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Abstract

Sleep-stage classification is a critical step in assessing sleep quality. Wearable
sleep trackers offer a promising solution for long-term monitoring outside tradi-
tional clinical settings. Most wearable sleep trackers are heart-rate-based, but their
effectiveness is limited by shortage of good-quality publicly available data. To
address this, diffusion models offer a privacy-aware approach to generate data
for augmentation and to train classification models. Existing generation methods
typically focus on individual sleep stages in isolation, without modeling the de-
pendencies and continuity across stages. This paper explores a spectrogram-based
diffusion model to generate a long range sleep heart-rate sequence conditioned on
sleep-stage labels (hypnogram), as opposed to generating the individual stages in
isolation. We verify the effectiveness of the approach in sleep-stage classification
tasks using two publicly available datasets, HMC and DREAMT.

1 Introduction

Sleep is a fundamental physiological process vital for physical and mental health [1, 2]. The current
gold standard for assessing sleep quality is polysomnography (PSG), which is a comprehensive
overnight study conducted in a clinical setting [3, 4]. While highly accurate, PSG is expensive,
labor-intensive, and not easily scalable [5]. Wearable devices have emerged as a promising alternative,
offering a non-invasive, low-cost, and at-home solution for long-term sleep monitoring [6, 7]. A good
majority of the wearable sleep trackers use Instantaneous Heart Rate (IHR), which has been shown to
reflect sleep-stage related changes in autonomic activity, making it a valuable proxy for sleep quality
assessment [8, 9, 10]. The main challenge in the widespread adoption of wearable trackers is the
development of robust and generalizable machine learning models which is hindered by limited data
availability due to privacy concerns, and the difficulty of collecting large-scale labeled datasets.

Generative modeling provides a way to mitigate this limitation by synthesizing physiologically
plausible data to supplement real-world datasets. Among various generative modeling approaches,
diffusion probabilistic models have recently demonstrated state-of-the-art performance in generating
high-fidelity data across domains like images, audio, and biosignals [11, 12, 13, 14, 15, 16, 17,
18, 19, 20]. Their iterative denoising process offers stability in training, fine-grained control over
conditioning, and the ability to capture complex temporal dependencies.

Currently, diffusion models in the sleep-stage data augmentation domain generate short signal
segments conditioned on individual sleep stages [21, 22]. A key limitation of this stage-wise
approach is that concatenating these isolated segments into a long sequence often produces unrealistic
transitions between stages. As a result, the generated signals lack temporal consistency, reducing
their usefulness for downstream tasks that rely on continuous, physiologically plausible dynamics.
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Our work addresses this limitation by using a diffusion model to directly synthesize long-range IHR
signals conditioned on a full sleep period hypnogram. This method allows the model to learn and
reproduce the natural, long-range temporal patterns and stage-transition dynamics that occur during
sleep, ensuring both physiological realism and continuity in the generated data.

The main contributions of this work are:

• A classifier-free guided diffusion model for generating realistic, long-term IHR signals con-
ditioned on a sleep stage labels, uniquely preserving both stage continuity and physiological
plausibility.

• Demonstrate the efficacy of the data augmentation approach via sleep-stage classification
using publicly available datasets such as HMC and DREAMT. We show that the inclusion
of this synthetic data significantly improves the performance of a downstream classifier,
validating the utility and quality of our generated signals.

2 Label Conditioned Heart-rate Generation

Problem Statement: Sleep is composed of five distinct stages: Wake, rapid eye movement (REM),
and three non-REM (NREM) stages (N1, N2, N3), each characterized by variations in physiological
signals [23]. The progression of these stages is represented by a hypnogram. Given a hypnogram
as input, our goal is to generate a realistic heart-rate signal that captures the dynamics of sleep
physiology across an entire night.

2.1 Diffusion Model Pipeline

Figure 1: Overview of the proposed method.

The model used in this work is a conditional denoising diffusion probabilistic model (DDPM) with
classifier-free guidance (CFG), designed to generate heart rate signals conditioned on sequences
of sleep stages. Each heart rate sequence in the dataset is represented as x

(i)
0 , paired with its

corresponding sleep-stage annotations y(i), where i = 1, . . . , N . For notational simplicity, we will
omit superscript indices and refer to a generic heart rate sequence as x0 and its sleep-stage sequence
as y. Each heart rate sequence x0 is first transformed into a two-dimensional time-frequency
spectrogram S0 using Short-Time Fourier Transform (STFT). This representation captures both
temporal and spectral characteristics of the signal, making stage-specific physiological patterns more
separable. The diffusion process is then applied in the spectrogram domain, and after generation, the
synthetic spectrograms are converted back into the time domain to reconstruct heart rate traces.

