, while Reformer (Kitaev et al.,
2020) extended this idea to Transformers with reversible layers. Recent methods adapt reversible
computation to fine-tuning pre-trained models by inserting reversible adapters (Liao et al., 2023b),
significantly reducing activation memory without modifying the pre-trained weights.

TOKENSEEK, a sparsified gradient updating method under compression paradigm , leverages both
context and gradient information in each sample to enable instance-aware activation sparsification
with performance on par with dense models, bridging the performance gap.

2.2 PARAMETER-EFFICIENT FINE-TUNING

PEFT (Hu et al., 2022b; Aghajanyan et al., 2020; Yang et al., 2023; Huang et al., 2023; Zadouri et al.,
2023) aims to optimize model parameter usage and thus can reduce memory consumption to varying
degrees. It can be generally categorized into four paradigms (see more in §S7).

Partial Tuning methods (Lawton et al., 2023; Xu et al., 2021) update only a subset of the backbone
model parameters using weight masking or partial tuning strategies. A common strategy is to
fine-tune only the final few layers or sorely the output head. However, its simplistic strategy may
directly result in performance degradation, motivating further research into targeted masked tuning
approaches (Sung et al., 2021; Chen et al., 2024a; Liao et al., 2023a). Additional Tuning methods
introduce a small number of new parameters to a frozen pre-trained model, fine-tuning only the
added modules. These methods can be further categorized into adapter-based (Houlsby et al., 2019;
Pfeiffer et al., 2020; Wang et al., 2022a) and prompt-based approaches (Jia et al., 2022; Wang
et al., 2024; 2023), which inject lightweight learnable modules into the model architecture or the
model input, respectively. Reparameterized Tuning methods reparameterize the model updates in a
low-dimensional subspace (Liu et al., 2025), leveraging the low intrinsic dimensionality of LLMs.
LoRA (Hu et al., 2022a) learns low-rank matrices to model weight updates without modifying the
original weights. Subsequent works have extended LoRA to alternative reparameterization variants
(Hyeon-Woo et al., 2021) and incorporated quantization techniques for additional memory savings
(Dettmers et al., 2023). Hybrid Tuning methods (He et al., 2021; Zhang et al., 2024) combine multiple
PEFT strategies, aiming to unify their advantages. UniPELT (Mao et al., 2021) stands out as a
representative method that jointly incorporates adapters, prefix tuning, and LoRA-style low-rank
updates as submodules, and learns to activate those best suited to the current task via gating.

While PEFT methods primarily focus on parameter efficiency (i.e., reducing component I storage),
their impact on overall memory efficiency is limited (e.g., the activation memory of most PEFT
methods remains over 75% of that in full fine-tuning, even with less than 1% trainable parameters
(Liao et al., 2023b)). Leveraging our architecture-agnostic design, TOKENSEEK can be seamlessly
integrated with PEFT methods, further embracing both parameter and memory efficiency (see Tab. 1).

3 METHODOLOGY

In §3.1, we first analyze activations, the primary bottleneck in training memory, from two perspectives:
(i) why storing activations is necessary, and (ii) why they incur large memory consumption in LLMs.
Our method, TOKENSEEK, is presented in §3.2, which is decomposed into two key components:
instance-aware token seeking and efficient token ditching. The overall framework is shown in Fig. 2.

3.1 PRELIMINARY

The Necessity of Storing Activations. Given a multilayer deep neural network, we first analyse the
memory consumption of activations, in which the transformation and nonlinear activation at layer l
are defined by a(l) = z(l−1)W (l) + b(l) and z(l) = σ

(
a(l)

)
, respectively. Here, the weight matrix

W (l) projects the output z(l−1) of the previous layer into the current layer’s pre-activation a(l), to
which we add the bias b before applying the activation function σ. By extending to deeper layers
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Figure 2: Overview of TOKENSEEK (ours) vs. TOKENTUNE frameworks. (a) Instance-aware
token seeking using context and gradient information (see §3.2.1 and Eq. 5). (b) Efficient token
ditching (see §3.2.2). (c) TOKENTUNE for random token selection (see analysis in Tab. 1 and §4.3).

and applying the differentiation rules along with the chain rule, we can decompose the gradient with
respect to the weight in the first layer in simplicity as:

∂L
∂W (1)

=
∂L

∂z(L)

( L∏
ℓ=2

∂z(ℓ)

∂z(ℓ−1)

) ∂z(1)

∂W (1)
. (1)

∂z(l)

∂z(l−1)
=

∂z(l)

∂a(l)
∂a(l)

∂z(l−1)
= σ′(a(l)) W (l). (2)

The computation of the back-prop term σ′(a(l)) W (l) requires the intermediate value a(l) to further
evaluate σ′(a(l)). By caching each pre-activation a(l) during the forward pass, the model can avoid
recomputing to obtain these intermediates, thereby efficiently forming the full chain of derivatives.

The Reason of Large Activations. Current Transformer-based LLMs follow this rule to store
activations during backpropagation. Taking DeepSeek-v3 (Liu et al., 2024a; Zhang & Su, 2025) as
an example, the activations in each layer have a space complexity of O(Bnhs

2 +BsH), where B
is the batch size, nh is the number of attention heads, s is the sequence length, and H is the hidden
dimension. The space complexity required for activations significantly outweighs that of the weights
(Bnhs

2 +BsH ≫ H2 given B = 1, nh = 128, s = 4096 and H = 7168 (Zhang & Su, 2025)).

3.2 TOKENSEEK

3.2.1 INSTANCE-AWARE TOKEN SEEKING

The key insight behind TOKENSEEK is that not all training tokens within LLMs contribute equally to
model fine-tuning, known as token redundancy. Token redundancy has long been recognized as a
fundamental challenge to LLM efficiency (Hou et al., 2022), drawing increasing research attention
across various domains, including efficient chain-of-thought reasoning (Xia et al., 2025) and prompt
optimization (Li et al., 2023). This observation greatly inspires us to explore the potential of memory-
efficient fine-tuning by reducing token redundancy. Then the critical problem turns to determine the
importances of each token. Here, we propose a comprehensive evaluation of tokens by leveraging
both context and gradient information captured within Transformer blocks (see Fig. 2 (a)).

➤ Context Information. Most LLMs are built upon the Transformer architecture, which funda-
mentally relies on the attention mechanism (Vaswani et al., 2017). The attention maps in decoder
layers directly reflect the importance of each token in context, thereby guiding and shaping the
transformation process. More specifically, given input embeddings t ∈ Rn×d, we first project them
into queries and keys with learnable matrices WQ,WK ∈ Rd×d to obtain Q = tWQ, K = tWK .
We then form the attention scores and apply a causal mask for language modeling, computing
A = softmax

(
mask

(
QK⊤/

√
dk

))
. Each entry Aij denotes the attention weight from token i to

token j. Owing to the row-wise softmax normalization, each row Ai: forms a probability distribution
over all tokens, capturing how much attention token i allocates to others. Conversely, each column
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A:j reflects the cumulative attention received by a token j from all other tokens in the sequence. In
this way, attention mechanism provides an intuitive and direct measure of a token’s importance within
a given instance. The context importance of each token (Singh et al., 2024; Liao et al., 2025; Kong
et al., 2023) is computed as:

I1 (tj) =

n∑
i=1

Aij . (3)

➤ Gradient Information. However, context-based evaluation above only reflects the importance of
a token within a given instance and does not necessarily indicate its contribution to model fine-tuning.
Therefore, in order to better quantify the contribution of each token during the fine tuning, we further
assess token importance by examining the gradient magnitude of the loss w.r.t. the activations. This
idea is inspired by (Jain & Wallace, 2019), which shows that attention weights are often uncorrelated
with gradient-based measures of feature importance. The study positions gradient-based attribution
as a more reliable yardstick of “true” token importance, highlighting that gradient-based saliency
can substantially differ from attention-based explanations (see more discussion in §4.3). Given the
gradient matrix G =

[
∂L/∂z(L−1)

]
∈ Rn×d for the activations in the penultimate layer (i.e., the

input to the final decoder layer) computed during backpropagation, the gradient-based importance of
each token is computed by summing the gradient magnitudes across the hidden dimension as:

I2 (tj) = Accumulate
[ ∂L
∂z(L−1)

]
, Accumulate

[
·
]
=

d∑
k=1

Gjk. (4)

➤ Token Evaluation. To obtain a comprehensive evaluation of token importance, we integrate both
context and gradient information, weighted by scalars α and β, respectively as:

I(tj) = α log
[
I1(tj)

]
+ β Norm

[
I2(tj)

]
, (5)

where we apply a log-like transformation to address the long-tail distribution of contextual importance
scores, and use min-max normalization to scale the gradient-based importance scores to a comparable
range (see more discussions in §4.3). By incorporating both information, our method is able to
robustly evaluate tokens within each instance (distinct from random selection in Fig. 2 (c)), leading
to more effective and stable fine-tuning (see §4.2 and §4.3). This enables us to select the tokens that
contribute most to model fine tuning in the subsequent memory-efficient token ditching (see §3.2.2).

