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Abstract

When performing complex multi-step reason-001
ing tasks, the ability of Large Language Models002
(LLMs) to derive structured intermediate proof003
steps is important for ensuring that the models004
truly perform the desired reasoning. This paper005
is centred around a focused study: whether the006
current state-of-the-art LLMs can leverage the007
structures in a few examples and benefit from008
them to construct the proof structures when009
performing complex natural language reason-010
ing. Our study specifically focuses on structure-011
aware demonstration and structure-aware prun-012
ing. We demonstrate that both of them help013
improve performance. We provide a detailed014
analysis to help understand the results.015

1 Introduction016

Large language models (LLMs) have played an es-017

sential role in a wide range of applications (Nori018

et al., 2023; Savelka et al., 2023; Wang et al., 2023;019

Qin et al., 2023) including as intelligent agents (Liu020

et al., 2023; Cheng et al., 2022). Their ability to021

perform complex multi-step reasoning has become022

critical (Wei et al., 2022; Kojima et al., 2022; Yao023

et al., 2023; Besta et al., 2023; Lei et al., 2023;024

Dalvi et al., 2021; Ribeiro et al., 2023; Saparov and025

He, 2023). In complex multi-hop reasoning tasks,026

the proof steps often form a graph but not just a027

chain. The capability to construct correct, struc-028

tured proofs is essential for ensuring that LLMs029

perform the desired reasoning. The structured in-030

termediate proof steps are also important for the031

explainability of the reasoning models (Dalvi et al.,032

2021; Ribeiro et al., 2023).033

In this paper, we perform a focused study, pro-034

viding evidence to help understand whether the035

state-of-the-art LLMs, such as GPT-4, can lever-036

age the given proof structures of several similar037

examples and benefit from them to construct the038

proof structure for the reasoning problem under039

study. We investigate this in the in-context learn- 040

ing (Brown et al., 2020) setup because in many 041

real-life applications, the number of available ex- 042

amples with proof structures is small. Specifically, 043

we consider two key components that can utilize 044

the known proof structures: (i) demonstration, and 045

(ii) proof path search and pruning. Accordingly, 046

we equip the state-of-the-art LLMs, i.e., GPT-4 and 047

GPT-3.5, with structure-aware demonstration and 048

structure-aware pruning. 049

We set up our study in three benchmark 050

datasets, EntailmentBank (Dalvi et al., 051

2021), AR-LSAT (Ribeiro et al., 2023) and 052

PrOntoQA (Saparov and He, 2023). Our study 053

shows that both structure-aware demonstration and 054

structure-aware pruning improve performance. We 055

provide a detailed analysis to help understand the 056

results. 057

2 Related Work 058

In complex multi-hop reasoning tasks, the proof 059

steps often form a graph (i.e., a tree or directed 060

acyclic graph (DAG)). It is only recently that re- 061

searchers have begun to develop evaluation datasets 062

to measure proof structure quality in natural lan- 063

guage (Dalvi et al., 2021; Ribeiro et al., 2023). The 064

baseline methods proposed in these papers include 065

smaller models such as T5 (Raffel et al., 2020) or 066

older models such as GPT-3. 067

Recently, LLMs’ reasoning ability has also 068

been significantly improved. Chain-of-thought 069

(CoT) (Wei et al., 2022; Kojima et al., 2022) 070

is arguably the simplest but an effective way to 071

elicit linear reasoning chains of LLMs. Tree-of- 072

thought (Yao et al., 2023) can further provide 073

deeper insights into the model’s reasoning struc- 074

tures. However, ToT has been applied to tasks such 075

as game-of-24 and creative writing, but not to natu- 076

ral language entailment and reasoning tasks with 077

complex proof structures. In this paper, we will 078

compare our models to the CoT and ToT models. 079
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Figure 1: Overview of each module in our proposed framework.

