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ABSTRACT

High fidelity interactions between game characters and gaseous
effects like smoke, fire and explosions are often neglected in real-
time applications due to the high computational cost of simulating
fluids. In addition, the pose of game characters is only known at run-
time as it depends on input from the user. Thus simulation-suitable
representations of surface geometry must be generated on the fly.
Common approaches like conversion into signed distance fields are
not feasible for high-resolution geometry due to the computational
cost and the amount of memory required on the GPU to store these
fields. We present a purely vortex particle based fluid model for
games which is capable of resolving the collision between fluids and
complex objects such as moving game characters in real time. To
handle collisions, we use a collocation method which only require a
set of disassociated particles stuck to collision surfaces. Contrary
to most other vorticity based methods, we use a simple inversion
free approach to obtain the collision velocity field on surfaces while
at the same time avoiding the expensive pressure projection step
associated with pressure based fluid solvers.

Index Terms: Game physics—Simulation—Fluids—Real-time
graphics; Animation—Visualization—Game characters—Vortex
method

1 INTRODUCTION

Real-time simulation of fluids is a valuable addition to interactive
applications such as games or virtual reality. While smoke, fire and
explosions are key components in immersive gaming experiences,
physically correct simulation of fluids is usually not feasible at
high-resolution. Smoke and explosions are sometimes pre-simulated
in high-resolution and played back in real-time but this approach
precludes any interactions with characters which depends on
the input from the user and can only be known at run-time. To
represent interactions with fluids in a believable way, a detailed
representation of the fluid velocity field close to the character
surface is needed to match the high-resolution geometric models
used for characters in modern games. For game applications, vortex
particle methods provide an interesting alternative to the more
common velocity-pressure based representation of fluid state where
the iterative pressure projection step constitutes a computational
bottleneck for real-time applications.

By evolving a vorticity field discretized by particles, no
pressure projection is needed and the divergence free velocity
field can be derived by using the Biot-Savart law. In addition,
vortex methods generate unbounded continuous solutions. It
also allows for easy adaptation to the different applications for
which fluid simulations may be required in games. Another use
case besides smoke and fire, is wind systems. Our proposed
method is useful here as well since the computational cost scales
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Figure 1: Our vortex method simulates the interaction of a moving
character and fluids in real-time. A typical game effect is shown of a
moving game character being hit by a plume of fire.

with the number of velocity evaluations. Thus a few leaves
being moved in a wind field does not require the calculation of
the fluid velocity field throughout the domain which would be
required for prevalent methods based on pressure projection. Pure
vortex methods have been used for free-surface liquid simulation
[4] although such methods are generally not faster than their
counterparts based on pressure projection. In this work, we limit
fluid simulation to mean gaseous fluids for which vortex methods
are highly suitable, while other methods are better suited for water
which is of course an equally important component in virtual worlds.

Vortex methods allow for detailed real-time simulation in the
absence of kinematic boundary conditions, but it is not possible
to define the boundary conditions in terms of vorticity. Boundary
element methods are common approaches for enforcing kinematic
boundary conditions in vorticity based fluid methods but they are
computationally expensive and the methods used in most vortex
codes like [24] and [6] to obtain a vortex sheet strength across
collision surfaces are not very suitable for real-time applications
as they require surface integration and inversion of a coupling
matrix. Instead, we use a collocation method inspired by the
method of [5]. This cheap collision method allows for believable
transfer of complex character motion into the surrounding fluid. The
influences of moving surfaces are taken into account by scattering
source points on collision surfaces and tuning their attributes based
on the relative velocity of the surface and the surrounding fluid.
As a surface only method, it is decoupled from the underlying
high-resolution geometry and only requires source points scattered
across the surface with an area attribute and a normal. In our
method, these source points are attached to the character rig and
moved with the underlying surface. We use the continuous velocity
field of the vortex particles to adaptively sample the fluid velocity
field on the surface at the required resolution. Therefore the
method is effectively decoupled from the underlying geometry and
independent of any collision detection steps on the high-resolution
mesh.

