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A Subpixel Residual U-Net and Feature Fusion
Preprocessing for Retinal Vessel Segmentation
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Abstract. Retinal Image analysis allows medical professionals to in-
spect the morphology of the retinal vessels for the diagnosis of vascular
diseases. Automated extraction of the vessels is vital for computer-aided
diagnostic systems to provide a speedy and precise diagnosis. This paper
introduces SpruNet, a Subpixel Convolution based Residual U-Net archi-
tecture which re-purposes subpixel convolutions as down-sampling and
up-sampling method. The proposed subpixel convolution based down-
sampling and up-sampling strategy efficiently minimize the information
loss during the encoding and decoding process which in turn increases the
sensitivity of the model without hurting the specificity. A feature fusion
technique of combining two types of image enhancement algorithms is
also introduced. The model is trained and evaluated on three mainstream
public benchmark datasets, and detailed analysis and comparison of the
results are provided which shows that the model achieves state-of-the art
results with less complexity. The model can make inference on 512x512
pixel full image in half of a second. The code is available at: https://link
is hidden for anonymity

Keywords: Medical Image Analysis, Retinal Vessel Segmentation, Sub-
pixel Convolution, Residual Network, U-Net

1 Introduction

Retinal Vessel Analysis is a non-invasive method of examining the retinal vascu-
lature comprising of a complicated and elaborate network of arteries, veins and
capillaries. The morphology of the retinal vasculature is an important biomarker
for diseases like Diabetic retinopathy, Hypertensive retinopathy, Retinal vein
occlusion, Retinal artery occlusion, etc., which affects the retinal blood vessels.
Retinal examination allows medical professionals dealing with vascular diseases
to get a unique perspective, allowing them to directly inspect the morphology
and draw conclusions about the health of a patient’s microvasculature anywhere
in the body. The retinal vasculature is also adopted as the most stable feature
for multimodal retinal image registration and retinal mosaic. They are also being
used for biometric identification.

Quantitative analysis of the retinal blood vessels, requires the vascular tree
to be extracted so that morphological features like length, width, branching, an-
gle, etc. can be calculated. Manual segmentation of the blood vessel is a difficult

https://github.com/anonymous/Retinal-Vessel-Segmentation
https://github.com/anonymous/Retinal-Vessel-Segmentation
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and time consuming task and requires expertise. Automating the task of vessel
segmentation has gained importance and has been accepted as a vital and chal-
lenging step for retinal image analysis in computer aided diagnostic systems for
ophthalmic and cardiovascular diseases.

Retinal vessels vary in shape, size and intensity level locally. The vessel width
may range anywhere between 1 to 20 pixels depending on the anatomical vessel
width and image resolution. Segmentation using artificially designed features or
conventional image-processing based segmentation algorithms is quite difficult
because of the presence of vessel crossing, overlap, branching and centerline
reflex. The Segmentation can be further complicated due to the presence of
pathologies in the form of lesions and exudates.

Deep learning based supervised segmentation models have proved to per-
form much better than the classical unsupervised methods which depend on
hand crafted features. While most of them uses an encoder-decoder architec-
ture, the image is down-sampled and up-sampled many times in the encoder
and decoder respectively. These two processes are most commonly performed
by a max-pooling operation and transposed convolution operation respectively
and in the process, some amount of important information or features are lost
which could have been beneficial for the segmentation algorithm. This paper
introduces a Subpixel Residual U-Net architecture or SpruNet, based on the U-
Net [11] framework, which re-purposes the subpixel convolutions [13] to perform
image down-sampling and up-sampling in the U-shaped encoder-decoder archi-
tecture. This approach preserves information and provides better accuracy than
the state-of-the-art algorithms. Also, this architecture is simpler, faster and has
fewer parameters (∼20M) than the previous state-of-the-art algorithms.