In the forward diffusion process, Gaussian noise is incrementally added to the spectrogram S0 over a
fixed number of timesteps T according to a linear variance schedule. At each step t, the variance
parameter is denoted as βt, with αt = 1− βt representing the fraction of the signal that is retained at
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step t and the cumulative product ᾱt =
∏t

s=1 αs measuring how much of the original signal remains
after t steps. A noisy spectrogram at step t can then be written in closed form as

St =
√
ᾱt S0 +

√
1− ᾱt ϵ, (1)

where ϵ ∼ N (0, I) is Gaussian noise. The number of timesteps T is a fixed hyperparameter
that determines how gradually noise is injected and how many denoising steps are required for
reconstruction. In this work, we set T = 1000, following the original DDPM framework, as this
provides stable training and high-quality spectrogram generation [24].

The reverse process inverts the forward noising procedure by denoising St back to S0, conditioned
on the sleep-stage sequence y. The label sequence y is mapped into a learned embedding c using a
linear label encoder, and the denoiser ϵθ(St, t, c), implemented as a Convolutional Neural Network
(CNN), predicts the noise component present in St. To enable classifier-free guidance, conditioning
is randomly dropped during training with probability puncond, replacing c with a null embedding c∅.
The training objective minimizes the mean squared error between the true Gaussian noise ϵ and the
network prediction:

L = ES0,y,t,ϵ

[
∥ϵ− ϵθ(St, t, c)∥2

]
. (2)

During generation, the model starts from Gaussian noise ST ∼ N (0, I) and applies the reverse
diffusion process. The classifier-free guidance combines the conditional and unconditional predictions
to form a guided noise estimate [25]:

ϵ̃θ = (1 + w) ϵθ(St, t, c)− w ϵθ(St, t, c∅), (3)

where w is the guidance scale. This guided estimate ϵ̃θ is then used to reconstruct a clean spectrogram
S̃0, which is finally converted back into the time domain via the inverse STFT to yield a synthetic
heart rate sequence x̃0. An overview of the proposed method is shown in Figure 1.

3 Experiments

3.1 Dataset and preprocessing

We utilized two publicly available datasets - HMC [26] and DREAMT [27] for our experiments.
HMC consists of 151 whole-night polysomnographic sleep recordings. DREAMT is a collection
of 100 whole-night sleep recordings of actigraphy data with technician-annotated labels from PSG
data. Most of the DREAMT participants are diagnosed with sleep disorders. Instantaneous Heart
Rate (IHR) from the ECG (HMC) and PPG (DREAMT) signals are extracted using Pan-Tompkins
algorithm [28]. IHR is then resampled to 2Hz and padded to 57600 samples (8 hours) to ensure data
uniformity. The sleep labels are annotated for every 30 second of the signal for both datasets.

3.2 Model and training details

Table 1: Architecture of the convolutional neural network.
Layer Input channels Output channels Kernel size / Padding
Label projection (Linear) 64 1 –
Concatenation with xt and timestep map – 3 –
Conv2D + ReLU 3 64 3× 3 / 1
Conv2D + ReLU 64 64 3× 3 / 1
Conv2D (output) 64 1 3× 3 / 1

Table 1 outlines the architecture of the proposed denoising network. The model first projects the
conditioning label into a embedding space, which is concatenated with the noisy spectrogram input
St and a sinusoidal timestep encoding, forming a three-channel input. This is processed by a stack
of lightweight convolutional layers with ReLU activations to capture local temporal and spectral
correlations. The final convolutional layer reduces the representation back to a single channel,
yielding the denoised spectrogram estimate.

Models are trained on an NVIDIA Tesla GPU using a diffusion process with T = 1000 steps and a
linear variance schedule where βt increases from 10−4 to 0.02. Classifier-free guidance is employed
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with a scale of w = 5.0. Optimization is performed with Adam at a learning rate of 10−3 and a batch
size of 2. Training runs for up to 1000 epochs with early stopping (patience = 50, delta = 10−4).

4 Results and Discussions

Diffusion model training is validated using mean squared error (MSE) between predicted and true
noise on the test dataset, reflecting how well the network learns the denoising objective. For further
assessment, predicted noise is used to denoise the spectrograms, and the resulting signals are compared
with the original IHR to verify preservation of temporal dynamics. To complement these metrics, the
appendix provides qualitative illustrations of selected denoising results, including magnified regions
for closer examination.

