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ABSTRACT

Fair representation learning is an attractive approach that promises fairness of
downstream predictors by encoding sensitive data. Unfortunately, recent work has
shown that strong adversarial predictors can still exhibit unfairness by recovering
sensitive attributes from these representations. In this work, we present Fair Nor-
malizing Flows (FNF), a new approach offering more rigorous fairness guarantees
for learned representations. Specifically, we consider a practical setting where
we can estimate the probability density for sensitive groups. The key idea is to
model the encoder as a normalizing flow trained to minimize the statistical distance
between the latent representations of different groups. The main advantage of
FNF is that its exact likelihood computation allows us to obtain guarantees on
the maximum unfairness of any potentially adversarial downstream predictor. We
experimentally demonstrate the effectiveness of FNF in enforcing various group
fairness notions, as well as other attractive properties such as interpretability and
transfer learning, on a variety of challenging real-world datasets.

1 INTRODUCTION

As machine learning is increasingly being used in scenarios that can negatively affect humans (Bren-
nan et al., 2009; Khandani et al., 2010; Barocas & Selbst, 2016), fair representation learning has
become one of the most promising ways to encode data into new, unbiased representations with
high utility. Concretely, the goal is to ensure that representations have two properties: (i) they are
informative for various prediction tasks of interest, (ii) sensitive attributes of the original data (e.g.,
race) cannot be recovered from the representations. Perhaps the most prominent approach for learning
fair representations is adversarial training (Edwards & Storkey, 2016; Madras et al., 2018; Xie et al.,
2017; Song et al., 2019; Roy & Boddeti, 2019), which jointly trains an encoder trying to transform
data into a fair representation with an adversary attempting to recover sensitive attributes from the
representation. However, several recent lines of work (Feng et al., 2019; Moyer et al., 2018; Elazar &
Goldberg, 2018; Xu et al., 2020; Gupta et al., 2021; Song & Shmatikov, 2020) have noticed that these
approaches do not produce truly fair representations: stronger adversaries can in fact recover sensitive
attributes. Clearly, this could allow malicious or ignorant users to use the provided representations to
discriminate. This problem emerges at a time when regulators are crafting rules (Whittaker et al.,
2018; EU, 2021; FTC, 2021) on the fair usage of AI, stating that any entity that cannot guarantee
non-discrimination would be held accountable for the produced data. This raises the question: Can
we learn representations which provably guarantee that sensitive attributes cannot be recovered?

This work Following prior work, we focus on tabular datasets used for tasks such as loan or
insurance assessment where fairness is of high relevance. We assume that the original input data
x comes from two probability distributions p0 and p1, representing groups with sensitive attributes
a = 0 and a = 1, respectively. In the cases where distributions p0 and p1 are known, we will obtain
provable fairness guarantees, and otherwise we perform density estimation and obtain guarantees
with respect to the estimated distribution. In our experimental evaluation we confirm that the bounds
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Figure 1: Overview of Fair Normalizing Flows (FNF). There are two encoders, f0 and f1, that
transform the two input distributions p0 and p1 into latent distributions pZ0

and pZ1
with a small

statistical distance ∆ ≈ 0. Without FNF, a strong adversary g can easily recover sensitive attribute
a from the original input x, but once inputs are passed through FNF, we are guaranteed that any
adversary that tries to guess sensitive attributes from latent z cannot be significantly better than
random chance. At the same time, we can ensure that any benevolent user h maintains high utility.

computed on the estimated distribution in practice also bound adversarial accuracy on the true
distribution, meaning that density estimation works well for the setting we consider.

To address the above challenges, we propose Fair Normalizing Flows (FNF), a new method for
learning fair representations with guarantees. In contrast to other approaches where encoders are
standard feed-forward neural networks, we instead model the encoder as a normalizing flow (Rezende
& Mohamed, 2015). Fig. 1 provides a high-level overview of FNF. As shown on the left in Fig. 1,
using raw inputs x allows us to train high-utility classifiers h, but at the same time does not protect
against the existence of a malicious adversary g that can predict a sensitive attribute a from the
features in x. Our architecture consists of two flow-based encoders f0 and f1, where flow fa
transforms probability distribution pa(x) into pZa

(z) by mapping x into z = fa(x). The goal of
the training procedure is to minimize the distance ∆ between the resulting distributions pZ0

(z) and
pZ1

(z) so that an adversary cannot distinguish between them. Intuitively, after training our encoder,
each latent representation z can be inverted into original inputs x0 = f−1

0 (z) and x1 = f−1
1 (z) that

should ideally have similar probability w.r.t. p0 and p1, meaning that even the optimal adversary
cannot distinguish which of them actually produced latent z. Crucially, as normalizing flows enable
us to compute the exact likelihood in the latent space, for trained encoders we can upper bound the
accuracy of any adversary with 1+∆

2 , which should be small if training was successful. Furthermore,
the distance ∆ provides a tight upper bound (Madras et al., 2018) on common fairness notions such
as demographic parity (Dwork et al., 2012) and equalized odds (Hardt et al., 2016). As shown on the
right in Fig. 1, we can still train high-utility classifiers h using our representations, but now we can
actually guarantee that no adversary g can recover sensitive attributes better than chance.

We empirically demonstrate that FNF can substantially increase provable fairness without significantly
sacrificing accuracy on several common datasets. Additionally, we show that the invertibility of FNF
enables algorithmic recourse, allowing us to examine how to reverse a negative decision outcome.

Main contributions Our key contributions are:

• A novel fair representation learning method, called Fair Normalizing Flows (FNF), which
guarantees that the sensitive attributes cannot be recovered from the learned representations
at the cost of a small decrease in classification accuracy.

• Experimental evaluation demonstrating that FNF can provably remove sensitive attributes
from the representations, while keeping accuracy for the prediction task sufficiently high.

• Extensive investigation of algorithmic recourse and applications of FNF to transfer learning.
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2 RELATED WORK

In this work, we focus on group fairness, which requires certain classification statistics to be equal
across different groups of the population. Concretely, we consider demographic parity (Dwork et al.,
2012), equalized odds (Hardt et al., 2016), and equality of opportunity (Hardt et al., 2016), which
are widely studied in the literature (Edwards & Storkey, 2016; Madras et al., 2018; Zemel et al.,
2013). Algorithms enforcing such fairness notions target various stages of the machine learning
pipeline: Pre-processing methods transform sensitive data into an unbiased representation (Zemel
et al., 2013; McNamara et al., 2019), in-processing methods modify training by incorporating fairness
constraints (Kamishima et al., 2011; Zafar et al., 2017), and post-processing methods change the
predictions of a pre-trained classifier (Hardt et al., 2016). Here, we consider fair representation
learning (Zemel et al., 2013), which computes data representations that hide sensitive information, e.g.
group membership, while maintaining utility for downstream tasks and allowing transfer learning.