The main problem with retinal images is the varying brightness and con-
trasts. To tackle this, a feature fusion technique is proposed to increase the
accuracy and robustness of the model a bit more. Contrast Limited adaptive
histogram equalization(CLAHE) [10] is combined with Ben Graham’s [2] pre-
procesing method of subtracting the local average colour. This increases the
clarity of the vessels in most of the images as compared to using either of the
algorithms alone. But after some experiments its seen that in some scenarios,
specially on the Chase dataset the combination of CLAHE and Ben Graham’s
algorithm performs slightly worse than the standalone CLAHE. To solve this, a
feature fusion approach of concatenating the standalone CLAHE preprocessed
image with the combined CLAHE and Ben Graham’s preprocessed image is used,
which tops all of the experiments done on all three datasets.

2 Related Work

In the last couple of years significant improvement has been seen in the field of
Retinal Image Analysis, especially for the task of vessel extraction. This section
gives a brief overview of the latest high-performance supervised approaches.

Roychowdhury S. et al. [12] in 2015 proposed a unsupervised method for
Retinal Vessel Segmentation where they used iterative adaptive thresholding to
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indentify vessel pixels from vessel enhanced image which is generated by tophat
reconstruction of the negative green plane image.

Liskowski P. and Krawiec K. [7] in 2016 proposed a supervised deep neu-
ral network model for Retinal Vessel Segmentation and preprocessed the images
with global contrast normalization, zero-phase whitening, and used different aug-
mentations like geometric transformations and gamma corrections.

Orlando J.I. et al. [9] in 2017 proposed a conditional random field model
for Retinal Vessel Segmentation which enables real time inferencce of fully con-
nected models. It uses a structured output support vector machine to learn the
parameters of the method automatically.

Alom M.Z. et al. [1] in 2018 proposed their R2Unet which harnessed the
power of Recurrent Convolutional Neural Networks (RCNN). The residual blocks
allowed the network to train faster while the recurrent convolution layers allowed
feature accumulation which helped in better feature representation.

Wang B. et al. [14] in 2019 proposed their Dual Encoding U-Net (DEU-Net)
architecture, having two encoding paths: a spatial path with large kernels and
a context path with multi-scale convolution blocks. This allowed the network to
preserve the spatial information and encode contextual information via the two
pathways.

Wu Y. et al. [3] in 2019 proposed their Vessel-Net, where they used inception
inspired residual convolutional blocks in the encoder part of a U-like encoder-
decoder architecture and introduced four supervision paths to preserve the rich
and multi-scale deep features.

Jin Q. et al. [5] in 2019 proposed their DUNet architecture based on the
U-Net which used deformable convolution blocks in place of few of the standard
convolutional blocks. Deformable convolution blocks allow the network to adap-
tively adjust the receptive fields, thus enabling this architecture to classify the
retinal vessels at various scales.

Yan Z. et al. [15] in 2019 proposed a three stage model for Retinal Vessel
Segmentation, which segments thick vessels and thin vessels separately. The
separate segmentation approach helps in learning better discriminative features.
The final stage refines the results and identifies the non vessel pixels. This way
the overall vessel thickness consistency is improved

Zang S. et al. [16] in 2019 proposed their Attention Guided Network for
Retinal Vessel Segmentation which uses a guided filter as a structure sensitive
expanding path and an attention block which exclude noise. Their method pre-
serves structural information.

Li L. et al. [6] in 2020 proposed their IterNet. They used a standard U-Net
followed by an iteration of mini U-Nets with weight-sharing and skip connections.
This allowed them to pass the output features of the standard U-Net through a
number of light-weight intermediate networks to fix any kind of defects in the
results.
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3 Proposed Method

3.1 Dataset

The following three prominent benchmark datasets are used for experiment:

– The Drive dataset has 40 colored images of the retinal fundus along with
the pixel-level segmentation mask. The size of the images is 584x565 pixels.
The dataset already has a predefined 20-20 train-test split.

– The Chase dataset has 28 colored images of the retinal fundus along with
the pixel-level segmentation mask. The size of the images is 999x960 pixels.
The dataset has no predefined split so a random 20-8 train-test split is used.