3.2.2 EFFICIENT TOKEN DITCHING

To improve training memory efficiency, we propose ditching the gradients of less informative tokens
from the dataset, and fine-tuning LLMs using only the selected tokens. Following (Simoulin et al.,
2024), by backpropagating the loss through the selected tokens in t only, and ditching the gradient
computation of unselected tokens t̄ in Eq. 2 (see Fig. 2 (b)) after regrouping them, we have:

∂z(l)

∂z(l−1)
=

[
σ′(a(l)t

)
, σ′(a(l)t̄

) ]
W (l) =

[
σ′(a(l)t

)
, 0

]
W (l). (6)

Based on Eq. 6, we only need to cache a
(l)
t to apply the chain rule, rather than storing the full

activation a(l). We provide a detailed discussion in §S2 and §S7.1.

3.2.3 ANALYSIS AND DISCUSSION

As shown in §3.2.1, in contrast to other token importance evaluation strategies that require additional
annotations or auxiliary networks (Xia et al., 2025), TOKENSEEK only requires a forward pass (e.g.,
Llama3 8B requires only 13.3% of the training memory during inference under the FP8 setting) and
a partial backward pass (i.e., freeze all layers except the output head and the final decoder block)
to assess token importance, resulting in simplicity. Presented in §3.2.2, tuning only 10% of tokens
theoretically requires just ∼1% of the activation memory, based on the space complexity analysis in
§3.1, resulting in a highly efficient fine-tuning process. Beside enjoying the appealing characteristics
of simplicity and efficiency, TOKENSEEK also has merits in generality and interpretability. For
generality, our method relies solely on context and gradient information, making it architecture-
agnostic and broadly applicable to a more wide range of Transformer-based models (see Tab.1). For
interpretability, both context and gradient information provide intuitive and direct evaluations of
token importance, thereby further enhancing the interpretability of our evaluation process (see §4.3).
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Table 1: Few-shot evaluation on question-answering benchmarks. This includes ARC (25-shot) ,
MMLU (5-shot) , HellaSwag (10-shot) , TruthfulQA (0-shot) , and WinoGrande (0-shot). We report
the average accuracy on five MMLU ethics tasks and WinoGrande, the normed accuracy on ARC
and HellaSwag, and the MC2 score on TruthfulQA. The number reported in [·] is the “Tuned/Total”
parameters in each setting. The same training settings are highlighted in blue, red, and orange for
full-parameter tuning, LoHa, and QLoRA, respectively. Relative memory consumption percentages
compared with the settting of full token tuning are transformed and reported in each scale. Same for
Tab.2. We highlight the best average performance and memory savings in bold. For TOKENTUNE
and TOKENSEEK, only 10% of the input tokens are selected for gradient computation.

Method Ave. Max. ARC Hella MMLU Truthful Wino Average
Mem. Mem. Swag QA Grande Score

Qwen2.5 (0.5B)

Full Parameter/Token Tuning 100% 100% 34.89 51.70 59.20 39.86 56.51 48.43
- w/ TOKENTUNE (Random) 48.3% 25.6% 25.26 25.78 51.07 49.93 47.36 39.88
- w/ TOKENSEEK (Ours) 48.3% 25.6% 25.17 25.52 58.14 50.13 50.75 41.94

IA3 (Liu et al., 2022) 84.3% 72.8% 34.98 51.66 56.81 40.08 56.51 48.01
LoRA (Hu et al., 2022a) 81.2% 71.8% 34.73 51.67 56.30 41.08 56.51 48.06
LoKr (Hyeon-Woo et al., 2021) 91.6% 79.3% 35.49 51.54 58.64 39.83 55.88 48.28
BOFT (Liu et al., 2024b) 145.1% 100.6% 34.64 51.70 58.18 39.57 56.43 48.10
Bone (Kang, 2024) 85.8% 76.2% 28.50 43.54 42.39 43.35 54.62 42.48
LoHa [1.33%] (Hyeon-Woo et al., 2021) 86.6% 76.9% 34.73 51.90 57.53 40.75 55.96 48.17

- w/ TOKENTUNE (Random) 39.5% 22.5% 23.81 26.34 57.53 50.26 47.36 41.06
- w/ TOKENSEEK (Ours) 39.5% 22.5% 26.54 25.96 58.14 50.26 50.51 42.28

QLoRA [1.04%] (Dettmers et al., 2023) 51.7% 45.6% 34.64 50.10 58.05 40.41 55.09 47.66
- w/ TOKENTUNE (Random) 19.2% 13.4% 31.06 45.92 57.60 41.56 55.56 46.34
- w/ TOKENSEEK (Ours) 19.2% 13.4% 34.56 50.09 57.52 41.51 58.56 48.45

Llama3.2 (1B)

Full Parameter/Token Tuning 100% 100% 23.72 26.11 57.53 48.68 48.07 40.82
- w/ TOKENTUNE (Random) 64.6% 34.3% 24.32 25.80 58.14 47.90 47.59 40.75
- w/ TOKENSEEK (Ours) 64.6% 34.3% 23.98 25.73 58.14 48.09 49.72 41.13

LoHa [0.63%] 92.3% 99.4% 39.25 65.93 57.60 37.87 60.77 52.28
- w/ TOKENTUNE (Random) 45.9% 28.4% 38.48 64.21 50.34 43.89 59.91 51.37
- w/ TOKENSEEK (Ours) 45.9% 28.4% 38.57 65.89 58.18 39.34 60.93 52.58

QLoRA [0.52%] 45.6% 34.8% 38.82 65.26 56.39 38.85 61.33 52.13
- w/ TOKENTUNE (Random) 14.8% 14.3% 39.33 62.97 41.76 41.36 60.69 49.22
- w/ TOKENSEEK (Ours) 14.8% 14.3% 39.08 65.98 58.03 38.65 61.33 52.61

Llama3.2 (3B)

Full Parameter/Token Tuning 100% 100% 23.98 25.72 58.62 49.53 49.80 41.53
- w/ TOKENTUNE (Random) 73.1% 39.3% 24.15 25.43 57.64 50.86 47.91 41.20
- w/ TOKENSEEK (Ours) 73.1% 39.3% 27.30 25.96 58.14 48.65 49.72 41.95

LoHa [0.47%] 90.7% 96.5% 49.06 75.96 63.50 42.08 69.46 60.01
- w/ TOKENTUNE (Random) 49.6% 30.0% 50.34 75.70 56.65 43.37 69.61 59.13
- w/ TOKENSEEK (Ours) 49.6% 30.0% 53.24 76.81 64.31 41.75 68.98 61.02

QLoRA [0.42%] 33.6% 26.5% 51.37 75.88 63.95 42.31 68.43 60.39
- w/ TOKENTUNE (Random) 13.3% 11.1% 49.91 73.04 59.91 45.25 68.43 59.31
- w/ TOKENSEEK (Ours) 13.3% 11.1% 50.00 76.30 63.43 43.37 68.98 60.42

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Under the “Pretrain-then-Finetune” paradigm, pre-trained LLMs are further fine-tuned on specialized
datasets to adapt them to domain-specific tasks and improve instruction-following capabilities (Wang
et al., 2022b; Taori et al., 2023). In this section, we apply instruction tuning and benchmarking under
the few-shot setting. We provide additional experimental details in §S1 and §S7.
Instruction Tuning. Following (Simoulin et al., 2024), we fine-tune the Qwen2.5 0.5B (Yang et al.,
2024), Llama3.2 1B and 3B (Grattafiori et al., 2024) models using the Open-Platypus dataset (Lee
et al., 2023). It comprises 11 open-source instruction datasets. See more details in §S1.7.
Few-Shot Evaluation. We assess performance across few-shot benchmarks including MMLU
(Hendrycks et al., 2020), ARC (easy and challenge) (Clark et al., 2018), HellaSwag (Zellers et al.,
2019), TruthfulQA (Lin et al., 2021), and WinoGrande (Sakaguchi et al., 2021), using the “lm
evaluation harness” (Gao et al., 2024). For each task, the model ranks answer options by probability,
and the highest one is selected. See more discussions and experiments in §S1, §S3 and §S7.1.
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4.2 MAIN RESULTS

The main performance and memory comparison results across various models, scales and PEFT
settings are shown in Tab. 1, leading to three key observations. First, Significant Memory Reduction.
TOKENSEEK demonstrates exceptional efficiency in reducing both average and peak memory usage
during fine-tuning. Specifically, for the Llama3.2 3B model, peak memory usage is reduced by
60.7% with TOKENSEEK alone (i.e., Llama3.2 3B + TOKENSEEK), and further down to just 11.1%
when combined with QLoRA (i.e., Llama3.2 3B + QLoRA + TOKENSEEK), enabling training on a
single A100 GPU without triggering OOM issues. Similarly, average memory usage is reduced by
26.9% and 86.7%, respectively. These results highlight TOKENSEEK ’s strong capability in achieving
extreme memory compression during fine-tuning (more experiments in §4.4). Second, Competitive
or Superior Performance. Despite memory efficiency, TOKENSEEK maintains competitive or even
superior performance compared to full-token tuning: The average score of TOKENSEEK with QLoRA
in Qwen 0.5B marginally surpasses the full token tuning baseline (48.45 vs. 48.43). In Llama3.2 1B,
TOKENSEEK consistently outerperforms baseline across all settings (i.e., TOKENSEEK, w/ LoHa,
and w/ QLoRA achieve scores of 41.13, 52.58, and 52.61, respectively, compared to 40.82 from
full token tuning.). This indicates that the memory compression achieved by TOKENSEEK does not
compromise, and may even slightly enhance, model performance (detailed discussions in §4.3). Third,
Generalizable Across Different Scales. Generally, TOKENSEEK’s effectiveness in both memory
reduction and performance stability is generalizable across various model scales ranging from 0.5B to
3B. However, we observe a distinct pattern across model scales: TOKENSEEK exhibits performance
degradation on Qwen under plain settings, whereas Llama does not. This suggests that TOKENSEEK
may be more sensitive to smaller-scale models, likely due to their limited representational capacity.
In conclusion, TOKENSEEK demonstrates itself as an universal memory efficient solution, effectively
achieving memory efficiency with competitive model accuracy (see more comparison in §S7).