3 Method080

Given a question q, a hypothesis h, and a context C081

consisting of pieces of evidence or premises, the ob-082

jective of the task is to provide a proof graph G from083

the premises to the hypothesis if the hypothesis084

can be proven. Formally, we denote pθ to be a pre-085

trained language model with parameter θ. Suppose086

x = (x1, . . . , xn) is a language sequence with n to-087

kens, the probabilistic language model can be writ-088

ten as pθ(x) =
∏n

i=1 pθ(xi | x1,...,i−1). Following089

previous work (Yao et al., 2023), we use the no-090

tation pprompt
θ (y|x) to represent pθ(y|prompt(x)),091

where prompt(x) is the input sentences x wrapped092

with the prompt instructions and templates; y is the093

output. The overall architecture of our model is094

depicted in Figure 1.095

Structure-aware Demonstration. Given an ex-096

ample u = ⟨q, h, C⟩ and a database D where in-097

stances feature structured proofs, the search for098

most similar demonstrations E can be expressed099

as E = S(u,D). Usually, S is defined as man-100

ually selecting several fixed demonstrations (Wei101

et al., 2022; Yao et al., 2023) or choosing the top102

k demonstrations with the example u based on the103

similarity (Fu et al., 2022; Liu et al., 2022). In this104

paper, we hypothesize that the proof structure of105

similar examples can help LLMs construct a struc-106

tured proof for the target problem. Specifically,107

we consider two key components that can utilize108

the known proof structures: demonstration, and109

proof-path pruning. At the initial stage, we prompt110

LLMs to provide a guessed proof graph Ga
u of the111

example u which is used to find the most similar ex-112

amples as the demonstrations. As the proof moves113

forward, the partially constructed proof tree will be114

simply merged into the guessed tree (other meth-115

ods can be considered here and we will leave that 116

as future work). Specifically, we use the graph at- 117

tention network (GATv2) (Brody et al., 2022) and 118

calculate the similarity between the proof graph Ea
u 119

and each candidate demonstration v’s proof graph 120

Ev, which considers both the structure and content 121

of the graphs. We choose the candidates with the 122

higher similarity scores as the demonstrations. 123

Candidate Retrieval. Given u = ⟨q, h, C⟩, a 124

proof hint m (discussed below), and a set of se- 125

lected demonstrations E , the candidate retrieval 126

component aims to retrieve a set of most rel- 127

evant evidence Cs: Cs = {o(zi)}ki=1; zi ∼ 128

pRetrieve
θ (z|q, h, C,m, E), where zi represents the 129

generated output, which is sampled from the gener- 130

ative language model pθ that takes in the retrieval 131

prompt. Because zi contains the needed evidence 132

sentence id, we need to extract the id from it, the 133

o(·) represent that extraction process. For detailed 134

examples of prompts, refer to Appendix I.1. As 135

a result, Cs represents a set of retrieved evidence 136

after the retrieval ran k times. The proof hint m 137

measures the difference between the current proof 138

status and the hypothesis, which will be discussed 139

later in the proof hint generation section. Note 140

that the retrieval models can be replaced by search 141

engine, but in our study, we use a set of given can- 142

didate evidences since our focus is on reasoning 143

itself. 144

Reasoning Step Proposal. We then prompt 145

LLMs themselves to provide the most plausible 146

proposal for the next reasoning steps. Formally, 147

given ⟨q, h, Cs, E⟩, the output is reasoning candi- 148

dates r for the subsequent reasoning step. 149

ri ∼ pProposeθ (r|q, h, Cs, E) (1) 150
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Then we obtained a set of reasoning steps: P =151

