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Abstract

When performing complex multi-step reason-
ing tasks, the ability of Large Language Models
(LLMs) to derive structured intermediate proof
steps is important for ensuring that the models
truly perform the desired reasoning. This paper
is centred around a focused study: whether the
current state-of-the-art LLMs can leverage the
structures in a few examples and benefit from
them to construct the proof structures when
performing complex natural language reason-
ing. Our study specifically focuses on structure-
aware demonstration and structure-aware prun-
ing. We demonstrate that both of them help
improve performance. We provide a detailed
analysis to help understand the results.

1 Introduction

Large language models (LLMs) have played an es-
sential role in a wide range of applications (Nori
et al., 2023; Savelka et al., 2023; Wang et al., 2023;
Qin et al., 2023) including as intelligent agents (Liu
et al., 2023; Cheng et al., 2022). Their ability to
perform complex multi-step reasoning has become
critical (Wei et al., 2022; Kojima et al., 2022; Yao
et al., 2023; Besta et al., 2023; Lei et al., 2023;
Dalvi et al., 2021; Ribeiro et al., 2023; Saparov and
He, 2023). In complex multi-hop reasoning tasks,
the proof steps often form a graph but not just a
chain. The capability to construct correct, struc-
tured proofs is essential for ensuring that LLMs
perform the desired reasoning. The structured in-
termediate proof steps are also important for the
explainability of the reasoning models (Dalvi et al.,
2021; Ribeiro et al., 2023).

In this paper, we perform a focused study, pro-
viding evidence to help understand whether the
state-of-the-art LLMs, such as GPT-4, can lever-
age the given proof structures of several similar
examples and benefit from them to construct the
proof structure for the reasoning problem under

study. We investigate this in the in-context learn-
ing (Brown et al., 2020) setup because in many
real-life applications, the number of available ex-
amples with proof structures is small. Specifically,
we consider two key components that can utilize
the known proof structures: (i) demonstration, and
(i1) proof path search and pruning. Accordingly,
we equip the state-of-the-art LLMs, i.e., GPT-4 and
GPT-3.5, with structure-aware demonstration and
structure-aware pruning.

We set up our study in three benchmark
datasets, EntailmentBank (Dalvi et al.,
2021), AR-LSAT (Ribeiro et al., 2023) and
ProntoQA (Saparov and He, 2023). Our study
shows that both structure-aware demonstration and
structure-aware pruning improve performance. We
provide a detailed analysis to help understand the
results.

2 Related Work

In complex multi-hop reasoning tasks, the proof
steps often form a graph (i.e., a tree or directed
acyclic graph (DAG)). It is only recently that re-
searchers have begun to develop evaluation datasets
to measure proof structure quality in natural lan-
guage (Dalvietal., 2021; Ribeiro et al., 2023). The
baseline methods proposed in these papers include
smaller models such as T5 (Raffel et al., 2020) or
older models such as GPT-3.

Recently, LLMs’ reasoning ability has also
been significantly improved. Chain-of-thought
(CoT) (Wei et al., 2022; Kojima et al., 2022)
is arguably the simplest but an effective way to
elicit linear reasoning chains of LLMs. Tree-of-
thought (Yao et al., 2023) can further provide
deeper insights into the model’s reasoning struc-
tures. However, ToT has been applied to tasks such
as game-of-24 and creative writing, but not to natu-
ral language entailment and reasoning tasks with
complex proof structures. In this paper, we will
compare our models to the CoT and ToT models.
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Figure 1: Overview of each module in our proposed framework.

3 Method

Given a question ¢, a hypothesis h, and a context C
consisting of pieces of evidence or premises, the ob-
jective of the task is to provide a proof graph G from
the premises to the hypothesis if the hypothesis
can be proven. Formally, we denote pg to be a pre-
trained language model with parameter 6. Suppose
x = (x1,...,y) is a language sequence with n to-
kens, the probabilistic language model can be writ-
ten as pg(x) = [, po(i | z1,..i—1). Following
previous work (Yao et al., 2023), we use the no-
tation ph"*™P* (y| ) to represent py(y|prompt(z)),
where prompt () is the input sentences = wrapped
with the prompt instructions and templates; y is the
output. The overall architecture of our model is
depicted in Figure 1.