– The Stare dataset has 20 colored images of the retinal fundus along with
the pixel-level segmentation mask. The size of the images is 700x605 pixels.
The dataset has no predefined split so a random 16-4 train-test split is used.

3.2 Preprocessing and Augmentation

The retinal images come with different lighting conditions and vary a lot in
terms of brightness and contrast. Also different methods of image acquisition
and presence of diseases makes it hard to build a robust segmentation algorithm.
Image enhancement algorithms are used to increase the clarity of the images as
much as possible before passing them to the model. The most popular retinal
image enhancement algorithm used in the literature is the Contrast Limited
Adaptive Histogram Equalization (CLAHE) algorithm. It increases the contrast
of local regions to enhance the visibility of local details. It is quite robust and
performs very well in most scenarios. In 2015 Ben Graham used a preprocessing
technique in the Kaggle Diabetic Retinopathy competition, where he subtracted
the local average colour from the image. In this method the vessels popped out
quite distinctively from the background. In this paper we further enhance this
method with a two step preprocessing. First CLAHE is used to increase the
contrast, and then the local average colour is subtracted out from it, resulting
in better clarity as shown in Fig. 1.

Fig. 1. From left to right: Original Images, CLAHE, CLAHE+Local Mean Colour
Subtraction
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Though this method performed better than the standalone CLAHE method
on both the Drive and Stare dataset, it performed slightly worse on the Chase
dataset. To tackle this problem, a feature fusion approach is taken, and a three
step preprocessing is done as explained in the following steps.

1. Perform CLAHE on original image.

2. Perform Ben Graham’s preprocessing of subtracting the local average colour
from the CLAHE preprocessed image from step 1.

3. Concatenate the preprocessed images from step 1 and step 2 along the chan-
nels.

This method allows the model to use the all the information available in
the CLAHE preprocessed image from step 1 along with the local average colour
subtracted image from step 2. A diagram is shown in Fig. 2. A detailed ablation
study is shown later which shows the improvement achieved with the Feature
Fusion preprocessing method.

Fig. 2. Concatenating the preprocessed images

There are only a few public retinal datasets which includes vessel segmenta-
tion ground truths and all of them contains very few images. Since only around
20 images from each of the above-mentioned datasets are used for training,
heavy data augmentation is used to increment the sample count to avoid over-
fitting. This includes: random horizontal and vertical flips, random rotations,
minor RGB shifts for few images, and random brightness, contrast and gamma.
Spatial level transformation like Grid distortion, Elastic transform and Optical
distortion is also used to prevent over-fitting.
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Fig. 3. Architecture

3.3 Architecture

The proposed architecture - SpruNet or Subpixel Residual U-Net (shown in Fig.
3) is adapted from the encoder-decoder architecture of the U-Net. The model
is a fully convolutional model [8] with a contraction and expansion path. The
encoder is a 25-layer novel ResNet [4] architecture which uses subpixel residual
blocks instead of standard residual convolution blocks. The decoder is a stack
of 13-layers with two convolutional layers following every subpixel convolutional
up-sampling block. Skip connections from encoder to decoder facilitates feature
transfer from earlier layers to later layers which helps in the fine-grained seg-
mentation. Each convolution layer is followed by a batch-normalization layer.
Relu activation is used in all the layers except in the convolution layer in the
subpixel convolution block.

Subpixel Convolution is re-purposed as a down-sampling and up-sampling
method for semantic segmentation in the encoder and decoder respectively. Sub-
pixel Convolution is just a standard convolution followed by a pixel reshuffle.
Normally a Subpixel convolution is used for up-sampling process, but we adapt
it to be used for both tasks as it preserves the data unlike any other methods
commonly used. Fig. 4 shows how the image dimension changes in the subpixel
down-sampling block and the subpixel up-sampling block. Fig. 5 shows how the
residual convolution block is adapted to use subpixel convolution.