4.3 ANALYSIS OF TOKEN SEEKING

Memory Consumption (GiB)
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Figure 3: The performance for the Llama3.2
1B with QLoRA setting, where the upper,
lower and middle line indicate the maximum,
minimum and the average results.

Contributions of Instance-aware Token Seeking.
We further conduct experiments to quantitatively eval-
uate the impact of instance-aware token seeking (i.e.,
addressing the drawbacks of data-agnostic optimiza-
tion: inefficiency and instability) by comparing per-
formance across multiple runs under varying memory
settings (i.e., with the ratio of tunable tokens ranging
from 10% to 50%) on Llama3.2 1B with QLoRA.
As shown in Fig. 3, we observed that TOKENSEEK
consistently enhances both effectiveness and stability.
For effectiveness, our method (green curve), consis-
tently outperforms the random baseline (purple curve)
(Xia et al., 2025) across various memory settings. The
accuracy achieved by our approach remains higher at
all memory saving levels, clearly demonstrating its
effectiveness in optimizing performance under mem-
ory constraints. For stability, our method showcases
superior stability. This is evident from the notably
narrower shaded regions (i.e., variance) in Fig. 3, in-
dicating a lower standard deviation compared to the
random baseline. The results clearly show TOKENSEEK’s capability to maintain higher accuracy
with narrower fluctuations, emphasizing its robustness under varying memory constraints.
Study of Interpretability. One key advantage of TOKENSEEK is the transparency and interpretability
of its token seeking and ditching process. To illustrate this, we conduct a case study on a training
instance to visualize token evaluation and highlight common patterns (see more visualizations
in §S8). TOKENSEEK leverages both contextual and gradient information for token selection.
Context Information: while token selection varies across instances, our analysis reveals several
consistent patterns illustrated in Fig.4 (b). Specifically, unidirectional attention enforces causality,
resulting in an upper-triangular attention mask. Diagonal patterns indicate self-focused attention,
emphasizing local context as shown in the blue localized accumulation. Attention Sink (Xiao et al.,
2024) refers to the tendency of attention to disproportionately concentrate on a single position,
effectively acting as a global anchor (evident as the brown line in first column). The context scores
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(b) Attention Map (c) Gradient Map

(a) Visualization of Token Seeking  (d) Context Score (e) Gradient Score
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80
0.08

-0.08

0.08

-0.08

Below is an instruction that describes a task. Write a response that
appropriately  completes the request.

### Instruction:
A box contains 5 white balls and 6 black balls.  Two balls are drawn out
of the box at random.  What is the probability that they both are white?

### Response:
There are $\binom{11}{2} = 55$ combinations of two balls that can be
drawn.  There are $\binom{5}{2} = 10$ combinations of two white balls
that can be drawn.  So the probability that two balls pulled out are both
white is $\dfrac{10}{55} = \dfrac{2}{11}$.

Attention Sink
at Token 0

Selected Tokens by Context Score Selected Tokens by Gradient Score

Figure 4: Case study of a training instance. (a) Visualization of the top 50% selected tokens using
context and gradient information, highlighted in red and blue, respectively. (b) Average attention
map from the final layer. (c) Accumulated gradient map of activations in the penultimate layer. (d)
Context importance scores obtained by column-wise accumulation. (e) Gradient importance scores
obtained by summing across the hidden dimension. Additional visualizations are provided in §S8.

exhibit a long-tail distribution caused by the attention sink effect, with higher scores concentrated
in earlier positions—amplified by the causal mask (see zoom-in area of Fig.4 (d)). This results in a
preference for earlier tokens, as reflected in the red-highlighted regions of Fig. 4 (a), which retain
semantically meaningful tokens (e.g., those related to mathematical learning) while filtering out less
informative ones, such as definite articles and prepositions. Gradient Information: to enhance
interpretability, we aggregate the gradient map along the hidden dimension, producing G

′ ∈ Rn×1,
which is visualized as a color map in Fig.4 (c). As illustrated in Fig.4 (e), the gradient information
predominantly focuses on later positions—typically corresponding to the “Response” portion of
a training instance (highlighted in blue in Fig. 4 (a)), underscoring the importance of learning the
answer generation process. In summary, our findings highlight the interpretability of TOKENSEEK,
showing that context and gradient information exhibit distinct but complementary patterns (see more
in §S7). Their integration enables a more comprehensive and robust approach to token evaluation.

Figure 5: Training loss curves of six settings on
Qwen2.5 0.5B. Blue, red, and orange lines rep-
resent full parameter, LoHa, and QLoRA tuning,
respectively. Lighter lines in each group indicate
10% token tuning, while darker lines indicate 50%.
Detailed performance and memory usage results
are provided in Tab. 1 and 2.

Study of Optimization. We further investigate
the reason of superior performance under the
PEFT settings and discuss the potential impact
of the percentage of tunable tokens during fine
tuning. By comparing different tunable token
ratios within each group (i.e., lighter vs. darker
lines) and across different tuning strategies (i.e.,
different colored lines), we have two key obser-
vations. i) TOKENSEEK favors PEFT: Consid-
ering PEFT methods (i.e., LoHa and QLoRA),
we observe that full parameter tuning yields
lower training loss, which may indicate potential
overfitting (i.e., lower training loss but poorer
downstream performance). In contrast, PEFT
methods, which update only a subset of param-
eters, are less prone to overfitting and there-
fore remain more robust and better suited for
token ditching (i.e., 47.66 on QLoRA vs. 48.85
on QLoRA + TOKENSEEK). ii) Tokens Con-
tribute Fine Tuning: As more tunable tokens
are incorporated into fine-tuning (i.e., from 10%
to 50%), we consistently observe lower opti-
mization loss, which indicates that fine tuning is
sensitive to training data volume. Low-quality
token selection under extremely limited token training may thus lead to optimization collapse and
performance degradation, emphasizing the need for our instance-aware token seeking approach.
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Table 2: Ablation study on token evaluation in Eq. 5, analyzing the impact of scalar weighting and
threshold selection on both memory consumption and model performance (See more in §S7).

Settings Ave. Max. MMLU ARC Hella Truthful Wino Average
Mem. Mem. Swag QA Grande Score

Sensitivity to Scalar (Qwen2.5 0.5B with QLoRA)

α=1, β=0 34.56 50.09 57.52 41.51 58.56 48.45
α=0, β=1 30.72 44.20 57.62 43.98 55.41 46.39
α=5, β=5 19.2% 13.4% 35.15 50.20 58.49 41.48 57.93 48.65
α=3, β=7 34.64 48.77 58.33 42.18 57.46 48.28
α=7, β=3 35.58 50.10 58.59 41.13 57.22 48.53

Ratio of Tunable Token (Llama3.2 1B with QLoRA)

100% 100% 100% 23.72 26.11 57.53 48.68 48.07 40.82
50% 32.6% 53.1% 39.42 65.34 55.00 40.53 61.01 52.26
40% 28.0% 29.9% 39.42 65.51 56.92 39.89 61.56 52.66
30% 23.2% 23.7% 40.27 65.60 54.63 41.46 61.80 52.75
20% 18.8% 18.6% 39.42 65.73 53.24 39.86 60.77 51.80
10% 14.8% 14.3% 39.08 65.98 58.03 38.65 61.33 52.61

4.4 ABLATION STUDY

Average memory of full token tuning
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Figure 6: Training memory under different
settings and token ratio selections. Bars rep-
resent average memory usage, while dashed
lines indicate peak memory consumption.

Sensitivity to Scalar. As stated in Eq. 5, the scalars
α and β determine the relative emphasis placed on
context and gradient information during token evalua-
tion, respectively. As shown in Tab. 2, configurations
that balance both information (e.g., [5, 5]) achieve
higher performance compared to those relying on a
single evaluation (e.g., [0, 1]) . Notably, TOKENSEEK
performance remains stable across various settings,
indicating low sensitivity within certain range.
Ratio of Tunable Token. We then investigate the
ratio of tunable tokens w.r.t. model performance,
particularly under scenarios with extremely limited
gradient tokens. Tab. 2 shows that TOKENSEEK main-
tains stable performance across a range of ratios (i.e.,
from 51.80 to 52.75), while memory usage decreases
substantially as the ratio reduces (i.e., from 32.6% to
14.8%). Given the observed stability, we suggest a
default ratio of 10% for overall efficiency.
GPU Memory Impact. The motivation behind
memory-efficient fine-tuning stems from the mis-
match between limited GPU memory (e.g., 40GB
on A100, 24GB on RTX 4090) and the growing size of LLMs. In this context, peak memory deter-
mines whether a model can be fine-tuned on a single GPU without encountering OOM issues. Benefit
from our model-agnostic design, TOKENSEEK provides faithfully cumulative memory savings when
combined with PEFT methods. For example, when integrated with QLoRA, the peak memory usage
ranges from 14.2 GiB to as low as 5.5 GiB depending on the ratio selected for tunable tokens —
substantially lower than the 38.8 GiB required by full token tuning.

