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Abstract

Counterfactuals answer questions of what would have been observed under altered circum-
stances and can therefore offer valuable insights. Whereas the classical interventional in-
terpretation of counterfactuals has been studied extensively, backtracking constitutes a less
studied alternative where all causal laws are kept intact. In the present work, we introduce
a practical method called deep backtracking counterfactuals (DeepBC) for computing back-
tracking counterfactuals in structural causal models that consist of deep generative compo-
nents. We propose two distinct versions of our method—one utilizing Langevin Monte Carlo
sampling and the other employing constrained optimization—to generate counterfactuals for
high-dimensional data. As a special case, our formulation reduces to methods in the field of
counterfactual explanations. Compared to these, our approach represents a causally com-
pliant, versatile and modular alternative. We demonstrate these properties experimentally
on a modified version of MNIST and CelebA.

1 Introduction

In recent years, there has been a surge in the use of deep learning for causal modeling (Sanchez & Tsaftaris,
2022; Pawlowski et al., 2020; Kocaoglu et al., 2018; Goudet et al., 2018; Javaloy et al., 2023; Khemakhem
et al., 2021; Taylor-Melanson et al., 2024). The integration of deep learning in causal modeling combines
the potential to effectively operate on high-dimensional distributions, a strength inherent to deep neural
networks, with the capability to answer inquiries of a causal nature, thus going beyond statistical associa-
tions. At the apex of such inquiries lies the ability to generate scenarios of a counterfactual nature—altered
worlds where variables differ from their factual realizations, hence aptly termed counter to fact (Pearl, 2009;
Bareinboim et al., 2022). Counterfactuals are deeply ingrained in human reasoning (Roese, 1997), as evident
from phrases such as “Had it rained, the grass would be greener now” or “Had I invested in bitcoin, I would
have become rich”.

Constructing counterfactuals necessitates two fundamental components: (i) a sufficiently accurate world
model with mechanistic semantics, such as a structural causal model (SCM; Pearl, 2009); and (ii) a sound
procedure for deriving the distribution of all variables that are not subject to explicit alteration. The latter
component has been a subject of debate: While the classical literature in causality constructs counterfactuals
by actively manipulating causal relationships (interventional counterfactuals), this approach has been con-
tested by some psychologists and philosophers (Rips, 2010; Gerstenberg et al., 2013; Lucas & Kemp, 2015).
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Figure 1: Visualization of DeepBC for Morpho-MNIST. We generate a counterfactual (green) image
img∗ and thickness t∗ with antecedent intensity i∗ for the factual, observable realizations (filled blue) img,
t, i. Our approach finds new latent variables u∗ that are close with respect to distances di to the factual
latents u, subject to rendering the antecedent i∗ true. The causal mechanisms in the factual world remain
unaltered in the counterfactual world. In this specific distribution, thickness and intensity are positively
related, thus rendering the image both more intense and thicker in the counterfactual. Dependence of fi on
graphical parents is omitted for simplifying visual appearance.

Instead, they have proposed an account of counterfactuals where alternate worlds are derived by tracing
changes back to background conditions while leaving all causal mechanisms intact. This type of counter-
factual is termed backtracking counterfactual (Lewis, 1979; Khoo, 2017). Due to the preservation of causal
mechanisms, backtracking counterfactuals allow for gaining faithful insights into the structural relationships
of the data generating process, which render them a promising opportunity in practical domains such as
medical imaging (Sudlow et al., 2015), biology (Yang et al., 2021a) and robotics (Ahmed et al., 2021).

Recently, von Kügelgen et al. (2023b) have formalized backtracking counterfactuals within the SCM frame-
work. However, implementing this formalization for deep structural causal models (Pawlowski et al., 2020)
poses computational challenges due to steps such as marginalizations and the evaluation of distributions that
are intractable. The present work addresses these challenges and offers a computationally efficient imple-
mentation by framing the generation of counterfactuals as a constrained sampling problem. Specifically, we
propose a Markov Chain Monte Carlo scheme in the structured latent space of a causal model, based on the
overdamped Langevin dynamics (Parisi, 1981). We also propose a simplified method where a single, “most
likely” counterfactual is obtained as the solution of a constrained optimization problem.

The present work further serves as a bridge between causal modeling and practical methods in the field of
counterfactual explanations (Wachter et al., 2017; Beckers, 2022). As a causally grounded approach applica-
ble to high-dimensional data, our method fills a gap in the existing literature between non-causal explanation
tools, built for complex data such as images (e.g., Goyal et al., 2019; Boreiko et al., 2022), and causal meth-
ods that have only been applied to simple (assuming additive noise), low-dimensional settings (Bynum et al.,
2024; von Kügelgen et al., 2023b; Crupi et al., 2022).

We summarize our main contributions as follows:

• We introduce DeepBC, a tractable method for computing backtracking counterfactuals in deep SCMs
(§ 3). We propose two variants, stochastic DeepBC (§ 3.1.1) and mode DeepBC (§ 3.1.2). The former
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allows for sampling counterfactuals via Langevin Monte Carlo (§ 3.3.1). The latter constitutes a simplified
version for generating point estimates using constrained optimization (§ 3.3.2). Our methodology exhibits
multiple favorable properties, which are causal compliance, versatility and modularity (§ 3.5).

• We highlight connections to the field of counterfactual explanations, and elucidate how our method can
be understood as a general form of the popular method proposed by Wachter et al. (2017) (§ 3.2).

• We demonstrate the applicability and distinct advantages of our method in comparison to interventional
counterfactuals and counterfactual explanation methods through experiments on the Morpho-MNIST and
the CelebA data sets (§ 4).

Overview. Section § 2 introduces structural causal models (§ 2.1), the deep generative models that are
employed subsequently (§ 2.2), interventional and backtracking counterfactuals (§ 2.3) and counterfactual
explanations (§ 2.4). The section therefore sets the stage for presenting our method called deep backtracking
counterfactuals (DeepBC) in Section § 3, where we also discuss its relation to methods in the field of
counterfactual explanations (§ 3.2), its algorithmic implementation (§ 3.3) and extensions for categorical
variables and sparse solutions (§ 3.4). In Section § 4, we show experimental results performed on Morpho-
MNIST (§ 4.1) and CelebA (§ 4.2) that highlight the causal compliance, versatility and modularity of our
method. Related work is presented in Section § 5. We then discuss limitations and future work in Section
§ 6 and conclude with a short summary in Section § 7.

2 Setting & Preliminaries

The following section introduces (deep) structural causal models and backtracking counterfactuals. These
concepts present the building blocks for our method, presented in Section § 3.

Throughout the article, upper case X denotes a scalar or multivariate continuous random variable, and lower
case x a realization thereof. Bold X denotes a collection of such random variables with realizations x. The
components of x are denoted by xi. We denote the probability density of X by p(x).

2.1 Structural Causal Models

Let X = (X1, X2, ..., Xn) be a collection of potentially high-dimensional observable “endogenous” random
variables. For instance, these variables could be high-dimensional objects such as images (e.g., the MNIST
image in Fig. 1) or scalar feature variables (such as t and i in Fig. 1). The causal relationships among the
Xi are specified by a directed acyclic graph G that is known. A structural causal model (Pearl, 2009) is
characterized by a collection of structural equations Xi ← fi(Xpa(i), Ui), for i = 1, 2, ..., n, where Xpa(i) are
the causal parents of Xi as specified by G and U = (U1, U2, ..., Un) are exogenous latent variables1. The
acyclicity of G ensures that for all i, we can recursively solve for Xi to obtain a deterministic expression in
terms of U. Thus, there exists a unique function that maps U to X, which we denote by F,

X = F(U), (1)

and which is known as the reduced-form expression. We see that F induces a distribution over observables X,
for any given distribution over the latents U. For the remainder of this work, we assume causal sufficiency
(no unobserved confounders) (Spirtes, 2010), which implies joint independence of the components of U.

2.2 Deep Invertible Structural Causal Models

In this work, we make the simplifying assumption that fi(xpa(i), · ) is invertible for any fixed xpa(i)
2 such

that we can write
Ui = f−1

i (Xpa(i), Xi), i = 1, 2, ..., n.

1We note that by definition, the exogenous variables are not causally related to each other.
2also known as bijective generation mechanism (see, e.g., Nasr-Esfahany et al., 2023).
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Under this assumption, the inverse F−1 of the mapping in (1) is guaranteed to exist, and we can write

U = F−1(X). (2)

We assume that all fi are given as conditional deep generative models, differentiable with respect to ui for
each xpa(i), trained separately for each structural assignment (Pawlowski et al., 2020). We consider the
following two classes of models, both of which operate on latent variables with a standard Gaussian prior.

Conditional normalizing flows (Rezende & Mohamed, 2015; Winkler et al., 2019) are constructed as
a composition of invertible functions, hence rendering the entire function fi invertible in ui. In addition,
they are chosen such that the determinant of the Jacobian can be computed efficiently. These two attributes
facilitate efficient training of fi via maximum likelihood.

