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Abstract

Text-to-image diffusion models (T2I) use a la-001
tent representation of a text prompt to guide002
the image generation process. However, the003
encoder that produces the text representation004
is largely unexplored. We propose the DIFFU-005
SION LENS, a method for analyzing the text006
encoder of T2I models by generating images007
from its intermediate representations. Using008
the DIFFUSION LENS, we perform an extensive009
analysis of two recent T2I models. We find that010
the text encoder gradually builds prompt repre-011
sentations across multiple scenarios. Complex012
scenes describing multiple objects are com-013
posed progressively and more slowly than sim-014
ple scenes; earlier layers encode the concepts in015
the prompts without a clear interaction, which016
emerges only in later layers. Moreover, the017
retrieval of uncommon concepts requires fur-018
ther computation until a faithful representation019
of the prompt is achieved. Concepts are built020
from coarse to fine, with details being added021
until the very late layers. Overall, our findings022
provide valuable insights into the text encoder023
component in T2I pipelines.1024

1 Introduction025

The text-to-image (T2I) diffusion pipeline is made026

of two components: the text encoder and the diffu-027

sion model. The text encoder encodes a text prompt028

into a latent representation that guides the diffusion029

process. A few recent papers studied the diffu-030

sion model and the cross attention mechanism that031

connects the two components (Tang et al., 2023;032

Hertz et al., 2023; Orgad et al., 2023; Chefer et al.,033

2023a). However, to the best of our knowledge,034

while the text encoder is a key component of the035

pipeline with a large effect on image quality and036

text–image alignment (Saharia et al., 2022), the037

inner mechanisms of the text encoder have not yet038

been investigated.039

1Code and data are available at anonymized.

Figure 1: Visualization of the text encoder’s interme-
diate representations using the DIFFUSION LENS. At
each layer of the text encoder (in blue), the DIFFUSION
LENS takes the full hidden state, passes it through the
final layer norm, and feeds it into the diffusion model.

Our main question is, “What can we learn about 040

the computation process by which the text encoder 041

builds the prompt representation?”. To this end, 042

we propose the DIFFUSION LENS, a method for 043

analyzing the representations at intermediate layers 044

of the text encoder. 045

Current T2I architectures use a pre-trained trans- 046

former (Vaswani et al., 2017) as their text encoder. 047

Usually, to generate images, the input prompt is 048

passed through the text encoder and the representa- 049

tion after the final layer is used to condition the dif- 050

fusion process. The DIFFUSION LENS conditions 051

the diffusion process on intermediate representa- 052

tions of the prompt, leading to visually-coherent, 053

human-understandable images for most layers (Fig- 054

ure 1). Notably, the DIFFUSION LENS relies solely 055

on the pre-trained weights of the model and does 056

not depend on any specific task or external modules. 057

Comparing images generated from different layers, 058

we reveal patterns that emerge during the computa- 059
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tion process performed by the text encoder.060

