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Abstract
DINOv2, a large self-supervised computer vision
foundation model, has achieved impressive per-
formance on downstream tasks like classification,
segmentation, and depth estimation. This success
suggests the idea that universal features can be ex-
tracted through large-scale pre-training. However,
its applicability beyond natural image domains
remains relatively unexplored. This study aims
to contribute in this direction, by exploring the
potential of DINOv2 for a niche but important
task: pollen classification based on holographic
images. Our findings reveal that features learned
by the network in the natural image domain are
not informative for this task. However, when DI-
NOv2 is pre-trained on a pollen-specific dataset,
it achieves superior performance compared to su-
pervised methods, especially in scenarios with
limited data. This superior performance opens
doors for new applications such as online few-
shot (bio)aerosol particle classification with holo-
graphic imaging.

1. Introduction
Self-supervised pre-training has become the dominant
paradigm in Natural Language Processing (NLP) for several
years now. This approach utilizes vast amounts of data and
computational resources to train large-scale networks, com-
monly referred to as foundation models. These foundation
models have a remarkable generalizability, and power ap-
plications like ChatGPT and Gemini, which are utilized by
millions on a daily basis. (Team et al., 2023; Achiam et al.,
2023; Touvron et al., 2023). In computer vision although
self-supervised learning has long been explored (Jing &
Tian, 2020), only recently it has been scaled to billion pa-
rameters (He et al., 2022; Oquab et al., 2023) and shown to
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follow similar scaling laws observed in NLP: more compute
and data yield increasingly better performance.

Of particular interest is DINOv2 (Oquab et al., 2023). Once
pre-trained, DINOv2 can extract robust features from im-
ages that perform on par with supervised baselines in natural
image domains. Additionally, these features, compared to
other large-scale image foundation models, can be directly
utilized without the need of any network finetuning. Specif-
ically, they can be used together with k-nearest neighbors
for tasks such as instance retrieval and classification and
with a linear layer for tasks such as segmentation and depth
estimation. This significantly simplifies the development of
applications built on top of this model.

Despite its recent release, this model has already been used
in applications outside the natural image domain, such as
radiology Pérez-Garcı́a et al. (2024) and histopathology
Chen et al. (2023). These studies demonstrate that DINOv2
pre-trained on natural images (LVD-142M dataset) perform
poorly on domain-specific downstream tasks. However, by
repeating the pre-training process with domain-specific data,
DINOv2 can achieve performance comparable to, or even
exceeding, supervised learning methods on these specialized
task. In this study we aim to bring additional evidence for
the potential of DINOv2 for domain specific tasks by testing
it on pollen recognition from holographic images.

Holographic images, generated using the method described
by Berg (2022), find applications in aerosol measurement
(Sauvageat et al., 2020) and cloud observation, including
the study of particles and ice crystals (Beck et al., 2017).
One significant application is the identification of airborne
pollen, spores, and microplastics (Sauvageat et al., 2020;
Erb et al., 2024; Beres et al., 2023). Pollen monitoring
is crucial for managing public health concerns, given the
rising number of allergy sufferers and the associated costs,
estimated to range between 50 to 150 billion euros in Eu-
rope alone (Tummon et al., 2024; Zuberbier et al., 2014).
Traditional pollen monitoring relies on the manual method
using Volumetric Hirst traps (HIRST, 1952). However, new
real-time pollen monitoring systems are emerging to support
or replace traditional methods. This study utilizes data mea-
sured by one such device, the SwisensPoleno (Sauvageat
et al., 2020).
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Figure 1. Visualization of the experimental setup utilized in this study to self-supervised train a DINOv2 model on holographic images
(Holo ViT) and evaluate its performance across several experiments. Top left: Self-supervised training of the DINOv2 student-teacher
architecture, where the model learns representations from the holographic training dataset (yellowish) without labeled data. Bottom left:
Embedding extraction using the trained teacher model to generate embeddings from both the training and test datasets (greenish) which
were collected by different instruments. Top right: Few-shot learning setup experimenting with the use of subsets of the data with varying
sample sizes per class to evaluate k-NN performance on the test set (section 3.1). Bottom right: Introduction of new classes in a few-shot
learning scenario, showing the addition of new class samples and subsequent k-NN evaluation without retraining the model (section 3.2).

1.1. Contributions

We benchmark DINOv2 against a strong supervised base-
line on the task of (bio)aerosol particle classification using
holographic images. Our results demonstrate that:

1. A k-NN classifier using DINOv2 features from the
LVD-142M dataset outperforms random guessing but
lags behind supervised methods.