Conditional variational auto-encoders (Kingma & Welling, 2014; Sohn et al., 2015) consist of sepa-
rate encoder ei and decoder di networks. These modules parameterize the mean of their respective condi-
tional distributions, i.e., Ui|xpa(i), xi ∼ N (ei(xpa(i), xi), diag(σ2

e)) and Xi|xpa(i), ui ∼ N (di(xpa(i), ui), Iσ2
d).

Through joint training of ei, di and the variance vector σ2
e using variational inference, ei and di become

interconnected. The decoder variance σ2
d is fixed a priori. Theoretical insights by Reizinger et al. (2022)

support the use of an approximation, where the decoder effectively inverts the encoder, that is,

xi = fi(xpa(i), f−1
i (xpa(i), xi)) ≈ di(xpa(i), ei(xpa(i), xi)).

We use this approximation throughout the present work and do not explicitly model the encoder and decoder
variances post training. The reason is that invertability is crucial to the simplification of the backtracking
procedure, as derived in App. A.2.

2.3 Interventional and Backtracking Counterfactuals

Given a factual observation x (blue in Fig. 2) and a so-called antecedent x∗
S = (x∗

i : i ∈ S) (filled green in
Fig. 2) for a given subset S ⊂ {1, 2, ...., n}, we define a counterfactual as some x∗ = (x∗

1, x∗
2, ..., x∗

n) consistent
with x∗

S . We view x∗ as an answer to the verbal query

“What values (x∗) had X taken instead of the given (observed) x, had XS taken the values
x∗

S rather than xS?”

In the present work, we consider interventional and backtracking counterfactuals. Both generate distributions
over counterfactuals whose random variables we refer to as X∗ (green in Fig. 2). We only provide a concep-
tual notion and refer the reader to App. A.1 for a more rigorous formalism for both types of counterfactuals.

Interventional counterfactuals render the antecedent true via modification of the structural assignments
(f1, f2, ..., fn), which leads to a new collection of assignments (f∗

1 , f∗
2 , ..., f∗

n). Specifically, these new structural
assignments are constructed such that the causal dependence on the causal parents of all antecedent variables
X∗

S is removed: f∗
i = x∗

i for i ∈ S and f∗
i = fi otherwise. Such a modification can be understood as a hard

intervention on the underlying structural relations (indicated by the hammer in Fig. 2).

Backtracking counterfactuals leave all structural assignments unchanged. In order to set the antecedent
x∗

S ̸= xS true, they trace differences to the factual realization back to (ideally small) changes in the latent
variables U. These modified latent variables are represented by a new collection of variables U∗ that depend
on U via a given backtracking conditional pB(u′ |u) (red in Fig. 2) (von Kügelgen et al., 2023b), which
represents a probability density for computing similarity between u and u′ and which we assume to be
decomposable, or factorized:

pB(u′ |u) =
n∏

i=1
pB

i (u′
i |ui).
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Figure 2: Difference between interventional and backtracking counterfactuals on a concrete
example. Variables that are conditioned on correspond to filled circles. Interventional counterfactuals
perform a hard intervention (indicated by a hammer) X∗

2 ← x∗
2 with antecedent x∗

2 (i.e., S = {2}) in the
counterfactual world (green). Backtracking counterfactuals, on the contrary, construct this counterfactual
world via introducing a new set of latent variables U∗ that depend on U via a backtracking conditional (red).

By marginalizing over U∗, we obtain the distribution of X∗ |x∗
S , x. Throughout the manuscript, we will write

pB
i (u′

i |ui) ∝ exp {−di(u′
i, ui)} , (3)

where the di are differentiable with respect to u′
i. The functions di(u′

i, ui) can be interpreted as distances
that penalize deviations of the counterfactual latent variables to their factual realizations.

Backtracking counterfactuals fulfill an intuitive notion of causal compliance, which we will elaborate on
the example shown in Fig. 2. To simplify the exposition, we only consider the modes (see § 3.1.2) of the
backtracking variables (denoted by u∗

1, u∗
2, u∗

3, x∗
1, x∗

2 and x∗
3) and note that only the latent variables U∗

1
and U∗

2 , which are upstream (in the causal graph) of the antecedent variable X∗
2 , can contribute in realizing

x∗
2 ̸= x2. Thus, we generally have u∗

1 ̸= u1 and u∗
2 ̸= u2, i.e., the counterfactual modes differ from the factual

realizations. The downstream latent variable U∗
3 , in contrast, does not have a causal influence on X∗

2 . In
order to minimize the distance d3(u∗

3, u3), u∗
3 is thus left unchanged from the factual u3, i.e., u∗

3 = u3. The
inequality x∗

3 ̸= x3 is then solely a consequence of the downstream effect of the antecedent x∗
2 ̸= x2. We will

demonstrate these properties experimentally in Section § 4.

This section concludes by introducing so-called counterfactual explanations. This allows us to compare our
method against this formulation in Section § 3.2.

2.4 Counterfactual Explanations

A wealth of prior work in machine learning is concerned with explaining the prediction ŷ of a classifier fŶ

with ŷ ← fŶ (x) through the generation of a new example x∗ which is close to x, yet predicted as y∗, where
y∗ is a label that differs from the (factual) prediction ŷ. The intuitive idea is that contrasting x∗ with x
yields an interpretable answer as to why x is classified as ŷ rather than y∗. Formally (see Wachter et al.
(2017)), x∗ can be obtained as the solution of

arg min
x′

do (x′, x) subject to fŶ (x′) = y∗, (4)

where do represents a distance function between observed variables. In the present work, we generally refer
to methods implementing a variant of (4) as counterfactual explanations. We stress that Ŷ is the prediction
of a model (fŶ ) and thus always an effect of X. In general, the structural assignment fŶ is different from
fY (the assignment of the true variable Y that is not predicted). For instance, Y might be a cause of X or
might be confounded with X. We revisit the difference between Y and Ŷ in Section § 3.2.

5



Published in Transactions on Machine Learning Research (07/2024)

3 Deep Backtracking Counterfactuals (DeepBC)

The main contribution of the present work is to derive formulations and algorithms to efficiently compute
backtracking counterfactuals for deep SCMs. In Section § 3.1, we lay down the objectives underlying the two
variants of DeepBC that we propose in the present work: (i) stochastic DeepBC (§ 3.1.1) aims at sampling
from a counterfactual distribution; (ii) mode DeepBC (§ 3.1.2) constrains the counterfactual distribution
to its mode, thus (deterministically) generating only a single solution. We provide rigorous derivations of
the formulations in Section § 3.1 from the theoretical formalization given by von Kügelgen et al. (2023b) in
App. A.2. We propose practical algorithms for attaining solutions to the given objectives in Section § 3.3.

3.1 Objectives

3.1.1 Objective for Stochastic DeepBC

We sample from a distribution over counterfactuals X∗ |x∗
S , x for the factual realization x, antecedent x∗

S

and (known) backtracking conditional pB .3 This distribution is characterized by the density

p(x′ | x∗
S , x) ∝ δx∗

S
(x′

S)
n∏

i=1
pB

i (F−1
i (x′) |F−1

i (x)) ∝ δx∗
S
(x′

S) exp
{
−

n∑
i=1

di(F−1
i (x′) , F−1

i (x))
}

, (5)

where δx∗
S
( · ) refers to the dirac delta at x∗

S . Intuitively, we can understand this distribution as describing
counterfactuals that are likely given x in terms of latent components (pB), while fullfilling the constraint of
being compliant both with the antecedent x∗

S (δx∗
S
) and with the causal laws F. We further note that (5) is

equivalent to a sampling problem within the structured latent space, i.e.,

p(u′ | x∗
S , u) ∝ δx∗

S
(FS(u′))

n∏
i=1

pB
i (u′

i |ui) ∝ δx∗
S
(FS(u′)) exp

{
−

n∑
i=1

di(u′
i , ui)

}
. (6)

The distribution of X∗ |x∗
S , x in (5) is obtained as the push-forward of (6) by F, for x = F(u).

3.1.2 Objective for Mode DeepBC

We compute the mode of p(x′ |x∗
S , x) in (5), i.e., a single “most likely” counterfactual x∗ for the factual

realization x as a solution to the following constrained optimization problem:

arg min
x′

n∑
i=1

di

(
F−1

i (x′), F−1
i (x)

)
subject to x′

S = x∗
S . (7)

Intuitively, we can understand this optimization as finding a solution x∗ that is close to the factual real-
ization x in terms of its latent components. This situation is visualized on the Morpho-MNIST example in
Fig. 1. We further note that (7) is equivalent to an optimization problem within the structured latent space,

arg min
u′

n∑
i=1

di (u′
i, ui) subject to FS(u′) = x∗

S , u = F−1(x). (8)

We obtain the solution of (7) by inserting the solution of (8) into F.