5 CONCLUSION

We propose TOKENSEEK, a universal plugin solution for effective and stable Transformer-based
memory efficient fine tuning. It has merits in: i) significant memory reduction via token ditching
without sacrificing performance; ii) strong generalizability across various LLMs and compatibility
with existing PEFT methods; and iii) interpretable instance-aware seeking for effective and stable
fine tuning. As a whole, we conclude that the outcomes elucidated in this paper impart essential
understandings and thus necessitate further exploration within the field of MEFT.
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SUMMARY OF THE APPENDIX

This appendix contains additional experimental results and discussions of our ICLR 2026 submission:
TOKENSEEK: Memory Efficient Fine Tuning via Instance-Aware Token Ditching, organized as
follows:

• §S1 provides additional implementation details of TOKENSEEK, complementing the overall
methodology and results presented in the main paper.

• §S2 offers a detailed analysis of efficient token ditching, expanding on the motivations and
complexity analysis discussed in the main paper.

• §S3 presents additional experiments of TOKENSEEK on larger LLMs, extending the smaller-
scale evaluations included in the main paper.

• §S4 shows related asset license and consent to our work.
• §S5 claims reproducibility of our approach.
• §S6 discusses the social impact of our research.
• §S7 adds more discussions, and points out potential directions of our future work.
• §S8 includes further visualization results, covering case studies, attention maps, and gradient

score distributions.

S1 IMPLEMENTATION DETAILS

S1.1 INSTRUCTION TEMPLATE

For instruction tuning of large LLMs, we apply the Alpaca (Taori et al., 2023) prompt template
without incorporating step-by-step reasoning following (Simoulin et al., 2024), as shown below.

“Below is an instruction that describes a task, paired with an input that provides
further context. Write a response that appropriately completes the request.
### Instruction: {instruction}
### Input: {input}
### Response:
”

S1.2 TRAINING AND EVALUATION DATA

For instruction tuning, we fine-tuned Qwen and Llama on 21,221 samples from the Open-Platypus
dataset (Lee et al., 2023). Although Open-Platypus comprises 11 open-source datasets, we excluded
two—leetcode-solutions-python-testgen-gpt4 and airoboros-gpt4-1.4.1—as they contain outputs
generated by GPT models (Achiam et al., 2023). We used the remaining 9 datasets for fine-tuning,
following (Simoulin et al., 2024).

S1.3 TRAINING SETTINGS

We do not use any checkpointing, ZeRO or offloading techniques. Below are other training settings
details.

bf16: true
fp16: false
fp16_opt_level: "O1"
lr_scheduler_type: "cosine"
warmup_steps: 100
weight_decay: 0.01
optim: "adamw_torch"

For QLoRA and LoHa, we use the below same configuration in all experiments.

alpha:16
dropout:0.05
r:8
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For other baselines such as IA3 and BOFT, we use the default PEFT configuration across all runs.

Regarding the resulting peak/average memory, we would be happy to provide the original numbers
for full parameter/token tuning in each setting for more comprehensive understanding. Other baseline
memory usage can be calculated using the original numbers below and their relative memory
percentages reported in Tab. 1.

Table S1: Memory usage summary for Qwen2.5 and Llama3.2 models under full parameter/token
tuning.

Model Average Memory (MB) Maximum Memory (MB)

Qwen2.5 (0.5B) 12,070 27,300
Llama3.2 (1B) 19,462 39,688
Llama3.2 (3B) 40,100 83,927

S1.4 HYPERPARAMETER SETTINGS

Given the hyperparameters α and β introduced in Eq. 5, we perform a linear search over the set
{[1,0], [0,1], [5,5]} for each LLM. The optimal settings are: [1,0] for Qwen2.5 0.5B and Llama3.2
1B, and [5,5] for Llama3.2 3B. A linear search over {[1,0], [0,1], [5,5]} reveals that smaller models
(Qwen2.5 0.5B, Llama3.2 1B) benefit from context-only information, while the larger Llama3.2 3B
performs the best when combining both context and gradient information. This suggests that larger
models may better utilize multi-information token evaluation.

S1.5 STANDARD ERROR FOR MAIN RESULTS

We report standard errors in Tab. S2 for the main evaluation results presented in Tab.1. It is important
to note that these values are derived from the “lm evaluation harness” (Gao et al., 2024), which yields
consistent standard error across repeated evaluations on the same task and dataset. Consequently,
all PEFT baselines (e.g., LoHa, QLoRA) and TOKENTUNE variants share similar standard errors
for each benchmark under the same task setting. This consistency ensures a fair and controlled
comparison across methods. As shown, the average standard errors across all tasks remain low (e.g.,
∼1.0), indicating stable performance estimates. Therefore, the conclusions drawn from accuracy
improvements and memory savings remain robust under the evaluation framework, further supporting
the reliability of TOKENSEEK ’s performance gains.

Table S2: Standard error for the main results in Tab. 1.

Method ARC Hella MMLU Truthful Wino AverageSwag QA Grande

Qwen2.5 (0.5B)

TOKENSEEK (Ours) 1.216 0.438 0.339 1.640 1.405 1.008
- w/ LoHa 1.252 0.439 0.338 1.631 1.405 1.013
- w/ QLoRA 1.395 0.499 0.337 1.436 1.387 1.011

Llama3.2 (1B)

TOKENSEEK (Ours) 1.245 0.437 0.338 1.623 1.405 1.009
- w/ LoHa 1.433 0.473 0.345 1.421 1.367 1.008
- w/ QLoRA 1.434 0.477 0.342 1.455 1.372 1.016

Llama3.2 (3B)

TOKENSEEK (Ours) 1.237 0.442 0.337 1.613 1.404 1.007
- w/ LoHa 1.461 0.427 0.330 1.474 1.287 0.996
- w/ QLoRA 1.450 0.432 0.331 1.497 1.290 1.000

S1.6 TRAINING TIME FOR MAIN RESULTS

We further analyze the training time (measured in GPU hours on one NVIDIA A100-40GB GPU)
to assess the computational efficiency of TOKENSEEK compared to other methods. Notably, TO-
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KENSEEK exhibits similar training time overhead to TOKENTUNE across all model scales and PEFT
settings. Specifically, both TOKENSEEK and TOKENTUNE incur a modest increase of approximately
11–15% in GPU hours compared to baseline full-token tuning. For example, on Qwen2.5 0.5B,
the baseline takes 0.43 GPU hours, while TOKENSEEK requires 0.49; similarly, on Llama3.2 1B,
the baseline uses 0.35 hours vs. 0.39 hours for TOKENSEEK. This overhead is likely attributed to
the irregularity introduced by selective gradient computation, as we split the tokens into gradient
and non-gradient segments for token-level control (see §3.2.2). While this adds minimal overhead,
the trade-off is justified by the substantial memory savings and performance gains achieved by TO-
KENSEEK. In sum, TOKENSEEK maintains training time efficiency comparable to other lightweight
fine-tuning methods, while delivering superior performance and memory benefits.

Table S3: Training time for the main results in Tab. 1.

Baseline Baseline LoHa LoHa QLoRA QLoRA
+ TOKENSEEK + TOKENSEEK + TOKENSEEK

Qwen2.5 (0.5B)

GPU Hours 0.43 0.49 0.62 0.69 0.77 0.86

Llama3.2 (1B)

GPU Hours 0.35 0.39 0.73 0.82 0.55 0.63

Llama3.2 (3B)

GPU Hours 0.67 0.75 1.63 1.85 1.03 1.18

S1.7 DETAILS OF INSTRUCTION TUNING

All experiments are conducted on NVIDIA A100-40GB GPUs, except for the full token tuning
settings on Llama3.2 3B due to the out-of-memory (OOM) issues. We train for one epoch using a
learning rate of 4× 10−4 for all fine-tuning. A batch size of 1 is used with 32 gradient accumulation
steps. Adapters are inserted into the feed-forward layers of each Transformer block following (He
et al., 2021). The model is prompted using the Alpaca-style format (Taori et al., 2023) without
explicit reasoning

S2 DETAILS OF EFFICIENT TOKEN DITCHING

In this section, we present the implementation details of the efficient Token Ditching. Different from
previous approaches, e.g., (Simoulin et al., 2024), TOKENSEEK introduces an instance-aware token
selection framework, TOKENSEEK, which prioritizes tokens based on context and gradient-based
information (see §3.2.1), thereby replacing random sampling with a principled, data-driven process.
To facilitate understanding of the token ditching mechanism, we adopt the mathematical formulation
below.