Fair representation learning Fair representations can be learned with a variety of different ap-
proaches, including variational autoencoders (Moyer et al., 2018; Louizos et al., 2016), adversarial
training (Edwards & Storkey, 2016; Madras et al., 2018; Xie et al., 2017; Song et al., 2019; Roy &
Boddeti, 2019; Liao et al., 2019; Jaiswal et al., 2020; Feng et al., 2019), and disentanglement (Crea-
ger et al., 2019; Locatello et al., 2019). Adversarial training methods minimize a lower bound on
demographic parity, namely an adversary’s accuracy for predicting the sensitive attributes from the
latent representation. However, since these methods only empirically evaluate worst-case unfair-
ness, adversaries that are not considered during training can still recover sensitive attributes from
the learned representations (Feng et al., 2019; Moyer et al., 2018; Elazar & Goldberg, 2018; Xu
et al., 2020; Gupta et al., 2021; Song & Shmatikov, 2020). These findings illustrate the necessity of
learning representations with provable guarantees on the maximum recovery of sensitive information
regardless of the adversary, which is precisely the goal of our work. Prior work makes first steps in
this direction: Gupta et al. (2021) upper bound a monotonically increasing function of demographic
parity with the mutual information between the latent representation and sensitive attributes. However,
the monotonic nature of this bound prevents computing guarantees on the reconstruction power of the
optimal adversary. Feng et al. (2019) minimize the Wasserstein distance between latent distributions
of different protected groups, but only provide an upper bound on the performance of any Lipschitz
continuous adversary. However, as we will show, the optimal adversary is generally discontinuous. A
concurrent work (Cerrato et al., 2022) also learns fair representations using normalizing flows, but
different to us, they do not use exact likelihood computation to provide theoretical fairness guarantees.

Provable fairness guarantees The ongoing development of guidelines on the fair usage of
AI (Whittaker et al., 2018; EU, 2021; FTC, 2021) has spurred interest in provably fair algorithms.
Unlike this work, the majority of these efforts (McNamara et al., 2019; John et al., 2020; Urban et al.,
2020; Ruoss et al., 2020) focus on individual fairness. Individual fairness is also tightly linked to
differential privacy (Dwork et al., 2012; 2006), which guarantees that an attacker cannot infer whether
a given individual was present in the dataset or not, but these models can still admit reconstruction of
sensitive attributes by leveraging population-level correlations (Jagielski et al., 2019). Group fairness
certification methods (Albarghouthi et al., 2017; Bastani et al., 2019; Segal et al., 2020) generally
only focus on certification and, unlike our work, do not learn representations that are provably fair.

3 BACKGROUND

We assume that the data (x, a) ∈ Rd×A comes from a probability distribution p, where x represents
the features and a represents a sensitive attribute. In this work, we focus on the case where the
sensitive attribute is binary, meaningA = {0, 1}. Given p, we can define the conditional probabilities
as p0(x) = P (x | a = 0) and p1(x) = P (x | a = 1). We are interested in classifying each sample
(x, a) to a label y ∈ {0, 1}, which may or may not be correlated with the sensitive attribute a. Our
goal is to build a classifier ŷ = h(x) that tries to predict y from the features x, while satisfying
certain notions of fairness. Next, we present several definitions of fairness relevant for this work.

Fairness criteria A classifier h satisfies demographic parity if it assigns positive outcomes to
both sensitive groups equally likely, i.e., P (h(x) = 1 | a = 0) = P (h(x) = 1 | a = 1).
If demographic parity cannot be satisfied, we consider demographic parity distance, defined as
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|E [h(x) | a = 0] − E [h(x) | a = 1]|. An issue with demographic parity occurs if the base rates
differ among the attributes, i.e., P (y = 1 | a = 0) 6= P (y = 1 | a = 1). In that case, even the ground
truth label y does not satisfy demographic parity. Thus, Hardt et al. (2016) introduced equalized odds,
which requires that P (h(x) = 1 | y = y0, a = 0) = P (h(x) = 1 | y = y0, a = 1) for y0 ∈ {0, 1}.

Fair representations Instead of directly predicting y from x, Zemel et al. (2013) introduced the
idea of learning fair representations of data. The idea is that a data producer preprocesses the original
data x to obtain a new representation z = f(x, a). Then, any data consumer, who is using this data
to solve a downstream task, can use z as an input to the classifier instead of the original data x. Thus,
if the data producer can ensure that data representation is fair (w.r.t. some fairness notion), then all
classifiers employing this representation will automatically inherit the fairness property. However,
due to inherent biases of the dataset, this fairness increase generally results in a small accuracy
decrease (see Appendix C for an investigation of this tradeoff in the context of our method).

Normalizing flows Flow-based generative models (Rezende & Mohamed, 2015; Dinh et al., 2015;
2016; Kingma & Dhariwal, 2018) provide an attractive framework for transforming any probability
distribution q into another distribution q̄. Accordingly, they are often used to estimate densities from
data using the change of variables formula on a sequence of invertible transformations, so-called
normalizing flows (Rezende & Mohamed, 2015). In this work, however, we mainly leverage the fact
that flow models sample a latent variable z from a density q̄(z) and apply an invertible function fθ,
parametrized by θ, to obtain datapoint x = f−1

θ (z). Given a density q(x), the exact log-likelihood is
then obtained by applying the change of variables formula log q(x) = log q̄(z) + log|det(dz/dx)|.
Thus, for fθ = f1 ◦ f2 ◦ . . . ◦ fK with r0 = x, fi(ri−1) = ri, and rK = z, we have

log q(x) = log q̄(z) +

K∑
i=1

log|det(dri/dri−1)|. (1)

A clever choice of transformations fi (Rezende & Mohamed, 2015; Dinh et al., 2015; 2016) makes the
computation of the log-determinant tractable, resulting in efficient training and sampling. Alternative
generative models cannot compute the exact log-likelihood (e.g., VAEs (Kingma & Welling, 2014),
GANs (Goodfellow et al., 2014)) or have inefficient sampling (e.g., autoregressive models). Our
approach is also related to discrete flows (Tran et al., 2019; Hoogeboom et al., 2019) and alignment
flows (Grover et al., 2020; Usman et al., 2020). However, alignment flows jointly learn the density
and the transformation, unlike the fairness setting where these are computed by different entities.