3.2 Relation to Counterfactual Explanations

We can recover counterfactual explanations (§ 2.4) as a special form of mode DeepBC (7). To this end, we
assume access to two variables with the following structural equations

X ← fX(UX) and Ŷ ← fŶ (X), (9)
3In contrast to the reduced form, the backtracking conditional is not learned from data, but must be specified explicitly.
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Figure 3: Backtracking interpretation of counterfactual explanations on a concrete example.
DeepBC aims at modeling the true structural relationships between variables, exemplified by the causal graph
in (a). Counterfactual explanations in the sense of Wachter et al. (2017) have a backtracking interpretation
in that they instead use a predictive model fŶ such as a classifier or regressor as structural equation (9),
leading to the causal graph shown in (b). In general, the true variable Y , unlike the prediction Ŷ , may
not be the effect of the covariates X and Z (X and Z may in addition be causally interrelated, as shown
in (a)). Consequently, the counterfactuals made by counterfactual explanation methods must be interpreted
differently in comparison to those made by our approach. Specifically, DeepBC intents to explain the true
underlying variables rather than being confined to the prediction of a model, as can be read off of the
counterfactual queries in the figure. For clarity, the latent variables U are omitted.

where we note that Ŷ is not subject to additional randomness UŶ . In this specific case, we observe that the
mode DeepBC optimization problem (7) reduces to

arg min
x′

dX

(
f−1

X (x′), f−1
X (x)

)
subject to fŶ (x′) = y∗, (10)

which can be interpreted as an instance of (4), where distance is measured in an unstructured latent space,
governed by fX . Under the assumption that fX is modeled as a deep invertible generative model (§ 2.2),
we the refer to (10) as deep counterfactual explanation. For example, x could be a high-dimensional image,
fX an (unconditional) variational autoencoder and y a label of the image.4 From this viewpoint, we can
interpret DeepBC as a general form of counterfactual explanations in two ways: Firstly, it accommodates
non-deterministic relations among variables, taking into account the influence of noise on all variables. In
the aforementioned instance (9), this can be modeled by Ŷ ← fŶ (X, UŶ ) (demonstrated in Fig. 12 (b)
of App. D.2). Secondly, DeepBC accounts for multiple variables with more general underlying causal
relationships. For example, there could be a third variable Z related to both X and Y in (10) that could
be modeled as well, as depicted in Fig. 3 (a). Rather than treating Z as a new dimension in the predictor
input fŶ in (9) (resulting in fŶ (X, Z), see Fig. 3 (b)), DeepBC allows for explicitly modeling the true
causal relations between Z, X and Y (see Fig. 3 (a)) via (deep) structural equations, as outlined in Section
§ 2.1. The benefit of DeepBC is that it intends to answer queries regarding the true underlying variables
(see query in Fig. 3 (a)) rather than being confined to model predictions that generally do not model the
causal mechanisms according to the true relationships (see query in Fig. 3 (b)). We elaborate further on
the benefits of our approach in Section § 3.5.

In the next section (§ 3.3), we propose algorithms to generate backtracking counterfactuals in practice, based
on the formulations presented in (5) and (7).

4Typically, such methods do not explicitly model other variables besides x and y.
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Algorithm 1 mode_DeepBC

Require: x, x∗
S , W, F, λ, T

u′[0]← F−1(x)
for t = 0, 1, ..., T − 1 do

J̄S ← JS(u′[t])
x̃∗

S ← x∗
S + J̄Su′[t]− FS(u′[t])

u′[t + 1]← (W + λJ̄⊤
S J̄S)−1(Wu + λJ̄⊤

S x̃∗
S)

end for
return u′[T ]

Algorithm 2 stochastic_DeepBC

Require: x, x∗
S , W, F, λ, T , η

u′[0]← mode_DeepBC(x, x∗
S , W, F, λ, T )

for t = 0, 1, ..., T − 1 do
b[t] ∼ N (0, I)
u′[t+1]← u′[t]−η∇u′L(u′[t]; u, x∗

S)+
√

2η b[t]
end for
return u′[T ]

3.3 Algorithms

We rely on a penalty formulation to approximate (6) and (8) in order to account for the dirac measure and
the constraint, respectively. Specifically, we consider the following energy (loss) function with respect to u′:

L(u′; u, x∗
S) :=

n∑
i=1

di(u′
i, ui) + λ ∥FS(u′)− x∗

S∥
2
2 , (11)

where λ > 0 is a sufficiently large penalty parameter and u = F−1(x).

3.3.1 Algorithm for Stochastic DeepBC

We propose to sample counterfactuals from X∗ |x∗
S , x by leveraging Langevin Monte Carlo (Parisi, 1981),

and therefore consider the time-dependent variable U′(t), generated by the stochastic differential equation

dU′(t) = −∇u′L(U′(t); u, x∗
S)dt +

√
2 dB(t), (12)

where B(t) denotes Brownian motion. It can be shown that U′ admits a stationary distribution with
probability density

p∞(u′) ∝ exp {−L(u′; u, x∗
S)} ,

and hence we can use (12) to generate approximate samples from the desired distribution (6). In practice,
we apply an Euler-Maruyama discretization (Sauer, 2013) of (12). It is given as

U′[t + 1]← U′[t]− η∇u′L(U′[t]; u, x∗
S) +

√
2η B[t], B[t] i.i.d.∼ N (0, I), (13)

for some step size η > 0 and discrete time steps denoted by square brackets. The stationary distribution of
U′ does not depend on the initialization, which is why we initialize the sampling algorithm (13) at the mode
of U∗ |F−1(x), x∗

S , generated by mode DeepBC (see § 3.3.2). The algorithm for generating a single sample
is specified in Alg. 2.

3.3.2 Algorithm for Mode DeepBC

We approximately compute the mode of X∗ |x∗
S , x by directly minimizing the energy L(u′; u, x∗

S) (11) with
respect to u′, where u = F−1(x). Rather than performing gradient descent on the original objective, we
empirically observe that using a first-order Taylor approximation of FS at ū is beneficial when minimizing
the distance

di(u′
i, ui) = wi ∥u′

i − ui∥
2
2

with wi > 0. Specifically, we consider the approximation

FS(u′) ≈ FS(ū) + JS(ū)(u′ − ū) ,

8
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where ū is the linearization point and JS(ū) := ∇uFS(ū)⊤ denotes the Jacobian matrix. As a result of this
approximation, (11) is a convex quadratic function in u′ and can therefore be solved for its minimum û∗ in
closed form:

û∗ = (W + λJ⊤
S (ū)JS(ū))−1(Wu + λJ⊤

S (ū)x̃∗
S), (14)

where
x̃∗

S := x∗
S + JS(ū)ū− FS(ū)

and W := diag(wi) is a diagonal matrix containing the distance weights wi. By default, we set wi = 1, for
all i. A different choice of weights may be useful to encode the notion that certain noise variables are more
stable (where large wi corresponds to a high stability) due to application-specific requirements. A detailed
derivation of (14) is provided in App. A.3.

Solving (14) once, starting from the initial condition ū = u, does not accurately fulfill the constraint due
to the constraint linearization, except for special cases. We thus apply an iterative algorithm similar to the
Levenberg-Marquardt method (e.g., Moré (2006)), based on (14) that is specified in Alg. 1. Empirically, we
observe Alg. 1 to converge after much fewer iterations than gradient descent algorithms (see App. B.1 for
more implementation details and experiments).

3.4 Extensions

Categorical Variables. The main challenge presented by categorical variables is that parameterizations
which are both invertible and differentiable in Ui are not straightforward to obtain. To address this cir-
cumstance, we propose an approach that is roughly inspired by the reparameterization trick for discrete
variables (Jang et al., 2017). For K classes, we assume that xi corresponds to a one-hot vector with x

(k)
i = 1

for its realized class k and x
(l)
i = 0, for all l ̸= k. We then approximate the distribution of Xi as follows:

X
(k)
i |xpa(i) ≈ f

(k)
i (xpa(i), Ui) :=


exp

{
g(k)(xpa(i), Ui)/τ

}
exp{c/τ} +

∑K−1
l=1 exp

{
g(l)(xpa(i), Ui)/τ

} , if k ∈ {1, ..., K − 1} ,

exp{c/τ}
exp{c/τ} +

∑K−1
l=1 exp

{
g(l)(xpa(i), Ui)/τ

} , if k = K.

(15)

where c > 0 is a constant and τ > 0 is a temperature parameter. The smaller we choose τ , the better
the approximation in (15) becomes. The function g corresponds to a conditional normalizing flow that
was trained on the logits output by a classifier, obtained either by regressing on xpa(i) or ximg (such as
the MNIST image in Fig. 1). We see that fi indeed fulfills the conditions of being both invertible and
differentiable in Ui, thus enabling the application of DeepBC.