We use the DIFFUSION LENS to perform qualita-061

tive and quantitative experiments with two popular062

T2I models – Stable Diffusion (Rombach et al.,063

2022) and Deep Floyd (StabilityAI, 2023). For064

each analysis, we either construct a specific dataset065

to isolate a particular phenomenon, or use a natu-066

rally occurring human-written image captions. We067

uncover several insights regarding the computation068

mechanism of the text encoder in the T2I pipeline.069

First, we examine the T2I model’s ability to per-070

form conceptual combination. We find that com-071

plex representations (e.g., “A yellow pickup truck072

and a pink horse”) are built incrementally: As de-073

picted in 2 (Left), images generated from represen-074

tations at early layers encode the concepts either075

separately or together, but without reflecting the076

correct relationship between the concepts, acting077

more as a “bag of concepts”. Images from later078

layers also encode the relation. We find that the079

sequence in which objects emerge during the com-080

putation process is determined by either their linear081

or their syntactic precedence in the sentence, a fac-082

tor influenced by the particular text encoder under083

consideration: Deep FLoyd’s text encoder is more084

sensitive to syntactic structure, while Stable Diffu-085

sion’s text encoder tends to reflect the linear order.086

In the second part, we investigate memory re-087

trieval. We find that faithful representations for088

familiar concepts, such as the animal “Kangeroo”,089

exist already in early layers, while unfamiliar090

concepts like the animal “Dik-dik” require a091

longer computation to generate representations092

from which the diffusion process can extract a093

faithful representation, as demonstrated in Figure 2094

(Right, top). We also find a difference in memory095

retrieval patterns between the two text encoders096

of the models: Deep FLoyd’s memory retrieval097

shows a more incremental behavior than Stable098

Diffusion’s. The differences we found suggest099

that factors such as architecture, pretraining ob-100

jective or data may influence knowledge encoding101

or language representation of the models. More-102

over, complex concepts, like specific people, are103

developed gradually with tiny details being added104

at each layer, such as hair style, eye color, and at105

the last layers, their facial features, as shown in106

Figure 2 (Right, bottom).107

Our contributions are summarized as follows:108

• We develop the DIFFUSION LENS, a new in-109

trinsic method for analyzing the intermediate110

states of the text encoder within T2I pipelines. 111

• Through rigorous experiments, we uncover 112

how complexity, commonality, and syntactic 113

structure influence the computation process of 114

text encoders. 115

Ultimately, we shed light on text encoder dynam- 116

ics, and hope this method aids the community in 117

building and evaluating T2I models. 118

2 Diffusion Lens 119

Preliminiaries. Current text-to-images diffusion 120

models comprise two main components (Saharia 121

et al., 2022; Ramesh et al., 2022): a language model 122

used as a text encoder that takes the textual prompt 123

as input and produces latent representations; and 124

a diffusion model that is conditioned on the repre- 125

sentations from the text encoder and generates an 126

image from an initial input noise. 127

The language model in the T2I pipeline is typ- 128

ically a transformer model. Transformer models 129

consist of a chain of transformer blocks, each com- 130

posed of three sub-blocks: attention, multi-layer 131

perceptron, and layer norm (Vaswani et al., 2017). 132

We denote the transformer block at layer l as Fl. 133

The input to the model is a sequence of T word 134

embeddings, denoted as h0 = [h01, . . . , h
0
T ]. Then, 135

the output of the transformer block at layer l is a 136

sequence of hidden states hl+1: 137

hl+1 = Fl(h
l) (1) 138

The output representations of the last block, L, 139

go through a final layer norm, denoted as lnf . 140

Then, they condition the image generation process 141

through cross-attention layers, resulting in an im- 142

age I . We abstract this process as: 143

I = Diff(lnf (h
L)) (2) 144

Diffusion Lens. In a T2I pipeline with a text 145

encoder of L layers, for layer l < L, we process 146

the output of block l through the final layer norm 147

(lnf ), including padding tokens. We condition the 148

diffusion process on this output, as illustrated in 149

Figure 1. Namely, we generate an image I from an 150

intermediate layer l as follows: 151

I = Diff(lnf (h
l+1)) (3) 152

The final layer norm is a crucial step in gener- 153

ating coherent images (see further details in Ap- 154

pendix A.3). It projects the representations into the 155

cross-attention embedding space without the caveat 156

of adding new information to the representation, as 157

may happen with learned projections. This process 158
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Figure 2: Insights gained from using DIFFUSION LENS. Conceptual combination (left): early layers often act
as a “bag of concepts”, lacking relational information which emerges in later layers. Memory Retrieval (right):
uncommon concepts gradually evolve over layers, taking longer to generate compared to common concepts.