S2.1 TOKEN DITCHING FOR DENSE AND NORMALIZATION LAYERS

For implementation, we adopt Algorithm 1 following (Simoulin et al., 2024), which explicitly
partitions the hidden states into two subsets: ht for tokens selected for fine-tuning, and ht̄ for those
gradient excluded. As illustrated in Eq.7 and Eq.8, the forward computation remains consistent with
standard fine-tuning, with the key difference being that gradients are disabled for ht̄ using PyTorch’s
“torch.no_grad()” context, as shown in Eq. 8.

ht = htW + b (7)
ht̄ = ht̄W + b (8)

where W represents the weights W1 and W2 of the feed-forward layers. A similar approach is applied
to the normalization layers as well.
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Algorithm 1 Token Ditching (To maintain clarity and focus, we simplify the model by removing
layer normalization, skip connections, non-linear activations, and multi-head attention.)
Input: input tokens X
Output: selected tokens ht, and unselected tokens ht̄

1 Compute token embeddings for the input sequence h

2 Divide the input tokens into two groups of selected and unselected tokens (ht and ht̄) via Token Seeking.

3 for each transformers′ layers do
// Attention computation

4 [Qt,Kt, Vt] = htW[Q,K,V ] + b[Q,K,V ]

ht = softmax
(

Qt[Kt̄,Kt]
⊤

√
d

)
[Vt̄, Vt]

// No gradients for unselected tokens
5 with torch.no_grad():
6 [Qt̄,Kt̄, Vt̄] = ht̄W[Q,K,V ] + b[Q,K,V ]

ht̄ = softmax
(

Qt̄[Kt̄,Kt]
⊤

√
d

)
[Vt̄, Vt]

// No gradients for unselected tokens
// Feed-forward computation

7 ht = htW1 + b1
ht = htW2 + b2
with torch.no_grad():

8 ht̄ = ht̄W1 + b1
ht̄ = ht̄W2 + b2

9 Re-organize input tokens into the original order

S2.2 TOKEN DITCHING FOR ATTENTION LAYERS

For attention layers, we compute the attention as:

[Qt,Kt, Vt] = htW[Q,K,V ] + b[Q,K,V ] (9)

[Qt̄,Kt̄, Vt̄] = ht̄W[Q,K,V ] + b[Q,K,V ] (10)

ht = softmax
(
Qt[Kt̄,Kt]

⊤
/
√
d
)
[Vt̄, Vt] (11)

ht̄ = softmax
(
Qt̄[Kt̄,Kt]

⊤
/
√
d
)
[Vt̄, Vt] (12)

where W[Q,K,V ] ∈ Rd×3d represents the concatenated weights for the query, key, and value pro-
jections. For the unselected token positions in Eq.10 and Eq.12, gradient computation is again
disabled using PyTorch. The complete forward pass procedure for the transformer model is detailed
in Algorithm 1.

S3 EXPERIMENTS ON LARGER LLMS

We further evaluate the potential of TOKENSEEK on larger models (7B scale) shown in Tab.S4. Due
to resource constraints, only a subset of configurations is included in the results. As shown in the
table, TOKENSEEK consistently outperforms TOKENTUNE across both full parameter/token tuning
and QLoRA settings in terms of average score. Specifically, under full-token tuning, TOKENSEEK
achieves an average score of 60.97, slightly improving over baseline (60.73), while reducing both
average and peak memory by 22.1% and 54.4%, respectively. More notably, under the QLoRA
setting, TOKENSEEK attains the comparable performance (62.14) while requiring only 18.2% average
memory and 12.4% peak memory compared to full tuning, demonstrating a >80% memory saving.
These results validate the scalability and robustness of our method even in large-model scenarios,
reinforcing its value in memory-constrained training environments.
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Table S4: Few-shot evaluation for Llama2 7B model. The experiments are performed under the same
settings as Tab.1. † indicates the results reported from (Simoulin et al., 2024).

Method Ave. Max. ARC Hella MMLU Truthful Wino Average
Mem. Mem. Swag QA Grande Score

Llama2 (7B)

Full Parameter/Token Tuning† 100% 100% 52.39 78.97 64.44 38.97 68.90 60.73
- w/ TOKENTUNE† 77.9% 45.6% 51.71 78.35 61.56 41.88 70.01 60.70
- w/ TOKENSEEK 77.9% 45.6% 52.22 78.96 65.28 39.95 68.43 60.97

QLoRA† 53.2% 46.5% 56.06 78.60 65.08 43.64 69.38 62.55
- w/ TOKENTUNE 18.2% 12.4% 53.16 78.76 63.64 39.58 69.22 60.87
- w/ TOKENSEEK 18.2% 12.4% 53.50 78.82 65.26 44.62 68.51 62.14

S4 ASSET LICENSE AND CONSENT

The majority of TOKENSEEK is released under the CC-BY-NC license. However, portions of the
project are governed by separate license terms. Specifically, the Transformers library is licensed
under Apache 2.0. Other dependencies used in this work include the HuggingFace PEFT and Datasets
libraries, both under the Apache 2.0 license; the lm-evaluation-harness framework, which is licensed
under MIT; and PyTorch, which is distributed under the modified BSD-3 license. The Open-Platypus
dataset used for fine-tuning aggregates multiple datasets—detailed license information is available at
https://huggingface.co/datasets/garage-bAInd/Open-Platypus.

S5 REPRODUCIBILITY

Our implementation of TOKENSEEK is based on the HuggingFace Transformers library1 (v4.33.1).
For LoHa and QLoRA, we utilized the HuggingFace PEFT library2 (v0.6.0). Datasets used for
fine-tuning were obtained via the HuggingFace Datasets library3 (v2.18.0), specifically using the
Open-Platypus dataset4.

For evaluation with the Qwen and Llama models, we employed the lm-evaluation-harness framework5

(v0.4.2). All experiments were conducted using the PyTorch framework6 (v2.0.1).

To guarantee reproducibility, our full implementation shall be publicly released upon paper accep-
tance.

S6 SOCIAL IMPACT AND LIMITATIONS

TOKENSEEK presents a memory-efficient fine-tuning framework that significantly reduces training
memory consumption while maintaining or even improving model performance. By selectively
updating only the most informative tokens through an interpretable, instance-aware process, TO-
KENSEEK enables fine-tuning of LLMs on resource-constrained hardware. This advancement holds
strong potential for democratizing LLM adaptation, making personalized and domain-specific model
fine-tuning accessible in low-resource environments such as academic labs, startups, or edge devices.
Moreover, TOKENSEEK aligns with broader goals of green AI by reducing computational and energy
demands during training.

Despite these advantages, TOKENSEEK introduces a pre-stage evaluation that relies on two weighting
factors (α, β) to balance context and gradient-based token importance. While we empirically show
in §4.4 that TOKENSEEK performs robustly across a wide range of settings, the selection of these
hyperparameters introduces an additional tuning burden. In addition, TOKENSEEK requires a token
evaluation step prior to training, which incurs additional computational overhead (i.e., a forward

1https://github.com/huggingface/transformers
2https://github.com/huggingface/peft
3https://github.com/huggingface/datasets
4https://huggingface.co/datasets/garage-bAInd/Open-Platypus
5https://github.com/EleutherAI/lm-evaluation-harness
6https://github.com/pytorch/pytorch
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pass and partial backward pass as discussed in §3.2.3). However, this trade-off is justified by the
substantial memory savings and performance improvements achieved by TOKENSEEK. Furthermore,
TOKENSEEK may be more sensitive to smaller-scale models, which possess limited representational
capacity (Tab.1). These limitations suggest that a more lightweight and robust token evaluation could
further improve the generality of our method.

In summary, TOKENSEEK contributes meaningfully toward the goal of efficient and scalable LLM
adaptation, and we believe it offers valuable insights for future research in memory-efficient fine-
tuning and token-level optimization.

S7 DISCUSSION AND FUTURE WORK

S7.1 DISCUSSION

Regarding Token Selection Ratio Evaluation Gaps. We have extended the study to cover both the
low (<10%) and intermediate (50 – 100%) ranges under the Qwen2.5-0.5B QLoRA setting.

3% 7% 60% 80% 10% (comp.)

Average Score 43.79 47.78 48.43 48.40 48.45
Max. Mem. 7% 10% 62% 79% 13%

Table S5: Average score and maximum memory usage under different token evaluation ratios.

For low-ratio: Even under overly aggressive sparsity settings, TOKENSEEK maintains over 90% and
98% performance at the 3% and 7% settings, respectively, with only slight memory savings compared
to the 10% setting. The observed performance degradation is likely due to the remaining tokens
carrying insufficient gradient signals. For mid-to-high: Scores remain stable between 60% and 80%,
indicating that TOKENSEEK continues to select high-quality tokens as the scale increases. However,
memory usage rises sharply in this range, reducing efficiency. Overall, we recommend a 10% ratio as
a balanced choice, considering both performance and memory efficiency.

Regarding the Performance on Larger Scale Models. We find that TOKENSEEK achieves more
substantial performance gains when applied to smaller-scale models. We attribute this to a potential
mismatch between model capacity and the training dataset size, since all models, regardless of scale,
are fine-tuned on the same Open-Platypus dataset (25K samples), which may not fully exploit the
capabilities of larger models. To investigate this, we conducted a preliminary experiment on the
Llama2-7B model using an expanded dataset that adds 100K randomly sampled examples from
MiniPile (Kaddour, 2023).