Structure-aware Demonstration. Given an ex-
ample u = (g, h,C) and a database D where in-
stances feature structured proofs, the search for
most similar demonstrations £ can be expressed
as & = S(u, D). Usually, S is defined as man-
ually selecting several fixed demonstrations (Wei
et al., 2022; Yao et al., 2023) or choosing the top
k demonstrations with the example « based on the
similarity (Fu et al., 2022; Liu et al., 2022). In this
paper, we hypothesize that the proof structure of
similar examples can help LLMs construct a struc-
tured proof for the target problem. Specifically,
we consider two key components that can utilize
the known proof structures: demonstration, and
proof-path pruning. At the initial stage, we prompt
LLMs to provide a guessed proof graph G2 of the
example u which is used to find the most similar ex-
amples as the demonstrations. As the proof moves
forward, the partially constructed proof tree will be
simply merged into the guessed tree (other meth-

ods can be considered here and we will leave that
as future work). Specifically, we use the graph at-
tention network (GATv2) (Brody et al., 2022) and
calculate the similarity between the proof graph Ef,
and each candidate demonstration v’s proof graph
E,, which considers both the structure and content
of the graphs. We choose the candidates with the
higher similarity scores as the demonstrations.

Candidate Retrieval. Given u = (¢,h,C), a
proof hint m (discussed below), and a set of se-
lected demonstrations £, the candidate retrieval
component aims to retrieve a set of most rel-
evant evidence Cs: Cs = {o(z)} s 2z ~
phetrieve(zlq, h,C,m, ), where z; represents the
generated output, which is sampled from the gener-
ative language model py that takes in the retrieval
prompt. Because z; contains the needed evidence
sentence id, we need to extract the id from it, the
o(+) represent that extraction process. For detailed
examples of prompts, refer to Appendix I.1. As
a result, Cs represents a set of retrieved evidence
after the retrieval ran k times. The proof hint m
measures the difference between the current proof
status and the hypothesis, which will be discussed
later in the proof hint generation section. Note
that the retrieval models can be replaced by search
engine, but in our study, we use a set of given can-
didate evidences since our focus is on reasoning
itself.

Reasoning Step Proposal. We then prompt
LLMs themselves to provide the most plausible
proposal for the next reasoning steps. Formally,
given (g, h,Cs, E), the output is reasoning candi-
dates r for the subsequent reasoning step.

ri ~ py % (r]q, h, Cs, E) (1)



Then we obtained a set of reasoning steps: P =

{r;}¥_,. The output r; is parsed to transform
the output text into a structured step ¥ such as
sent; & sent; — intj. In Figure 1, we can see
one such step is sent7 & sent4 — intl, meaning
intermediate conclusion int1 is drawn from sent7
and sent4.
Reasoning Step Evaluation. Given the current
structured reasoning step candidate r¥ and selected
demonstrations £, an LLM measures how likely
this reasoning step can reach the final hypothesis
with a score s.

si ~ py M (si|r?, ) 2)

where s; is the language model output from which
the score st is extracted.

Proof Hint Generation. This component asks
LLMs to compare the intermediate conclusion
with the target hypothesis A to provide proof hint.

An example is shown at the bottom of Figure 1.
m ~ pg° P (m|h, 1P) 3)

As discussed above, this will be used to guide the
model to find the most relevant evidence.

Structure-aware Pruning During the forward
proving process, we combine the typical breadth-
first search (BFS) with the beam search. We main-
tain b beams of candidates, selecting those with
the highest evaluation score from the Reasoning
Evaluation for each exploration. Furthermore, we
delve into the utilization of the problem’s structure
in this stage. To explore the effect of structure-
guiding path selection, we conducted different ex-
periments on how the structures may be used. In
our probing experiment (Appendix B) on the dev
set of EntailmentBank, we found that models ben-
efit from selecting diverse candidate proof steps;
i.e., the models perform better when they are en-
couraged to select more diverse candidates. That
is, two pieces of evidence located on different sub-
trees are regarded as more diverse than those on
the same subtree. Inspired by this, we discourage
the model from using the intermediate conclusions
which have been used in the previous steps, to avoid
growing the tree from the evidence node that has
just been generated. We call this implementation
the div variant, which was used in our final model.

4 Experiment Set-Up
Dataset.
datasets,

We perform experiments on three
EntailmentBank (Dalvi et al.,

2021), AR-LSAT (Ribeiro et al.,, 2023) and
ProntoQA (Saparov and He, 2023). Details of the
datasets can be found in Appendix C.

Evaluation Metrics. We evaluate the predicted
proof graph G, against the golden graph G, using
three metrics: Evidence F1 (Ev-F) (Dalvi et al.,
2021), Proof-F1 (Pr-F) (Dalvi et al., 2021), and
reasoning Graph Similarity (G Sim) (Ribeiro
et al., 2023). Details can be found in Appendix E.
Implementation Details. To ensure replicability,
we include implementation and baseline details in
Appendix D.

S Experiment Results

Table 1 compares our model with the off-
the-shelf Chain-of-Thought (CoT) and Tree-of-
Thought (ToT) models. The results show that our
models outperform CoT and ToT across the three
datasets under different evaluation metrics. Note
that the improvement is less in PrOntoQA, which
is due to the fact that a larger percentage of data in
PrOntoQA has linear reasoning patterns. We refer
readers to Appendix G for examples.