has a strong potential to generate an image repre-159

senting the intermediate state of the text-encoder160

as interpreted by the diffusion model.161

3 Experimental Setup162

Models. The experiments are performed on Sta-163

ble Diffusion 2.1 (denoted SD, Rombach et al.,164

2022) and Deep Floyd (denoted DF, StabilityAI,165

2023). SD is an open-source implementation166

of latent diffusion (Rombach et al., 2022), with167

OpenCLIP-ViT/H (Ilharco et al., 2021) as the text-168

encoder. DF is another open-source implementa-169

tion of latent diffusion inspired by Saharia et al.170

(2022), with a frozen T5-XXL (Raffel et al., 2020)171

as the text encoder. We usually only report the re-172

sults on DF, unless there is a difference between173

the models, which we then discuss. The full results174

on SD are given in Appendix E.175

Data. Depending on the specific experiment, we176

either curate prompt templates and automatically177

generate a list of prompts from a collected list of178

concepts we are interested in investigating, or use179

a list of natural, handwritten prompts from COCO180

(Lin et al., 2015). The data for each experiment is181

detailed in the next sections. With each prompt, we182

generate images that are conditioned on representa-183

tions from every fourth layer in the model, which184

serves as a representative subset. This results in 7185

images for DF (which has 25 layers in total) and 6186

images for SD (which has 24). We generate each187

prompt using four random seeds.188

Evaluation. For every experiment we ask ques- 189

tions regarding the images at every layer, e.g., 190

“Does the prompt correspond to the generated im- 191

age”; or, when there are two objects in the prompt, 192

“Does object A appear in the generated image?”. 193

We describe the questions in detail for every experi- 194

ment below. We collected answers to the questions 195

by ten human annotators, with 10% overlap to mea- 196

sure inter-annotator agreement. 197

In one case, when we found that more samples 198

are needed due to high variance of the results. In 199

this case, we added additional samples annotated 200

with GPT-4V (OpenAI, 2023) to the human anno- 201

tated samples, after validating the agreement be- 202

tween the model and human annotators. Overall, 203

we collected answers to roughly 66, 560 questions, 204

37% of them by GPT-4V. For full details on the 205

annotation process, inter-annotator agreement and 206

integration with GPT-4V, refer to Appendix B. 207

We always ask the annotator if the generated 208

image matches the prompt. As we aim to analyze 209

a full representation building process, we report 210

our main findings only on successful generations 211

where the answer at the last layer is “yes”. Later, 212

we separately analyze failure cases in Section 6. 213

4 Conceptual Combination 214

T2I diffusion models are popular for their ability 215

to generalize beyond their training data, creating 216

composite concepts (Ramesh et al., 2022). Concep- 217

tual combination is the cognitive process by which 218

at least two existing basic concepts are combined 219
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Figure 3: Percentages of prompt-matching images
across various layers. As prompts become more com-
plex, DIFFUSION LENS has to utilize more layers to
extract a correct image.

to generate a new higher-order, composite concept220

(ling Wu and Barsalou, 2009). Conceptual combi-221

nation is at the core of knowledge representation,222

since it asks how the meaning of a complex phrase223

connects to its component parts (Hampton, 2013),224

e.g., “A cat in a box”. This section uses the DIFFU-225

SION LENS to trace the process by which the text226

encoder creates composite concepts.227

4.1 Building complex scenarios228

This study investigates the text encoder’s ability to229

combine concepts at varying levels of complexity.230

We utilize COCO classes (Lin et al., 2015) as a231

diverse set of prompts with readily identifiable vi-232

sual meanings. Each experiment commences with233

a simple list of objects as prompts, progressively234

increasing in complexity as outlined subsequently.235

Colors and conjunction. We compile three lists236

of prompts: (1) objects (e.g., “a dog”); (2) objects237

with color description (“a red dog”); and (3) two238

objects with color description (“a red dog and a239

white cat”). To investigate how conceptual combi-240

nation emerges throughout the layers, we annotated241

a random sample of 80 2, asking the following ques-242

tions for each layer: (a) Does object X appear in243

the image? (b) Does color X appear in the image?244

(c) Does object X appear in the correct color? X245

is either the 1st or the 2nd object, for a total of six246

questions.247

Physical relations. We compile two lists of248

prompts: (1) objects; and (2) a list where each249

prompt describes two objects and a preposition—250

either “in” or “on”—-for example, “A cat in a box”.251

As before, we sample 40 prompts. We ask three252

questions: (a-b) Does object X appear in the im-253

age? X is either object A or B, and (c) Is object A254

in / on object B?255

2In this experiment, human annotators annotated 40
prompts and GPT4-V annotated additional 40.

Figure 4: Complex prompts take more computation
blocks to emerge.

Figure 5: The proportion of images where either the
object, the colors, or both were present, and where either
the objects or the colors were accurately represented.

Results 256

The simpler the concept, the earlier it emerges. 257

Figure 3 shows the percentage of images that cor- 258

rectly generated the concepts for each category: 259

objects alone, an object and a color, and two ob- 260

jects and colors. Prompts describing a single object 261

emerge the earliest, between layers 4 and 16, while 262

prompts containing a color descriptors emerge in 263

layers 16–20. Conjunction prompts emerge last, 264

around layers 20–24. We observe a similar pattern 265

for the preposition prompts, which we describe in 266

Appendix A.1. As demonstrated in Figure 4, “A 267

cow” is fully represented by layer 8, while “A yel- 268

low dolphin” does not correctly form until layer 269

16. Lastly, “A pink snail and an orange donut” only 270

fully forms at much later layers, correctly matching 271

the objects and colors at the final layer, 24. 272

The complex representation is constructed grad- 273

ually. We continue to investigate the complex 274

prompts of two colored objects. Figure 5 aggre- 275

gates the answers to illustrate the behavior of either 276

or both objects in intermediate layers. Colors of- 277

ten emerge first, with both colors often emerging 278

in early layers. A single object is also gradually 279
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Figure 6: Complex representations are constructed grad-
ually. In some cases, objects are mixed in early repre-
sentations. In other cases, only one of the objects appear
in early representations.