Method Dataset Average Score

QLoRA Open-Platypus (25K) 62.55
QLoRA + TOKENSEEK Open-Platypus (25K) 62.14
QLoRA + TOKENSEEK Open-Platypus (25K) + MiniPile (100K) 63.26

Table S6: Average scores of QLoRA and QLoRA with TOKENSEEK on different datasets. Adding
MiniPile (100K) to the training corpus improves performance.

As shown, incorporating more training samples yields additional performance improvements, sup-
porting our hypothesis that the less favorable results on larger models may be due to the relatively
small fine-tuning dataset.

Regarding the Novelty and Differences. Prior works assess token significance for token skipping
in attention operations (Singh et al., 2024) or feature-importance explanations (Jain & Wallace,
2019). Conceptually different to these methods, TOKENSEEK evaluates tokens for gradient detaching,
targeting memory savings.

TOKENSEEK leverages both context and gradient information, grounded in theoretical analysis and
motivation. Initially, we use only context-based information to guide token selection, where we
observe that higher scores tend to concentrate in earlier positions, an effect amplified by the causal
mask. This bias may limit fine-tuning effectiveness, as the answer generation process is primarily
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captured in later positions (i.e., the “Response” portion of a training instance). This observation
motivates the incorporation of gradient-based information to complement the context signals, enabling
a more balanced and comprehensive evaluation of tokens. Together, this dual-perspective approach
provides a flexible, plug-and-play solution for MEFT.

Regarding Performance Gap in Llama Models. Our implementations are based on Hugging Face
PEFT, which provides a reliable and strong baseline for comparison. Regarding the performance
gap observed in Llama but not in Qwen, this may stem from differences in how the two base
models were built. Qwen-2.5-0.5B was trained at its target size from scratch (SFT → DPO / GRPO)
(Yang et al., 2024), rather than being a pruned-and-distilled slice of a larger backbone. In contrast,
Llama-3.2-1B/3B was created by first incorporating logits from the Llama-3.1-8B and 70B models as
token-level targets. Knowledge distillation was then applied after pruning to recover performance
(Grattafiori et al., 2024). This compression process results in sharper weights, which are therefore
more sensitive (Bartoldson et al., 2020; Thangarasa et al., 2024) to gradient updates. As a result,
full-parameter fine-tuning on a tiny dataset might drift off manifold, while PEFT methods that keep
most weights frozen remain stable in Llama-3.2. These divergent construction pipelines account for
the different behaviors observed in Table 1. We are very interested in this direction and plan to further
investigate in the following work.

Regarding the Regarding Task Diversity in Experimental Evaluation. To further evaluate
TOKENSEEK ’s translation capability beyond code generation and mathematical reasoning, we use
(Aharoni & Goldberg, 2020) as the training dataset and randomly sample 10K training examples
from each domain (Medical, Law, IT, and Subtitles) to assess in-domain German-English translation
performance under the Llama-2-7B. The preliminary BLEU scores are reported below, where we
observe that TOKENSEEK consistently achieves comparable performance.

Method BLEU

Llama-2-7B 33.13
Llama-2-7B + LoRA 40.16
Llama-2-7B + LoRA + TOKENSEEK (10%) 41.63

Table S7: BLEU scores of Llama-2-7B with LoRA and TOKENSEEK.

More Baseline Comparison. Due to page limitations in the main paper, we provide additional
baseline comparisons here to offer a more complete view of memory usage and performance trends
across methods.

Metric LoRA (1B) IA3 (1B) LoRA (3B) IA3 (3B) LoHa (7B) IA3 (7B)

Max. Mem. 92.6% 88.9% 90.1% 85.2% 90.5% 84.2%
Average Score 51.95 52.33 59.88 60.69 61.93 60.21

Table S8: Comparison of maximum memory usage and average scores across different parameter-
efficient fine-tuning methods and model scales.

Novelty Clarification with TOKENTUNE. Although both methods aim to improve memory efficiency
in fine-tuning, their underlying motivations, scoring mechanisms, and empirical behaviors differ
fundamentally. TOKENTUNE relies on data-agnostic partial-gradient selection or random token
dropping inspired by an engineering perspective, which we found to be ineffective and unstable
across tasks. In contrast, TOKENSEEK is motivated by the observation that not all tokens contribute
equally to model updates, and therefore adopts a data-driven, instance-aware criterion.

Specifically, TOKENSEEK introduces a hybrid scoring mechanism that integrates both attention-
based contextual relevance and gradient-based optimization signals. This leads to substantially
improved stability, interpretability, and effectiveness compared to random or data-agnostic selection.
Beyond memory and performance metrics, TOKENSEEK also incorporates comprehensive analyses
on stability, interpretability, and optimization behavior, offering insights into token-level contribution
during efficient fine-tuning.

Finally, to the best of our knowledge, no prior MEFT method performs instance-aware token selection
for activation-memory–efficient training. This instance-aware perspective represents the core novelty
of TOKENSEEK and distinguishes it from TOKENTUNE’s engineering-oriented design.
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The Claims of Memory Efficiency and Generality. While TOKENSEEK adopts the same high-level
token-ditching paradigm as TOKENTUNE, its advantages are substantially amplified due to our
data-driven scoring design.

• Memory reduction. TOKENTUNE’s random dropping causes unstable and degraded performance,
forcing it to keep more tokens to stay competitive. In contrast, TOKENSEEK identifies truly salient
tokens, enabling us to discard far more activations without hurting accuracy. As a result, under
equal performance, TOKENSEEK consistently achieves significantly lower memory (i.e., with only
10% tunable tokens, we achieve even higher performance than TOKENTUNE’s 50% setting under
the same model configuration, as shown in Fig. 3).

• Generalizability. TOKENSEEK relies solely on inherent signals from the pretrained model (atten-
tion and gradients). It requires no auxiliary model, no task-specific knowledge, and no architectural
modification. This makes it compatible with any Transformer-based model and any PEFT method.
In contrast, several recent MEFT paradigms depend on customized modules (e.g., reversible net-
works), which limits their applicability. TOKENSEEK remains universally plug-and-play across
architectures and domains.

Comparison with Sparsity-based PEFT. Sparsity-based PEFT (Ansell et al., 2024; He et al., 2024;
Frankle & Carbin, 2019) reduces memory use by updating only a small, selectively chosen subset of
parameters instead of the full model during fine-tuning. In our main paper, we included BOFT as a
representative sparsity-based PEFT method in Tab. 1. Here, we conducted additional experiments on
RanLoRA (Albert et al., 2025) under the Qwen2.5 (0.5B) setting, as summarized below.

Table S9: Comparison of BOFT, RanLoRA, QLoRA, and QLoRA with TOKENSEEK under the
Qwen2.5 0.5B setting.

Method Ave. Mem. Max. Mem. ARC HellaSwag MMLU TruthfulQA WinoGrande Average Score

BOFT 145.1% 100.6% 34.64 51.70 58.18 39.57 56.43 48.10
RanLoRA 95.4% 86.7% 29.18 50.10 58.33 45.21 57.22 48.01
QLoRA 51.7% 45.6% 34.64 50.10 58.05 40.41 55.09 47.66

- w/ TOKENSEEK 19.2% 13.4% 34.56 50.09 57.52 41.51 58.56 48.45

These results further enhance the comprehensiveness of our comparison and greatly deepen our paper
demonstrate the effectiveness of our approach under the requested setting.

Code-Domain Generalization. We have conducted preliminary experiments under the Llama3.2
(1B) setting to evaluate the code-domain generalization as follows.

Table S10: Comparison of code-domain generalization under the Llama3.2 1B setting.

Method Ave. Mem. Max. Mem. ARC HellaSwag MMLU TruthfulQA WinoGrande Humaneval Average Score

LoHa 92.3% 99.4% 39.25 65.93 57.60 37.87 60.77 13.41 45.81
– w/ TOKENTUNE (Random) 45.9% 28.4% 38.48 64.21 50.34 43.89 59.91 10.97 44.63
– w/ TOKENSEEK (Ours) 45.9% 28.4% 38.57 65.89 58.18 39.34 60.93 14.02 46.16

QLoRA 45.6% 34.8% 38.82 65.26 56.39 38.85 61.33 14.02 45.78
– w/ TOKENTUNE (Random) 14.8% 14.3% 39.33 62.97 41.76 41.36 60.69 12.80 43.15
– w/ TOKENSEEK (Ours) 14.8% 14.3% 39.08 65.98 58.03 38.65 61.33 14.63 46.28

Although coding tasks may contain denser information than QA tasks, TOKENSEEK still performs
effectively, which may be because of our instance-aware token ditching and the strategy that we
preserve the full forward pass, allowing complete attention and contextual information to remain
intact.

Discussion under the Distributed Environments. We consider two major distributed fine-tuning set-
tings: (1) DP: data-parallel training (including ZeRO/FSDP variants), and (2) TP/SP: tensor/sequence
parallelism (model parallel training).