{ri}k
′

i=1. The output ri is parsed to transform152

the output text into a structured step rpi such as153

senti & sentj → intk. In Figure 1, we can see154

one such step is sent7 & sent4 → int1, meaning155

intermediate conclusion int1 is drawn from sent7156

and sent4.157

Reasoning Step Evaluation. Given the current158

structured reasoning step candidate rpi and selected159

demonstrations E , an LLM measures how likely160

this reasoning step can reach the final hypothesis161

with a score s.162

si ∼ pEvalθ (si|rpi , E) (2)163

where si is the language model output from which164

the score spi is extracted.165

Proof Hint Generation. This component asks166

LLMs to compare the intermediate conclusion rpi167

with the target hypothesis h to provide proof hint.168

An example is shown at the bottom of Figure 1.169

m ∼ pCompare
θ (m|h, rpi ) (3)170

As discussed above, this will be used to guide the171

model to find the most relevant evidence.172

Structure-aware Pruning During the forward173

proving process, we combine the typical breadth-174

first search (BFS) with the beam search. We main-175

tain b beams of candidates, selecting those with176

the highest evaluation score from the Reasoning177

Evaluation for each exploration. Furthermore, we178

delve into the utilization of the problem’s structure179

in this stage. To explore the effect of structure-180

guiding path selection, we conducted different ex-181

periments on how the structures may be used. In182

our probing experiment (Appendix B) on the dev183

set of EntailmentBank, we found that models ben-184

efit from selecting diverse candidate proof steps;185

i.e., the models perform better when they are en-186

couraged to select more diverse candidates. That187

is, two pieces of evidence located on different sub-188

trees are regarded as more diverse than those on189

the same subtree. Inspired by this, we discourage190

the model from using the intermediate conclusions191

which have been used in the previous steps, to avoid192

growing the tree from the evidence node that has193

just been generated. We call this implementation194

the div variant, which was used in our final model.195

4 Experiment Set-Up196

Dataset. We perform experiments on three197

datasets, EntailmentBank (Dalvi et al.,198

2021), AR-LSAT (Ribeiro et al., 2023) and 199

PrOntoQA (Saparov and He, 2023). Details of the 200

datasets can be found in Appendix C. 201

Evaluation Metrics. We evaluate the predicted 202

proof graph Gp against the golden graph Gg using 203

three metrics: Evidence F1 (Ev-F) (Dalvi et al., 204

2021), Proof-F1 (Pr-F) (Dalvi et al., 2021), and 205

reasoning Graph Similarity (G Sim) (Ribeiro 206

et al., 2023). Details can be found in Appendix E. 207

Implementation Details. To ensure replicability, 208

we include implementation and baseline details in 209

Appendix D. 210

5 Experiment Results 211

Table 1 compares our model with the off- 212

the-shelf Chain-of-Thought (CoT) and Tree-of- 213

Thought (ToT) models. The results show that our 214

models outperform CoT and ToT across the three 215

datasets under different evaluation metrics. Note 216

that the improvement is less in PrOntoQA, which 217

is due to the fact that a larger percentage of data in 218

PrOntoQA has linear reasoning patterns. We refer 219

readers to Appendix G for examples. 220

Effect of Proof Structure. To further understand 221

the effect of proof structures of given examples, 222

we conduct more experiments on EntailmentBank. 223

Table 2 shows the effectiveness of different com- 224

ponents of our model. Particularly, our focus is on 225

the variants without structure-aware pruning (“w/o 226

prun.”) and without structure-aware demonstra- 227

tion (“w/o demon.”). We can see that under both 228

GPT3.5 and GPT-4, the structure information con- 229

tributes to the performance (Ev-F and G Sim scores 230

dropped without them.). The comparison involving 231

other variants of our model, specifically concerning 232

the hint module and pruning strategies, is detailed 233

in Table 7 in the Appendix. 234

Table 3 focuses on evaluating the impact of 235

structure-aware demonstration. We compare the 236

structure-aware demonstration (Ours) vs. reg- 237

ular sturctured-unaware simple demonstration 238

(Ourssim). We can see that our model is better un- 239

der both GPT-3.5 and GPT-4. The oracle model 240

means we suppose that we know in advance the 241

proof structure of the question under study (which 242

is not true, because the structure needs to be con- 243

structed.) and use that to select the most similar 244

demonstrations. We can see that our model is ef- 245

fective as its gap from the Oracle is not large. 246

Analysis on Sequential and Non-sequential Rea- 247

soning. The EntailmentBank dataset consists of 248

3



Dataset Model GPT-3.5 GPT-4

Ev-P Ev-R Ev-F Pr-P Pr-R Pr-F G Sim Ev-P Ev-R Ev-F Pr-P Pr-R Pr-F G Sim

EntBank
CoT .283 .160 .204 .092 .043 .059 .037 .326 .270 .295 .152 .110 .128 .105
ToT .302 .173 .220 .104 .046 .064 .051 .347 .293 .318 .174 .132 .150 .140
Ours .374 .236 .289 .118 .087 .100 .097 .388 .327 .355 .204 .162 .181 .162

AR-LSAT
CoT .482 .462 .472 .077 .042 .054 .007 .523 .492 .507 .092 .068 .078 .008
ToT .537 .507 .522 .083 .045 .058 .008 .562 .510 .535 .111 .063 .080 .008
Ours .595 .576 .585 .086 .073 .079 .009 .602 .588 .595 .122 .075 .093 .010

PrOntoQA
CoT .802 .782 .792 .782 .740 .760 .447 .843 .811 .827 .812 .800 .806 .528
ToT .828 .801 .814 .802 .758 .779 .482 .849 .825 .837 .825 .800 .812 .530
Ours .857 .817 .837 .821 .776 .798 .504 .866 .838 .852 .831 .821 .826 .533

Table 1: Performance of different models on test sets.

Model Ev-P Ev-R Ev-F Pr-P Pr-R Pr-F G Sim

GPT-3.5

Ours .374 .236 .289 .118 .087 .100 .097
- w/o prun. .372 .230 .284 .117 .087 .100 .097
- w/o demon. .332 .182 .235 .107 .053 .071 .067
- w/o hint .313 .167 .218 .103 .049 .066 .064
- w/o retrieval .311 .166 .216 .092 .047 .062 .058

GPT-4

Ours .388 .327 .355 .204 .162 .181 .162
- w/o prun. .382 .311 .343 .192 .159 .174 .158
- w/o demon. .341 .257 .293 .145 .103 .120 .110
- w/o hint .339 .223 .269 .140 .088 .108 .093
- w/o retrieval .331 .201 .250 .121 .057 .077 .075

Table 2: Cumulative ablation analysis.

Model Ev-P Ev-R Ev-F Pr-P Pr-R Pr-F G Sim

GPT-3.5

Ours (w/o prun.) .372 .230 .284 .117 .087 .100 .097
Ourssim (w/o prun.) .358 .211 .266 .112 .069 .085 .077
Oursoracle (w/o prun.) .392 .259 .312 .153 .132 .142 .138

GPT-4

Ours (w/o prun.) .382 .311 .343 .192 .159 .174 .158
Ourssim (w/o prun.) .367 .258 .303 .149 .121 .134 .100
Oursoracle (w/o prun.) .419 .333 .371 .240 .195 .215 .205

Table 3: Ablation of demonstration methods.

reasoning problems that only involve sequential249

reasoning (the ground-truth proof paths of these250

problems are chains), as well as non-sequential251

problems. Table 4 depicts the detailed analysis of252

these two sub-types in the testset. We can see that253

our method and ToT outperform CoT in both se-254

quential and non-sequential reasoning. Between255

our model and ToT, they have comparable perfor-256

mance on the sequential subset, while our model257

performs better than ToT on the non-sequential258

subset. Regarding different depths, our model also259

consistently outperforms ToT. In general, we can260

see that non-sequential reasoning is more challeng-261

Dep.
Sequential Non-sequential

CoT ToT Ours CoT ToT Ours
Ev-F Pr-F Ev-F Pr-F Ev-F Pr-F Ev-F Pr-F Ev-F Pr-F Ev-F Pr-F