represented in layers 4-12. Notably, while the col-280

ors and one of the objects appear, the object is not281

necessarily generated in the correct color. This can282

be seen in the first example in Figure 6: While283

a raccoon and a rocket do appear, and the image284

contains both blue and pink elements, the rocket285

is not blue until the final layer. In some cases, we286

observe a mixture of concepts in early layers, as287

seen in the second example of Figure 6. Similarly,288

the bottom two examples in Figure 6 show prompts289

composing two objects and a proposition. As with290

colors, we observe that individual objects appear in291

early layers but the correct relation emerges much292

later. For example, “A cake on a cloud” generates293

images of both a cake and a cloud, with different294

relations; at layer 8 the cake is decorated with a295

cloud and in layer 20 the clouds are depicted as296

frosting. The correct relation is only generated at297

the final layer. These patterns suggest that the early298

layers of the text encoder behave like a “bag of299

concepts”, with a representation for each concept300

but no clear relations between them.301

4.2 Syntactic dependencies302

To investigate the order in which different objects303

emerge, we focus on the association between syn-304

tactic depth and the appearance order of nouns.305

Specifically, we explore whether, in a dependency306

path where noun A precedes noun B, noun A ap-307

pears at earlier layers through DIFFUSION LENS.308

Using 63K prompts from COCO that we parsed309

with Stanza (Qi et al., 2020), we filtered for in-310

stances with two nouns per prompt and analyzed311

Antecedent first Antecedent second

Model 1st noun 2nd noun 1st noun 2nd noun

DF (T5) 50.8% 33.87% 35.50% 51.60%
SD (Clip) 58.4% 23.80% 54.90% 27.90%

Table 1: The percentage of prompts in each group where
the antecedent noun (either the first or the second noun
mentioned) appeared earlier.

the dependency relations between the nouns. We 312

categorized the data based on the linear position 313

of the antecedent and generated images with 40 314

random samples from each group. For each genera- 315

tion and intermediate layer, and each object X, we 316

queried whether object X appears in the image. 317

Results. First, we sometimes observe a “race” 318

between the nouns: in 11.9% of the cases in DF, the 319

object that appears in an earlier layer disappears at a 320

later layer, while the other object takes dominance. 321

See Appendix A.2 for examples. 322

Second, Table 1 presents information on the or- 323

der of generation for both models, revealing that 324

the sequence in which objects emerge during the 325

computation process is determined by either their 326

linear or their syntactic precedence, depending on 327

the particular text encoder. In DF’s T5 text en- 328

coder, slightly over half of the instances feature 329

the antecedent appearing at an earlier layer than 330

the descendant, with a smaller fraction showing 331

the opposite, and the rest indicating simultaneous 332

appearances. This holds true regardless of linear 333

order. Conversely, in SD’s Clip, the first noun tends 334

to appear before the second more frequently, irre- 335

spective of the syntactic role. 336

While the two models differ in multiple respects 337

(architecture, pretraining data, training objective, 338

and more), it is intriguing to observe that T5, 339

trained on a language modeling objective, demon- 340

strates a greater awareness of syntactic structure 341

compared to Clip – a model trained to align pairs 342

of prompts and images without a specific language 343

modeling objective. This discrepancy points to a 344

possible impact of training objectives on the mod- 345

els’ representation building process. 346

5 Memory Retrieval 347

Text-to-image diffusion models are able to re- 348

trieve information of many concepts (Ramesh et al., 349

2022), encompassing entities like notable individu- 350

als, animals, and more. Memory retrieval—the re- 351

call of stored information—involves a constructive 352

process rooted in the interactive dynamics between 353
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Figure 7: Familiar vs. unfamiliar animals across layers.
Familiar animals emerge at much earlier layers.

memory trace features and retrieval cue character-354

istics (Smelser et al., 2001). In this section, we355

leverage the DIFFUSION LENS to scrutinize the356

memory retrieval mechanism in the text encoder.357

5.1 Common and Uncommon Concepts358

We investigate whether there is a difference in the359

generation process for prompts describing common360

and uncommon concepts. To this end, we collect a361

list of familiar and unfamiliar animals.3 The clas-362

sification criterion was derived from the average363

daily view statistics of Wikipedia pages spanning364

the period from October 2022 to October 2023. In365

particular, an animal was classified as “familiar” if366

it had an average of 1500 visitors per day on its367

Wikipedia page (e.g., a kangaroo), while one hav-368

ing fewer than 800 visitors per day was classified369

as “unfamiliar”. See Appendix C for details.370

We hypothesize that as the model might have371

seen the unfamiliar animals less frequently during372

training, it might take longer to generate these ani-373

mals. Hence, we ask the annotators if the specific374

animal appears in the generated image for each375

prompt describing the animal.376

Results. As summarized in Figure 7, common377

concepts emerge early, as early as layer 8 out of378

24. In contrast, uncommon concepts gradually be-379

come apparent across the layers, with the diffusion380

model generating accurate images primarily at the381

top layers.382

5.2 Gradual Retrieval of Knowledge383

To delve deeper into the knowledge retrieval pro-384

cess, we pose additional questions for each prompt385

and generated image of unfamiliar animals: (a) Is386

there an animal in the image? (b) Does the image387

feature an X, where X represents the informal “cat-388

egory” of the animal, like “mammal”, “bird”, etc.?389

3We encountered objects or individuals that were unfamil-
iar, but the models struggled to generate them effectively.