Sparsity. We further employ a variant of DeepBC that encourages sparse solutions, where sparsity is
measured in u rather than x. Specifically, we use sparse DeepBC to obtain solutions where only few
elements in u∗ differ from u, i.e.,

di(u′
i, ui) = ∥u′

i − ui∥0 ,

for all i, where ∥ · ∥0 denotes the number of nonzero elements. We apply a greedy approach similar to the
one presented in Mothilal et al. (2020), where we start by fixing an integer M > 0 for which we desire that
∥u′ − u∥0 ≤ M . We then apply DeepBC twice: In a first step, we solve for u∗ using mode DeepBC. Then,
we use the M elements of the solution vector with largest ∥u′

i − ui∥2 and apply DeepBC again only on these
elements, while fixing the others to ui.

Other distance functions. In general, any combination of differentiable distance functions di (3) can be
used when applying gradient descent-based methods for mode DeepBC.
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3.5 Properties in the Context of Counterfactual Explanations

We highlight the main contributions of our work in the context of counterfactual explanations, which we
demonstrate experimentally in Section § 4 and App. D:

1. Causal Compliance. By construction, DeepBC generates counterfactuals that adhere to causal laws
(f1, f2, ..., fn) by ensuring the preservation of these laws during the generation process: It delineates
similarity between data points x, x′ in terms of their latent representations u, u′ that correspond to the
pull-back through the causal laws as encoded by the reduced form, i.e., u = F−1(x) and u′ = F−1(x′).
This way, the laws are guaranteed to be retained in the generated counterfactuals, independent of the used
backtracking conditional. This contrasts counterfactual explanations methods (4), which do not model
the true causal mechanisms explicitly and thus may violate causal relationships (see Fig. 4 (b) and Fig. 6).

2. Versatility. DeepBC naturally supports dealing with complex causal relationships between multiple
variables that are potentially high dimensional (e.g., images or scalar attributes). This goes beyond the
instance-label setup (4) presented in § 2.4, and thus naturally supports flexible choices of antecedent
variables (Fig. 12 (a)). This contrasts counterfactual explanation methods that are typically limited to
antecedents with respect to one single output of a predictive model. DeepBC further allows for sampling
(§ 3.1.1) and varying the distance functions di in (7) to obtain counterfactuals with different properties,
such as noise preservation (Fig. 11 in App. D.1) or sparsity (Fig. 6).

3. Modularity. The structural equations or mechanisms (f1, f2, ..., fn) encoding the causal relations
between variables may change across different domains, for example, as the result of interventions or
environmental changes. It has been postulated that such changes tend to manifest sparsely, meaning that
only a few of the modules fi change at a time, while the others remain fixed (Schölkopf et al., 2021; Perry
et al., 2022). By explicitly modeling the individual structural equations (as deep generative components),
DeepBC exhibits a natural modularity. As a result, adapting to new domains only requires adjusting
those components which undergo a domain shift while all other modules can be re-used. This contrasts
with counterfactual explanation methods (4), which do not incorporate such replaceable modules and
thus require relearning the entire model to handle domain shifts.

4 Experiments

In our experiments, we contrast DeepBC with existing ideas and showcase the properties and abilities outlined
in Section § 3.5. As showing a single example per counterfactual is more illustrative than sampling multiple
examples, we mainly focus on mode DeepBC (§ 3.1.2, § 3.3.2) and refer to this variant when using the term
DeepBC from this point on. When referring to stochastic DeepBC, we always explicitly write stochastic
DeepBC . Technical details about the implementation are provided in App. B.

4.1 Morpho-MNIST

Experimental Setup. We use Morpho-MNIST, a modified version of MNIST proposed by Castro et al.
(2019), to showcase how deep backtracking contrasts with its interventional counterpart (Pawlowski et al.,
2020) and how the generated results depend on the correct causal graph (§ 2.1). The data set consists of
three variables, two continuous scalars and an MNIST image of a handwritten digit, which all correspond
to the observable variables (see § 2.1), depicted in Fig. 1. The first scalar variable T describes the thickness
and the second variable I describes the intensity of the digit. They have a non-linear relationship and are
positively correlated, as can be seen in Fig. 4 (a) (ii), where the observational density of thickness and
intensity is shown in blue. The known causal relationship between thickness and intensity is depicted in
Fig. 4 (top left); the true structural equations are listed in App. C. We train a normalizing flow for thickness
and one for intensity conditionally on thickness, and model the image given T and I via a conditional
β-VAE (Higgins et al., 2017). We here use di(u′

i, ui) = wi ∥u′
i − ui∥2

2 with wi = 1, ∀i as the default distance
function and note that the ui correspond to uT , uI and uimg.
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Figure 4: Counterfactual Scalar Variables on MorphoMNIST. The blue shaded areas indicate the
probability density of the data. (a) (i) Given a factual realization (red dot), varying the values of the
antecedent i∗ changes both u∗

I and the upstream variable u∗
T . Since interventional counterfactuals do not

perturb the latents, only the backtracking solution (grey dots) is shown. (ii) Interventional counterfactu-
als (green dots), in contrast to backtracking counterfactuals, leave t∗ unchanged when the effect variable
intensity is taken as antecendent. (iii) When treating thickness as the antecedent, counterfactual and
backtracking counterfactuals yield identical solutions. (b) For the correct graph, DeepBC counterfactuals
for antecedent thickness do not change as the backtracking conditional (corresponding distance function
shown under each subplot) is changed. When we performing DeepBC with the wrong graph (I → T ), causal
compliance as described in § 2.3 is violated.

Results. Our results in Fig. 4 (a) and Fig. 5 illustrate distinctive properties of the backtracking approach,
in comparison to interventional counterfactuals. When choosing the effect variable intensity as the an-
tecedent, backtracking preserves the causal laws and thus changes the upstream (cause) variable thickness
accordingly to match the change in intensity as shown in Fig. 4 (ii) and Fig. 5. This leads to counterfactu-
als that resemble images from the original data set, where thickness and intensity change simultaneously, as
shown in the top row of Fig. 5. DeepBC arrives at these counterfactuals, since i∗ ̸= i can either be achieved
by choosing a different u∗

I ̸= uI or by changing the upstream latent u∗
T ̸= uT (because i∗ also depends on

the realization t∗, which, in turn, depends on u∗
T ). As to minimize the sum of squared latent perturbations

11
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Figure 5: Counterfactual Morpho-MNIST Images: Backtracking vs. Interventional. DeepBC
(top row) changes intensity alongside thickness, since their causal relation is preserved. Interventional
counterfactuals (bottom row), on the contrary, solely change the intensity value, resulting in images that
violate the causal laws and can be considered out-of-distribution w.r.t. the original data set.

dT (uT , u∗
T )+dI(uI , u∗

I), DeepBC tends to change both latent variables from their factual realizations, as can
be seen in Fig. 4 (i).

In contrast, the interventional approach breaks the causal link from thickness to intensity when intensity is
the antecedent and thus always leaves thickness unchanged, see the green dots in Fig. 4 (ii). This results
in counterfactual images with high-intensity but atypically low thickness, or low intensity but typically
high thickness, as shown in the second row of Fig. 5. In terms of generating counterfactuals that yield
faithful insights into the causal relationships underlying the data, this can be considered a weakness of the
interventional approach.

However, interventional and backtracking counterfactuals can also be identical, as shown in Fig. 4 (iii),
where the thickness variable T is used as antecedent. If the antecedent is a root node of the causal graph G,
as is the case for T , the change in t∗ ̸= t cannot be traced back to any latent variable other than uT , which is
why both u∗

I = uI and u∗
Img = uImg, analogously to interventional counterfactuals. The change in the value

i∗ as a function of t∗ then solely corresponds to the causal effect of t∗, for both counterfactuals (Fig. 4 (iii)).

DeepBC depends on the reduced form that is learned from data (1), which in turn depends on the causal graph
that is assumed (§ 2.1). In Fig. 4, counterfactuals for the true graph are compared to those from a model that
was trained in the same way, with the only difference that the arrow from thickness was reversed. For the
correct causal graph (T → I), we observe that the counterfactuals for antecedent thickness must be invariant
with respect to the choice of backtracking conditional (corresponding distance functions are shown below each
subplot). This is because intensity is downstream of thickness and so (as mentioned in the previous paragraph
and described in § 2.3) it must hold that u∗

I = uI , for any choice of backtracking conditional. However, when
using the wrong causal graph (I → T ), we see that the solutions are different and causally incompliant (in
the sense of § 2.3). This is because UI is causally upstream of T in the wrong graph and thus u∗

I contributes
to the realization of the antecedent t∗, in ways that depend on the choice of the backtracking conditional.

As presented in Section § 3, DeepBC further supports sampling via stochastic DeepBC (§ 3.1.1, § 3.3.1),
which is demonstrated in Fig. 10. We also present additional experimental results for antecedent intensity
using mode DeepBC in Fig. 11, using different distance functions and weightings (§ 3.4).