• For DP, each GPU holds a full copy of the model and only processes a different batch. Gradients
are all-reduced at the end. DP has minimal impact on TOKENSEEK because every GPU handles
its own local samples independently and only needs to synchronize parameters, not token-level
information.
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• For TP/SP, we would like to further analyze it separately since TOKENSEEK operates in two stages:
instance-aware token seeking and efficient token ditching. The former is performed offline before
training, while the latter is applied online during training.

– For scoring, we involve the calculation of gradient score, which is computed only at the penulti-
mate layer (all earlier layers are frozen), requiring substantially less memory than full fine-tuning
(i.e., requires only 13.2% memory of full fine tuning under qwen settings). It is inevitable
to communicate gradients across GPUs to assemble the final gradient. However, because we
compute gradients only in the penultimate layer, the additional memory cost remains manageable
compared with full fine-tuning.

– For training, we can distribute the token-score dictionary for each instance across GPUs before
training, which consumes only minimal memory to store the mapping (e.g., storing 50% of
token positions for Open-Platypus requires about 6.8 MB). During training, this regrouping and
reorganizing introduces an extra communication step for handling irregular gradient computation.
However, thanks to efficient token ditching, the amount of gradient that needs to be synchronized
is greatly reduced.

We are also looking forward to collaborating with extraordinary engineering teams to further optimize
TOKENSEEK for more complex large-scale training scenarios.

Reprouping Process under the Distributed Environments. In conclusion, we provide a preliminary
analysis of our unoptimized plain implementation and the communication challenges of applying
TOKENSEEK in distributed environments. While these factors may reduce some of the memory
savings observed in single-node training, the two-stage design combining partial-gradient scoring
and partial-gradient updating keeps the overhead controllable compared with full fine-tuning.

In tensor parallelism, hidden dimensions are split across GPUs, so token regrouping is purely a local
row reindexing operation. TP’s usual all-reduce pattern stays unchanged. In sequence parallelism,
however, the sequence dimension is sharded, so splitting tokens into selected and unselected sets
breaks the local-contiguous token assumption. Each layer therefore requires an all-to-all shuffle to
regroup tokens back to their original global order before proceeding. As a result, SP introduces small
but necessary per-layer communication for token restoration.

Complexity of Implementation. Our implementation is based on huggingface’s transformers and
PEFT, which allows a single integration on one model to be directly reused and combined with other
PEFT methods.

Specifically, we provide a detailed explanation of the modifications we make to each model below.
We regroup the input I into [I_selected, I_unselected], apply “torch.no_grad()” to all I_unselected, and
finally reorganize [O_selected, O_unselected] into the output O. This procedure is model-agnostic,
follows a common pattern, and does not require manual adaptation to different model architectures,
which can be handled by code agents that are highly capable of capturing these patterns, making the
extension to other models straightforward.

Selective Update Imbalance. Dropping gradients for less important tokens may bias training if
their importance is misestimated or varies across iterations. However, scoring and training designs
enable TOKENSEEK to achieve stable evaluation (see mode details in the Section 4.3), align with the
empirical results from Fig. 3.

We retain full-sequence attention and loss computation in the forward pass, and only zero out gradients
for unselected tokens during backpropagation. This keeps the training objective and context intact
while updating only the gradients deemed most important. This approach constitutes structured
gradient sparsification rather than sample dropping or parameter pruning, and all parameters are still
updated at every step, reducing the risk of systematic bias.

Beyond combining contextual and gradient-based signals to reduce potential misestimation from any
single indicator, the scoring is derived from the current sample. It is therefore an instance-aware,
dynamically updated selection mechanism rather than a fixed rule. Even if some iterations introduce
noise, subsequent training iterations across many examples will adaptively mitigate it.

Furthermore, we also investigate the influences of misestimating token importance. Under the
Llama3.2 (1B) QLoRA setup, we introduce an additional setting that selects Top 10% plus Top
40–50% tokens, instead of the standard Top 20%, to simulate misestimation.
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Table S11: Ablation under misestimated token-importance settings for Llama3.2 1B QLoRA.

Settings Tunable Token MMLU ARC HellaSwag TruthfulQA WinoGrande Average Score

Random 20% 20% 40.10 63.93 42.96 43.23 61.01 50.25
Top 20% 20% 39.42 65.73 53.24 39.86 60.77 51.80
Top 20% + Top 40–50% 20% 39.16 65.91 51.20 39.28 61.01 51.31

Although “Top 10% + Top 40-50%” underperforms “Top 20%,” it still outperforms “Random 20%,”
demonstrating the robustness of TOKENSEEK.

In the future, we plan to explore whether smoothing the scoring function or injecting a small portion
of randomly selected tokens as exploration can further improve TOKENSEEK.

Breakdown of Gradient Scoring. We have added further quantification of our gradient scoring as
summarized below.

Table S12: Gradient scoring breakdown for Qwen2.5 and Llama3.2 models.

Model Average Memory Time (s)

Qwen2.5 (0.5B) 13.2% 291
Llama3.2 (1B) 11.5% 377
Llama3.2 (3B) 10.9% 566

Storing 50% of token positions for Open-Platypus requires about 6.8 MB.

We have also added the variance tables below.

Table S13: Variance of performance under different token evaluation ratios.

10% 20% 30% 40% 50%

0.05242 0.16229 0.01396 0.00669 0.01620

Automatic Learning of Hypeparameters. Regarding the potential of learning α and β automatically,
grid search over {[1,0], [5,5], [7,3], [3,7]} on a validation set is generally practical and sufficient. In
our case, Open-Platypus lacks a validation split, and our ablation in Tab. 2 shows that performance
remains stable across these settings, indicating low sensitivity within this range and limited marginal
benefit from learning them externally.

Regarding the potential of learning the token fraction r automatically, we clarify that r is a resource
controller, which determines the number of tokens retained per sequence under a given memory
budget. Our ablation in Fig. 6 shows that memory decreases sharply as r moves from 50% down to
10%, making it more appropriate to choose r based on the memory budget rather than learn it via
a single objective such as validation loss. A budget-driven choice of r better reflects the tradeoff
between accuracy and memory savings.

Gradient Score. We conducted preliminary experiments under the Llama3.2 (1B) QLoRA setting
using gradients from different layers as follows.

Table S14: Performance using gradients from different layers under the Llama3.2 (1B) QLoRA
setting.

Settings MMLU ARC HellaSwag TruthfulQA WinoGrande Average Score

Random 39.33 62.97 41.76 41.36 60.69 49.22
N-1 layer (default) 39.08 65.98 58.03 38.65 61.33 52.61
N-2 layer 39.33 65.83 58.15 39.58 61.01 52.78
N-3 layer 39.08 65.60 57.55 39.27 61.17 52.53
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From the results above, we do not observe obvious performance differences, and because using earlier
layers requires storing more activation memory and introduce a new hyperparameter, the default
setting is more practical.

Furthermore, we provide a deeper analysis of this pattern from a visualization perspective. We
plot gradient scores obtained from the N-1 layer (blue), N-2 layer (orange), and N-3 layer (green),
showing that the scoring pattern remains relatively stable across layers. It aligns with the empirical
results above.

Figure S1: Additional visualization of gradient-based token scores across layers. The plot compares
gradients from the N-1 (blue), N-2 (orange), and N-3 (green) layers.

Attention Score. The “global anchor”, which is first introduced as attention sink phenomenon from
[ref1], that refers to the tendency of attention to disproportionately concentrate on a single position,
effectively acting as a global anchor. It serves as a reference token (i.e., the baseline) for scoring all
subsequent tokens.

In TOKENSEEK, the same attention sink effect emerges (see Fig.4 (b)) because the model naturally
assigns one position an abnormally large and stable amount of attention. This token becomes the
model’s internal reference point. Since TOKENSEEK scores tokens using both forward attention
signals and backward gradient signals, this “sink” position nearly always receives a high combined
score even after the normalization (see Fig.4 (d)). As a result, it is consistently preserved rather
than ditched. TOKENSEEK does not artificially enforce this behavior. It simply reflects the model’s
inherent dynamics, where the sink token provides a stable baseline that anchors attention patterns
across layers and steps.

Token Efficiency across Different Domains. A similar token efficiency phenomenon has been
observed in LLM reinforcement learning (RL) and supervised fine-tuning (SFT) reasoning research
(Wang et al., 2025; Qian et al., 2025).

Both domains converge on the observation that model behavior is disproportionately shaped by a
small subset of influential tokens. In the reasoning literature, this is reflected in localized spikes
in mutual information or high-entropy branching positions that largely determine the downstream
reasoning trajectory. TOKENSEEK arrives at a parallel conclusion from the training perspective: by
jointly examining gradient magnitude and attention allocation, we find that only a minority of tokens
make substantial stable contributions to parameter updates and thus to effective fine-tuning. In both
cases, the model does not treat all tokens equally. Instead, it implicitly concentrates its computational
and learning capacity on structurally or semantically pivotal positions.
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Despite this shared principle, the operational signals, and scopes of the two lines of work are
fundamentally distinct. 1) Signal Source: reasoning work relies on inference-time indicators such
as mutual information spikes or entropy changes, while TOKENSEEK combines forward attention
and backward gradients to estimate how much each token contributes to loss reduction, and then
selectively allocates training budget accordingly. 2) Scope: reasoning research typically highlights a
handful of discrete “turning point” tokens, whereas TOKENSEEK evaluates the entire sequence to
identify all tokens that meaningfully influence parameter updates.