Effect of Proof Structure. To further understand
the effect of proof structures of given examples,
we conduct more experiments on EntailmentBank.
Table 2 shows the effectiveness of different com-
ponents of our model. Particularly, our focus is on
the variants without structure-aware pruning (“w/o
prun.”) and without structure-aware demonstra-
tion (“w/o demon.””). We can see that under both
GPT3.5 and GPT-4, the structure information con-
tributes to the performance (Ev-F and G Sim scores
dropped without them.). The comparison involving
other variants of our model, specifically concerning
the hint module and pruning strategies, is detailed
in Table 7 in the Appendix.

Table 3 focuses on evaluating the impact of
structure-aware demonstration. We compare the
structure-aware demonstration (Ours) vs. reg-
ular sturctured-unaware simple demonstration
(Oursgim). We can see that our model is better un-
der both GPT-3.5 and GPT-4. The oracle model
means we suppose that we know in advance the
proof structure of the question under study (which
is not true, because the structure needs to be con-
structed.) and use that to select the most similar
demonstrations. We can see that our model is ef-
fective as its gap from the Oracle is not large.

Analysis on Sequential and Non-sequential Rea-
soning. The EntailmentBank dataset consists of



Dataset | Model | GPT3.5 | GPT4
\ | Ev-P Ev-R Ev-F Pr-P Pr-R Pr-F G Sim |Ev-P Ev-R Ev-F Pr-P Pr-R Pr-F G Sim
CoT 283 160 .204 .092 .043 .059 .037 |.326 .270 .295 .152 .110 .128 .105
EntBank | ToT 302 173 220 .104 .046 .064 .051 |.347 .293 .318 .174 .132 .150 .140
Ours |.374 .236 .289 .118 .087 .100 .097 | .388 .327 .355 .204 .162 .181 .162
CoT 482 462 472 077 .042 054 .007 |.523 492 .507 .092 .068 .078 .008
AR-LSAT | ToT 537 507 522 083 .045 .058 .008 |.562 510 .535 .111 .063 .080 .008

Ours |.595 .576 .585 .086 .073 .079 .009 |.602 .588 .595 .122 .075 .093 .010

CoT |.802 .782 .792 .782 .740 .760 .447 | .843 .811 .827 .812 .800 .806 .528
PrOntoQA | ToT .828 .801 .814 .802 .758 779 482 | .849 .825 .837 .825 .800 .812 .530
Ours |.857 .817 .837 .821 .776 .798 .504 | .866 .838 .852 .831 .821 .826 .533

Table 1: Performance of different models on test sets.

Model ‘EV-P Ev-R Ev-F Pr-P Pr-R Pr-F G Sim
GPT-3.5
Ours 374 236 .289 .118 .087 .100 .097

- w/o prun. 372 230 .284 .117 .087 .100 .097
- w/o demon. |.332 .182 .235 .107 .053 .071 .067
- w/o hint 313 .167 218 .103 .049 .066 .064
- w/o retrieval | .311 .166 .216 .092 .047 .062 .058

GPT-4

Ours 388 .327 .355 204 .162 .181 .162
- w/o prun. 382 311 .343 .192 .159 .174 .158
- w/o demon. |.341 .257 .293 .145 .103 .120 .110
- w/o hint 339 223 269 .140 .088 .108 .093
- w/o retrieval | .331 .201 .250 .121 .057 .077 .075

Table 2: Cumulative ablation analysis.

Model |Ev-P Ev-R Ev-F Pr-P Pr-R Pr-F G Sim

GPT-3.5

372230 284 .117 .087 .100 .097
358 211 .266 .112 .069 .085 .077
392259 312 .153 132 .142 138

GPT-4

382 311 .343 192 .159 .174 .158
367 258 303 .149 .121 .134 .100
419 333 371 .240 .195 215 .205

Ours (w/o prun.)
Ourssim (W/0 prun.)
OursSoracte (W/0 prun.)

Ours (w/o prun.)
Oursgim (W/0 prun.)
Oursoracle (W/O prun.)

Table 3: Ablation of demonstration methods.

reasoning problems that only involve sequential
reasoning (the ground-truth proof paths of these
problems are chains), as well as non-sequential
problems. Table 4 depicts the detailed analysis of
these two sub-types in the testset. We can see that
our method and ToT outperform CoT in both se-
quential and non-sequential reasoning. Between
our model and ToT, they have comparable perfor-
mance on the sequential subset, while our model
performs better than ToT on the non-sequential
subset. Regarding different depths, our model also
consistently outperforms ToT. In general, we can
see that non-sequential reasoning is more challeng-

| Sequential | Non-sequential
Dep | ™"CoT | ToT | Ours | CoT | ToT | Ours
|EV-F Pr-F|Ev-F Pr-F|Ev-F Pr-F|Ev-F Pr-F|Ev-F Pr-F|Ev-F Pr-F
GPT-3.5