Figure 8: Subset of layers encoding different features in
the process of unfamiliar animal generation.

Figure 9: The difference between DF and SD in knowl-
edge retrieval of animals.

4 (c) Does the image depict the exact animal in the 390

prompt? 391

Results. Figure 8 illustrates incremental knowl- 392

edge extraction, beginning with a general animal, 393

progressing to a more specific animal within the 394

same category, and reaching a representation of the 395

particular animal mentioned in the prompt. 396

Though the plot for SD reveals a similar pattern 397

(Appendix E), qualitative analysis reveals distinct 398

knowledge retrieval patterns between the two mod- 399

els: In the case of DF’s T5, knowledge retrieval is 400

gradual, unfolding as computation progresses (Fig- 401

ure 9). Layers generate animal, mammal, and ulti- 402

mately construct a representation of the specific an- 403

imal. In contrast, SD’s text encoder, Clip, does not 404

exhibit a similar progression, as retrieval appears 405

less incremental. The model seems to establish 406

the representation in a less gradual manner: The 407

first layer with a meaningful image already closely 408

resembles the final animal, with subsequent layers 409

4We chose to use an informal taxonomy because the an-
imal kingdom taxonomy is a complex subject that is under
research and debate, and its terms are not familiar to the gen-
eral population – which suggests that it also less present in the
T2I training data.
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Figure 10: Intricate details are refined gradually.

primarily refining features. These differences echo410

the syntactic findings in Section 4.2. They suggest411

that pretraining objectives, data, or model archi-412

tecture might influence information organization,413

leading to distinct memory retrieval patterns.414

5.3 Gradual refinement of features415

As the computation progresses, both accuracy and416

realistic representation significantly improve with417

refining details at each step. This progression is ev-418

ident in Figure 10 (top row), as seen in the gradual419

refinement of the “Tarsier” image. A similar trend420

occurs in the representation construction of human421

subjects, with facial features undergoing refine-422

ment for a more faithful portrayal (Figure 10, rows423

2+3). To systematically assess this phenomenon,424

we compiled a list of 30 celebrities, using DIF-425

FUSION LENS to generate images from intermedi-426

ate representations in the text encoder. For each427

prompt and generated image, we ask: (a) Is there428

a person in the image? (b) Does the person align429

with the celeberity’s (self-identified) gender? (c)430

Does the person exhibit the celebrity’s style (hair,431

clothing, etc.)? (d) Is the individual in the image432

distinctly recognizable as the specified celebrity433

based on facial features?434

Results. Figure 11 quantifies the step-by-step435

construction of the representation, culminating in436

its maximum resemblance to the celebrity. The437

integration of distinct features follows a hierarchi-438

cal pattern, progressing from broad characteristics439

(such as the overall human form) to finer details440

(specifically, facial features), which become evi-441

dent only in the final layers.442

Discussion The results in this section regrad-443

ing the gradual retrieval and refinement of knowl-444

Figure 11: The distribution of feature granularity across
layers in generated images.

Figure 12: Many cases display successful generations
from earlier layers before turning into failures.

edge suggest an alternative perspective on how 445

knowledge is encoded in language models. This 446

viewpoint is different from recent work suggesting 447

that models utilize a key–value memory structure, 448

where facts are local to specific layers (Geva et al., 449

2022; Meng et al., 2022). Our results indicate that 450

some information is distributed across layers, al- 451

lowing for a gradual retrieval of knowledge rather 452

than a retrieval at a particular point in the model. 453

This aligns with earlier research proposing hierar- 454

chical representations in vision models (Zeiler and 455

Fergus, 2014; Zhou et al., 2014; Bau et al., 2017). 456

6 Error Analysis 457

In the previous sections, we analyzed the compu- 458

tation process of the text encoder in success cases. 459

In this section we briefly discuss insights about the 460

computation patterns in failure cases, that is, cases 461

where the image generated from the final layer does 462

not faithfully capture the prompt. Figure 12 shows 463

the percentage of failures for each experiment that 464

had over 10 failures. We split failures to two types: 465

complete failures when no layer generated a correct 466

image through DIFFUSION LENS, and cases when 467

at least one layer generated a correct image, but the 468

top layer led to a failure (success then failure). 469

7



Figure 13: DIFFUSION LENS reveals a correct image
generation at a middle layer, while the final image fails
to fully represent the prompt.