4 MOTIVATION

In this section, we motivate our approach by highlighting some key issues with fair representation
learning based on adversarial training. Consider a distribution of samples x = (x1, x2) ∈ R2 divided
into two groups, shown as blue and orange in Fig. 2. The first group with a sensitive attribute a = 0 has
a distribution (x1, x2) ∼ p0, where p0 is a mixture of two Gaussians N ([−3, 3], I) and N ([3, 3], I).
The second group with a sensitive attribute a = 1 has a distribution (x1, x2) ∼ p1, where p1 is a
mixture of two Gaussians N ([−3,−3], I) and N ([3,−3], I). The label of a point (x1, x2) is defined
by y = 1 if sign(x1) = sign(x2) and y = 0 otherwise. Our goal is to learn a data representation
z = f(x, a) such that it is impossible to recover a from z, but still possible to predict target y from
z. Note that such a representation exists for our task: simply setting z = f(x, a) = (−1)ax makes
it impossible to predict whether a particular z corresponds to a = 0 or a = 1, while still allowing us
to train a classifier h with essentially perfect accuracy (e.g., h(z) = 1{z1>0}).

Adversarial training for fair representations Adversarial training (Edwards & Storkey, 2016;
Madras et al., 2018) is an approach that trains encoder f and classifier h jointly with an adversary
g trying to predict the sensitive attribute a. While the adversary tries to minimize its loss Ladv, the
encoder f and classifier h are trying to maximize Ladv and minimize the classification loss Lclf as

min
f,h

max
g∈G

E(x,a)∼D [Lclf (f(x, a), h)− γLadv(f(x, a), g)] , (2)

where G denotes the model family of adversaries, e.g., neural networks, considered during training.
Unfortunately, there are two key issues with adversarial training. First, it yields a non-convex
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Figure 2: Samples from our example distribu-
tion. The blue group (a = 0) is sampled from
p0 and the orange group (a = 1) is sampled
from p1.
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Figure 3: Sensitive attribute recovery rates
for adversarial training and fair normalizing
flows (FNF) with 100 different random seeds.

optimization problem, which usually cannot be solved to optimality because of saddle points. Second,
it assumes that the adversary g comes from a fixed model family G, which means that even if the
optimal g ∈ G cannot recover the sensitive attribute a, adversaries from other model families can
still do so as demonstrated in recent work (Feng et al., 2019; Moyer et al., 2018; Elazar & Goldberg,
2018; Xu et al., 2020; Gupta et al., 2021). To investigate these issues, we apply adversarial training
to learn representations for our synthetic example, and measure how often the sensitive attributes
can be recovered from learned representations. Our results, shown in Fig. 3, repeated 100 times
with different seeds, demonstrate that adversarial training is unstable and rarely results in truly fair
representations (where only 50% can be recovered). In Section 6 we follow up on recent work and
show that several adversarial fair representation learning approaches do not work against adversaries
from a different model familiy (e.g., larger networks). In Fig. 3 we show that our approach, introduced
next, can reliably produce fair representations without affecting the utility.

5 FAIR NORMALIZING FLOWS

Throughout this section we will assume knowledge of prior distributions p0(x) and p1(x). At the
end of the section, we discuss the required changes if we only work with estimates. Let Z0 and
Z1 denote conditional distributions of z = f(x, a) for a ∈ {0, 1}, and let pZ0

and pZ1
denote

their respective densities. Madras et al. (2018) have shown that bounding the statistical distance
∆(pZ0

, pZ1
) between Z0 and Z1 provides an upper bound on the unfairness of any classifier h built

on top of the representation encoded by f . The statistical distance between Z0 and Z1 is defined
similarly to maximum mean discrepancy (MMD) (Gretton et al., 2006) between the two distributions:

∆(pZ0 , pZ1) , sup
µ∈B
|Ez∼Z0 [µ(z)]− Ez∼Z1 [µ(z)]|, (3)

where µ : Rd → {0, 1} is a function in a set of all binary classifiers B trying to discriminate
between Z0 and Z1. If we can train an encoder to induce latent distributions Z0 and Z1 with
statistical distance below some threshold, then we can both upper bound the maximum adversarial
accuracy by (1 + ∆(pZ0

, pZ1
))/2 and, using the bounds from Madras et al. (2018), obtain guarantees

for demographic parity and equalized odds of any downstream classifier h. Such guarantees are
unattainble for adversarial training, which minimizes a lower bound of ∆(pZ0

, pZ1
). In contrast, we

learn fair representations that allow computing the optimal adversary µ∗ attaining the supremum in
Eq. (3) and thus enable exact evaluation of ∆(pZ0 , pZ1).

Optimal adversary In the following lemma we state the form of an optimal adversary which attains
the supremum in the definition of statistical distance in Eq. (3). We show the proof in Appendix A.1.
Lemma 5.1. The adversary µ∗ attaining the supremum in the definition of ∆(pZ0 , pZ1) can be
defined as µ∗(z) = 1{pZ0

(z)≤pZ1
(z)}, namely it evaluates to 1 if and only if pZ0(z) ≤ pZ1(z).

This intuitively makes sense – given some representation z, the adversary computes likelihood under
both distributions Z0 and Z1, and predicts the attribute with higher likelihood for that z. Liao et al.
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(2019) also observed that the optimal adversary can be phrased as arg maxa p(a|z). So far, prior
work mostly focused on mapping input x to the latent representation z = fθ(x, a) via standard
neural networks. However, for such models, given densities p0(x) and p1(x) over the input space, it
is intractable to compute the densities pZ0

(z) and pZ1
(z) in the latent space as many inputs x can be

mapped to the same latent z and we cannot use inverse function theorem. Consequently, adversarial
training methods cannot compute the optimal adversary and thus resort to a lower bound.

Encoding with normalizing flows Our approach, named Fair Normalizing Flows (FNF), consists
of two models, f0 and f1, that encode inputs from the groups with sensitive attributes a = 0 and
a = 1, respectively. We show a high-level overview of FNF in Fig. 1. Note that models f0 and f1 are
parameterized by θ0 and θ1, but we do not write this explicitly to ease the notation. Given some input
x0 ∼ p0, it is encoded to z0 = f0(x0), inducing a probability distribution Z0 with density pZ0(z)
over all possible latent representations z. Similarly, inputs x1 ∼ p1 are encoded to z1 = f1(x1),
inducing the probability distribution Z1 with density pZ1(z). Clearly, if we can train f0 and f1 so
that the resulting distributions Z0 and Z1 have small distance, then we can guarantee fairness of the
representations using the bounds from Madras et al. (2018). As evaluating the statistical distance is
intractable for most neural networks, we need a model family that allows us to compute this quantity.