328 .138|.330 .143].330 .144|.238 .108|.257 .129|.282 .135
.189 .070|.202 .104|.202 .113|.132 .068]|.149 .077|.175 .102
.082 .003|.123 .007|.125 .007|.049 .002|.069 .005|.093 .006
.012 .000|.047 .004|.047 .004|.010 .000|.038 .003|.045 .004
.002 .000|.005 .001|.006 .001|.002 .000|.004 .001|.005 .001

GPT-4

.333 .150|.356 .157|.357 .157|.250 .121|.266 .149|.297 .151
195 1145|242 .128|.242 .129|.141 .074|.160 .091|.181 .133
.135 .019|.057 .005{.075 .006|.100 .007

NV Ww

102 .010/.133 .015
.013 .001|.055 .005|.059 .005|.011 .001|.043 .003|.050 .004
.002 .000|.005 .002{.006 .002|.002 .000|.004 .001]|.005 .001

NV AW

Table 4: Results of sequential reasoning /non-sequential
reasoning.

ing than sequential reasoning for all models, due
to its higher demands on proof planning and devel-
opment. The models not only need to explore new
potential premises during reasoning but also ensure
that the reasoning process remains coherent. Also,
the performances of all models decrease on both
sequential and non-sequential problems when the
depth increases.

6 Conclusion

Enabling LLMs to generate their proof structure is
critical for the reliability and explainability of such
models. By incorporating structure-aware compo-
nents into state-of-the-art LLMs, we demonstrate
that LLMs can benefit from utilizing the given
proof structures of similar examples. We find that
measuring the gap between the intermediate steps
and the final hypothesis can help narrow down the
search space and enhance the performance. Further
analysis of sequential and non-sequential reasoning
reveals that our model offers greater advantages in
the more complex task of non-sequential reasoning.



Limitations

Our proposed method is primarily designed for
the natural language reasoning task, especially the
task requiring multi-step proof to obtain the final
conclusion. We do not test our method on other
typess of reasoning, e.g. mathematical reasoning
and our method only tested on the English reason-
ing dataset.

One limitation, as mentioned in the paper, is the
increased token usage with the potential reasoning
branches exploration since the system uses LLM-
as-a-service APIL. Although we apply the beam
search strategy over the graph which needs less ex-
ploration compared to the naive breadth-first search,
the overall cost is still high. We also leverage LLM
in several modules in the system, which increases
the total API calls as well. Future work will in-
clude evaluating the system with open-source LLM
to conduct the comparison and save on the budget.

Another limitation is that the current system does
not consider the negation proof or the conclusion
that cannot be reached. The goal of the current sys-
tem is to design a system that provides better proof.
Proof by negation and other kinds of reasoning, e.g.
conjunction, disjunction and conditionals, could be
extended in future work.
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A Related Work

Recently, many researchers have studied how to
better leverage large language models (LLMs) to
boost the performance of reasoning. Generating the
intermediate reasoning steps has shown substantial
improvement in many reasoning tasks.

Chain-of-thought (Wei et al., 2022; Kojima et al.,
2022) can significantly improve inference accuracy
and, at the same time, provide a good explanation
for the reasoning process. However, when the com-
plexity of the task increases, it is still hard for them
to get a good result. Also, reasoning with LLM in
this way is constrained by the LLM’s architecture,
with its decisions determined by the next token that
has the highest probability of prediction. Tree-of-
thought (ToT) (Yao et al., 2023) provides deeper
insights into the model’s reasoning process, offer-
ing a clearer view of how it progresses towards its
conclusions. Not based on the highest probabilities
of the next token, tree-of-thought makes decisions
based on the evaluation of each state. However,
this method has not yet been applied to the com-
plex structured reasoning task. Following tree-of-
thought, graph-of-thought (Besta et al., 2023; Lei
et al., 2023) was proposed to enhance the connec-
tions between different lines of thought. (Besta
et al., 2023) applied the divide-and-merge strat-
egy and solved the simple subtasks instead of the
whole complex task, while (Lei et al., 2023) started
searching from the target node. However, these
methods do not explore ways that are applied in
natural language reasoning tasks, especially struc-
tured reasoning, and the solution search space is
quite small in the tasks they perform.