Generally, the percentage of failure cases (to-470

tal height of each bar) is low, from 10% to 25%471

for most categories. Prompts about two colored472

objects have a higher failure rate. Importantly, in473

many failure cases, the representations in earlier474

layers lead to a correct generation via our method.475

Notably, in simple prompts (relations and colored476

objects), about 80% of the failures had successful477

generations at earlier layers. See Figure 13 for an478

example. Once more constraints are imposed (two479

colored objects), we have a lower rate of early suc-480

cess. Finally, for knowledge-related tasks (famous481

people, uncommon animals), there are very few482

cases of early success turned to failure. Presum-483

ably, when the model fails, it is mostly because it484

does not encode the information at all.485

7 Related Work486

Interpreting language models. A wide range of487

work has analyzed language model internals. We488

briefly mention a few directions and refer to ex-489

isting surveys (Belinkov and Glass, 2019; Rogers490

et al., 2020; Madsen et al., 2022). Many studies em-491

ploy an auxiliary model, like a probing classifier, to492

analyze whether internal representations correlate493

with external properties (e.g., Ettinger et al., 2016;494

Hupkes et al., 2018). However, this approach suf-495

fers from various flaws (Belinkov, 2022). Others496

employ interventions in representations, measuring497

how they impact a model’s prediction (e.g., Vig498

et al., 2020; Elazar et al., 2021; Meng et al., 2022).499

Interventions allow making powerful claims but500

are tricky to design (Zhang and Nanda, 2023) and501

often restricted to narrow use cases.502

Another influential approach is the Logit Lens503

(nostalgebraist, 2020), which projects intermediate504

representations of language models onto a proba-505

bility distribution over the vocabulary space. This506

projection captures the internal computation, re-507

flecting the model’s gradual estimation of likely508

next words and the transfer of information across509

modules (Geva et al., 2022; Katz and Belinkov,510

2023; Pal et al., 2023). Recent extensions to the 511

Logit Lens learn a projection to aid with the rep- 512

resentational drift between the intermediate layers 513

and the final output, or to shortcut calculations 514

(Belrose et al., 2023; Din et al., 2023). This line 515

of work has focused on auto-regressive decoder 516

language models. Inspired by this idea, we propose 517

to use the diffusion module in T2I pipelines to vi- 518

sualize intermediate representations of the prompt 519

and thus reveal the computation process in the text 520

encoder. This approach renders an intermediate 521

layer directly observable. 522

Interpreting vision–language models. Com- 523

pared to unimodal models, research on inter- 524

pretability in multimodal vision–language mod- 525

els is rather limited. Goh et al. (2021) found 526

multi-modal neurons responding to specific con- 527

cepts in CLIP (Radford et al., 2021), Gandelsman 528

et al. (2023) decomposed CLIP’s image representa- 529

tions into text-based characteristics, and Tang et al. 530

(2023) analyzed the influence of input words on 531

generated images via cross-attention layers in T2I 532

pipelines. Chefer et al. (2023b) decomposed textual 533

concepts, focusing on the diffusion component. In 534

contrast, our work investigates the under-explored 535

text encoder in T2T pipelines. 536

8 Discussion and Conclusion 537

This paper introduces DIFFUSION LENS, a novel 538

method to analyze language models within T2I 539

pipelines. Our approach deconstructs the T2I 540

pipeline by examining specific sub-block outputs, 541

offering a deeper insight into language-to-visual 542

concept translation. We showcased the method’s 543

potential by analyzing two open-source text en- 544

coders with a pre-trained image diffusion model 545

across diverse topics. 546

While we focused on the overall output of each 547

block, our approach paves the way for visualizing 548

individual sub-block outputs. Our application cen- 549

tered on T2I pipeline text encoders. Extending it to 550

other language models, while non-trivial, offers a 551

promising direction for future research. Our exper- 552

iments also showed differing knowledge extraction 553

patterns among text encoders, prompting further ex- 554

ploration on the impact of architecture, pretraining 555

data, and objectives. 556

We hope that our method will be a valuable 557

tool for the community. Integrating DIFFUSION 558

LENS into the development and research pipelines 559

offers new opportunities for exploring broader prac- 560

tical questions, such as biases and failure cases. 561
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Limitations562