4.2 CelebA

Experimental Setup. We also investigate generating counterfactual celebrity images on the CelebA data
set (Liu et al., 2015). The images have a resolution of 128 × 128 and are annotated with binary attributes
{Age, Gender, Beard, Bald}. Both the image and the attributes correspond to the observable variables. We
adopt the causal graph assumed by Yang et al. (2021b), which is shown in Fig. 6 (top right). We focus
on generating counterfactuals that manipulate the considered variables sparsely. Since our optimization
algorithms assume differentiability of F in u (§ 3.3), we preprocess the data to use the standardized logits
of classifiers that we trained to predict each attribute from the image (§ 3.4). Analogously to § 4.1, we
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Figure 6: DeepBC for CelebA. DeepBC preserves causal relationships, in contrast to other methods:
Both sparse DeepBC and the endogenous sparsity method alter gender to add a beard to the elderly woman
of the factual realization, while keeping age unchanged. Only sparse DeepBC respects the causal down-
stream: baldness increases as gender changes. In contrast, the method measuring sparsity in x leaves the
variable bald unchanged, thereby ignoring the causal relationship by which age and gender affect baldness
for a typical example.

then train a conditional normalizing flow for each attribute given its parents in the causal graph, and use a
conditional β-VAE for the image given all four attributes.

Baselines & Ablations. In addition to comparing DeepBC with the interventional approach, we also
consider the following baselines and ablations in generating sparse counterfactuals:

1) Tabular non-causal explanation: Prior work in the field of counterfactual explanations have measured
distance directly in terms of x (4), typically for tabular data such as the low-dimensional attributes of
the CelebA data set (e.g., Mothilal et al., 2020; Lang et al., 2023). In the style of these (non-causal)
methods (see (4)), we train a new regressor that predicts an attribute from all other attributes (not
including the image). We do so for each attribute separately. We then employ sparse DeepBC (§ 3.4)
on this regressor, but measure distance directly in the attributes of x, instead of measuring distance in
u. In order to generate a counterfactual image in Fig. 6, we use the conditional variational auto-encoder
that was trained for DeepBC and condition the auto-encoder on the counterfactual attribute values, while
keeping the realizations uImg from the factual example, i.e., u∗

Img = uImg.

2) Wrong causal graph: We assess how choosing a different causal graph (see Fig. 12 (d) in App. D.2)
changes the result of the counterfactual. This baseline assesses the impact of model misspecification on
the result.

We note that deep counterfactual explanation methods (10) are not applicable for rendering sparse changes,
because they cannot identify the underlying attribute variables that the counterfactuals should be sparse in.

Results. DeepBC preserves all causal relationships, in contrast to other methods: Fig. 6 shows sparse
DeepBC (sparsity threshhold M = 2, see § 3.4) and other approaches that are able to generate counterfac-
tuals that render sparse changes with respect to the considered attributes. As can be seen from the causal
graph, the elderly woman from the factual image could develop a beard by changing gender and age. Both
the sparse tabular explanation method and sparse DeepBC choose only gender (it is much more dependent
on beard than on age), leaving the value of age fixed. For sparse DeepBC, despite the latent variable uBald
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Figure 7: Modularity of DeepBC. DeepBC allows for exchanging causal mechanisms, hence allowing for
out-of-distribution counterfactuals. In this example, the learned mechanism by which gender and age affect
beard (fBeard) is exchanged for a manually constructed one where being female is highly associated with
having a beard (f̃Beard).

Figure 8: Stochastic DeepBC for CelebA. Five counterfactual image samples, generated using stochas-
tic DeepBC (§ 3.1.1, § 3.3.1). It can be seen that the approach facilitates the generation of a diverse set of
counterfactuals that fulfill the antecedent condition reliably and resemble the factual image.

not being updated, the realization of bald xBald is automatically modified as a downstream effect as encoded
by the SCM (being old and male often leads to baldness). This lies in contrast to measuring sparsity in
terms of x directly, without the causal model, where this causal relationship is not taken into account. As
a result, the factual value of bald is kept unchanged for the tabular explanation method (baseline 1).

DeepBC is inherently modular, as demonstrated in Fig. 7.5 In this figure, the mechanism by which age and
gender affect beard is manually replaced by a different one. The resulting counterfactual can be interpreted
as an out-of-distribution counterfactual, because this replaced mechanism does not correspond to the one
that was learned from the in-distribution data.

In App. D.2.1, we further demonstrate the property of DeepBC to take into account antecedents that consist
of more than a single variable. We also demonstrate quantitative experiments and their results in App. D.2.2.

5 Related Work

This section is organized into two lines of prior work. The first line encompasses methods that incorporate
causality into the field of counterfactual explanations. However, we note that the general field of coun-
terfactual explanations has made many significant advances that are not directly related to causality. For
comprehensive overviews over these developments, we refer for example to Guidotti (2022) and Verma et al.

5This contrasts with counterfactual explanation methods specifically.
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(2020). The second line discusses how deep neural networks have been used within the context of SCMs, as
to facilitate counterfactual computation.

Causality in Counterfactual Explanations. A prominent line of work raises the importance of causal-
ity to ensure actionability of counterfactual explanations in a sense that an alternative outcome could have
been achieved by performing alternative actions or interventions, without violating the remaining causal
relationships (Karimi et al., 2020; 2021). These works fundamentally differ from ours in that the considered
interventions actively break some of the causal relationships, which lies in stark contrast to the backtracking
approach (see Fig. 2). The latter seeks to trace back counterfactuals to changes in latent variables rather
than changes in causal relationships. However, this line of research is related to ours in that it argues for
respecting the causal structure and mechanisms in generating counterfactuals.

The most similar existing work to ours is that of Mahajan et al. (2019). Similarly to the present work, the
authors also employ deep generative models and measure the distance between factual and counterfactual
examples in a latent space. The most distinctive difference to our work is that Mahajan et al. (2019) impose
causal constraints via a causal proximity loss in the observable variables x that assumes additive Gaussian
noise, thereby restricting the types of causal mechanisms fi under consideration. The causal proximity loss
approach is at odds with the backtracking philosophy (Lewis, 1979) that we follow. In our approach, all
changes are traced back solely to latent variables u that are embedded into the deep causal model, such
that all causal constraints are satisfied automatically by construction (§ 3.5). This obviates the need for an
additional loss and straightforwardly allows for general noise dependencies (see App. C). At the same time,
our approach is more versatile as any subset of the given variables could be used as antecedent, whereas
the method of Mahajan et al. (2019) only supports a specific label variable (see (4)), similar to the vast
majority of counterfactual explanation methods.

Counterfactuals in Deep Structural Causal Models. The integration of deep generative components
such as normalizing flows and variational auto-encoders into SCMs can be traced back at least to the works
of Kocaoglu et al. (2018); Goudet et al. (2018); Pawlowski et al. (2020) and others. Subsequently, this
approach has been adopted in various works for computing counterfactuals in applications such as natural
language processing (Hu & Li, 2021) and bias reduction (Dash et al., 2022). Other recent works have ex-
plored the use of graph neural networks (Sanchez-Martin et al., 2022), normalizing flows (Khemakhem et al.,
2021; Javaloy et al., 2023) and diffusion probabilistic models (Sanchez & Tsaftaris, 2022) to construct SCMs.

In the present work, we employ variational auto-encoders and normalizing flows to construct deep SCMs
(as outlined in § 2.2). Nevertheless, we regard the design choices within our implementation as orthogonal
to various choices of architecture. Specifically, we believe that our approach is applicable to any deep SCM
architecture that yields a reduced form which is both (approximately) invertible and differentiable. We
believe that this is true because no further assumptions are imposed.

6 Discussion & Limitations

Identifiability of the Reduced Form. In general, neither the structural equations nor the reduced form
(see § 2.1) are identifiable from observational data (Hyvärinen et al., 2024; Karimi et al., 2020; Locatello
et al., 2019). However, under certain conditions, it has been shown that the structural equations (and
therefore the reduced form) can be identified, up to simple transformations (Javaloy et al., 2023; Nasr-
Esfahany et al., 2023). If the causal graph and/or underlying variables are not known either (i.e., we only
have access to the high-dimensional images), the problem becomes even worse because both the graph and
underlying attributes (e.g., the variables beard, gender, etc. in § 4.2) can also not be identified, in general.
Recent works have established numerous conditions under which identifiability of variables and/or graph
holds up to certain indeterminancies (e.g., Lachapelle et al., 2022; Buchholz et al., 2023; Lippe et al., 2023;
Liang et al., 2023; von Kügelgen et al., 2023a). We view solutions and results to identifying the causal graph
and/or the reduced form as complementary to our proposed method and note that the learned mechanisms
of DeepBC generally only correspond to approximations of the true mechanisms.
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Non-Invertible Generative Models. A potential avenue for future research could be to explore how
backtracking could be implemented for generative models whose latent variables cannot be inferred deter-
ministically from the factual realization, such as diffusion probabilistic models (Sohl-Dickstein et al., 2015;
Ho et al., 2020) and generative adversarial networks (Goodfellow et al., 2014), both of which are not invert-
ible in general (although approximately invertible variants like DDIMs (Song et al., 2021) do exist). One
conceivable solution might be to adapt (6)/(8) as to jointly sample/optimize over u and u′ or to employ
variational inference techniques.