Table 2: Mean squared error (MSE) for noise prediction and heart rate denoising.
Dataset Noise Prediction MSE ↓ Denoised Heart Rate MSE ↓
HMC 2.10e-1 1.53e-2

DREAMT 6.05e-2 1.15e+1

As shown in Table 2, predicted noise errors remain low for both datasets, confirming that the model
learns the denoising objective effectively. In contrast, denoising errors are considerably higher for the
DREAMT dataset than for HMC, reflecting the greater variability and scale differences in signals
collected from individuals with sleep disorders.

HMC - Sample 1 HMC - Sample 2

DREAMT - Sample 1 DREAMT- Sample 2

Figure 2: Comparison of original (blue) and denoised (red) IHR Signals.

To complement the quantitative evaluation, Figure 2 shows representative examples of original and
denoised IHR signals from the test dataset. The examples were randomly selected to represent
typical cases. The visual comparison confirms that the denoised IHR signals follow the ground-truth
waveforms closely, with only minor deviations. While reconstruction errors for the DREAMT
dataset were slightly higher than for HMC, the overall temporal patterns and physiologically relevant
fluctuations remain well preserved, indicating that the model generalizes effectively to more variable
test conditions.

4.1 Spectral Analysis of Generated Heart Rate

We analyze the power spectral density (PSD) of IHR signals across sleep stages to assess the realism
of the generated data. PSD analysis quantifies how much of the heart rate variability arises from slow
versus fast fluctuations. With a 2 Hz sampling rate (Nyquist frequency = 1 Hz), we focus on three
physiologically relevant bands: very low frequency (VLF, 0–0.04 Hz), low frequency (LF, 0.04–0.15
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Wake NREM

REM

Figure 3: PSD Comparison for Wake, NREM and REM in HMC dataset.

Hz), and high frequency (HF, 0.15–0.4 Hz). As shown in Figure 3, the generated signals reproduce
the characteristic spectral organization of Wake, NREM, and REM stages. Minor differences are
observed, including slightly elevated VLF power in NREM, moderate deviations in LF and HF bands
during Wake, and a small increase in LF power during REM, while the overall PSDs of generated
and original signals remain closely aligned. Overall, the model preserves the expected spectral
distribution of heart rate variability across sleep stages.

4.2 Downstream Task Evaluation

Table 3: Downstream task evaluation.
Dataset Original Augmentation (Full Seq.) Augmentation (Seq. Stitching)

Acc Macro F1 κ Acc Macro F1 κ Acc Macro F1 κ
HMC 0.68 0.48 0.36 0.71 0.55 0.39 0.69 0.52 0.35
DREAMT 0.76 0.55 0.58 0.79 0.55 0.60 0.78 0.54 0.59

We evaluate the utility of generated data via downstream sleep stage classification using a model
similar to [29] and evaluate its performance using macro F1 score, accuracy and kappa score (κ). New
samples are generated using randomly selected training labels. Table 3 compares three setups: i) real
data only, ii) augmentation with our full sequence diffusion model (Model A), and iii) augmentation
with the sequence stitching baseline (Model B). Results are averaged over 5 runs; standard deviations
were consistently below 0.005 and are omitted for clarity. On the HMC dataset, adding 20% synthetic
data from Model A improved accuracy (+5.9%), macro F1 (+10.4%), and κ (+5.6%), while Model
B gave smaller or inconsistent gains. On the DREAMT dataset with 10% synthetic data, Model A
improved accuracy (+3.9%) and κ (+3.4%), with no change in F1, whereas Model B gave weaker
improvements. These results show that even modest synthetic augmentation enhances performance,
and that the full sequence model is more effective than sequence stitching by leveraging cross stage
temporal context.

5 Conclusions

We introduced a spectrogram based diffusion framework for generating heart rate signals conditioned
on sleep stages. The model efficiently produces long synthetic recordings that preserve spectral
patterns and is validated through downstream sleep stage classification, where synthetic data improved
performance. By modeling cross stage temporal context, it outperforms a stage specific baseline. In
future, we plan to improve our model further by adding a hypnogram generator as well so that we
don’t rely on fixed labels.
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A Supplementary Results

Wake NREM

REM

Figure 4: PSD Comparison for Wake, NREM and REM in DREAMT.

Figure 4 shows the PSD comparison for the DREAMT dataset across sleep stages. The generated
signals display an elevated component in the high-frequency (HF) band, which likely reflects residual
noise rather than physiological variability. A more detailed spectral analysis will be addressed
in our future work. However, this effect does not reduce downstream classification performance,
demonstrating that the generated signals still capture the key spectral features and task-relevant
information needed for sleep stage prediction.
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