GPT-3.5

3 .328 .138 .330 .143 .330 .144 .238 .108 .257 .129 .282 .135
4 .189 .070 .202 .104 .202 .113 .132 .068 .149 .077 .175 .102
5 .082 .003 .123 .007 .125 .007 .049 .002 .069 .005 .093 .006
6 .012 .000 .047 .004 .047 .004 .010 .000 .038 .003 .045 .004
7 .002 .000 .005 .001 .006 .001 .002 .000 .004 .001 .005 .001

GPT-4

3 .333 .150 .356 .157 .357 .157 .250 .121 .266 .149 .297 .151
4 .195 .145 .242 .128 .242 .129 .141 .074 .160 .091 .181 .133
5 .102 .010 .133 .015 .135 .019 .057 .005 .075 .006 .100 .007
6 .013 .001 .055 .005 .059 .005 .011 .001 .043 .003 .050 .004
7 .002 .000 .005 .002 .006 .002 .002 .000 .004 .001 .005 .001

Table 4: Results of sequential reasoning /non-sequential
reasoning.

ing than sequential reasoning for all models, due 262

to its higher demands on proof planning and devel- 263

opment. The models not only need to explore new 264

potential premises during reasoning but also ensure 265

that the reasoning process remains coherent. Also, 266

the performances of all models decrease on both 267

sequential and non-sequential problems when the 268

depth increases. 269

6 Conclusion 270

Enabling LLMs to generate their proof structure is 271

critical for the reliability and explainability of such 272

models. By incorporating structure-aware compo- 273

nents into state-of-the-art LLMs, we demonstrate 274

that LLMs can benefit from utilizing the given 275

proof structures of similar examples. We find that 276

measuring the gap between the intermediate steps 277

and the final hypothesis can help narrow down the 278

search space and enhance the performance. Further 279

analysis of sequential and non-sequential reasoning 280

reveals that our model offers greater advantages in 281

the more complex task of non-sequential reasoning. 282
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Limitations283

Our proposed method is primarily designed for284

the natural language reasoning task, especially the285

task requiring multi-step proof to obtain the final286

conclusion. We do not test our method on other287

typess of reasoning, e.g. mathematical reasoning288

and our method only tested on the English reason-289

ing dataset.290

One limitation, as mentioned in the paper, is the291

increased token usage with the potential reasoning292

branches exploration since the system uses LLM-293

as-a-service API. Although we apply the beam294

search strategy over the graph which needs less ex-295

ploration compared to the naive breadth-first search,296

the overall cost is still high. We also leverage LLM297

in several modules in the system, which increases298

the total API calls as well. Future work will in-299

clude evaluating the system with open-source LLM300

to conduct the comparison and save on the budget.301

Another limitation is that the current system does302

not consider the negation proof or the conclusion303

that cannot be reached. The goal of the current sys-304

tem is to design a system that provides better proof.305

Proof by negation and other kinds of reasoning, e.g.306

conjunction, disjunction and conditionals, could be307

extended in future work.308
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A Related Work 455

Recently, many researchers have studied how to 456

better leverage large language models (LLMs) to 457

boost the performance of reasoning. Generating the 458

intermediate reasoning steps has shown substantial 459

improvement in many reasoning tasks. 460

Chain-of-thought (Wei et al., 2022; Kojima et al., 461

2022) can significantly improve inference accuracy 462

and, at the same time, provide a good explanation 463

for the reasoning process. However, when the com- 464

plexity of the task increases, it is still hard for them 465

to get a good result. Also, reasoning with LLM in 466

this way is constrained by the LLM’s architecture, 467

with its decisions determined by the next token that 468

has the highest probability of prediction. Tree-of- 469

thought (ToT) (Yao et al., 2023) provides deeper 470

insights into the model’s reasoning process, offer- 471

ing a clearer view of how it progresses towards its 472

conclusions. Not based on the highest probabilities 473

of the next token, tree-of-thought makes decisions 474

based on the evaluation of each state. However, 475

this method has not yet been applied to the com- 476

plex structured reasoning task. Following tree-of- 477

thought, graph-of-thought (Besta et al., 2023; Lei 478

et al., 2023) was proposed to enhance the connec- 479

tions between different lines of thought. (Besta 480

et al., 2023) applied the divide-and-merge strat- 481

egy and solved the simple subtasks instead of the 482

whole complex task, while (Lei et al., 2023) started 483

searching from the target node. However, these 484

methods do not explore ways that are applied in 485

natural language reasoning tasks, especially struc- 486

tured reasoning, and the solution search space is 487

quite small in the tasks they perform. 488

Narrowed down to the natural language rea- 489

soning tasks, Selection-Inference (SI) (Creswell 490

et al., 2022) is a strong modular reasoning approach 491

based on forward chaining. SI contains two mod- 492

ules: selection and inference. The selection module 493

selects a subset of rules and facts that can be used 494

in the reasoning aimed at proving the goal, while 495

the inference module performs reasoning towards 496

the goal with the use of the chosen facts and rules. 497
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Zhao et al. (2023) also found out that the planning498