We propose to use bijective encoders f0 and f1 based on normalizing flows (Rezende & Mohamed,
2015) which allow us to compute the densities at z using the change of variables formula

log pZa
(z) = log pa(f−1

a (z)) + log

∣∣∣∣det
∂f−1

a (z)

∂z

∣∣∣∣ (4)

for a ∈ {0, 1}. Recall that Lemma 5.1 provides a form of the optimal adversary. To compute
the statistical distance it remains to evaluate the expectations Ez∼Z0 [µ∗(z)] and Ez∼Z1 [µ∗(z)].
Sampling from Z0 and Z1 is straightforward – we can sample x0 ∼ p0 and x1 ∼ p1, and then pass
the samples x0 and x1 through the respective encoders f0 and f1 to obtain z0 ∼ Z0 and z1 ∼ Z1.
Given that the outputs of µ∗ are bounded between 0 and 1, we can then use Hoeffding inequality to
compute the confidence intervals for our estimate using a finite number of samples.
Lemma 5.2. Given a finite number of samples x1

0,x
2
0, ...,x

n
0 ∼ p0 and x1

1,x
2
1, ...,x

n
1 ∼ p1, denote

as zi0 = f0(xi0) and zi1 = f1(xi1) and let ∆̂(pZ0
, pZ1

) := | 1n
∑n
i=1 µ

∗(zi0) − 1
n

∑n
i=1 µ

∗(zi1)| be

an empirical estimate of the statistical distance ∆(pZ0 , pZ1). Then, for n ≥ −2 log
(

1−
√

1−δ
2

)
/ε2

we are guaranteed that ∆(pZ0 , pZ1) ≤ ∆̂(pZ0 , pZ1) + ε with probability at least 1− δ.

Algorithm 1 Learning Fair Normalizing Flows

Input: N,B, γ, p0, p1

Initialize h, f0, f1 with parameters θh, θ0, θ1

for i = 1 to N do
for j = 1 to B do

Sample xj0 ∼ p0,x
j
1 ∼ p1

zj0 = f0(xj0)

zj1 = f1(xj1)
end for
L0 = 1

B

∑B
j=1(log pZ0(zj0)− log pZ1(zj0))

L1 = 1
B

∑B
j=1(log pZ1

(zj1)− log pZ0
(zj1))

L = γ(L0 + L1) + (1− γ)Lclf
Update θa ← θa − α∇θaL, for a ∈ {0, 1}
Update θh ← θh − α∇θhL

end for

Training flow-based encoders The next
challenge is to design a training procedure for
our newly proposed architecture. The main
issue is that the statistical distance is not dif-
ferentiable (as the classifier µ∗ is binary), so
we replace it with a differentiable proxy based
on the symmetrized KL divergence, shown
in Lemma 5.3 below (proof provided in Ap-
pendix A.1). We show a high-level description
of our training procedure in Algorithm 1. In
each step, we sample a batch of x0 and x1 from
the respective distributions and encode them to
the representations z0 and z1. We then esti-
mate the symmetrized KL divergence between
distributions Z0 and Z1, denoted as L0 + L1,
and combine it with a classification loss Lclf
using tradeoff parameter γ, and perform a gra-
dient descent step to minimize the joint loss.
While we use a convex scalarization scheme to obtain the joint loss in Algorithm 1, our approach is
independent of the concrete multi-objective optimization objective (see Appendix C).
Lemma 5.3. We can bound ∆(pZ0 , pZ1)2 ≤ 1

4 (KL(pZ0 , pZ1) +KL(pZ1 , pZ0)).

Bijective encoders for categorical data Many fairness datasets consist of categorical data, and
often even continuous data is discretized before training. In this case, we will show that the optimal
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bijective representation can be easily computed. Consider the case of discrete samples x coming from
a probability distribution p(x) where each component xi takes a value from a finite set {1, 2, . . . , di}.
Similar to the continuous case, our goal is to find bijections f0 and f1 that minimize the statistical
distance of the latent distributions. Intuitively, we want to pair together inputs that have similar
probabilities in both p0 and p1. In Lemma 5.4 we show that the solution that minimizes the statistical
distance is obtained by sorting the inputs according to their probabilities in p0 and p1, and then
matching inputs at the corresponding indices in these two sorted arrays. As this can result in a bad
classification accuracy when inputs with different target labels get matched together, we can obtain
another representation by splitting inputs in two groups according to the predicted classification label
and then matching inputs in each group using Lemma 5.4. We can trade off accuracy and fairness by
randomly selecting one of the two mappings based on a parameter γ.

Lemma 5.4. Let X = {x1, ...,xm} and bijections f0, f1 : X → X . Denote i1, i2, ..., im and
j1, ..., jm permutations of {1, 2, ...,m} such that p0(xi1) ≤ p0(xi2) ≤ ... ≤ p0(xim) and p1(xj1) ≤
p1(xj2) ≤ ... ≤ p1(xjm). The encoders defined by mapping f0(xk) = xk and f1(xjk) = xik are
bijective representations with the smallest possible statistical distance.

Statistical distance of true vs. estimated density In this work we assume access to a density of
the inputs for both groups and we provably guarantee fairness with respect to this density. While it is
sensible in the cases where the density estimate can be trusted (e.g., if it was provided by a regulatory
agency), in many practical scenarios, and our experiments in Section 6, we only have an estimate p̂0

and p̂1 of the true densities p0 and p1. We now want to know how far off our guarantees are compared
to the ones for the true density. The following theorem provides a way to theoretically bound the
statistical distance between pZ0 and pZ1 using the statistical distance between p̂Z0 and p̂Z1 .

Theorem 5.5. Let p̂0 and p̂1 be density estimates such that TV (p̂0, p0) < ε/2 and TV (p̂1, p1) < ε/2,
where TV stands for the total variation between two distributions. If we denote the latent distributions
f0(p̂0) and f1(p̂1) as p̂Z0 and p̂Z1 then ∆(pZ0 , pZ1) ≤ ∆(p̂Z0 , p̂Z1) + ε.

This theorem can be combined with Lemma 5.2 to obtain a high probability upper bound on the
statistical distance of the underlying true densities using estimated densities and a finite number
of samples. Computing exact constants for the theorem is often not tractable, but as we will show
experimentally, in practice the bounds computed on the estimated distribution in fact bound adversarial
accuracy on the true distribution. Moreover, for low-dimensional data relevant to fairness, obtaining
good estimates can be provably done for models such as Gaussian Mixture Models (Hardt & Price,
2015) and Kernel Density Estimation (Jiang, 2017). We can thus leverage the rich literature on density
estimation (Rezende & Mohamed, 2015; Dinh et al., 2016; van den Oord et al., 2016a;b;c) to estimate
p̂0 and p̂1. Importantly, FNF is agnostic to the density estimation method (as we show in Appendix C),
and can benefit from future advances in the field. Finally, we note that density estimation has already
been applied in a variety of security-critical areas such as fairness (Song et al., 2019), adversarial
robustness (Wong & Kolter, 2020), and anomaly detection (Pidhorskyi et al., 2018).