Model Misspecification. The dimensionality of the latent variables for variational autoencoders plays
a role in the generated counterfactuals.6 Typically, one assumes this dimensionality to be lower than
the dimensionality of the data, motivated by the assumption that the data lives on a low-dimensional
manifold (Reizinger et al., 2022; Bonheme & Grzes, 2022; Pope et al., 2021). Another source of model
misspecification that may render DeepBC counterfactuals incorrect stems from the non-invertibility of
the true underlying mechanisms. While this invertibility is a fairly common assumption in the literature
(e.g., Pawlowski et al. (2020); Javaloy et al. (2023); Nasr-Esfahany et al. (2023); Hoyer et al. (2008)), it
does not hold in general7 and can also not be ruled out from data alone. A remedy for this restriction may
be to extend our method to non-invertible generative models, as outlined above.

Limitations of Non-Causal Counterfactual Methods. The explicit access to the reduced form of a
causal model (or at least a good approximation thereof) allows for obtaining causally compliant solutions
for varying choices of distance function (§ 3.5, § 4). We note, however, that many non-causal counterfactual
methods exist (corresponding to different variants of (4)) that do not rely on knowledge of underlying causal
variables and their causal relationships (see e.g., Guidotti (2022)). Based on theoretical results in indepen-
dent component analysis (Hyvärinen & Pajunen, 1999), we suspect that for certain types of backtracking
conditional (e.g., rotationally invariant ones) alongside further assumptions on the generative process (e.g.,
ximg is a conformal map of all latents u) and dimensionality of u, deep counterfactual explanations (10)
on ximg may be able to perform causally compliant backtracking implicitly. In the general setting, however,
our empirical results (§ 4) show that this is not the case. This can be made concrete on the Morpho-MNIST
example (§ 4.1): Neither the underlying variables intensity and thickness, nor their causal relationship
can (in general) be implicitly identified (as discussed in the first paragraph of this section), for example
by using a deep counterfactual explanation method applied to the image representation (10). In fact, the
experiments in Fig. 4 (b) clearly show that backtracking counterfactuals depend on the true causal graph
between thickness and intensity.

7 Conclusion

In this work, we presented DeepBC, a practical framework for computing backtracking counterfactuals for
deep SCMs. We compared DeepBC to interventional counterfactuals and the main formulations employed in
the field of counterfactual explanations. We found that, compared to prior work in counterfactual explana-
tions, DeepBC is: compliant with respect to the given causal model; versatile in that it supports unrestricted,
complex causal relationships; and modular in that it enables generalization to out-of-distribution settings. In
fact, DeepBC can be seen as a general method for computing counterfactuals that measures distances between
factual and counterfactual in the structured latent space of an underlying deep causal model. We empirically
demonstrated the merits of our approach in comparison to prior work, where we highlight the importance of
taking causal relationships into account. We hope that our approach will contribute to future developments
of deep explanation methods that provide more faithful insights into the data generating process.

6For normalizing flows, in contrast to variational autoencoders, the latent space must have the same dimensionality as the
observed space.

7A simple example is the assignment X ← U2.
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Reproducibility Statement

Our source code is available at https://github.com/rudolfwilliam/DeepBC. Detailed instructions for repro-
ducing all experiments are provided in the README.md file at the top level of the repository. All parameters
can be found in the config folders within the respective subfolders. In addition, we provide a detailed
description of the optimization parameters in App. B.1, training procedures in App. B.3.1 and model archi-
tectures in App. B.3.2.
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A Formalisms & Derivations

A.1 Formal Definition of Interventional and Backtracking Counterfactuals

Both kinds of counterfactuals can be computed in a three-step-procedure.

Interventional Counterfactuals

1. Abduction: Compute the distribution of U | x, given the factual realization x of X.

2. Action: Obtain an altered collection of structural assignments (f∗
1 , f∗

2 , ..., f∗
n) by setting xi ← x∗

i = f∗
i ,

for all i ∈ S. Leave all other structural assignments unmodified, i.e., f∗
j = fj , for all j /∈ S.

3. Prediction: Compute a distribution over X∗
I as the pushforward of the distribution of U | x by F∗.

Backtracking Counterfactuals

1. Cross-World Abduction: Use the antecedent x∗
S and the factual realization x to obtain p(u′, u | x∗

S , x),
using the backtracking conditional pB(u′ |u) and latent prior density p(u):

p(u′, u | x∗
S , x) = p(u′, u, x∗

S , x)
p(x∗

S , x) =
pB(u′ |u) p(u) δx(F(u))δx∗

S
(FS(u′))∫ ∫

pB(ū′ | ū) p(ū) δx(F(ū))δx∗
S
(FS(ū′)) dū dū′ ,

where δx( · ) refers to the dirac delta at x and pB( · | · ) corresponds to the backtracking conditional (§ 2.3).

2. Marginalization: Marginalize over U to obtain the density p(u′ | x∗
S , x) of the counterfactual posterior:

p(u′ | x∗
S , x) =

∫
p(u′, u | x∗

S , x) du.

3. Prediction: Compute a distribution over X∗
B by marginalizing over the counterfactual latents U∗:

p(x′ | x∗
S , x) =

∫
p(u′ | x∗

S , x)δx′(F(u′)) du′.

A.2 Formal Derivation of DeepBC

We derive (7) and (5) from the three-step-procedure of backtracking counterfactuals (see App. A.1) as follows:

1. Cross-World Abduction: By the deterministic relationship between latents and observables, we see
that

p(u′, u | x∗
S , x) = p(u′ | u, x∗

S , x) p(u | x∗
S , x) = p(u′ | u, x∗

S) p(u | x)
= p(u′ | u, x∗

S) δF−1(x)(u).

2. Marginalization: All the probability is located at F−1(x), which is why marginalization reduces to

p(u′ | x∗
S , x) = p(u′ | F−1(x), x∗

S) ∝ p(u′, x∗
S | F−1(x))

= p(x∗
S | u′) p(u′ | F−1(x)) = δx∗

S
(FS(u′))

n∏
i=1

pB
i (u′

i |F−1
i (x)), (16)

where p(u′ | x∗
S , x) corresponds to the density of U∗ | F−1(x), x∗

S .

3. Prediction: By the deterministic relationship between latents and observables, we obtain samples from
X∗ | x∗

S , x simply by sampling from U∗ | F−1(x), x∗
S and then subsequently mapping these samples through

the function F(u∗) to obtain the corresponding observables x∗:

u∗ ∼ U∗ | F−1(x), x∗
S , x∗ = F(u∗). (17)
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We observe that (17) corresponds to performing stochastic DeepBC (6).
In order to derive mode DeepBC, we restrict ourselves to the mode of the distribution of U∗ | F−1(x), x∗

S .
We recall that we assume that the backtracking conditional density p(u′ |u) has the form

pB(u′ |u) ∝ exp
{
−

n∑
i=1

di(u′
i, ui)

}
,

where di are distance functions. Then, we have

p(u′ | F−1(x), x∗
S) ∝

{
exp

{
−

∑n
i=1 di

(
u′

i, F−1
i (x)

)}
, if FS(u′) = x∗

S

0, otherwise.

By taking the logarithm and ignoring constants, we obtain

log p(u′ | F−1(x), x∗
S) =

{
−

∑n
i=1 di

(
u′

i, F−1
i (x)

)
, if FS(u′) = x∗

S

−∞, otherwise.

We conclude by noting that arg max
u′

log p(u′ | F−1(x), x∗
S), composed with F, is equivalent to (7).

A.3 Derivation of (7)

As a result of the linearization of F, L(u′; u, x∗
S) in (11) simplifies to

(u′ − u)⊤W(u′ − u) + λ||JS(u′ − u) + FS(u)− x∗
S ||22

= (u′ − u)⊤W(u′ − u) + λ||JSu′ − x̃∗
S ||22 =: L̃(u′), (18)

where x̃∗
S := x∗

S + JS(u)u−FS(u). We see that L̃(u′) is convex and differentiable with respect to u′, which
means that ∇u′L̃(u′) = 0 implies optimality of u′. To derive u′

opt, we observe that

∇u′L̃(u′) = 2(W(u′ − u) + λJ⊤
S JSu′ − λJ⊤

S x̃∗
S).

As a result, u′
opt is given by

u′
opt = (W + λJ⊤

S JS)−1(Wu + λJ⊤
S x̃∗

S).