stage helps improve the performance of reasoning499

models. Inspired by these research (Creswell et al.,500

2022; Zhao et al., 2023). Other works (Olausson501

et al., 2023; Pan et al., 2023) for forward reasoning502

include using a logic prover, instead of an LLM,503

to perform more precise reasoning. There is an-504

other line of research (Kazemi et al., 2023; Lei505

et al., 2023) trying to reason based on the back-506

ward chaining. Compared to forward chaining,507

reasoning from the conclusion to the supporting508

evidence is significantly more efficient at proof-509

finding. However, the backward reasoning method510

by Kazemi et al. (2023) required the dataset to511

identify the facts and rules which are absent in512

most datasets and require a lot of annotation labour513

in the real world.514

B Preliminary Experiments515

We conduct two preliminary experiments on the516

dev set of EntailmentBank with GPT-3.5. For the517

Preliminary Experiment I, we provide all other518

proofs except for randomly deleting two pieces519

of evidence. We conduct three deletion strategies:520

two missing pieces of evidence are in the same521

subtree and the same reasoning step, in the same522

subtree but not the same reasoning step, or in a523

different subtree. Here, we set the depth of the524

subtree to 2. Specifically, “the same subtree and525

the same reasoning step” means the two missing526

pieces of evidence can together form an intermedi-527

ate conclusion in the proof tree, while “the same528

subtree but different reasoning step” means that the529

intermediate conclusion from one missing piece of530

evidence could be combined with the other missing531

evidence to obtain another intermediate conclusion.532

“A different subtree” means the two missing pieces533

of evidence are not in the same 2-depth subtree.534

Results in Table 5 show that it is easier for the535

model to find evidence when they are located in536

a different proving subtree. We further mimic the537

practical searching scenario in the Preliminary Ex-538

periment II, where given one chosen reasoning step,539

e.g. sent4 & sent5 → int1, and missed two differ-540

ent reasoning step among which one is based on541

the given intermediate conclusion (reuse_ic) and542

the other (div) is not, e.g. sent3 & int1 → int2543

and sent1 & sent2 → int3, we ask the model to544

provide the prediction of the reasoning step. Ta-545

ble 6 shows that div model outperforms reuse_ic546

and thus we apply div in the main experiment.547

Model Ev-P Ev-R Ev-F

same subtree and same reasoning step 0.62 0.59 0.61
same subtree but different reasoning step 0.62 0.58 0.60
different subtree 0.63 0.60 0.62

Table 5: Result of Preliminary Experiment I

Model Ev-P Ev-R Ev-F Pr-P Pr-R Pr-F

reuse_ic 0.57 0.42 0.49 0.35 0.19 0.25
ind 0.59 0.45 0.51 0.36 0.19 0.25

Table 6: Result of Preliminary Experiment II

C Dataset 548

EntailmentBank (Dalvi et al., 2021) not only 549

lists the supporting textural evidence but also of- 550

fers a hierarchical tree structure showing how the 551

evidence organized to lead to the hypothesis. In the 552

entailment tree, the supporting evidence is the leaf 553

node, the hypothesis is the root node, and the inter- 554

mediate conclusions are the internal nods. Entail- 555

mentBank is also included in the STREET bench- 556

mark (Ribeiro et al., 2023). We exclude the cases 557

which only need one reasoning step, i.e., proof 558

depth and length equal to 1. 559

AR-LSAT is the Analytical Reasoning -Law 560

School Admission Test task from the STREET 561

benchmark (Ribeiro et al., 2023). STREET bench- 562

mark is a unified multi-task and multi-domain nat- 563

ural language reasoning and explanation bench- 564

mark. Unlike other existing question-answering 565

(QA) datasets, models are expected to not only an- 566

swer questions but also produce step-by-step struc- 567

tured explanations describing how premises in the 568

question are used to produce intermediate conclu- 569

sions that can prove the correctness of a certain 570

answer. We only include AR-LSAT in addition 571

to EntailmentBank because the other datasets in 572

STREET focus on math problems or the sequence 573

process prediction which needs different prompts, 574

especially for the comparison module, with those 575

regarding to logic reasoning in this paper. For QA 576

datasets, we keep the question as the input q and 577

append the question and correct answer as the input 578

hypothesis h. 579

PrOntoQA (Saparov and He, 2023) is a syn- 580

thetic question-answering dataset, where each ex- 581

ample is generated from a synthetic world model 582

represented in first-order logic. The rules applied 583

during the synthetic generation endow it with ex- 584

tractable structural information. We applied a simi- 585
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lar process on this QA dataset as AR-LSAT except586