2. DINOv2 pre-trained on holographic data matches su-
pervised methods on the full dataset and excels in low
data regimes with high-quality pre-training data.

3. New classes can be added to DINOv2 classification
pipeline without retraining, demonstrating flexibility
compared to retrained supervised methods.

2. Preliminary and Experimental Setup
We evaluated DINOv2’s performance on our holographic
pollen dataset on two tasks: image classification and the in-
tegration of new classes after initial self-supervised pretrain-
ing. We compared two main configurations: the officially
released ViT model pre-trained on the LVD-142M dataset,
and a self-supervised ViT model pre-trained on our holo-
graphic dataset (Holo ViT). For both, k-Nearest Neighbors
(k-NN) served as the final classifier. Additionally, we em-
ployed EfficientNet, a well-established supervised learning
model, as a strong baseline for comparison. Figure 1 de-
picts our experimental setup of the self-supervised DINOv2
training and its downstream tasks.

Figure 2. Examples of holographic Pollen images. Classes from
left to right: Poaceae, Corylus, Ambrosia, and Betula.

2.1. Holographic Pollen Datasets

Samples from 18 different pollen classes were collected
in a laboratory-controlled environment using the Swisen-
sPoleno instrument (Sauvageat et al., 2020). Specifically,
the SwisensAtomizer was employed to disperse pollen sam-
ples in a clean chamber, where the SwisensPoleno captured
each measurement event as a set of two holographic images.
These images have a resolution of 200 by 200 pixels with
16-bit grayscale values, with each pixel representing an area
of 0.595 by 0.595 micrometers.

After post-processing, we obtained a total of 337’000 im-
ages across the 18 classes. During this step, we removed
images which were empty or had poor focus. Additionally,
we eliminated some images using simple statistical meth-
ods, such as comparing the expected shape and size of the
particles with the measured ones.

In a similar manner, we collected test sets for the same
pollen species using a different instrument, resulting in a
total of 57’000 images. Figure 2 illustrates examples of
the holographic images generated by the SwisensPoleno.
Further details regarding the specific composition of the
dataset can be found in the Appendix C.
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2.2. DINOv2 Implementation Details

We leveraged the official DINOv2 repository (Oquab et al.,
2024) to pre-train various sizes of Vision Transformers
(ViTs) on holographic images of pollen, using a self-
supervised approach. Modifications to the released standard
configuration were implemented as suggested in the original
paper. These modifications included replacing the MLP
head with a SwiGLU Feed Forward Network (FFN), apply-
ing Sinkhorn-Knopp centering, using a patch size of 16 and
untangling the heads of DINO and iBOT during training.
Additionally, we integrated four registers into our models as
described in Darcet et al. (2024).

Model performance was evaluated through a k-nearest neigh-
bors (k-NN) methodology, using teacher model checkpoints
to select the configurations that demonstrated optimal vali-
dation performance on the holographic dataset.

The computational infrastructure for our self-supervised
training consisted of four NVIDIA GeForce RTX 3090
GPUs, each equipped with 24 GB of memory. This setup
supported batch sizes of 32, 64, and 128 per GPU, with total
batch sizes scaled to 128, 256, and 512. To ensure stable
training sessions at these scales, we adjusted the initial learn-
ing rate to 0.007, followed by the officially implemented
batch size-dependent factorization.

The ViT giant backbone, along with its distilled versions
incorporating registers, was directly sourced from the offi-
cial Github repository associated with the original DINOv2
paper.

2.3. Supervised Benchmark: EfficientNet

To compare the performance of the DINOv2 framework
with a supervised learning approach, we employed the pre-
trained EfficientNet B0, B4 and B7 architecture (Tan &
Le, 2019). The selection of EfficientNet is based on its
demonstrated effectiveness in achieving high accuracy with
significantly reduced computational requirements making
it an ideal benchmark. A classification head, comprising
Layer Normalization, Dropout, and a ReLU activation func-
tion, was appended to the backbone. Performance metrics
were gathered based on the model that demonstrated the
highest micro-accuracy on the validation dataset. Through-
out the training phase, the entire model was set to trainable,
employing an Adam optimizer for adjustments. To aug-
ment the robustness of the model, several data augmentation
techniques were applied, including zoom, rotation, flipping,
Gaussian blur, color jitter, and translation.