To further enhance realism, we account for additional rotation



introduced in the thin viscous boundary layer at the collision
interface by initialization new vortex particles where the tangential
velocity of the fluid tends to zero due to shear stresses [2]. The
continuous velocity fields generated by the vortex particles allow
many different kinds of fluid representations. Here we choose to
visualize the effect with large numbers of passive tracer particles
advected in the ambient velocity field. To make this feasible,
we first evaluate the velocity field on an intermediate scratchpad
grid and then broadcast the field to the tracer particles using
linear interpolation. Some examples of our method are shown in
Figure 1 where a moving game character is being hit by a plume.
Figure 2, shows a similar effect where turbulence is generated
solely at the collision interface leading to intricate swirly fluid
motion downstream. With small altercations to the method, and
the introduction of a density attribute on the scratchpad grid,
it is also possible to represent fluids as volumetric effects. An
extra ray-marching step in then required in the pixel shader to
render the effect but there is no need for millions of velocity
interpolations which is the most expensive part of the particle based
fluid representation.

The time allocated to physics update in most AAA games is
limited, thus a real-time capable fluid solver is not necessarily
efficient enough for a game. Feasible physics update times are
typically in the order of ∼ 500 µs for effects used in many places
throughout the scene. Our method allows high-resolution simulation
times of approximately 1−2 ms. Thus, our method is viable though
should be used sparingly.

Most time is spent interpolating and advecting the velocity field
on the tracer particles where we typically use several millions to
render the effect as a continuous looking fluid. Rendering millions
of particles is the most time consuming part. For the examples
shown here, we use 2.7 · 106 million tracer particles unless states
otherwise and the entire game simulation runs at ∼ 250 FPS on a
gaming laptop with a RTX2080 Max-Q GPU.

The main contributions in this work are:

• A purely vortex based particle method for games. Our method
simulates intricate turbulence generation without the need for
any pressure projection steps.

• The method does not rely on an underlying regular data struc-
ture and creates continuous velocity fields. The fields can be
sampled adaptively depending on the computational budget.
Fluids can be represented as particles, in volumes or in textures
without affecting the underlying dynamics.

• We adopt a simple approach for handling complex boundaries
and infer an appropriate image vorticity field across surfaces
without the need for matrix inversion steps.

• A computationally light-weight density representation based
on tracer particles which are advected passively in the velocity
field and otherwise decoupled from the physics update step.

2 RELATED WORK

Fluid simulation in graphics is a vast field having been developed
over the years to facilitate increased fidelity and efficiency. Text-
books like [9] or [29] give a good introduction to many of these
contributions. In this work, we primarily focuses on the subset of
methods specifically intended for real-time applications. Simulation
techniques using regular grids as the underlying discretization of
space are widely based on the work of [28]. These methods lend
themselves particularly well to GPU architectures. Particle based
methods like those developed by [18] and [31] have also been used

Figure 2: A stream of tracer particles is emitted from the top. The
stream hits an animating character. Vortex particles are initialized
in the collision boundary layer. The amount of vortex shedding is
increased from left to right to achieve different looks.

to simulate fluids in real time while simulations on unstructured
grids like [20] and surface-only methods like those used by [13] are
particularly useful for accurate handling of interfaces and collisions.
Sparse data structures like the tall-grid cells used by [11], octrees
employed by [1] and VDB volumes [21] have accelerated fluid simu-
lation even further by limiting the high-resolution simulation domain
to areas where it is needed such as at a free surface or near obstacles.
The above mentioned methods facilitate real-time fluid simulation
but current methods must be accelerated even further to allow for
practical use in large game worlds where fluid simulation can only
occupy a fraction of the available computational budget.

2.1 Vortex sheets, particles and filaments
Vortex methods commonly use particles, filaments and sheets to
discretize the vorticity field from which a divergence free velocity
field can be derived. While the state of a fluid can be evolved solely
on the basis of a vorticity field, vortex particles have also been used
to enrich low-resolution fluid simulations as shown by [27]. [23]
and [25] used vortex particles for procedural turbulence advection
in an underlying velocity based fluid solver. Vortex particles provide
a cheap way of introducing details in a fluid simulation, and they
are good candidates for game applications where particle systems
are used frequently. However, the kinematic boundary conditions
required on collision surfaces are not trivial to enforce. Pure vortex
particle methods like those described by [24] require inversion of
a pseudo-inverse collision matrix for each time-step making this
approach unsuitable for real-time applications. Evaluation of the
velocity field requires querying all vortex particles in the simulation
whereas our proposed method simplifies this by using a clamped
vortex kernel. Hybrid grid and particle methods like [33] have been
proposed which are efficient for fast computation of long-range
interactions on an underlying grid, while using particle-particle
interactions to model short-range interactions. Methods such as
the fast multipole method by [15] can accelerate the expensive
summation from O⃗(NM) to O⃗(N +M) for N vortex particles and
M locations. The FMM adds a large computational overhead and
only outperforms direct summation for large particle counts where
N > 100000 [33] which is far above the vortex particle counts used
in this work.