that some examples reasoned by negative deduction587

are removed in this version.588

D Implementation Details589

We retrieve 5 times independently and take the590

union set as the result of the retrieval component.591

For each step, we propose 3 potential reasoning592

steps at each node and we keep the beam size as 3593

in the breadth-first search. The number of demon-594

strations is set to 3 for all few-shot models. The595

max iteration number is set to 5 times of the max596

reasoning depth for each dataset. We conduct the597

experiments on gpt-3.5-turbo-0613 version of GPT-598

3.5 and gpt-4-0125-preview version of GPT-4. For599

GATv2, we train the model with the training set of600

EntailmentBank.601

Baseline. We implement two baselines, CoT and602

ToT, with three demonstrations. We adapt the ToT603

to the natural language reasoning task. Specifi-604

cally, the thought generator outputs the potential605

reasoning step and the depth-first-search strategy606

is applied.607

E Evaluation Metrics608

We evaluate the predicted proof graph Gpred against609

the golden graph Ggold with three metrics, describ-610

ing evidence, proof and graph similarity. Unlike611

previous work, we target the model’s ability to612

provide correct proofs more than the true or false613

result.614

Evidence. Following (Dalvi et al., 2021), we per-615

form an evaluation over the chosen evidence to616

check whether the predicted proof graph uses the617

correct evidence. Suppose Epred and Egold are the618

selected evidence set for the predicted proof graph619

Gpred and the golden graph Ggold respectively. We620

compute precision (Ev-P), recall (Ev-R) and F1621

(Ev-F) score by comparing Epred and Egold.622

Proof Following (Dalvi et al., 2021), we evaluate623

over individual reasoning steps to check whether624

the predicted proof graph is structurally correct.625

Suppose Ppred and Pgold are the reasoning step set626

for the predicted proof graph Gpred and the golden627

graph Ggold respectively. We compute precision628

(Pr-P), recall (Pr-R) and F1 (Pr-F) score by com-629

paring Ppred and Pgold.630

Graph Similarity. Following (Ribeiro et al.,631

2023), we compute the reasoning graph similarity632

(G Sim) sim (Gp,Gg) by comparing the predicted 633

and the golden reasoning graphs through δ (Gp,Gg) 634

where δ is a graph edit distance function using 635

insertion, deletion and substitution as elementary 636

edit operator over nodes and edges. This can be 637

computed as 638

sim (Gp,Gg) = 1−
[

δ (Gp,Gg)

max (|Np|+ |Ep| , |Ng|+ |Eg|)

]
(4) 639

F Other Variants 640

Table 7 shows the analysis with other variants 641

of our model. The reuse_ic variant requires 642

the model to reuse the intermediate conclusion 643

generated in the previous iteration in the 2nd it- 644

eration’s reasoning, while div variant forces the 645

model to explore the reasoning step from the un- 646

touched premises. The w/o hint includes all mod- 647

ules except the proof hint generation module. We 648

modify the prompt in this module into asking the 649

model what is the next step of reasoning in what’s 650

next. Our findings indicate that the div variant 651

has higher performance than the reuse_ic and w/o 652

pruning variant, showcasing the effectiveness of 653

the structure-aware pruning. 654

Model Ev-P Ev-R Ev-F Pr-P Pr-R Pr-F G Sim

GPT-3.5

Ours (w/o hint) .359 .220 .273 .100 .057 .073 .072
Ours (what’s next) .363 .221 .275 .108 .077 .090 .089

Ours (w/o pruning) .372 .230 .284 .117 .087 .100 .097
Ours (reuse_ic) .363 .231 .282 .117 .082 .096 .095
Ours (div) .374 .236 .289 .118 .087 .100 .097

GPT-4

Ours (w/o hint) .371 .247 .297 .136 .102 .117 .101
Ours (what’s next) .379 .253 .303 .158 .121 .137 .121

Ours (w/o hint) .382 .311 .343 .192 .159 .174 .158
Ours (reuse_ic) .380 .309 .341 .192 .157 .173 .158
Ours (div) .388 .327 .355 .204 .162 .181 .162

Table 7: Ablation analysis on EntailmentBank.

G Case Study 655

Proof Hint Generation. Table 8 shows two ex- 656

amples and we conduct a comparison between the 657

model with or without the proof hint generation 658

module. In the first example, both models could 659

make the correct reasoning in the first iteration and 660

the intermediate conclusion finds out that carbon 661

dioxide is required photosynthesis process. With- 662

out the proof hint generation module, the model 663

could not retrieve the wanted sentences, while with 664

the proof hint generation module, the model suc- 665

ceeds in focusing on the missing relationship with 666
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‘step’. Similarly, in the second example, both mod-667