In addition to the limitations we stated in the con-563

clusion, our analysis was restricted due to the lim-564

ited availability of open-source models. Future565

work will benefit from increased diversity models.566

Moreover, the set of prompts used in most of our ex-567

periments were automatically generated. However,568

this limitation provided an opportunity to meticu-569

lously isolate and investigate specific effects.570

Ethics Statement571

In this work, our primary objective is to enhance the572

transparency of text-to-image models. While not573

the focus our analyses, the DIFFUSION LENShas574

the potential to unveil biases within these models.575

We anticipate that our work will contribute posi-576

tively to the ongoing discourse on ethical practices577

in text-to-image models. At present, we do not578

foresee major ethical concerns arising from our579

methodology.580
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A Additional Results830

A.1 Prepositions831

We explore prepositions in prompts. We investigate832

how prompts, including certain relations, affect833

the generation process. These prompts are com-834

plex, challenging the compositional understanding835

of the T2I model. In particular, we examine the836

prepositions "on" and "in". Figure 14 illustrates837

the percentage of images that correctly generated838

the concepts for two categories: objects alone and839

objects with specified relation. Our findings reveal840

that prompts involving only one of the objects tend841

to perform well in the early layers of the model.842

However, more intricate prompts, including both843

objects and a relational context, emerge only in844

later layers of the model.845

Figure 14: The proportion of images where either the
objects, or objects with prepositions, were accurately
represented.

A.2 Race between objects846

Figure 16 presents examples of “race” between the847

objects in the prompts: one object appears first, and848

then disappears at a later layer to make room for849

the other object, before finally emerging again in850

the top layers.851

A.3 Final layer norm necessity852

In the DIFFUSION LENS process, we pass the out-853

put of block l through the last layer norm lnf . How-854

ever, we examine the option to bypass the lnf layer855

and directly connect to the components of the dif-856

fusion model. As Figure 17 demonstrates, images857

generated without the final layer normalization are858

meaningless. The final layer norm thus plays a859

crucial role in generating meaningful images. It860

highlights the necessity of the lnf layer within DIF-861

FUSION LENSpipeline. A similar finding has been862

observed in the LogitLens (nostalgebraist, 2020)863

and TunedLens (Belrose et al., 2023).864

B Annotation Process 865

The results in this paper rely on human annota- 866

tors to determine the presence of different concepts 867

in the generated images. We employed a team of 868

ten professional full-time annotators using the Dat- 869

aloop platform , in accordance with institutional 870

regulations. The annotator teams was based in In- 871

dia, and were paid a rate of 8 USD per hour, in 872

accordance with laws in India. 873

Each annotator received the instructions in Fig- 874

ure 18. The annotators were given the instruction 875

to be liberal towards a positive answer. We manu- 876

ally validated each question, making sure the con- 877

cepts in the question are not abstract (e.g., “beauti- 878

ful”), and that the answer should be clear for each 879

case. For each experiment, we duplicate 10% of the 880

images, and ask an additional annotator the same 881

questions, used to calculate inter annotator agree- 882

ment. For experiments containing rare animals and 883

celebrities, annotators were given reference images 884

from google. 885

We provide our main results based on the hu- 886

man annotations. We chose to use human anno- 887

tations since the existing automatic methods are 888

limited. CLIP as an image classifier was shown to 889

fail when required to explicitly bind attributes to 890

objects (Ramesh et al., 2022; Yamada et al., 2022), 891

and exploratory experiments we performed with 892

BLIP (Li et al., 2022) showed similar issues. 893

However, we found a high agreement between 894

GPT-4V and the human annotators on most tasks 895

and questions, as shown in Table 2. For one ex- 896

periment – two colored objects – we found a high 897

variance using the human annotations and thus ex- 898

tended it to further annotations using GPT4-V. 899

C Animals Experiment: Implementation 900

Details 901

C.1 Animal classes used 902

To measure the gradual knowledge retrieval, one 903

of the questions we ask in the experiment on un- 904

familiar animals is whether the image contains an 905

animal of class X, where we vary X according to 906

an informal, popular taxonomy that the specific 907

animal belongs to. Note that although it does not 908

faithfully represent the scientific view on the ani- 909

mals we generate, it is more suitable to observe a 910

model that was trained on data that was taken from 911

the wide internet. 912
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Figure 15: Example generations from all layers

Figure 16: A sequential “race” between two objects
in the sentence, where one initially appears before the
other, only to subsequently vanish and make room for
the latter object.