Vortex sheets are boundary element methods used to evolve the
vorticity field on interfaces such as the interface between collision



objects and fluids, and the interfaces between fluids. [10] used a
vortex sheet method to model smoke plumes in linear time using the
fast multipole method. [26] simulated smoke plumes by combining
a vortex sheet method with an Eulerian grid solver to handle colli-
sions. Closely related methods like [13] were applied for surface
only liquids. Vortex filament methods use closed loops of vorticity
to represent the state of fluids. This approach is suitable for gaseous
plumes. [32], [30] and [7] demonstrated how these methods pro-
vide a very cheap way of creating the intricate dynamics of smoke
while [30] used vortex filaments and filament shredding around solid
objects to handle collisions with objects. Vortex shredding entails
seeding of vorticity in the collision boundary layer, and we adopt this
approach to enrich fluid collisions with characters. Vortex filaments
and sheets represent a vorticity field that is divergence free by de-
fault, and vortex stretching is handled trivially. Unfortunately, both
methods require re-discretization as simulations evolve in order to
insure fidelity. This also entails that the number of vortex elements
may grow beyond what is feasible for real-time scenarios.

2.2 Fast particle based fluid approaches
Particle-based physics solvers are used abundantly in games. [19]
presented a unified particle based framework for real-time physics
based on position based dynamics (PBD). PBD is also applicable to
fluid simulation as shown by [18]. While PBD is a generalizeable
and robust simulation method, it can be expensive for detailed simu-
lations where large quantities of particles are required. In addition,
sufficient iterations are required to ensure incompressible velocity
fields and stable simulations. Vortex methods are difficult to ex-
tend beyond their applications for gaseous fluid phenomena whereas
PBD trivially handles free surfaces. On the other hand, a vortex
particle codes only need to advect a small number of vortex particles
to generate complex turbulence patterns. The same level of detail
is generally not feasible for PBD with the current computational
budget of games.

2.3 Fast sparse grid-based approaches
The regular data structures used in grid-based fluid solvers lend
themselves well to GPU implementations. Fluid solvers based on
the original work by [28] like [16] discretizes collision objects on
the simulation grid which entails that increased collision fidelity
requires a global refinement of the simulation domain. [8] proposed
a variational frame-work to address this issue while the advent of
sparse data structures like tall cells by [11], or octrees by [3], and
recently GPU-optimized VDB volumes by [22] allows for a local
discretizations in the vicinity of free surfaces and collision objects.
While in particular nanoVDB’s presented by [22] can simulate fluids
in unprecedented detail, they still require a volumetric representation
of collision geometry. For the deforming character surface, this
requires access to the character mesh at run-time and an update of
the VDB data-structure. Our method uses a surface-only approach
and only needs to update the position and orientations of the discrete
source points scattered across the mesh.

3 METHOD

In-compressible fluids are governed by the mass conservation
relation: ∇ · v⃗ and the Navier-Stokes equation for conservation of
momentum:

∂ v⃗(⃗x, t)
∂ t

+(⃗v ·∇) v⃗ =
1
ρ

(
f⃗ +µ∇

2⃗v−∇p
)

(1)

where p is the pressure, ρ is the density, which is assumed to be
constant, and f⃗ are external forces like gravity and baroclinity and
µ is the dynamic viscosity. It is possible to define an alternative

Figure 3: By measuring the free-space velocity field at collocation
points on geometry surfaces, we create an accurate divergence free
collision velocity. Here, a stream of particles moves over a simple
sphere. The accuracy of the collision field is dependent on the collo-
cation point density. We found that the collision method can generate
accurate collision fields as demonstrated on the simple sphere. To
control the look of the smoke, We distribute vortex particles on the
surface and shred them into the ambient flow.