Narrowed down to the natural language rea-
soning tasks, Selection-Inference (SI) (Creswell
etal., 2022) is a strong modular reasoning approach
based on forward chaining. SI contains two mod-
ules: selection and inference. The selection module
selects a subset of rules and facts that can be used
in the reasoning aimed at proving the goal, while
the inference module performs reasoning towards
the goal with the use of the chosen facts and rules.
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Zhao et al. (2023) also found out that the planning
stage helps improve the performance of reasoning
models. Inspired by these research (Creswell et al.,
2022; Zhao et al., 2023). Other works (Olausson
et al., 2023; Pan et al., 2023) for forward reasoning
include using a logic prover, instead of an LLM,
to perform more precise reasoning. There is an-
other line of research (Kazemi et al., 2023; Lei
et al., 2023) trying to reason based on the back-
ward chaining. Compared to forward chaining,
reasoning from the conclusion to the supporting
evidence is significantly more efficient at proof-
finding. However, the backward reasoning method
by Kazemi et al. (2023) required the dataset to
identify the facts and rules which are absent in
most datasets and require a lot of annotation labour
in the real world.

B Preliminary Experiments

We conduct two preliminary experiments on the
dev set of EntailmentBank with GPT-3.5. For the
Preliminary Experiment I, we provide all other
proofs except for randomly deleting two pieces
of evidence. We conduct three deletion strategies:
two missing pieces of evidence are in the same
subtree and the same reasoning step, in the same
subtree but not the same reasoning step, or in a
different subtree. Here, we set the depth of the
subtree to 2. Specifically, “the same subtree and
the same reasoning step” means the two missing
pieces of evidence can together form an intermedi-
ate conclusion in the proof tree, while “the same
subtree but different reasoning step” means that the
intermediate conclusion from one missing piece of
evidence could be combined with the other missing
evidence to obtain another intermediate conclusion.
“A different subtree” means the two missing pieces
of evidence are not in the same 2-depth subtree.
Results in Table 5 show that it is easier for the
model to find evidence when they are located in
a different proving subtree. We further mimic the
practical searching scenario in the Preliminary Ex-
periment I, where given one chosen reasoning step,
e.g. senty & sents — intq, and missed two differ-
ent reasoning step among which one is based on
the given intermediate conclusion (reuse_ic) and
the other (div) is not, e.g. sents & int; — ints
and sent; & sents — int3, we ask the model to
provide the prediction of the reasoning step. Ta-
ble 6 shows that div model outperforms reuse_ic
and thus we apply div in the main experiment.

Model |Ev-P Ev-R Ev-F

same subtree and same reasoning step 0.62 0.59 0.61
same subtree but different reasoning step| 0.62 0.58 0.60
different subtree 0.63 0.60 0.62

Table 5: Result of Preliminary Experiment I

Model |Ev-P Ev-R Ev-F Pr-P Pr-R Pr-F

reuse_ic|0.57 0.42 0.49 0.35 0.19 0.25
ind 0.59 0.45 0.51 0.36 0.19 0.25

Table 6: Result of Preliminary Experiment 11

C Dataset

EntailmentBank (Dalvi et al., 2021) not only
lists the supporting textural evidence but also of-
fers a hierarchical tree structure showing how the
evidence organized to lead to the hypothesis. In the
entailment tree, the supporting evidence is the leaf
node, the hypothesis is the root node, and the inter-
mediate conclusions are the internal nods. Entail-
mentBank is also included in the STREET bench-
mark (Ribeiro et al., 2023). We exclude the cases
which only need one reasoning step, i.e., proof
depth and length equal to 1.

AR-LSAT is the Analytical Reasoning -Law
School Admission Test task from the STREET
benchmark (Ribeiro et al., 2023). STREET bench-
mark is a unified multi-task and multi-domain nat-
ural language reasoning and explanation bench-
mark. Unlike other existing question-answering
(QA) datasets, models are expected to not only an-
swer questions but also produce step-by-step struc-
tured explanations describing how premises in the
question are used to produce intermediate conclu-
sions that can prove the correctness of a certain
answer. We only include AR-LSAT in addition
to EntailmentBank because the other datasets in
STREET focus on math problems or the sequence
process prediction which needs different prompts,
especially for the comparison module, with those
regarding to logic reasoning in this paper. For QA
datasets, we keep the question as the input ¢ and
append the question and correct answer as the input
hypothesis h.

PrOntoQA  (Saparov and He, 2023) is a syn-
thetic question-answering dataset, where each ex-
ample is generated from a synthetic world model
represented in first-order logic. The rules applied
during the synthetic generation endow it with ex-
tractable structural information. We applied a simi-



lar process on this QA dataset as AR-LSAT except
that some examples reasoned by negative deduction
are removed in this version.

D Implementation Details

We retrieve 5 times independently and take the
union set as the result of the retrieval component.
For each step, we propose 3 potential reasoning
steps at each node and we keep the beam size as 3
in the breadth-first search. The number of demon-
strations is set to 3 for all few-shot models. The
max iteration number is set to 5 times of the max
reasoning depth for each dataset. We conduct the
experiments on gpt-3.5-turbo-0613 version of GPT-
3.5 and gpt-4-0125-preview version of GPT-4. For
GATV2, we train the model with the training set of
EntailmentBank.