els could correctly retrieve sent6. However, with668

the proof hint generation module, the model cares669

more about the information of Earth itself, not the670

moon. The examples show that the proof hint gen-671

eration module explicitly asks the model to think672

about the missing part between the current interme-673

diate conclusion and the final goal and the model674

could retrieve relevant information based on this675

action.676

Structure-aware Demonstration. Table 9677

shows the example with structure-aware demon-678

strations. For the page limit, we only show679

the proof structure of one demonstration in the680

table. We observe that the model is prone to681

providing the proof that is structurally similar682

to the proofs given in the demonstration and we683

attribute the performance improvement brought by684

structure-aware demonstrations to this observation.685

H Computation Cost686

We observe that the cost of experimenting is higher687

than the baselines. We leverage the language model688

in several different modules and apply the beam689

search strategy in the breadth-first search. We keep690

a most promising states per step and b beams of691

candidates with the highest evaluation score for692

each exploration in the beam search strategy. Al-693

though we cut down the total number of explored694

cases of n reasoning iterations to a+(n−1)×b×a695

from a+ a2 + a3 + · · ·+ an because of the beam696

search over the tree, it is still higher than CoT (1)697

and ToT (n × a). Table 4 shows our benefits on698

non-sequential reasoning but similar performance699

with ToT on sequential reasoning. Considering the700

computation cost, our model might not be a good701

choice if most data belongs to sequential reasoning.702

I Example Prompts703

We provide three demonstrations in all few-shot704

models, but we only show one in the example in705

this section.706

I.1 Candidate Retrieval707

System: Below, you are given a question, a708

hypothesis and a set of candidate premises. You709

are required to select a small set of candidates (at710

least provide 3 sentences) to deduce the hypothesis.711

Please only filter out the sentences that you are712

sure of.713

714

[example] 715

Question: What keeps Mars in orbit around the 716

Sun? 717

Hypothesis: gravity causes mars to orbit around 718

the sun 719

Candidate/potential premises: 720

sent1: a complete revolution / orbit of a planet 721

around its star takes 1 / one planetary year 722

sent2: our sun is located at the center of our solar 723

system 724

sent3: celestial objects are located in outer space 725

sent4: gravity causes orbits 726

sent5: orbit is a kind of characteristic 727

sent6: a star usually is larger than a planet 728

sent7: revolving around something means orbiting 729

that something 730

sent8: a satellite orbits a planet 731

sent9: uranus is a kind of planet 732

sent10: planets are found in space 733

sent11: gravity means gravitational pull / gravita- 734

tional energy / gravitational force / gravitational 735

attraction 736

sent12: as mass of a planet / of a celestial body 737

increases, the force of gravity on that planet will 738

increase 739

sent13: the sun is the strongest source of gravity in 740

the solar system 741

sent14: a galaxy is made of stars 742

sent15: orbit means orbital path 743

sent16: can be means able to be 744

sent17: celestial bodies / celestial objects are found 745

in space 746

sent18: satellites are found in space 747

sent19: proxima centauri is a kind of star 748

sent20: planets in the solar system orbit the sun 749

sent21: mars is a kind of planet 750

sent22: venus is a kind of planet 751

sent23: mars is located in the solar system 752

sent24: isaac newton discovered the theory of 753

gravity 754

sent25: a comet is a kind of celestial body 755

756

Retrieval sentences (at least 3): sent4, sent20, 757

sent21, sent23 758

Proof: sent20 & sent4 -> int1: gravity causes the 759

planets in the solar system to orbit the sun; sent21 760

& sent23 -> int2: mars is a planet in the solar 761

system; int1 & int2 -> hypothesis; 762

—- 763

[Question] 764

Question: A bee depends on certain flowers for 765

food. The flowers depend on the bee to 766

9



Model Previous Intermediate Conclusion Retrieved Premises
Case 1:
Hypothesis: taking in carbon dioxide is a step in the photosynthesis process
sent2: when carbon dioxide in the atmosphere is absorbed by plants , the amount of carbon dioxide in the atmosphere is reduced in the atmosphere
sent4: if something is required in a process then obtaining that something is a step in that process
sent8: taking something in is a kind of method for obtaining that something
sent17: a step in a process means a stage in a process
sent25: taking in and releasing means exchanging
Expected: sent4 & (sent9 & sent19)

w/o hint sent9 & sent19 -> int1: Carbon dioxide is a required raw material in the photosynthesis process. sent2, sent12, sent17, sent25
w/ hint sent9 & sent19 -> int1: Carbon dioxide is required as a raw material in the photosynthesis process. sent2, sent4, sent8, sent17

Case 2:
Hypothesis: the difference between the earth and the moon is that the moon revolves around a planet
sent1: celestial bodies / celestial objects are found in space
sent3: earth is a kind of planet
sent4: moons / comets / planets are part of the solar system
sent6: the earth revolves around the sun
sent9: the sun is a kind of star
sent10: a moon is a kind of satellite
sent11: revolving around means orbiting
sent23: the moon is earth ’s moon
sent24: a celestial body travelling around another celestial body means that celestial body completes a cycle around that other celestial body
Expected: (sent6 & sent9) & ((sent25 & sent3)& sent11)

w/o hint sent3 & sent25 -> int1: The Earth and the Moon are both planets, but the Moon orbits the Earth. sent1, sent4, sent6, sent10, sent23, sent24
w/ hint sent3 & sent25 -> int1: Earth is a planet and the Moon orbits it. sent3, sent6, sent9, sent10, sent11

Table 8: 2nd iteration of reasoning examples for w/ and w/o proof hint generation module
Model Demonstration Proof Final Proof

Hypothesis: wood boards are a kind of building material that is made of a renewable natural resource
sent3: wood boards are made of wood
sent7: wood is a renewable resource
sent8: a renewable resource is a kind of natural resource
sent17: wood boards can be used to build houses
sent19: a house is a kind of building
sent23: building materials are used to build buildings
Expected: ((sent19 & sent23) & sent17) & ((sent7 & sent8) & sent3)

Text-aware Demonstration (sent25 & sent3) & sent2 ((sent7 & sent8) & sent17)
Structure-aware Demonstration ((sent26 & sent3) & sent1) & ((sent7 & sent9) & sent10) ((sent19 & sent23) & sent17) & ((sent7 & sent8) & sent3)