version of the momentum equations based on vorticity, the vector
field describing the rotation of fluid:

ω⃗ = ∇× v⃗ (2)

Taking the curl of the momentum equation 1 yields a new equation
for the time evolution of vorticity:

∂ω⃗ (⃗x, t)
∂ t

+(⃗v ·∇) ω⃗ +(ω⃗ ·∇) v⃗ =
1
ρ

(
∇× f⃗ +µ∇

2
ω

)
. (3)

The vorticity field can be evolved in time according to equation 3
without the need for any pressure projection steps. A fractional step
method is commonly employed for time integration. In the frac-
tional step method, the vorticity field is stepped in time assuming
no kinematic boundary conditions. The initial free-space solution is
then corrected for collisions by submerging collision objects into the
initial unperturbed field. The relative velocity between the objects
and the ambient fluids allows us to calculate a superimposed colli-
sion field from objects in the scene such that the normal component
of velocity is minimized at the surface. Vortex particle methods are
Lagrangian in nature and handle advection of vorticity ((⃗v ·∇)ω⃗)
trivially by storing vorticity on entities that move in the ambient flow.
The third term on the left ((ω⃗ ·∇)⃗v) accounts for vortex stretching
and is a feature of 3D fluids only since the vorticity vector is always
perpendicular to the velocity field for 2D fluids. Vortex stretching
transfers large scale rotation into smaller vorticles. In vortex particle
methods, vortex stretching requires special attention (an estimate
of ∇⃗v) and diffusion is required to insure stability. For game ap-
plications, stretch and diffusion could be neglected without very
noticeable impacts on realism but we include these terms for com-
pleteness. Vortex stretch degrades performance since the method
we employ requires two evaluations of the velocity field for each
particle and requires vortex diffusion to insure that the vorticity field
stays approximately divergence free.

3.1 Fundamental solutions

A well behaved divergence free velocity field v(⃗x, t) can be repre-
sented through a vector potential A⃗. The velocity field is obtained by



taking the curl of A⃗ which ensures that the divergence of the velocity
field is zero,

v⃗(⃗x, t) = ∇× A⃗(⃗x, t) . (4)

A⃗ is degenerate since the addition of any curl-free vector field yields
the same velocity. To tie down the vector potential, it can be assumed
that ∇ · A⃗(⃗x, t) = 0. In that case the vorticity field ω (⃗x, t) and the
vector potential are related through a vector Laplacian,

ω⃗ (⃗x, t) = ∇×∇×Ψ(⃗x, t) = −∇
2
Ψ(⃗x, t) . (5)

In the absence of boundaries and under the assumption that the ve-
locity field goes to zero at infinity, the solution can be composed of
a linear combination of fundamental free-space solutions or Green’s
functions. The vector potential is obtained by integrating the funda-
mental solutions over the domain,

A⃗(⃗x, t) =
1

4π

∫
V

ω⃗ (⃗x′, t)
∥⃗x− x⃗′∥

d⃗x′ . (6)

Taking the curl of equation 6 leads to the Biot-Savart formula for
the velocity field,

v⃗(⃗x, t) =
1

4π

∫
V

ω⃗ (⃗x′, t)× x⃗− x⃗′

∥⃗x− x⃗′∥3 d⃗x′ . (7)

The vortex particles act as quadrature points in the discrete version
of equation 7. To avoid singularities when x⃗ = x⃗′, we use a mollified
solution similar to [12]. This is analogous to the inclusion of a
smoothing radius h in the denominator which effectively limits the
minimum swirl size,

v⃗(⃗x, t) =
1

4π
∑

i
Viωi×

x⃗− x⃗′i(
h2 + ∥⃗x− x⃗′i∥2

) 3
2
. (8)

u⃗p(⃗x, t) =
1

4π
∑

i
Viωi×

x⃗− x⃗′i(
h2 + ∥⃗x− x⃗′i∥2

) 3
2
. (9)

The vortex blob volume is given by V⃗i, ωi is the blob vortex
density, and w⃗i =Viωi is the vorticity stored on each vortex particle.
Equation 9 is used to obtain the velocity field anywhere in space. To
avoid iterating over every vortex particle in the simulation, we use a
nearest neighbour search based on [17] to only query the nearest
particles which is sufficient for game applications although physical
accuracy would require the contribution from all particles in the
simulation either through direct summation or multipole methods.
We optimize the simulation further by excluding vortex particles
from the simulation when their vorticity falls below a certain
threshold. These particles are then recycled, either by emission
from sources, or they are re-positioned close to surfaces where their
vorticity attribute gets reinitialized.