Baseline. We implement two baselines, CoT and
ToT, with three demonstrations. We adapt the ToT
to the natural language reasoning task. Specifi-
cally, the thought generator outputs the potential
reasoning step and the depth-first-search strategy
is applied.

E Evaluation Metrics

We evaluate the predicted proof graph Gp.q against
the golden graph Ggo1q With three metrics, describ-
ing evidence, proof and graph similarity. Unlike
previous work, we target the model’s ability to
provide correct proofs more than the true or false
result.

Evidence. Following (Dalvi et al., 2021), we per-
form an evaluation over the chosen evidence to
check whether the predicted proof graph uses the
correct evidence. Suppose Epreq and Eyolq are the
selected evidence set for the predicted proof graph
Gprea and the golden graph Ggo1q respectively. We
compute precision (Ev-P), recall (Ev-R) and F1
(Ev-F) score by comparing FEpreq and Egog.

Proof Following (Dalvi et al., 2021), we evaluate
over individual reasoning steps to check whether
the predicted proof graph is structurally correct.
Suppose Pyred and Pgolq are the reasoning step set
for the predicted proof graph Gpeq and the golden
graph Ggoq respectively. We compute precision
(Pr-P), recall (Pr-R) and F1 (Pr-F) score by com-
paring Fyreq and Pyolq.

Graph Similarity. Following (Ribeiro et al.,
2023), we compute the reasoning graph similarity

(G Sim) sim (G,, Gy) by comparing the predicted
and the golden reasoning graphs through § (G, G)
where 0 is a graph edit distance function using
insertion, deletion and substitution as elementary
edit operator over nodes and edges. This can be
computed as

5(g17’g9)
max(|Np| + |Ep| ) ‘Nr1| + ‘EQD

sim (Gp,Gy) = 1 —

F Other Variants

Table 7 shows the analysis with other variants
of our model. The reuse_ic variant requires
the model to reuse the intermediate conclusion
generated in the previous iteration in the 2nd it-
eration’s reasoning, while div variant forces the
model to explore the reasoning step from the un-
touched premises. The w/o hint includes all mod-
ules except the proof hint generation module. We
modify the prompt in this module into asking the
model what is the next step of reasoning in what’s
next. Our findings indicate that the div variant
has higher performance than the reuse_ic and w/o
pruning variant, showcasing the effectiveness of
the structure-aware pruning.

Model |Ev-P Ev-R Ev-F Pr-P Pr-R Pr-F G Sim

GPT-3.5

Ours (w/o hint) 359 220 273 .100 .057 .073 .072
Ours (what’s next) | .363 .221 .275 .108 .077 .090 .089

372 230 284 .117 .087 .100 .097
363 231 .282 .117 .082 .096 .095
374 236 .289 .118 .087 .100 .097

GPT-4

Ours (w/0 hint) 371 247 297 .136 .102 .117 .101
Ours (what’s next) |.379 .253 .303 .158 .121 .137 .121

382 311 .343 192 .159 .174 .158
380 .309 341 .192 .157 .173 .158
388 327 355 204 .162 .181 .162

Ours (w/o pruning)
Ours (reuse_ic)
Ours (div)

Ours (w/0 hint)
Ours (reuse_ic)
Ours (div)

Table 7: Ablation analysis on EntailmentBank.

G Case Study

Proof Hint Generation. Table 8 shows two ex-
amples and we conduct a comparison between the
model with or without the proof hint generation
module. In the first example, both models could
make the correct reasoning in the first iteration and
the intermediate conclusion finds out that carbon
dioxide is required photosynthesis process. With-
out the proof hint generation module, the model
could not retrieve the wanted sentences, while with
the proof hint generation module, the model suc-
ceeds in focusing on the missing relationship with



‘step’. Similarly, in the second example, both mod-
els could correctly retrieve sent6. However, with
the proof hint generation module, the model cares
more about the information of Earth itself, not the
moon. The examples show that the proof hint gen-
eration module explicitly asks the model to think
about the missing part between the current interme-
diate conclusion and the final goal and the model
could retrieve relevant information based on this
action.

Structure-aware Demonstration. Table 9
shows the example with structure-aware demon-
strations. For the page limit, we only show
the proof structure of one demonstration in the
table. We observe that the model is prone to
providing the proof that is structurally similar
to the proofs given in the demonstration and we
attribute the performance improvement brought by
structure-aware demonstrations to this observation.

H Computation Cost

We observe that the cost of experimenting is higher
than the baselines. We leverage the language model
in several different modules and apply the beam
search strategy in the breadth-first search. We keep
a most promising states per step and b beams of
candidates with the highest evaluation score for
each exploration in the beam search strategy. Al-
though we cut down the total number of explored
cases of n reasoning iterations to a+(n—1) xbxa
from a + a® + a® + - - - + a™ because of the beam
search over the tree, it is still higher than CoT (1)
and ToT (n x a). Table 4 shows our benefits on
non-sequential reasoning but similar performance
with ToT on sequential reasoning. Considering the
computation cost, our model might not be a good
choice if most data belongs to sequential reasoning.