C.2 The full list of animals913

Familiar animals: Beagle, German Shepherd,914

Labrador Retriever, Dachshund, Bulldog, Ragdoll,915

Kangaroo, Chicken, Owl, Eagle, Salmon, Catfish,916

Cod, Orca, Komodo dragon, King cobra, Platypus,917

Narwhal, Ostrich, cougar.918

Unfamiliar animals: Aye-aye, Dik-dik, Tarsier,919

Figure 17: Example generations from DIFFUSION
LENS with and without the final layer norm.

Gerenuk, Jerboa, Babirusa, Saola, Galago, Vervet, 920

guppy, Celestial Pearl Danio, Herring, Pike, Wall- 921

eye, Grebe, Spoonbill, Bee-eater, Taipan, ,Copper- 922

head, Anilius, Skink, Bearded Dragon, Ladybug, 923

Scarab, Blue morpho, Cloudless sulphur, Giant 924

anteater 925

D Implementation Details 926

We implemented our code using Pytorch (Paszke 927

et al., 2019) and Huggingface libraries (Wolf et al., 928

2020; von Platen et al., 2022). For each experi- 929
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Inter annotator agreements Agreements with automatic annotations

Question type #annotations f1 cohen’s kappa #annotations f1 cohen’s kappa

One object presence (out of 2) 416 72.5% 48.2% 1381 80.6% 63.8%
Relation correct 208 73.7% 61.4% 1319 81.3% 70.1%
One Color presence 208 76.9% 60.7% 1671 85.3% 85.9%
Familiar animals presence 52 94.7% 87.2% 789 85.5% 67.2%
Unfamiliar animals presence 104 84.6% 81.3% 1019 84.3% 72.4%
Unfamiliar animals class presence 260 73.2% 59.5% 1012 91.2% 81.3%
Syntactic structures correct (coco) 357 80.6% 69.7% 2962 80.0% 59.5%

Table 2: A table of agreement between human annotators (left) and between human and automatic annotations
averaged over both models. Overall, we see a high agreement between the human annotators and between the human
and automatic annotations.For human agreement - the lowest Kappa score is for one object presence, probably due
to the ambiguity in early layers, where there is a mix of both objects. For example in fig 5, second line, layer 12.

On this project, you will have to annotate sets of 50 images.
For each set, you will have a yes or no question. The
questions are written at the start of each task name. They
end with a “?”. The latter part of the name is in “[ ]” and
is not relevant for the questions. For convenience, we start
the question with the statement itself, therefore “dog in
the image?” means “Is there a dog in the image?” The
questions vary from simple questions like “Is there a dog in
the image?” to more complicated questions like “Is there a
red bird on a green boat?”. The images are generated by AI,
and might not be realistic. You should answer if the image
might be interpreted as the question asks. Examples at the
end of this file.

Figure 18: Annotation guidelines.

ment, we generated four images (different seeds)930

for each layer, and we report the standard divi-931

sion over the seeds in all plots. We use Stable932

Diffusion v2-1 (CreativeML Open RAIL++-M Li-933

cense) (Rombach et al., 2022) and Deep Floyd934

(DeepFloyd-IF-License) (StabilityAI, 2023). We935

ran the experiments on the following GPUs: Nvidia936

A40, RTX 6000 Ada Generation, RTX A4000 and937

GeForce RTX 2080 Ti.938

Our code is available in the supplementary mate-939

rial.940

D.1 Dependency parsing implementation941

We conducted a syntactic structure analysis using942

Stanza (Qi et al., 2020), a Python package. Stanza943

provides tools for obtaining parts of speech (POS)944

and syntactic structure dependency parse. To per-945

form this analysis, we executed a Stanza pipeline946

designed for English. This pipeline returns the to-947

kenized form, POS, lemmatization, and syntactic948

dependency parsing for a given prompt. We didn’t949

customize any additional parameters and utilized950

the default settings during the analysis.951

E Results on Stable Diffusion 952

To complement the results in the main paper, we 953

provide Figures A.1, 19–24 from Stable Diffusion. 954

Figure 19: Many cases display successful generations
from earlier layers before turning into failures.
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Figure 20: The percentage of images, from each cate-
gory, for which the prompt matches the generated im-
age, across different intermediate layers. As the prompt
is more complex, it takes more layers for DIFFUSION
LENS to be able to extract a correct image.

Figure 21: The proportion of images where either the
object, the colors, or both were present, and where either
the objects or the colors were accurately represented.

Figure 22: Familiar vs. unfamiliar animals across layers.
Familiar animals emerge in much earlier layers.

Figure 23: Subset of layers encoding different features
in the process of unfamiliar animal generation.

Figure 24: The distribution of feature granularity across
layers in generated images.

Figure 25: The proportion of images where either the
objects, or objects with prepositions, were accurately
represented.
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