The time dependent evolution of the vorticity is driven by vortex
advection, stretching and diffusion. It is possible to get believ-
able fluid-like motion by only using vorticity advection but vortex
stretching can easily be included with the vortex segment approach
introduced by [33]. The stretching term in equation 3, is a mea-
sure of the velocity gradient in the direction of the vorticity vector
scaled by the vorticity magnitude. Vortex particles do not have a
spatial extent but we can measure the gradient of the velocity field
in the direction of the vorticity vector by converting each particle
into a small vortex segment as shown in figure 5 and measuring the
gradient over the segment. The vorticity vector is then updated as:

w⃗← w⃗+∥w∥∆t
h
(⃗v(⃗q1)− v⃗(⃗q0)) (10)

where q⃗1 and q⃗0 are the positions of the vortex segment ends,
q⃗0 = x⃗+ h

2 and q⃗1 = x⃗− h
2 . Vortex stretching converts large swirls

into smaller swirls and this can eventually lead to instabilities if
the process is allowed to proceed unimpeded. Vortex diffusion is
required to ensure stability when the vorticity field is undergoing
stretch. The particle strength exchange method gradually homoge-
nizes the vorticity field and insures that it remains nearly divergence
free. Therefore, the diffusion dω/dt = µ∇2ω is approximated with,

ω ← ω +∆t
2ν

σ
∑
q

(
V⃗qωq−V ω

)
ζ (⃗x, x⃗′q) (11)

where ζ is a normalized Gaussian,

ζ (⃗x, x⃗′) =
1

σ3(2π)3/2
e−

x⃗−⃗x′2

2σ2 , (12)

and where the viscosity ν and the smoothing radius σ are exposed
parameters.

3.2 Boundary conditions
To enforce boundary conditions, source points are stuck to collision
surface as illustrated in Figure 4. The ambient velocity field is
measured at the source points and we use them to generate an
image velocity field which minimizes the normal component of flow.
Figure 4 shows the configuration of 512 source points on the surface
of a character. The ambient velocity field consists of u⃗s which is
the velocity of the surface itself, u⃗∞ is a superimposed harmonic
velocity (such as an initial flow velocity) and u⃗p is the turbulent
velocity generated by the vortex particles in the ambient fluid.

We could view the points on the collision surface as vortex parti-
cles with a collision vorticity which is indeed a common procedure
in vortex particle methods. An optimal vortex sheet strength can be
posed as a regression problem.

γ
∗
j = argmin

γ j

{(⃗
us

i − u⃗∞
i − u⃗p

i + v⃗(⃗xi,γ j)
)
· n⃗i

}
. (13)

Here γ∗ is the optimal vortex sheet strength, u⃗s
i , u⃗∞

i and u⃗p
i are

the ambient velocity components measured at collocation points at
the surface position xi and v⃗(⃗xi,γ j) is the image velocity field,

v⃗(⃗x,γ j) =
1

4π
∑

j
A jγ j×

x⃗− x⃗′j(
h2 + ∥⃗x− x⃗′j∥2

) 3
2
. (14)

The index j denotes vortex source points. Each source point stores a
tangential vortex vector and the generated velocity field is measured
at point xi. We require that i > 2 j to have an over-determined
system of equations which ensures a unique solution.

Unfortunately, this method is not very suitable for real-time
applications since it requires the pseudo inverse. Solving the linear
system of equations to resolve collisions becomes a significant
computational bottleneck.

[5] introduced an alternative for simply connected closed surfaces
where the matrix inversion step is mitigated. This approach is ideal
for game applications. We find the optimal Rankine collision field
v⃗R by treating each source point as a Rankine field source. Then we
obtain the Rankine image field by adding the contributions from the
source points,

v⃗R(⃗x) =
∫

S
n⃗ ·

(⃗
us−

(⃗
up + u⃗∞

))
∇G d⃗x . (15)



Figure 4: Source points on collision surfaces (left). The points are
moved by the underlying rig without dependence on the surface mesh.
We measure the relative velocity of the fluid at the position of the
points and calculate the appropriate source strengths to enforce the
boundary conditions. Additional vortex particles (left) are advected in
the ambient velocity field.