6 EXPERIMENTAL EVALUATION

In this section, we evaluate Fair Normalizing Flows (FNF) on several standard datasets from the
fairness literature. We consider UCI Adult and Crime (Dua & Graff, 2017), Compas (Angwin et al.,
2016), Law School (Wightman, 2017), and the Health Heritage dataset. We preprocess Compas and
Adult into categorical datasets by discretizing continuous features, and we keep the other datasets as
continuous. Moreover, we preprocess the datasets by dropping uninformative features, facilitating the
learning of a good density estimate, while keeping accuracy high (details shown in Appendix B). We
make all of our code publicly available at https://github.com/eth-sri/fnf.

Evaluating Fair Normalizing Flows We first evaluate FNF’s effectiveness in learning fair repre-
sentations by training different FNF models with different values for the utility vs. fairness tradeoff
parameter γ. We estimate input densities using RealNVP (Dinh et al., 2016) for Health, MADE (Ger-
main et al., 2015) for Adult and Compas, and Gaussian Mixture Models (GMMs) for the rest (we
experiment with other density estimation methods in Appendix C). For continuous datasets we use
RealNVP as encoder, while for categorical datasets we compute the optimal bijective representations
using Lemma 5.4. Fig. 4 shows our results, each point representing a single model, with models on
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Figure 4: Fair Normalizing Flows (FNF) on continuous and categorical data. The points show
different accuracy vs. statistical distance tradeoffs (with 95% confidence intervals from varied random
seeds), demonstrating that FNF significantly reduces statistical distance while retaining high accuracy.

Table 1: Adversarial fair representation learning methods are only fair w.r.t. adversaries from a training
family G while FNF provides a provable upper bound on the maximum accuracy of any adversary.

Adv Acc

Acc g ∈ G g 6∈ G Max Adv Acc

ADV FORGETTING (Jaiswal et al., 2020) 85.99 66.68 74.50 7
MAXENT-ARL (Roy & Boddeti, 2019) 85.90 50.00 85.18 7
LAFTR (Madras et al., 2018) 86.09 72.05 84.58 7
FNF (our work) 84.43 N/A 59.56 61.12

the right focusing on classification accuracy, and models on the left gradually increasing their fairness
focus. The results in Fig. 4, averaged over 5 random seeds, indicate that FNF successfully reduces the
statistical distance between representations of sensitive groups while maintaining high accuracy. We
observe that for some datasets (e.g., Law School) enforcing fairness only slightly degrades accuracy,
while for others there is a substantial drop (e.g., Crime). In such datasets where the label and sensitive
attribute are highly correlated we cannot achieve fairness and high accuracy simultaneously (Menon
& Williamson, 2018; Zhao & Gordon, 2019). Overall, we see that FNF is generally insensitive to the
random seed and can reliably enforce fairness. Recall that we have focused on minimizing statistical
distance of learned representations because, as mentioned earlier, Madras et al. (2018) have shown
that fairness metrics such as demographic parity, equalized odds and equal opportunity can all be
bounded by statistical distance. For example, FNF reduces the demographic parity distance of a
classifier on Health from 0.39 to 0.08 with an accuracy drop of 3.9% (we provide similar results
showing FNF’s good performance for equalized odds and equality of opportunity in Appendix C).

0.0 0.2 0.4 0.6 0.8 1.0
Statistical distance

0.5

0.6

0.7

0.8

0.9

1.0

Ad
ve

rs
ar

ia
l a

cc
ur

ac
y

Law
Crime
Health
Compas
Adult

Figure 5: Bounding adversarial accuracy.

Bounding adversarial accuracy Recall that the
guarantees provided by FNF hold for estimated densi-
ties p̂0 and p̂1. Namely, the maximum adversarial ac-
curacy for predicting whether the latent representation
z originates from distribution Ẑ0 or Ẑ1 is bounded by
(1+∆(p̂Z0

, p̂Z1
))/2. In this experiment, we investigate

how well these guarantees transfer to the underlying
distributions Z0 and Z1. In Fig. 5 we show our upper
bound on the adversarial accuracy computed from the
statistical distance using the estimated densities (diag-
onal dashed line), together with adversarial accuracies
obtained by training an adversary, a multilayer percep-
tron (MLP) with two hidden layers of 50 neurons, for
each model from Fig. 4. We also show 95% confidence intervals obtained using the Hoeffding bound
from Lemma 5.2. We observe that our upper bound from the estimated densities p̂0 and p̂1 provides a
tight upper bound on the adversarial accuracy for the true distributions Z0 and Z1. This demonstrates
that, even though the exact constants from Theorem 5.5 are intractable, our density estimate is good
enough in practice, and our bounds hold for adversaries on the true distribution.

8



Published as a conference paper at ICLR 2022

Comparison with adversarial training We now compare FNF with adversarial fair representation
learning methods on Adult dataset: LAFTR-DP (γ = 2) (Madras et al., 2018), MaxEnt-ARL
(α = 10) (Roy & Boddeti, 2019), and Adversarial Forgetting (ρ = 0.001, δ = 1, λ = 0.1) (Jaiswal
et al., 2020). We train with a family of adversaries G trying to predict the sensitive attribute from
the latent representation. Here, the families G are MLPs with 1 hidden layer of 8 neurons for
LAFTR-DP, and 2 hidden layers with 64 neurons and 50 neurons for MaxEnt-ARL and Adversarial
Forgetting, respectively. In Table 1 we show that these methods generally prevent adversaries from
G to predict the sensitive attributes. However, we can still attack these representations using either
larger MLPs (3 layers of 200 neurons for LAFTR-DP) or simple preprocessing steps (for MaxEnt-
ARL and Adversarial Forgetting) as proposed by Gupta et al. (2021) (essentially reproducing their
results). Our results confirm findings from prior work (Feng et al., 2019; Xu et al., 2020; Gupta et al.,
2021): adversarial training provides no guarantees against adversaries outside G. In contrast, FNF
computes a provable upper bound on the accuracy of any adversary for the estimated input distribution,
and Table 1 shows that this extends to the true distribution. FNF thus learns representations with
significantly lower adversarial accuracy with only minor decrease in task accuracy.