2.4. k-NN

For the classification task on top of the ViT CLS token-
embeddings, we opted for a k = 10 for all the experiments
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Figure 3. Micro-accuracy of various models in few-shot learning
with holographic pollen images. Comparing supervised Efficient-
Net B0 (blue), official LVD-142 DINOv2 ViT giant (green), and
self-supervised Holo ViT base (orange) using k-NN embeddings.
The Holo ViT base shows higher accuracy and stability in low-data
regimes. In the Appendix B distilled versions of the LVD-142 ViT
giant are shown.

except for those with only two and five samples per class,
where the k is set equal to the number of samples. The
embeddings were normalized with a normalization layer.

3. Experiments and Results
In the following subsections, we report the results of our
experiments. To enhance statistical significance, we per-
formed each experiment five times with a different random
sample of training data. For each sample, we repeated the
k-NN search for DINOv2 and the training of EfficientNet.

3.1. Classification performance

This experiment assessed few-shot learning capabilities
across a range of dataset sizes, specifically 2, 5, 10, 20,
50, 100, 1’000, and min(10′000, total class samples). The
total samples per class are reported in Table 2 in the ap-
pendix. Figure 3 illustrates the results. The Holographic
Vision Transformer base (Holo ViT base) model, specif-
ically the one trained on domain-specific data, maintains
higher micro-accuracy across various few-shot scenarios
compared to EfficientNet B0. Furthermore the error bars
indicate that the Holo ViT model not only achieves higher
average accuracy but also offer greater stability across dif-
ferent seeds, suggesting robustness in scenarios with scarce
data. The Figure 6 in the Appendix B visualizes the perfor-
mance of the distilled versions of the LVD-142M DINOv2
giant model.

Furthermore, in the Appendix A, we further evaluate the
performance of various model sizes on the complete dataset
to compare the capabilities of different training strategies.
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Figure 4. Accuracy of the new class with varying sample sizes,
with all other classes kept at 1’000 samples each. Performance of
Holo ViT base is compared with (balanced) and without SMOTE
(unbalanced), and EfficientNet B0 with unbalanced and upsampled
training. Figure 5 visualizes the corresponding precision.

3.2. Introduction of new classes

This experiment assessed the capability to incorporate new,
previously unseen classes into the classification system with-
out necessitating retraining, neither self-supervised nor su-
pervised. This was conducted by extracting embeddings us-
ing a holographic self-supervised trained DINOv2 ViT base
backbone. We obtained embeddings from the 18 classes,
each with 1’000 randomly chosen samples and subsequently
a new class was added, starting with 2 and incrementally
increasing to 1’000 samples. Additionally, we employed
the Synthetic Minority Oversampling Technique (SMOTE)
(Chawla et al., 2002) to augment the minority class from its
original sample size to 1’000.

For comparative analysis, a parallel experiment was con-
ducted using a supervised EfficientNet B0 model. This in-
volved the same data-splits and instead of applying SMOTE
to ensure balance in one part of the experiment, we used
basic minority upsampling during training time.

Figure 4 illustrates the accuracy of DINOv2 and EfficientNet
B0 for the new class. When few samples are available, DI-
NOv2 outperforms EfficientNet B0 without any upsampling
technique. This is likely due to optimization challenges
faced by EfficientNet B0 with limited data.

Interestingly, with oversampling enabled, both models
achieve similar performance. However, DINOv2 offers a
clear implementation advantage. EfficientNet needs retrain-
ing the entire network for each new class, while DINOv2
only requires updating its vector database. This makes DI-
NOv2 the preferable choice for online applications where
efficiency and adaptability are crucial.
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Figure 5. Precision of the new class with varying sample sizes,
keeping all other classes constant at 1’000 samples each. Compar-
ing Holo ViT base with (balanced) and without SMOTE (unbal-
anced). Complements the micro-accuracy results from Figure 4,
showing precision stability of Holo ViT base.

4. Conclusion
In this study, we benchmarked the self-supervised learning
approach DINOv2 on holographic data against a strong su-
pervised baseline. Our results show that DINOv2, when pre-
trained on relevant data, outperforms the supervised baseline
in the few shot learning regime. Furthermore, DINOv2’s
ability to adapt to new pollen classes without retraining
opens up new practical applications. In the future, we aim to
explore how curating the underlying self-supervised pollen
dataset affects downstream classification performance and
whether the hyperparameter configuration used in the origi-
nal paper, including augmentations and cropping size, are
optimal for the holographic image domain.
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M., Clot, B., Cristofori, A., Crouzy, B., Damialis, A.,
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A. Comparison on Full Dataset
In this section, we present a detailed comparison of the performance of various models on the complete dataset to assess the
capabilities of different training strategies. We evaluated the official LVD-142M pre-trained backbones, EfficientNet models,
and backbones that underwent self-supervised training on holographic images.