Table 9: Final proof for structure-aware demonstration and demonstration with the most similar context

Hypothesis: a bee can help on pollination in plant767

reproduction by carry pollen768

Candidate/potential premises:769

sent1: if something is required for a process then770

that something positively impacts that process771

sent2: pollinated means after pollination772

sent3: pollinating is a kind of function773

sent4: pollination is when pollinating animals,774

wind, or water carry pollen from one flower to775

another flower776

sent5: if something causes a process then that777

something is required for that process778

sent6: seed dispersal has a positive impact on a779

plant / a plant’s reproduction sent7: a bee is a780

pollinating animal781

sent8: flowers sometimes become fruits after782

pollination783

sent9: if a living thing requires something then784

that something has a positive impact on that living785

thing786

sent10: flowers are a source of fruit787

sent11: if something is required then that some-788

thing must be provided789

sent12: plant reproduction requires pollination790

sent13: needing something means depending on791

that something792

sent14: to be used for something means to be793

required by that something 794

sent15: flowers often have a sweet smell to attract 795

pollinators 796

sent16: to carry means to transport 797

sent17: a bird is a pollinating animal 798

sent18: a flower’s purpose is to produce seeds 799

sent19: when pollen sticks to a hummingbird, that 800

pollen will move to where the hummingbird moves 801

sent20: plant requires seed dispersal for reproduc- 802

tion 803

sent21: pollinator means pollinating animal 804

sent22: seed dispersal is a kind of method of 805

sexual reproduction 806

sent23: pollination requires pollinating animals 807

sent24: if something is required for something else 808

then that something allows that something else 809

sent25: requiring something means needing that 810

something 811

812

Retrieval sentences (at least 3): 813

I.2 Reasoning Step Proposal 814

System: Provide me several sentences with the 815

sentence number and one intermediate conclusion 816

that are possible to be used in the next step in this 817

small set. If the deduction reaches the hypothesis, 818

tell me ’Finish’; otherwise please provide the 819
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(intermediate) conclusion.820

821

[example]822

Question: What keeps Mars in orbit around the823

Sun?824

Hypothesis: gravity causes mars to orbit around825

the sun826

Candidate/potential premises:827

sent4: gravity causes orbits828

sent5: orbit is a kind of characteristic829

sent12: as mass of a planet / of a celestial body830

increases, the force of gravity on that planet will831

increase832

sent20: planets in the solar system orbit the sun833

sent21: mars is a kind of planet834

sent22: venus is a kind of planet835

sent23: mars is located in the solar system836

sent24: isaac newton discovered the theory of837

gravity838

839

Possible Next Reasoning: sent20 & sent4 ->840

int1: gravity causes the planets in the solar system841

to orbit the sun842

—843

[Question]844

Question: A bee depends on certain flowers for845

food. The flowers depend on the bee to846

Hypothesis: a bee can help on pollination in plant847

reproduction by carry pollen848

Candidate/potential premises:849

sent4: pollination is when pollinating animals,850

wind, or water carry pollen from one flower to851

another flower852

sent7: a bee is a pollinating animal853

sent12: plant reproduction requires pollination854

sent21: pollinator means pollinating animal855

sent23: pollination requires pollinating animals856

sent24: if something is required for something else857

then that something allows that something else858

859

Possible Next Reasoning:860

I.3 Reasoning Step Evaluation861

System: Evaluate whether these intermediate862

conclusions could reach the hypothesis with863

candidates. Provide me the number of possibilities864

(0-99) of these intermediate conclusions: Surely:865

85-99, Likely: 50-84, Impossible: 0-49866

867

[example]868

Question: What keeps Mars in orbit around the869

Sun?870

Hypothesis: gravity causes mars to orbit around 871

the sun 872

Candidate/potential premises: 873

sent4: gravity causes orbits 874

sent5: orbit is a kind of characteristic 875

sent12: as mass of a planet / of a celestial body 876

increases , the force of gravity on that planet will 877

increase 878

sent20: planets in the solar system orbit the sun 879

sent21: mars is a kind of planet 880

sent22: venus is a kind of planet 881

sent23: mars is located in the solar system 882

sent24: isaac newton discovered the theory of 883

gravity 884

885

Possible Next Reasoning: sent20 & sent4 -> 886

int1: gravity causes the planets in the solar system 887

to orbit the sun 888

Evaluate: 99 889

— 890

[Question] 891

Question: The body of a fish is covered by scales 892

for 893

Hypothesis: scales are used for protection by fish 894

Candidate/potential premises: 895

sent1: a fish is a kind of scaled animal 896

sent8: scales are a covering around the body of a 897

scaled animal 898

sent12: scales are used for protection by scaled 899

animals 900

sent15: protecting is a kind of function 901

I.4 Proof Hint Generation 902

System: Compare the intermediate conclusion 903

with the hypothesis and the question, and provide 904

me one sentence of what is still missing. 905

906

Question: The body of a fish is covered by 907

scales for 908

Hypothesis: scales are used for protection by fish 909

Intermediate Conclusion: int1: scales cover the 910

body of a fish 911

Missing: 912
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