B Implementation

B.1 Technical Details and Comments for the DeepBC Optimization Algorithm

In practice, we implement (14) as follows

û∗ = (λ−1W + J⊤
S JS)†(λ−1Wu + J⊤

S x̃∗
S), (19)

where † denotes Moore-Penrose pseudoinverse. We employ (19) rather than (14) for the reason of numerical
stability. The main computational bottleneck in Alg. 1 is the computation of the pseudoinverse (λ−1W +
J⊤

S JS)† in (19), which comes at a cost of O(#it ·dim(u)3), compared to O(#it ·dim(u)) for gradient descent.
We note, however, that the dimensionality of the latent space is typically not very large in our experiments.
The maximum dimension is 516 for CelebA, due to 4 attributes and 512-dimensional latent space of the
VAE. We also stress that JS is sparse (many 0 entries) when S covers attribute variables, because the 512-
dimensional latent vector is not upstream of any attribute. We do not run experiments where many variables
are upstream of the antecedent variable and stress that this may affect the performance of Alg. 1.

In our experiments, we find Alg. 1 to converge after few iterations, as can be seen in Fig. 9. Typically,
convergence can be expected to occur within ≈ 5 iterations, while fulfilling the constraint reliably (see
table in Fig. 9). When applying gradient descent methods like Adam instead of our approach, we observe
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that the convergence rate is sensitive to the choice of learning rate. The plot for λ = 106 shows that the
linearization method can lead to oscillations if λ is chosen too large, which likely stems from small eigenvalues
of λ−1W+J⊤

S JS (we not that J⊤
S JS is low-rank) that give rise to numerical issues. However, these oscillations

can be detected early on. Similar to Levenberg-Marquardt, we could include a small damping variable ϵ > 0
to alleviate this issue. We would then arrive at

û∗ = (λ−1W + J⊤
S JS + Iϵ)†(λ−1Wu + J⊤

S x̃∗
S).

We do not explore this possibility in the present work as we do not encounter these issues in our experiments.

Adam’s convergence highly depends on the choice of learning rate. We suspect that this is due to the poorly
conditioned Hessian that comes from choosing large λ. However, large λ is required in order to (at least
approximately) fulfill the constraint in (7) (see top row in the table of Fig. 9).

In our experiments, we always use DeepBC via constraint linearization (Alg. 1) with λ = 103 and #it = 30.
λ is chosen empirically and our choice yielded convincing results in all experiments. The choice of iteration
number is a conservative upper bound for the algorithm.

B.2 Implementation Details of Stochastic DeepBC

For both figures Fig. 10 and Fig. 8, we employ Alg. 2 with penalty parameter λ = 104 and for T = 1000
iterations. For Fig. 10, we choose step size η = 10−5 and wi = 1,∀i. For Fig. 8, we choose η = 10−4 and
wi = 1.8,∀i.

B.3 Implementation Details of the Deep Structural Causal Models

For all experiments, we use PyTorch (Paszke et al., 2019), PyTorch Lightning (Falcon, William and The
PyTorch Lightning team, 2019) and normflows (Stimper et al., 2023).

B.3.1 Training Procedures

We train all models with the following parameters:

optimizer train/val. split ratio regularization max. # epochs
Adam 0.8 early stopping 1000

Morpho-MNIST. We use the same training parameters for both normalizing flow models. Patience refers
to the number of epochs without further decrease in validation loss that early stopping regularization waits.

model batch size train batch size val. learning rate patience
Flow 64 full 10−3 2
VAE 128 256 10−6 10

CelebA. We use the same training parameters for all normalizing flow models.

model batch size train batch size val. learning rate patience
Flow 64 256 10−3 2
VAE 128 256 10−6 50

B.3.2 Network Architectures

Notation. We denote concatenations of variables by [ · , · , ..., · ]. We denote modules that are repeated n

times by a superscript (n). For instance, Linear(2)(u) is shorthand for Linear ◦ Linear (u), i.e., two linear
layers.
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Figure 9: The figures show the sum of penalty losses (11) over all points in Fig. 4 (b) for optimizing it for
200 iterations on a log10 scale. Comparison of the Adam optimizer with various learning rates in comparison
to constraint linearization (Alg. 1) for different choices of penalty parameter λ. The table shows the sum of
constraint errors ∥FS(u′)− x∗

S∥
2
2 after 200 iterations (How well the constraints are fulfilled).
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Flow Layers. In all of our experiments, we make use of common types of flow layers:

QuadraticSpline(ui) is a standard quadratic spline flow (Durkan et al., 2019).

ConstScaleShift(ui) performs a constant affine transformation with learned, but unconditional, location and
scale parameters µ and σ:

ConstScaleShift(ui) = σ · ui + µ.

ScaleShift(ui, xpa(i)) performs the same operation as ConstScaleShift(ui), but µ and σ are computed as a
function of xpa(i) via a two-layer neural network with ReLU activation functions and one-dimensional hidden
units.

Morpho-MNIST. For the thickness variable, we construct the flow as

fT (uT ) = ConstScaleShift ◦QuadraticSpline(5) (uT ).

For intensity, we use

fI(t, uI) = ConstScaleShift ◦ Sigmoid ◦QuadraticSpline(3) ◦ ScaleShift ([t, uI ]),

where Sigmoid denotes the (constant) sigmoid function.

For the MNIST image, we use a convolutional β-VAE (Higgins et al., 2017) with β = 3 and the following
encoder parameterization:

fImg(t, i, img) ≈ eImg(t, i, img)

= Linear
([

t, i,
(

Linear ◦ Pool2D ◦ (ReLU ◦ Conv2D)(4)
)

(img)
])

,

where the Conv2D layers (starting with parameters from the layer closest to the input) are parameterized by
out_channels = (8, 16, 32, 64), kernel_size = (4, 4, 4, 3), stride = (2, 2, 2, 2), padding = (1, 1, 1, 0). The
linear layers are analogously parameterized with the output dimensions out = (128, 16, 16), i.e., dim(uImg) =
32. For the decoder, we use

f−1
Img(t, i, uImg) ≈ dImg(t, i, uImg)

= TransConv2D ◦ (ReLU ◦ TransConv2D)(4) ◦ Linear ([t, i, uImg]),

where the linear layer has output dimension out = 64 and the transpose convolution layers (starting
with parameters from the layer closest to the input) are parameterized by out_channels = (64, 32, 16, 1),
kernel_size = (3, 4, 4, 4), stride = (2, 2, 2, 2), padding = (0, 1, 0, 1).

CelebA. We preprocess all attributes via separate classifiers CAttr, i.e., one individual classifier per at-
tribute. The classifier has the following architecture:

CAttr(img) = Linear ◦Dropout ◦ ReLU ◦ Linear ◦ (MaxPool2D ◦ ReLU ◦ Conv2D)(4) (img). (20)

We then standardize the output logits of CAttr, for each attribute individually.

As for MorphoMNIST, we train one normalizing flow for each attribute. For this, we use the standardized
logits from the classifiers rather than the original binary attributes from the data set. To model the non-
Gaussian distributions, we employ the following flow architecture:

fAttr(t, uAttr) = ScaleShift
([(

QuadraticSpline(10) ◦ ConstScaleShift
)

(uAttr), xpa(Attr)

])
,

For the β-VAE with β = 3, we follow a slightly different approach as for B.3.2. Rather than concatenating
the conditional variables xpa(i) at the end of the encoder, we instead create an additional channel chanattr
for each attribute attr that we concatenate to the RGB channels of the image. Specifically, we obtain the
channel by broadcasting the continuous attribute value xAttr like

chAttr = 1128×128 · xAttr,
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where we replace the (non-linear) neural network by a linear function for Bald, since the signal-to-noise ratio
is low for this variable. The reason is that Beard is the only variable that cannot be modeled well as a linear
function of its causal parents Age and Gender.

where 1128×128 is a matrix of dimensionality 128 × 128 that consists only of 1. We then feed x̃ :=
[xR, xG, xB , chBeard, chBald, chGender, chAge] ∈ R128×128×7 directly into the encoder with the following archi-
tecture (roughly inspired by Ghosh et al. (2020)):

fImg(x̃) ≈ eImg(x̃)

= Linear ◦ Pool2D ◦ (ReLU ◦ BatchNorm2D ◦ Conv2D)(6) (x̃),

where the final linear layer has output dimension out = 512 and the transpose convolution layers
(starting with parameters from the layer closest to the input) are parameterized by out_channels =
(128, 128, 128, 256, 512, 1024), kernel_size = (3, 3, 3, 3, 3, 3), stride = (2, 2, 2, 2, 2, 2), padding =
(1, 1, 1, 1, 1, 1). For the decoder, noting that xpa(Img) = [xBeard, xBald, xGender, xAge], we use

f−1
Img(xpa(Img), uImg) ≈ dImg(xpa(Img), uImg)

= TransConv2D ◦ (ReLU ◦ BatchNorm2D ◦ TransConv2D)(4) ◦ Linear ([xpa(Img), uImg]),

where the first linear layer maps to R4·1024, which is then reshaped to a feature map in R2×2×1024. The
consecutive transposed convolutional layers have the parameters out_channels = (512, 256, 128, 128, 128),
kernel_size = (3, 3, 3, 3, 3), stride = (2, 2, 2, 2, 2), padding = (1, 1, 1, 1, 1).