I Example Prompts

We provide three demonstrations in all few-shot
models, but we only show one in the example in
this section.

I.1 Candidate Retrieval

System: Below, you are given a question, a
hypothesis and a set of candidate premises. You
are required to select a small set of candidates (at
least provide 3 sentences) to deduce the hypothesis.
Please only filter out the sentences that you are
sure of.

[example]

Question: What keeps Mars in orbit around the
Sun?

Hypothesis: gravity causes mars to orbit around
the sun

Candidate/potential premises:

sentl: a complete revolution / orbit of a planet
around its star takes 1 / one planetary year

sent2: our sun is located at the center of our solar
system

sent3: celestial objects are located in outer space
sent4: gravity causes orbits

sent5: orbit is a kind of characteristic

sent6: a star usually is larger than a planet

sent7: revolving around something means orbiting
that something

sent8: a satellite orbits a planet

sent9: uranus is a kind of planet

sent10: planets are found in space

sentl1: gravity means gravitational pull / gravita-
tional energy / gravitational force / gravitational
attraction

sent12: as mass of a planet / of a celestial body
increases, the force of gravity on that planet will
increase

sent13: the sun is the strongest source of gravity in
the solar system

sent14: a galaxy is made of stars

sent15: orbit means orbital path

sent16: can be means able to be

sent17: celestial bodies / celestial objects are found
in space

sent18:
sent19:
sent20:
sent21:
sent22:
sent23:
sent24:
gravity
sent25: a comet is a kind of celestial body

satellites are found in space
proxima centauri is a kind of star
planets in the solar system orbit the sun
mars is a kind of planet
venus is a kind of planet
mars is located in the solar system
isaac newton discovered the theory of

Retrieval sentences (at least 3): sentd, sent20,
sent21, sent23

Proof: sent20 & sent4 -> intl: gravity causes the
planets in the solar system to orbit the sun; sent21
& sent23 -> int2: mars is a planet in the solar
system; intl & int2 -> hypothesis;

[Question]

Question: A bee depends on certain flowers for

food. The flowers depend on the bee to



Model |

Previous Intermediate Conclusion

| Retrieved Premises

Case 1:

sentl7: a step in a process means a stage in a process
sent25: taking in and releasing means exchanging
Expected: sent4 & (sent9 & sent19)

Hypothesis: taking in carbon dioxide is a step in the photosynthesis process

sent2: when carbon dioxide in the atmosphere is absorbed by plants , the amount of carbon dioxide in the atmosphere is reduced in the atmosphere
sent4: if something is required in a process then obtaining that something is a step in that process

sent8: taking something in is a kind of method for obtaining that something

w/o hint
w/ hint

sent9 & sentl9 -> intl: Carbon dioxide is a required raw material in the photosynthesis process.
sent9 & sent19 -> int1: Carbon dioxide is required as a raw material in the photosynthesis process.

sent2, sentl12, sentl7, sent25
sent2, sent4, sent8, sentl7

Case 2:

sentl: celestial bodies / celestial objects are found in space
sent3: earth is a kind of planet

sent4: moons / comets / planets are part of the solar system
sent6: the earth revolves around the sun

sent9: the sun is a kind of star

sent10: a moon is a kind of satellite

sentl 1: revolving around means orbiting

sent23: the moon is earth ’s moon

Expected: (sent6 & sent9) & ((sent25 & sent3)& sentl1)

Hypothesis: the difference between the earth and the moon is that the moon revolves around a planet

sent24: a celestial body travelling around another celestial body means that celestial body completes a cycle around that other celestial body

w/o hint
w/ hint

sent3 & sent25 -> intl: The Earth and the Moon are both planets, but the Moon orbits the Earth.
sent3 & sent25 -> intl: Earth is a planet and the Moon orbits it.

sentl, sent4, sent6, sent10, sent23, sent24
sent3, sent6, sent9, sent10, sentll

Table 8: 2nd iteration of reasoning examples for w/ and w/o proof hint generation module

Model Demonstration Proof

| Final Proof

sent3: wood boards are made of wood
sent7: wood is a renewable resource

sent19: a house is a kind of building

Hypothesis: wood boards are a kind of building material that is made of a renewable natural resource
sent8: a renewable resource is a kind of natural resource
sent17: wood boards can be used to build houses

sent23: building materials are used to build buildings
Expected: ((sent19 & sent23) & sentl7) & ((sent7 & sent8) & sent3)