– Subpixel down-sampling : In this the image of dimension (H, W, C) is
converted to (H/2, W/2, 2C). For this we first pass it through a 1x1 2D
convolution layer to reduce the depth to (H, W, C/2), then use pixel shuf-
fling to change the dimension from (H, W, C/2) to (H/2, W/2, 2C). This
process proves to be more efficient in preserving the spatial information as
we down-sample the image but at the same time encode sufficient semantic
information for efficient pixel-wise classification.
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Fig. 4. (a) Subpixel Up-sampling and (b) Subpixel Down-sampling

– Subpixel up-sampling : In this the image of dimension (H, W, C) is con-
verted to (2H, 2W, C/2). For this we first pass it through a 1x1 2D convo-
lution layer to increase the depth to (H, W, 2C), then use pixel shuffling to
change the dimension from (H, W, 2C) to (2H, 2W, C/2).

Fig. 5. (a) Identity Block and (b) Subpixel Residual Block
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3.4 Loss Function

We used BCE-Dice loss, a combination of pixel-wise Binary Cross-entropy loss
which compares each pixel individually and Dice loss which measures the amount
of overlap between two objects in an image. Pixel-wise cross-entropy loss suffers
from class imbalance while the Dice loss has a normalizing effect and is not
affected by class imbalance. This combination gave better segmentation accuracy
than any one of them used individually.

BCE-Loss = y(log(p) + (1− y)log(1− p) (1)

Dice-Loss = 2 · A ∩B

A ∪B
(2)

BCE-Dice-Loss = BCE-Loss + Dice-Loss (3)

3.5 Metrics

We evaluated our model on 5 evaluation metrics to provide a good comparison
with the other methods: Accuracy, F1-score, Sensitivity, Specificity and ROC-
AUC. The F1 score is the harmonic mean of the precision and recall. Since there
is a large class imbalance, the F1 score is a better metric than the Accuracy. The
higher the F1 score the better. Sensitivity is the ability of the model to correctly
identify vessel pixels (true positive rate), whereas Specificity is the ability of the
model to correctly identify non-vessel pixels (true negative rate). ROC - curve
is a graph which plots the true positive rate against the true negative rate at
various thresholds. AUC is the area under the ROC curve. The higher the AUC
the better the model is at distinguishing vessel vs non-vesel pixels.

F1-score = 2 · Precision ·Recall

Precision + Recall
(4)

Sensitivity =
TP

TP + FN
(5)

Specificity =
TN

TN + FP
(6)
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Table 1. Ablation table for Drive dataset

Method F-1 SE SP AC AUC

CLAHE + Subpixel 0.8445 0.8296 0.9843 0.9682 0.9868
CLAHE + Ben Graham’s + Subpixel 0.8514 0.8394 0.9848 0.9701 0.9874
Information Fusion + No-Subpixel 0.8477 0.8287 0.9850 0.9694 0.9858
Information Fusion + Subpixel 0.8533 0.8401 0.9852 0.9703 0.9888

Table 2. Ablation table for Chase dataset

Method F-1 SE SP AC AUC

CLAHE + Subpixel 0.8576 0.8452 0.9878 0.9746 0.9912
CLAHE + Ben Graham’s + Subpixel 0.8561 0.8370 0.9879 0.9740 0.9906
Information Fusion + No-Subpixel 0.8528 0.8308 0.9875 0.9736 0.9896
Information Fusion + Subpixel 0.8591 0.8472 0.9880 0.9747 0.9913

Table 3. Ablation table for Stare dataset

Method F-1 SE SP AC AUC

CLAHE + Subpixel 0.8427 0.7842 0.9919 0.9721 0.9899
CLAHE + Ben Graham’s + Subpixel 0.8682 0.8220 0.9925 0.9763 0.9945
Information Fusion + No-Subpixel 0.8677 0.8216 0.9924 0.9766 0.9941
Information Fusion + Subpixel 0.8686 0.8240 0.9926 0.9768 0.9945