Here G is the Rankine Green’s function 1/∥⃗x− x⃗′∥ and v⃗R(⃗x) is the
Rankine image velocity field over the surface. By superimposing
this field on the free-space solution, the normal flow is minimized
as shown in detail by [5]. While this approach only works for
each collision surface in isolation, the continual measurement of the
surface velocity field on all surfaces ensures that the perturbations to
the velocity field created by one object is mapped onto the surface of
all other objects in the scene. To carry out this integral, we discretize
it by using the mollified Green’s function and discrete integration
over the source points on the collision surface,

v⃗R(⃗x) = ∑
j

A j⃗n j · (⃗us(⃗x j)− u⃗p(⃗x j)− u⃗∞(⃗x j))∇G(⃗x− x⃗ j) . (16)

The Rankine collision field is divergence free but the interesting
fluid behaviour associated with surface interactions requires an es-
timate of the fluid rotation generated in the thin viscous boundary
layer that forms in real fluids. We use a simple model to transfer
rotation to vortex particles close to the surface. The procedure is
shown in Figure 6. The tangential component is extracted from
v⃗R. The initialized vortex vector is perpendicular to the surface
normal and the tangential velocity component. Vortex particles can
be initialized with a small normal displacement ε from the surface.
The vorticity is determined such that the generated velocity field
cancels the tangential part of vR at the surface. The vortex vector is
stored on the surface particles and mapped to nearby free-flowing
vortex particles with an exponentially decreasing kernel to simulate
turbulence generation in the boundary layer.

3.3 Velocity Broadcast
It is possible to create appealing turbulent fluid motion with a small
number of vortex particles but we still need a way of representing
density. To render the effect, we distinguish between vortex particles
and tracer particles. The velocity field is calculated directly on
each vortex particle but this is not feasible for the millions of tracer
particles used to render the effect. To update the velocity on millions
of tracer particles in real time, we found that the best solution is an

Figure 5: A vortex particle is converted to a vortex segment. The
velocity is evaluated at each end of the segment. When the segment
has been stretched in the velocity field it is converted back into a
vortex particle.

Figure 6: The relative velocity between the surface and the ambient
fluid is measured and the no-through Rankine collision field is calcu-
lated using equation 16 (left). We initialize vorticity on the surface to
match the tangential component of the Rankine velocity (middle), and
map vorticity to the particles in the surrounding flow (right).

underlying scratchpad grid. The velocity field is calculated on grid
nodes and tri-linear interpolation is used to update the velocity of the
tracer particles within the grid. A second-order Adams-Bashforth
scheme was used for time integration. We found that this explicit
integration method produces well-defined turbulence patterns while
only requiring storage of the velocity of the previous time step.

x⃗(n+1)
t = x⃗n

t +

(
3
2

v⃗n
t −

1
2

v⃗(n−1)
t

)
. (17)

The grid is sparse in the sense that each voxel only query the nearest
vortex particles and empty grid regions are cheap to update. It is
possible to use large grid domains without a significant compromise
to efficiency. Tracer particles simply trace the velocity field, but they
are not required to update the dynamics. Since each tracer particle
only needs to source the velocity from the grid, millions of particles
can be traced in real time though sub-millisecond performance re-
stricts the count to ∼ 106 on a RTX2080 Max-Q GPU. For all the
simulations shown in this work, we use 4000-8000 vortex particles.

4 RESULTS

We have simulated several examples showing the interaction
between streams of fluids and different game characters. The motion
capture library and character geometries from mixamo.com were
used in the simulations. This library contains complex animations
like dancing, running and jumping. Different characters with
significant shape variations are used to further demonstrate the

mixamo.com


Table 1: Time measurements of the physics update with different
combinations of tracer particles and vortex particles. The number in
brackets denotes the upper limit of particles queries admitted for each
velocity evaluation. With ∞, we denote an unlimited number of queries.
Unless explicitly mentioned, the illustrations presented in this work
used 1403 tracer particles, 163 vortex particles, 1003 grid nodes and 32
as the query limit. All steps of our algorithm are implemented on the
GPU and only the configuration of the character rig (bone transforms)
needs to be transferred on each time step. We list this step separately
as the access to the bone transforms will be readily available on the
GPU for most game applications. We use a RTX2080 Max-Q found in
high end gaming laptops for the simulations.