Text-aware Demonstration
Structure-aware Demonstration

(sent25 & sent3) & sent2
((sent26 & sent3) & sentl) & ((sent7 & sent9) & sent10)

((sent7 & sent8) & sent17)
((sent19 & sent23) & sentl7) & ((sent7 & sent8) & sent3)

Table 9: Final proof for structure-aware demonstration and demonstration with the most similar context

Hypothesis: a bee can help on pollination in plant
reproduction by carry pollen

Candidate/potential premises:

sentl: if something is required for a process then
that something positively impacts that process
sent2: pollinated means after pollination

sent3: pollinating is a kind of function

sent4: pollination is when pollinating animals,
wind, or water carry pollen from one flower to
another flower

sent5: if something causes a process then that
something is required for that process

sent6: seed dispersal has a positive impact on a
plant / a plant’s reproduction sent7: a bee is a
pollinating animal

sent8: flowers sometimes become fruits after
pollination

sent9: if a living thing requires something then
that something has a positive impact on that living
thing

sent10: flowers are a source of fruit

sentl1: if something is required then that some-
thing must be provided

sent12: plant reproduction requires pollination
sentl3: needing something means depending on
that something

sentl4: to be used for something means to be
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required by that something

sentl5: flowers often have a sweet smell to attract
pollinators

sent16: to carry means to transport

sent17: a bird is a pollinating animal

sent18: a flower’s purpose is to produce seeds
sent19: when pollen sticks to a hummingbird, that
pollen will move to where the hummingbird moves
sent20: plant requires seed dispersal for reproduc-
tion

sent21: pollinator means pollinating animal
sent22: seed dispersal is a kind of method of
sexual reproduction

sent23: pollination requires pollinating animals
sent24: if something is required for something else
then that something allows that something else
sent25: requiring something means needing that
something

Retrieval sentences (at least 3):

LI.2 Reasoning Step Proposal

System: Provide me several sentences with the
sentence number and one intermediate conclusion
that are possible to be used in the next step in this
small set. If the deduction reaches the hypothesis,
tell me ’Finish’; otherwise please provide the



(intermediate) conclusion.

[example]

Question: What keeps Mars in orbit around the
Sun?

Hypothesis: gravity causes mars to orbit around
the sun

Candidate/potential premises:

sent4: gravity causes orbits

sent5: orbit is a kind of characteristic

sentl2: as mass of a planet / of a celestial body
increases, the force of gravity on that planet will
increase

sent20: planets in the solar system orbit the sun
sent21: mars is a kind of planet

sent22: venus is a kind of planet

sent23: mars is located in the solar system
sent24: isaac newton discovered the theory of
gravity

Possible Next Reasoning: sent20 & sent4 ->
intl: gravity causes the planets in the solar system
to orbit the sun

[Question]

Question: A bee depends on certain flowers for
food. The flowers depend on the bee to
Hypothesis: a bee can help on pollination in plant
reproduction by carry pollen

Candidate/potential premises:

sent4: pollination is when pollinating animals,
wind, or water carry pollen from one flower to
another flower

sent7: a bee is a pollinating animal

sent12: plant reproduction requires pollination
sent21: pollinator means pollinating animal
sent23: pollination requires pollinating animals
sent24: if something is required for something else
then that something allows that something else

Possible Next Reasoning:

LI.3 Reasoning Step Evaluation

System: Evaluate whether these intermediate
conclusions could reach the hypothesis with
candidates. Provide me the number of possibilities
(0-99) of these intermediate conclusions: Surely:
85-99, Likely: 50-84, Impossible: 0-49

[example]
Question: What keeps Mars in orbit around the
Sun?
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Hypothesis: gravity causes mars to orbit around
the sun

Candidate/potential premises:

sent4: gravity causes orbits

sentS: orbit is a kind of characteristic

sentl2: as mass of a planet / of a celestial body
increases , the force of gravity on that planet will
increase

sent20: planets in the solar system orbit the sun
sent21: mars is a kind of planet

sent22: venus is a kind of planet

sent23: mars is located in the solar system
sent24: isaac newton discovered the theory of
gravity

Possible Next Reasoning: sent20 & sent4 ->
intl: gravity causes the planets in the solar system
to orbit the sun

Evaluate: 99

[Question]

Question: The body of a fish is covered by scales
for

Hypothesis: scales are used for protection by fish
Candidate/potential premises:

sentl: a fish is a kind of scaled animal

sent8: scales are a covering around the body of a
scaled animal

sentl2: scales are used for protection by scaled
animals

sentl5: protecting is a kind of function

I.4 Proof Hint Generation

System: Compare the intermediate conclusion
with the hypothesis and the question, and provide
me one sentence of what is still missing.

Question:
scales for
Hypothesis: scales are used for protection by fish
Intermediate Conclusion: intl: scales cover the
body of a fish

Missing:

The body of a fish is covered by
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