4 Experimental Evaluation

This section provides the implementation details of the proposed method and a
detailed analysis for a number of experiments performed for a robust evaluation
of the method. The experiments are performed on a single 16GB NVIDIA Tesla
P100 PCIe GPU. Instead of patch-based training we used full images resized
to 512x512 resolution for both training and testing. A batch size of 5 is used,
keeping in mind the hardware limitation. We used ADAM optimizer with an
initial learning rate of 0.001. The learning rate is dynamically reduced by a
factor 0.1 when the validation loss reaches a plateau. We used early stopping
to stop the training when the validation loss remains stable for 10 consecutive
epochs. Our model takes around an hour and a half on an average on the specified
hardware to train on 1000 augmented full images of 512x512 resolution. Inference
can be done within half a second on a 512x512 resolution image.

The results of the experiments and comparisons with other best approaches
are provided in the following tables.
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Table 4. Results

Dataset F-1 SE SP AC AUC

Drive 0.8533 0.8401 0.9852 0.9703 0.9888
Chase 0.8591 0.8472 0.9880 0.9745 0.9913
Stare 0.8686 0.8240 0.9923 0.9762 0.9945

Table 5. Comparison on Drive dataset

Method Year F-1 SE SP AC AUC

U-Net 2018 0.8174 0.7822 0.9808 0.9555 0.9752
Dense Block U-Net 2018 0.8146 0.7928 0.9776 0.9541 0.9756
DUNet 2019 0.8237 0.7963 0.9800 0.9566 0.9802
DE-UNet 2019 0.8270 0.7940 0.9816 0.9567 0.9772
Vessel-Net 2019 - 0.8038 0.9802 0.9578 0.9821
IterNet 2020 0.8205 0.7735 0.9838 0.9573 0.9816
Proposed Method 2020 0.8533 0.8401 0.9852 0.9703 0.9888

Table 6. Comparison on Chase dataset

Method Year F-1 SE SP AC AUC

U-Net 2018 0.7993 0.7841 0.9823 0.9643 0.9812
Dense Block U-Net 2018 0.8006 0.8178 0.9775 0.9631 0.9826
DUNet 2019 0.7883 0.8155 0.9752 0.9610 0.9804
DE-UNet 2019 0.8037 0.8074 0.9821 0.9661 0.9812
Vessel-Net 2019 - 0.8132 0.9814 0.9661 0.9860
IterNet 2020 0.8073 0.7970 0.9823 0.9655 0.9851
Proposed Method 2020 0.8591 0.8472 0.9880 0.9745 0.9913

Table 7. Comparison on Stare dataset

Method Year F-1 SE SP AC AUC

U-Net 2018 0.7595 0.6681 0.9915 0.9639 0.9710
Dense Block U-Net 2018 0.7691 0.6807 0.9916 0.9651 0.9755
DUNet 2019 0.8143 0.7595 0.9878 0.9641 0.9832
IterNet 2020 0.8146 0.7715 0.9886 0.9701 0.9881
Proposed Method 2020 0.8686 0.8240 0.9923 0.9762 0.9945
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Fig. 6. From top to bottom: Original Images, Ground Truth Segmentations, Predicted
Segmentations. From left to riht: Drive, Chase, Stare

5 Conclusion

In this experiment we showed that Subpixel Convolutions are very efficient in
preserving information and are an effective way of changing image sizes dur-
ing encoding and decoding of an image. Residual convolutional blocks can be
adapted to use subpixel convolutions in place of max-pooling and thus a residual
network can be improved to encode as much information as possible, both spatial
and contextual with minimal loss of information during down-sampling. Simi-
larly, subpixel based upsampling increases the spatial dimension of an image in
a learnable way, preserving the information in an efficient manner. The proposed
model SpruNet achieves AUC of 0.9888, 0.9913 and 0.9945 on the Drive, Chase
and Stare datasets respectively. Thus beating the state-of-the-art models with
a much simpler architecture with lesser parameter(∼20M) with a fast inference
speed of 0.5 seconds on a 512x512 full image.
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