C Ground Truth Structural Equations in Morpho-MNIST

The structural equation for thickness T and intensity I are given as

T ← 0.5 + UT , UT ∼ Γ(10, 5)
I ← 191 · Sigmoid (0.5 · UI + 2 · T − 5) + 64, UI ∼ N (0, 1).

For details about how the MNIST images were modified as to change perceived thickness and intensity, we
refer the reader to Pawlowski et al. (2020).
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D Additional Experiments

D.1 Morpho-MNIST

Figure 10: We run Fig. 4 (b) using stochastic DeepBC to sample from the distribution over counterfactual
thickness values rather than just obtaining the mode. The box plots are generated from 400 samples per
antecedent value.

Figure 11: (a) We run Fig. 4 (b) multiple times, fixing wI = wImg = 1 and changing only wT . We
see that the backtracking solution approaches the interventional solution (see Fig. 4 (b)) as we increase
wT , thus preserving the value of thickness more as we increase weight. We note that the left-most plot
(wT = 0) corresponds to Fig. 4 (c). (b) DeepBC can be extended to more general backtracking conditionals
(corresponding distance functions plotted below each subplot) that lead to different solutions.
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D.2 CelebA

D.2.1 Additional Qualitative Experiments

Fig. 12 shows further plots related to CelebA (§ 4.2). Pannel (a) demonstrates two examples with multi-
variable antecedents. For the purpose of illustration, we also show single-variable antecedents for comparison.
Pannel (b) showcases an example where the antecedent value (x∗

Beard) is solely absorbed by uBeard, leaving all
other high-level features unchanged, similar to an interventional counterfactual. This may be explained by the
fact that many men are not bearded and thus this change does not need to be traced back to other variables.
This is not possible if the noise in the predictor that “ought to be explained” is not modeled explicitly,
such as in many counterfactual explanation methods, as shown on the right of pannel (b). Specifically, the
tabular explanation method can only generate a different prediction if it changes other variables, as can
be seen by the changed gender in the counterfactual. Pannel (c) demonstrates the result of using a wrong
graph structure, including the wrong graph employed, for the counterfactual demonstrated in Fig. 6. We
also display the factual and sparse DeepBC result with the assumed graph structure (Yang et al., 2021b) for
easier comparison. We indeed observe a large difference in the two counterfactuals.

D.2.2 Quantitative Experiments

In addition to the qualitative experiments in § 4.2 and App. D.2.1, we demonstrate quantitative experiments
where we assess three metrics over a large sample of generated counterfactuals for the different methods.
In addition to baselines 1 and 2 from the main text (§ 4.2), we assess a deep counterfactual explanation
method (10). Specifically, we use an image regressor (fŶ ), together with an unconditional image auto-encoder
(fX) to generate counterfactual explanations, as sketched in Section § 3.2. We do so for each attribute (Ŷ )
separately. This corresponds in style to how Jacob et al. (2022); Rodríguez et al. (2021) obtain counterfactual
explanations for images. This means that fX does not correspond to the reduced form of a causal model, and
so uX = f−1

X (x) corresponds to an unstructured embedding space for image data. For our experiments, we
apply DeepBC in this unstructured latent space (where neither the attributes nor their causal relationships
are modeled) and use classifiers to extract the high-level attributes from the counterfactual image. We also
use DeepBC with a wrong graph to assess the effect of model missspecification on the result. The wrong
graph used is shown in Fig. 12 (c).

Quantitative Evaluation Metrics. We evaluate three metrics: plausibility, observational closeness and
causal compliance.8 We define these as

plausible(x∗) :=
∑

A∈Attr
− log p

(
x∗

A | x∗
pa(A)

)
/n,

obs(x, x∗) :=
∑

A∈Attr
m

(
xA, x∗

A

)
/n,

causal(x, x∗) :=
∑

A∈Attr
m

(
f−1

A (xpa(A), xA), f−1
A (x∗

pa(A), x∗
A)

)
/n,

(21)

for A ∈ Attr := {Age, Beard, Gender, Bald}, m denotes a distance function and n = 4. All of the metrics
in (21) should be minimized. We restrict ourselves to the attributes for the computation of the metrics,
because comparisons of images are generally problematic due to the high dimensionality. When comparing
in terms of high-level attributes, this problem is alleviated and the metrics can be interpreted more easily.
We use the squared distance m(x, x′) = (x− x′)2 (SQU) and absolute distance m(x, x′) = |x− x′| (ABS).

The plausible metric measures the probability density of the generated counterfactual attributes, under
the data distribution. In this sense, we can think of counterfactuals with high probability density (or low
-log density) as being more plausible, i.e., being closer to the data manifold (see Karimi et al. (2022)).
The obs metric measures the distance among attributes between factual realization and counterfactual,
thereby evaluating closeness in the observation space (regardless of whether the causal laws are preserved).

8We note that counterfactuals cannot be validated, because ground truths do not exist. The purpose and quality of coun-
terfactuals depend on the application domain and a universal metric does not exist.

29



Published in Transactions on Machine Learning Research (07/2024)

Figure 12: Additional plots for CelebA. (a) Two examples of multivariable DeepBC ((i) and (ii)). This
means that not only one variable, but also multiple variables can be used as antecedent for DeepBC. (b)
DeepBC takes into account non-deterministic relationships between variables: In this setting, the removed
beard is traced back to uBeard rather than other variables. The result is highly similar to the interventional
example (plotted for comparison) and very different to the tabular counterfactual explanation method,
which must change either one of the other attributes (here gender) in order to achieve a different model
prediction. (c) Applying sparse DeepBC with a wrong graph produces a different result compared to using
the correct graph. Specifically, we observe that all factual variables change their value due to the far-reaching
downstream effects of the gender variable in the wrong graph.

This is the metric that has been optimized in the original work on counterfactual explanations (Wachter
et al., 2017). The causal metric measures the difference in exogenous variables between realization and
counterfactual, which can be interpreted as the degree of preservation of the causal mechanisms: If changes
in latent variables exceed what is minimally necessary under the assumption of retained mechanisms, it
suggests that the counterfactual does not effectively preserve the causal mechanisms. Since we do not have
access to ground truth structural equations (f1, f2, ..., fn) in CelebA, we use the ones that were trained on
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Table 1: Quantitative Evaluations for CelebA. Three considered metrics ± standard deviation of the
different baselines for 500 iterations. Lower values are better, best per metric is highlighted in bold. CE
stands for counterfactual explanation (see § 2.4). The two distance functions assessed (m) are SQU for
squared distance, and ABS for absolute distance.

Metric m Tabular CE Interventional Deep CE Wrong graph DeepBC

obs SQU 1.778 ± 1.883 0.513 ± 0.892 0.852 ± 0.691 0.690 ± 1.076 0.611 ± 0.985

ABS 0.879 ± 0.575 0.345 ± 0.317 0.720 ± 0.305 0.545 ± 0.451 0.451 ± 0.372

causal SQU 2.304 ± 2.620 0.674 ± 1.140 1.286 ± 0.983 0.504 ± 0.893 0.498 ± 0.930

ABS 1.080 ± 0.748 0.314 ± 0.265 0.887 ± 0.360 0.400 ± 0.327 0.310 ± 0.270

plausible 0.984 ± 1.424 0.374 ± 0.439 0.153 ± 0.281 0.311 ± 0.373 0.301 ± 0.358

the data set. We furthermore note that incorporating the antecedent variable into the loss is not an issue
either, because it is fixed for all methods. For the deep non-causal explanation method, we only obtain the
counterfactual image, without explicit access to the attribute variables. In order to extract those, we use
the (standardized) logits of classifiers that were trained to predict the attributes from the image.

We obtain the numbers in table Tab. 1 as follows: We sample a factual data point x = F(u), u ∼ N (0, I).
Then, we sample an attribute uniformly, i.e.

a ∼ U({age, gender, beard, bald})

and construct the corresponding antecedent as

x∗
a ∼ N (0, 1).

We then compute the counterfactual x∗ to evaluate all three loss functions (21). This process is repeated
500 times. The final reported scores are the arithmetic means over the individual metrics, including ±1std.

Results. We quantitatively assess multiple properties of sparse mode DeepBC in comparison to the baselines
in Tab. 1. While the deep counterfactual explanation method (10) achieves the best result on the plausible
score, the interventional approach preserves the attribute values the best (obs score). This is likely due to
the fact that counterfactuals on leaf nodes of the causal graph in Fig. 6 do not change the values of their
parents at all, in contrast to the other methods. Finally, as expected, DeepBC obtains the best score on
the causal metric, independent of distance function m. This can be explained due to the fact that DeepBC
always respects downstream effects (in comparison to other methods), as exemplified in Fig. 6.
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