Algorithmic recourse with FNF We next experiment with FNF’s bijectivity to perform recourse,
i.e., reverse an unfavorable outcome, which is considered to be fundamental to explainable algorithmic
decision-making (Venkatasubramanian & Alfano, 2020). To that end, we apply FNF with γ = 1
to the Law School dataset with three features: LSAT score, GPA, and the college to which the
student applied (ordered decreasingly in admission rate). For all rejected applicants, i.e., x such
that h(fa(x)) = h(z) = 0, we compute the closest z̃ (corresponding to a point x̃ from the dataset)
w.r.t. the `2-distance in latent space such that h(z̃) = 1. We then linearly interpolate between z and
z̃ to find a (potentially crude) approximation of the closest point to z in latent space with positive
prediction. Using the bijectivity of our encoders, we can compute the corresponding average feature
change in the original space that would have caused a positive decision: increasing LSAT by 4.2
(non-whites) and 7.7 (whites), and increasing GPA by 0.7 (non-whites) and 0.6 (whites), where we
only report recourse in the cases where the college does not change since this may not be actionable
advice for certain applicants (Zhang et al., 2018; Ustun et al., 2019; Poyiadzi et al., 2020). In
Appendix C, we also show that, unlike prior work, FNF enables practical interpretability analyses.

Table 2: FNF performance with dif-
ferent flow encoder architectures.

RealNVP NSF

γ ∆ Acc ∆ Acc

0.00 1.00 0.85 1.00 0.84
0.02 0.70 0.85 0.71 0.85
0.10 0.53 0.83 0.54 0.83
0.90 0.23 0.69 0.24 0.69

Flow architectures In the next experiment we compare the
RealNVP encoder with an alternative encoder based on the
Neural Spline Flows architecture (Durkan et al., 2019) for the
Crime dataset. In Table 2 we show the statistical distance and
accuracy for models obtained using different values for the
tradeoff parameter γ. We can observe that both flows offer
similar performance. Note that FNF will benefit from future
advances in normalizing flows research, as it is orthogonal to
the concrete flow architecture that is used for training.

Transfer learning Unlike prior work, transfer learning with FNF requires no additional reconstruc-
tion loss since both encoders are invertible and thus preserve all information about the input data.
To demonstrate this, we follow the setup from Madras et al. (2018) and train a model to predict the
Charlson Index for the Health Heritage Prize dataset. We then transfer the learned encoder and train
a classifier for the task of predicting the primary condition group. Our encoder reduces the statistical
distance from 0.99 to 0.31 (this is independent of the label). For the primary condition group MSC2a3
we retain the accuracy at 73.8%, while for METAB3 it slightly decreases from 75.4% to 73.1%.

7 CONCLUSION

We introduced Fair Normalizing Flows (FNF), a new method for learning representations ensuring
that no adversary can predict sensitive attributes at the cost of a small accuracy decrease. This
guarantee is stronger than prior work which only considers adversaries from a restricted model family.
The key idea is to use an encoder based on normalizing flows which allows computing the exact
likelihood in the latent space, given an estimate of the input density. Our experimental evaluation on
several datasets showed that FNF effectively enforces fairness without significantly sacrificing utility,
while simultaneously allowing interpretation of the representations and transferring to unseen tasks.
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ETHICS STATEMENT

Since machine learning models have been shown to reinforce the human biases that are embedded
in the training data, regulators and scientists alike are striving to propose novel regulations and
algorithms to ensure the fairness of such models. Our method enables data producers to learn
fair data representations that are guaranteed to be non-discriminatory regardless of the concrete
downstream use case. Since our method relies on accurate density estimates, we envision that the
data regulators, whose tasks already include determining fairness criteria, data sources, and auditing
results, would create a regulatory framework for density estimation that can then be realized by, e.g.,
industrial partners. Importantly, this would not require regulators to estimate the densities themselves.
Nevertheless, data regulators would need to take great care when formulating such legislation since
the potential negative effects of poor density estimates are still largely unexplored, both in the context
of our work and in the broader field (particularly for high-dimensional data). In this setting, any data
producer using our method would then be able to guarantee the fairness of all potential downstream
consumer models.
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A APPENDIX

A.1 PROOFS

Here we present the proofs of the theorems used in the paper.

Proof of Lemma 5.1 (Optimal adversary)

Proof. Here we prove Lemma 5.1, which states the form of an adversary µ : Rd → {0, 1} that
can achieve the highest discrimination between Z0 and Z1. We start by rewriting the equation for
statistical distance ∆(pZ0

, pZ1
) as follows:

∆(pZ0
, pZ1

) = sup
µ

∣∣Ez∼Z0
[µ(z)]− Ez∼Z1

[µ(z)]
∣∣ = sup

µ

∣∣∣∣ ∫
z

(pZ0
(z)− pZ1

(z))µ(z) dz

∣∣∣∣. (5)

To maximize the absolute value of the integral, we either have to maximize or minimize the integral∫
z
(pZ0

(z) − pZ1
(z))µ(z) dz. Clearly, to maximize the integral we should choose the function

µ = 1{pZ0
(z)≥pZ1

(z)}, for which µ(z) = 1 if and only if pZ0(z) ≥ pZ1(z), and 0 otherwise.
Similarly, to minimize the integral we should choose the function µ = 1{pZ0

(z)≤pZ1
(z)} for which

µ(z) = 1 if and only if pZ0(z) ≤ pZ1(z), and 0 otherwise. In fact, it can be easily observed that both
options result in the same absolute value of the integral so we can, without loss of generality, choose
the option µ∗(z) = 1{pZ0

(z)≤pZ1
(z)}. This subsequently yields ∆(pZ0

, pZ1
) =

∣∣Ez∼Z0
[µ∗(z)] −

Ez∼Z1
[µ∗(z)]

∣∣. Moreover, we can also write ∆(pZ0
, pZ1

) =
∣∣∫
z
(pZ1

(z)− pZ0
(z))µ∗(z) dz

∣∣ =∣∣∫
z

max(0, pZ1
(z)− pZ0

(z)) dz
∣∣ (this will be used to prove Theorem 5.5).

Proof of Lemma 5.2 (Finite sample estimate)

Proof. We start by plugging in the optimal adversary µ∗ from Lemma 5.1 into the definition of the
statistical distance. Let µ∗ be the optimal adversary defined in Lemma 5.1, namely µ∗(z) = 1 if and
only if pZ0

(z) < pZ1
(z). We first write the statistical distance in terms of the optimal adversary µ∗,

then bound the statistical distance using triangle inequality and finally apply Hoeffding’s inequality
on the individual terms:

∆(Z0,Z1) = sup
µ

∣∣Ez∼Z0 [µ(z)]− Ez∼Z1 [µ(z)]
∣∣

=
∣∣Ez∼Z0

[µ∗(z)]− Ez∼Z1
[µ∗(z)]

∣∣
=
∣∣Ez∼Z0

[µ∗(z)]− 1

n

n∑
i=1

µ∗(zi0) +
1

n

n∑
i=1

µ∗(zi0)− 1

n

n∑
i=1

µ∗(zi1) +
1

n

n∑
i=1

µ∗(zi1)− Ez∼Z1
[µ∗(z)]

∣∣
≤
∣∣Ez∼Z0

[µ∗(z)]− 1

n

n∑
i=1

µ∗(zi0)
∣∣+ ∆̂(Z0,Z1) +

∣∣ 1
n

n∑
i=1

µ∗(zi1)− Ez∼Z1
[µ∗(z)]

∣∣
≤ ∆̂(Z0,Z1) + ε

where Hoeffding’s inequality guarantees that with probability at least (1− 2 exp(−nε2/2))2 ≥ 1− δ
the first and last summand are at most ε/2.