For the EfficientNet models, training was conducted on the entire dataset with the application of minority class upsampling
to address class imbalance. Conversely, the official DINOv2 backbones and the Holographic Vision Transformers (Holo
ViT) were evaluated on the unbalanced datasets without any upsampling techniques.

Table 1 details the test set micro-accuracies for different models. Notably, DINOv2 models pre-trained on domain-specific
data show comparable performance to EfficientNet benchmarks. The holographic self-supervised ViT variants, especially
the ViT base with registers, achieve a micro-accuracy that closely matches or even surpasses that of the EfficientNet
models. This is significant considering that the EfficientNet models were trained with upsampling techniques to counter
class imbalance, whereas the self-supervised methods were directly exposed to this class imbalance without any corrective
measures.
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Table 1. Comparison of test set micro accuracies for different models on the full holographic dataset. Holo ViT: DINOv2 self-supervised
models trained on the full holographic dataset. LVD-142M ViT: Official DINOv2 backbones pre-trained on the LVD-142M dataset,
including distilled versions with fewer parameters. EfficientNet: Models pre-trained on ImageNet and fine-tuned on the holographic
dataset with minority class upsampling. Micro accuracies for ViT models were obtained using k-NN, while EfficientNet models used a
fully supervised approach with a classification head.

MODEL PARAMETERS MICRO-ACC

OUR MODELS:
HOLO VIT LARGE REG 300M 72.15%
HOLO VIT BASE REG 80M 75.12%
HOLO VIT SMALL REG 22M 72.75%

OFFICIAL DINOV2 BACKBONES:
LVD-142M VIT GIANT REG 1.1B 58.66%
DISTILLED VIT LARGE REG 300M 59.89%
DISTILLED VIT BASE REG 80M 59.47%
DISTILLED VIT SMALL REG 22M 59.87%

EFFICIENTNET BENCHMARK:
EFFICIENTNET B0 4M 71.89%
EFFICIENTNET B4 18M 72.22%
EFFICIENTNET B7 65M 74.48%

B. Few shot learning capabilities of distilled backbones
To evaluate the performance of the smaller, distilled versions of the officially released LVD-142M DINOv2 backbone
the same experiment as described in section 3.1 were conducted. The Figure 6 shows that distilled versions were able to
represent the features for the holographic images better resulting in almost comparable results to the EfficientNet B0 which
was supervised trained on the data. However, the Holo ViT base backbone is still outperforming all official backbones.
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Figure 6. Micro-accuracy of various models as a function of the number of samples per class in few-shot learning scenarios with
holographic pollen images. The performance of distilled versions of the official LVD-142M DINOv2 backbone (ViT giant, ViT large,
ViT base, ViT small) is compared to the self-supervised Holo ViT base and the supervised EfficientNet B0. The results show that while
distilled versions improve upon the original ViT giant, the self-supervised Holo ViT base still outperforms all official backbones.

C. Dataset splits
The Table 2 visualizes the dataset split of the holographic Pollen dataset used in this paper.
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Table 2. The distribution of the holographic Pollen dataset across 18 classes. The training and validation sets follow a 80/20 split, while
the test set is collected from different sources, ensuring it is not a trivial subset of the training set. This separation ensures robust evaluation
of the model’s performance.

CLASS TRAIN VALIDATION TEST

ALNUS 32’404 8’016 2’643
AMBROSIA 6’978 1’708 7’896
ARTEMISIA 7’980 1’990 5’590
BETULA 50’848 12’890 5’458
CARPINUS 18’210 4’512 600
CORYLUS 25’542 6’354 4’444
CUPRESSUS 5’758 1’496 405
FAGUS SYLVATICA 15’138 3’766 2’827
FRAXINUS EXCELSIOR 4’126 988 4’837
OSTRYA SP. 2’230 510 2’154
PICEA 10’652 2’564 1’345
PINUS 29’984 7’474 3’139
PLANTAGO LANCEOLATA 4’894 1’220 2’258
POACEAE 60’776 15’312 5’467
POPULUS 33’902 8’654 588
QUERCUS ROBUR 5’362 1’344 2’050
ULMUS 5’302 1’276 4’742
URTICA 17’454 4’312 1’214

TRAIN SIZE 337’540
VALIDATION SIZE 84’386
TEST SIZE 57’657
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