Consequently, although both areas reveal token-level sparsity in model computation, they capture
different facets of model behavior and operate under different optimization goals. In the future, we
would like to further explore how our token scoring strategy might be extended to reasoning.

Relation to RL-based Reasoning and Token-level Analyses. Recent work (Wang et al., 2025; Qian
et al., 2025; Lin et al., 2024; Zeng et al., 2025; Yue et al., 2025; Zhou et al., 2025) on RL-based
reasoning and chain-of-thought analyses consistently shows that only a small fraction of tokens carry
most of the useful learning or information signal. RLVR (Wang et al., 2025) finds that high-entropy
“forking” tokens account for nearly all performance gains in mathematical reasoning, while gradients
on low-entropy tokens contribute little or even harm accuracy. Similarly, mutual-information analyses
(Qian et al., 2025) identify sparse “MI peaks” whose “thinking tokens” are crucial for final-answer
prediction, suppressing these tokens severely degrades reasoning. These studies collectively provide
a fine-grained view of where RL-style updates and inference-time computation actually matter.

DeepSeekMath (Shao et al., 2024) further links SFT and RL by showing that RL methods like GRPO
can be interpreted as reshaping gradients while staying close to a supervised reference model. In this
view, both TOKENSEEK and RLVR adopt token-level importance as the core abstraction, but operate
at different stages and with different signals. RLVR prioritizes high-entropy tokens during policy
updates while TOKENSEEK reallocates the SFT gradient budget across tokens and prioritizes high-
score tokens during SFT. In this sense, TOKENSEEK addresses the problem of token-wise efficiency
from a complementary angle with current reasoning work: we focus on memory-efficient gradient
allocation in supervised fine-tuning, while prior RL-based reasoning studies focus on token-wise
credit assignment and information flow during policy optimization and inference.

These connections motivate us a future work extension in the spirit of (Wang et al., 2025; Qian et al.,
2025). TOKENSEEK scoring function is deliberately restricted to signals available in a standard SFT
pipeline, but it would be natural in future work to augment TOKENSEEK with additional token-level
diagnostics (e.g., entropy or MI estimates) or to design hybrid schedules where SFT and RL share a
common token-importance backbone.

Ethics Statement. We conform to the ICLR Code of Ethics and further show the consent to our work
below. All datasets used in this study are publicly available and released under permissive licenses
(see §S4), and all the models are publicly available (see §S4 for Asset License and Consent). We
would like to state that the contents in the dataset do NOT represent our views or opinions and our
paper does not involve crowdsourcing or research with human subjects.

AI Disclosure. We acknowledge the use of GPT-5 for grammar correction and sentence-level
refinement only. The model was employed to enhance clarity, coherence, and fluency while ensuring
the original meaning and intent of the text remained unchanged.

S7.2 FUTURE WORK

In §2, we review existing PEFT and MEFT methods, highlighting their focus on optimizing different
components of the training pipeline. Unlike prior data-agnostic approaches, TOKENSEEK introduces
an instance-aware mechanism that combines context and gradient information to identify and retain the
most informative tokens during fine-tuning. Despite the effectiveness and generality of TOKENSEEK,
it raises several open questions and directions for future research. One current limitation lies in the
manual selection of weighting scalars α and β, which control the influence of context and gradient
signals. While we provide empirical guidance on effective ranges (see §4.4), developing an automated
mechanism—such as a lightweight controller or hypernetwork—to learn these weights adaptively
could enhance performance and reduce tuning overhead.

Another promising direction lies in extending TOKENSEEK beyond instruction tuning and clas-
sification tasks to more complex settings such as multi-modal fine-tuning or continual learning.
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Additionally, although TOKENSEEK integrates well with PEFT methods like LoHa and QLoRA
(see Tab.1), further exploration is needed to evaluate its synergy with sparse or retrieval-augmented
architectures.

Lastly, while TOKENSEEK demonstrates strong interpretability and robustness across multiple LLMs,
deeper analysis of its token evaluation patterns across domains (e.g., code, biomedical texts) may
offer insights into task-specific redundancy and inform domain-adaptive pruning strategies.

In summary, TOKENSEEK presents a general and interpretable framework for memory-efficient
fine-tuning. Future work can build on this foundation by exploring automated token selection, broader
task applicability, and tighter integration with emerging efficient model designs.
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Figure S2: Additional visualizations of the attention map, context-based scores, and gradient-based
scores. For better observation, we omit the attention score of the first token (i.e., context scores start
from position 1 instead of 0) due to the attention sink phenomenon discussed in §4.3.
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S8 VISUALIZATION OF ATTENTION AND GRADIENT MAPS

Fig.S2 presents attention maps, context-based token scores, and gradient-based scores across six
randomly selected samples, ranging in length from 126 to 1067 tokens. These examples provide
further evidence supporting the key findings from the main paper in §4.3. Across all samples, we
observe a consistent pattern in context-based scores, where higher values are concentrated in the
earlier token positions (i.e., a manifestation of the commonly observed attention sink effect and causal
masking in autoregressive models). This phenomenon causes tokens in initial positions to accumulate
more attention, aligning with prior observations discussed in §4.3. In contrast, gradient-based token
scores tend to emphasize later positions, particularly toward the response segments in instruction
tuning tasks. This reflects the model’s training dynamics: gradients are more pronounced where
output predictions are made and optimized—typically in the latter portion of the sequence. Despite
differences in sequence lengths, this divergence in focus between the two signals remains stable across
all samples. These findings reinforce the motivation behind combining both context and gradient
signals in TOKENSEEK for a more comprehensive and balanced token importance evaluation.

Tokens selected by context score

Tokens selected by gradient score

Figure S3: Visualization of the top 50% selected tokens in Sample A presented in Fig.S2 using
context and gradient information, highlighted in red and blue, respectively.

Fig.S3 presents a case study of a 126-token instruction-response Sample A presented in Fig.S2,
with the top 50% tokens highlighted based on importance scores derived from context and gradient
information, respectively. Tokens highlighted in red correspond to the top 50% according to context
importance, while those in blue correspond to the top 50% based on gradient-based importance.

From the Fig.S3, we observe a clear distributional pattern in the highlighted tokens: Context-
based selection (red) tends to emphasize tokens in the earlier part of the sequence—particularly the
instruction prompt and structural phrases such as “Below · · · instruction that describes · · · task” and
“Evaluate (x+y)(x-y) when · · ·”. In contrast, gradient-based selection (blue) focuses more on the
response portion, especially on semantically meaningful action words such as “evaluate”, “plug in”,
“simplify”, and numerical reasoning steps like “multiply 20 · · · 10 and get 200”. These tokens are
closely tied to the model’s output prediction and loss computation, which naturally generate higher
gradients. Interestingly, while there is some overlap (e.g., tokens like “x”, “y”, and the equation),
the two selection strategies yield complementary subsets, justifying the motivation for combining
them in TOKENSEEK. This example visually supports the core hypothesis that instance-aware
token prioritization benefits from incorporating both structural (context) and optimization-relevant
(gradient) information.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Fig.S4 presents a long-form, math-intensive instruction-response pair consisting of 1067 tokens,
where the top 50% of tokens are selected solely based on gradient-based importance. This sam-
ple offers several interesting insights into the behavior of TOKENSEEK ’s gradient-driven token
prioritization mechanism. There are three Key Observations:

• Gradient Emphasis on Semantically Dense Mathematical Reasoning. Tokens receiv-
ing high gradient scores are concentrated around numerical reasoning, symbolic manipu-
lation, and step-by-step algebraic deduction. For example: ❶ The derivation and solv-
ing of equations such as “$x^2 + y^2 = 16.$”. ❷ Geometry-specific calculations like
“$\frac{24\sqrt{2}}{5} \cdot \frac{8\sqrt{7}}{5}$”, and ❸ Descriptions of intersec-
tions, area computation, and final results. This confirms that gradient-based importance scores
effectively highlight regions where model predictions are tightly coupled with loss, especially in
problem-solving and logic-intensive portions of the response.

• Selective Attention in Code Blocks Surprisingly, some code comments and critical semantic
structures in the embedded code block are also assigned high gradient scores. This includes:
❶ Function calls like draw(...), label(...), and array manipulations involving coordinates. ❷
Mathematical graphing logic, such as drawing a circle or intersecting paths with graph(...). This
suggests that gradient signals are not purely confined to natural language but can also prioritize
symbolic logic and programmatic structures that are critical to the correct final output.

• Omission of Setup and Template Tokens. The gradient-based selection intentionally avoids
early template phrases (e.g., “· · · instruction · · · describes · · · task”) and instead defers attention
to content-bearing tokens, particularly in the response body. This is aligned with prior gradient
analysis (see §3.2.1), and reinforces the idea that gradient prioritization aligns well with actual
supervision information.
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Figure S4: Visualization of the top 50% selected tokens in Sample F presented in Fig.S2 using
gradient information, highlighted in blue.
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