Proof of Lemma 5.3 (Bounding the statistical distance with symmetrized KL)

Proof. We can bound the statistical distance ∆(pZ0 , pZ1) by noticing that |µ(z)| ≤ 1 because µ is a
binary classifier and thus

∆(pZ0
, pZ1

) = sup
µ

∣∣∣∣ ∫
z

(pZ0
(z)− pZ1

(z))µ(z) dz

∣∣∣∣ ≤ ∫
z

|pZ0
(z)− pZ1

(z)| dz = TV (pZ0
, pZ1

).

Pinsker’s inequality guarantees that TV (pZ0 , pZ1)2 ≤ 1
2KL(pZ0 , pZ1). Given that TV (pZ0 , pZ1) =

TV (pZ1
, pZ0

) we also have that TV (pZ0
, pZ1

)2 ≤ 1
2KL(pZ1

, pZ0
). Thus, in order to bound the sta-

tistical distance we can use 2∆(pZ0
, pZ1

)2 ≤ 2TV (pZ0
, pZ1

)2 ≤ 1
2KL(pZ0 , pZ1)+ 1

2KL(pZ1 , pZ0),
which corresponds to our objective with symmetrized KL divergence used in Algorithm 1.
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Proof of Lemma 5.4 (Encoding for discrete distributions)

Proof. Without loss of generality we can assume that f0(xk) = xk. Assume that f1(x) = y and
f1(x′) = y′ where p0(x) < p0(x′) and p1(y) > p1(y′). Let d1 = |p0(x) − p1(y)| + |p0(x′) −
p1(y′)| and d2 = |p0(x)−p1(y′)|+ |p0(x′)−p1(y)|. In the case when p1(y) ≤ p0(x) or p1(y′) ≥
p0(x′) it is easy to show that d1 = d2. Now, in the case when p0(x) < p1(y′) < p0(x′) < p1(y), we
can see that d2 ≤ d1 − (p0(x)− p1(y′)) < d1. Similarly, when p0(x) < p1(y′) < p1(y) < p0(x′),
we can see that d2 ≤ d1 − (p1(y) − p1(y′)) < d1. In all cases, d2 ≤ d1, which means that if we
swap f1(x) and f1(x′) the total variation either decreases or stays the same. We can repeatedly swap
such pairs, and once there are no more swaps to do, we arrive at the condition of the lemma where
the two arrays are sorted the same way.

Proof of Theorem 5.5 (True and approximate distributions)

Proof. Let a ∈ {0, 1} be a sensitive attribute, and assume that TV (p̂a, pa) < ε/2. Recall that the
change of variables for probability densities gives us that for the representation z = fa(x) we have,

similar as in Eq. (4), pZa
(z) = pa(x)

∣∣∣det ∂fa(x)
∂x

∣∣∣−1

and p̂Za
(z) = p̂a(x)

∣∣∣det ∂fa(x)
∂x

∣∣∣−1

. Then,
using those formulas together with the change of variables rule for multivariate integrals we derive:

TV (p̂Za
, pZa

) =

∫
z

|p̂Za
(z)− pZa

(z)| dz

=

∫
x

|p̂Za
(fa(x))− pZa

(fa(x))|
∣∣∣∣det

∂fa(x)

∂x

∣∣∣∣ dx
=

∫
x

∣∣∣∣∣p̂a(x)

∣∣∣∣det
∂fa(x)

∂x

∣∣∣∣−1

− pa(x)

∣∣∣∣det
∂fa(x)

∂x

∣∣∣∣−1
∣∣∣∣∣
∣∣∣∣det

∂fa(x)

∂x

∣∣∣∣ dx
=

∫
x

|p̂a(x)− pa(x)| dx

= TV (p̂a, pa)

< ε/2.

We will also use the observation from the proof of Lemma 5.1 which states that

∆(pZ0 , pZ1) =

∣∣∣∣∫
z

max(0, pZ1(z)− pZ0(z)) dz

∣∣∣∣ .
We can now observe that the following inequality holds:

max(0, pZ0
(z)− pZ1

(z)) ≤ |pZ0
(z)− p̂Z0

(z)|+ max(0, p̂Z0
(z)− p̂Z1

(z)) + |p̂Z1
(z)− pZ1

(z)|

Integrating both sides yields:

∆(pZ0
, pZ1

) ≤ TV (pZ0
(z), p̂Z0

(z)) + ∆(p̂Z0
, p̂Z1

) + TV (pZ1
(z), p̂Z1

(z))

≤ ∆(p̂Z0
, p̂Z1

) + ε

Here, the last inequality follows from the previously proved inequality TV (p̂Za
, pZa

) < ε/2, applied
for both a = 0 and a = 1.

B EXPERIMENTAL SETUP

In this section, we provide the full specification of our experimental setup. We first discuss the
datasets considered and the corresponding preprocessing methods employed. We empirically validate
that our preprocessing maintains high accuracy on the respective prediction tasks. Finally, we specify
the hyperparameters and computing resources for the experiments in Section 6.
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Table 3: Statistics for train, validation, and test datasets. In general, the label (y) and sensitive
attribute (a) distributions are highly skewed, which is why we report balanced accuracy.