Name Tracer pts / Vortex pts / Grid Time (ms)
Rig Transfer - 0.6

Laminar Beam 1003 / 163[64] / 1003 <0.3
Laminar Beam 1003 / 203[64] / 1003 0.4
Laminar Beam 1403 / 203[64] / 1003 3.1
Laminar Beam 1403 / 203[32] / 1003 2.3

Buoyancy Driven 1003 / 323[32] / 1003 2.1
Buoyancy Driven 1403 / 323[32] / 1003 5.1
Buoyancy Driven 1403 / 163(∞) / 1003 21.1

versatility of the method. With just 4096 vortex particles, our
method can simulate fluids with rich dynamics. The physics easily
fits within the computational budget of most games and we are
able to update millions of tracer particles in real time. Tracing
the velocity field constitutes the computational bottleneck of our
method. We found that tracer particle counts up to ∼ 106 are
feasible for sub-millisecond performance.

Figure 1 and 2 depicts streams of fluid hitting characters in
motion. The turbulence generation from the boundary layer is
evident in Figure 2 and our method can also be used to simulate a
variety of flame-like effects by seeding vortex particles with random
vorticities at the fluid source as shown in Figure 1. Figure 3 shows
collisions with a simple sphere object. The source particles on the
collision surface creates accurate collision field though it requires a
sufficiently large search radius. The source particles on surfaces
are treated like the vortex particles in the surrounding fluid and it
is important to include a sufficient number of source particles to
resolve the collisions accurately. The side-by-side simulations in
Figure 7 shows two similar scenarios with different numbers of
tracer particles. Including rendering, we can simulate more than
800 fps with 106 tracer particles and the dynamics are unchanged
by the tracer particle count.

5 DISCUSSION AND LIMITATIONS

Pure vortex particle methods are well suited for real-time fluid sim-
ulation in game applications but have not been used widely. The
method outlined here is simple to implement and fast enough to fit
within the computational budget of most games. In this work, we
have explored a limited set of applications, specifically, the interac-
tions between characters and fluids which is a particular challenge
with existing methods. By placing vortex particles on surfaces and
using the matrix-free collision method, this can be handled easily
with the proposed method. Several improvements are possible. The
placement of source particles on collision geometry is fixed at run-
time yet it could be advantageous to place them dynamically in the
vicinity of fluid density. In particular, this may be required for large
game worlds where all surfaces could potentially be collision sur-
faces. The continuous velocity fields created by the vortex particles
is a decidedly advantageous feature of pure vortex methods. Since
the evaluation of the velocity field represents the computational bot-
tleneck, the number of velocity samples can be adapted to fit the

Figure 7: 4096 vortex particles instigate detailed fluid motion in a
field of tracer particles. The detail of the dynamics are unchanged by
the number of tracer particles but to render the effect as a seemingly
continuous fluid, large numbers of tracer particles are needed. Here
we show a comparison between 106 tracer particles used in the left
image and 2.74∗106 tracer particles are used on the right. The left
simulation including rendering runs at ∼ 900 fps and the right simula-
tion runs at ∼ 300 fps. Thus future work or production may substitute
the millions of particles for fewer numbers of a more suitable tracer
entity such as animated sprites, sparks or volumes to significantly
speed up simulation.

computational budget and the level of detail needed for a particular
application. A continuous velocity field entails that it is easy to
swap the tracer particles for other density representations such as
grid-based density fields or texture representations. Vortex methods
are well suited for gaseous fluids but they are difficult to adapt to
other fluid phenomena. In particular, the inclusion of a free surface
required for liquids is not straight-forward although approaches such
as [14] is an example of a vortex method for liquids. These ap-
proaches are not necessarily more efficient that their velocity based
counterparts.

6 CONCLUSION

We have presented a vortex based fluid solver capable of handling
the intricate collisions between fluids and game characters. It is the
first method to specifically target these interactions and resolve them
at a high level of detail. Our method is fast enough for practical
use in interactive applications like games or VR and represents an
additional step towards bringing realism to fluid simulations for
these kinds of applications.
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