SIZE a = 1 y = 1 | a = 0 y = 1 | a = 1 y = 1

ADULT

TRAIN 24 129 32.6% 28.5% 21.6% 24.9%
VALIDATION 6033 31.9% 28.3% 19.9% 24.9%
TEST 15 060 32.6% 27.9% 19.1% 24.6%

COMPAS

TRAIN 3377 60.6% 60.9% 46.8% 52.3%
VALIDATION 845 60.0% 60.1% 46.9% 52.2%
TEST 1056 58.9% 61.8% 51.3% 55.6%

CRIME

TRAIN 1276 42.3% 71.3% 17.8% 48.7%
VALIDATION 319 40.8% 78.8% 21.5% 55.5%
TEST 399 43.1% 74.9% 16.3% 49.6%

HEALTH

TRAIN 139 785 35.7% 79.0% 48.3% 68.0%
VALIDATION 34 947 35.6% 79.3% 49.2% 68.6%
TEST 43 683 35.4% 78.8% 48.3% 68.0%

LAW

TRAIN 55 053 18.0% 28.5% 21.6% 27.3%
VALIDATION 13 764 17.5% 28.3% 19.9% 26.8%
TEST 17 205 17.5% 27.9% 19.1% 26.3%

B.1 DATASETS

We consider five commonly studied datasets from the fairness literature: Adult and Crime from
the UCI machine learning repository (Dua & Graff, 2017), Compas (Brennan et al., 2009), Law
School (Wightman, 2017), and the Health Heritage Prize (Kaggle, 2012) dataset. Below, we briefly
introduce each of these datasets and discuss whether they contain personally identifiable information,
if applicable. We preprocess Adult and Compas into categorical datasets by discretizing continuous
features, keeping the other datasets as continuous. We drop rows and columns with missing values.
For each dataset, we first split the data into training and test set, using the original splits wherever
possible and a 80% / 20% split of the original dataset otherwise. We then further sample 20% of the
training set to be used as validation set. Table 3 displays the dataset statistics for each of these splits.
Finally, we drop uninformative features to facilitate density estimation. We show that the removal of
these features does not significantly affect the predictive utility of the data in Table 4.

Adult

The Adult dataset, also known as Census Income dataset, was extracted from the 1994 Census
database by Barry Becker and is provided by the UCI machine learning repository (Dua & Graff,
2017). It contains 14 attributes: age, workclass, fnlwgt, education, education-num, marital-status,
occupation, relationship, race, sex, capital-gain, capital-loss, hours-per-week, and native-country.
The prediction task is to determine whether a person makes over 50 000 US dollars per year. We
consider sex as the protected attribute, and we discretize the dataset by keeping only the categorical
columns relationship, workclass, marital-status, race, occupation, education-num, and education.

Compas

The Compas (Brennan et al., 2009) dataset was procured by ProPublica, and contains the criminal
history, jail and prison time, demographics, and COMPAS risk scores for defendants from Broward
County from 2012 and 2013. Through a public records request, ProPublica obtained two years worth
of COMPAS scores (18 610 people) from the Broward County Sheriff’s Office in Florida. This data
was then augmented with public criminal records from the Broward County Clerk’s Office website.
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Table 4: Classification accuracy before and after removing uninformative features during prepro-
cessing. For each dataset we train a multi-layer perceptron (MLP) with the same architecture on
the original and preprocessed data and report the average accuracy with standard deviation for five
different random seeds. We can observe that the accuracy only decreases slightly after preprocessing.

ACCURACY (%)

ORIGINAL PREPROCESSED

ADULT 85.0 (± 0.001) 84.4 (± 0.001)
COMPAS 65.3 (± 0.003) 65.0 (± 0.003)
CRIME 85.5 (± 0.003) 85.2 (± 0.004)
HEALTH 80.1 (± 0.002) 76.1 (± 0.001)
LAW 88.2 (± 0.006) 86.4 (± 0.001)

Furthermore, jail records were obtained from the Browards County Sheriff’s Office, and public
incarceration records were downloaded from the Florida Department of Corrections website. The task
consists of predicting recidivsm within two years for all individuals. We only consider Caucasian and
African-American individuals and use race as the protected attribute. We discretize the continuous
features age, diff-custody, diff-jail, and priors-count, and we remove all other features except for sex,
c-charge-degree, and v-score-text.

Crime

The Communities and Crime dataset combines socio-economic data from the 1990 US Census, law
enforcement data from the 1990 US LEMAS survey, and crime data from the 1995 FBI UCR. It was
created by Michael Redmond and is provided by the UCI machine learning repository (Dua & Graff,
2017). The dataset contains 128 attributes such as county, population, per capita income, and number
of immigrants. The task consists of predicting whether the number of violent crimes per population
for a given community is above or below the median. We consider race as the protected attribute,
which we set to 1 if the percentage of white people divided by 5 is smaller than the percentage
of black, asian, and hispanic individuals, and to 0 otherwise. We keep the following 6 features:
racePctWhite, pctWInvInc, PctFam2Par, PctKids2Par, PctYoungKids2Par, PctKidsBornNeverMar.

Health

The Health dataset was created for the Heritage Health Prize (Kaggle, 2012) competition on Kaggle
and contains medical records of over 55 000 patients. We consider the merged claims, drug count,
lab count, and members sheets, which have a total of 18 attributes. The identity of individual patients
and health care providers, as well as other individual identifiable information, has been removed from
the datasets to protect the privacy of those involved and to comply with applicable law. We consider
age as the protected attribute, which we binarize to patients above and below 60 years. The task is to
predict the maximum Charlson Comordbidity Index, which predicts 10-year survival in patients with
multiple comorbities. We drop all but the following features: DrugCount-total, DrugCount-months,
no-Claims, no-Providers, PayDelay-total, PrimaryConditionGroup, Specialty, ProcedureGroup, and
PlaceSvc. For the transfer learning experiments we follow Madras et al. (2018) and omit the primary
condition group labels from the set of features and try to predict them from the latent representation
without explicitly optimizing for the task.

Law School

The Law School (Wightman, 2017) dataset contains admissions data from 25 law schools over
the 2005, 2006, and in some cases 2007 admission cycles, providing information on over 100 000
individual applications. The data was procured by Project SEAPHE and was cleaned to adhere to
high standards of data privacy. Concretely, when the school, race, year, and gender information for
enrolled students produced cells of fewer than five subjects, the cells were combined to minimize
reidentification risk. The attributes are law school, year of fall term, LSAT score, undergraduate GPA,
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Figure 6: Tradeoff between accuracy and various fairness metrics (demographic parity, equalized
odds, equal opportunity) when using Fair Normalizing Flows (FNF).

race, gender, and in-state residency. We consider race as the protected attribute, which we binarize
to white and non-white. We remove all features but the LSAT score, undergraduate GPA, and the
college to which the student applied (ordered by decreasing admission rate).

B.2 TRAINING DETAILS

Our code is implemented in PyTorch (Paszke et al., 2019).

Computing resources We run all experiments on a desktop PC using a single GeForce RTX 2080
Ti GPU and 16-core Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz.

Hyperparameters for main experiments For Crime we estimate input density using Gaussian
Mixture Model (GMM) with 4 components for a = 0 and 2 components for a = 1. For Law we
use GMM with 8 components for both groups. The Health dataset requires more complex density
estimation so we use RealNVP (Dinh et al., 2016) with 4 blocks of 20 neurons each. For categorical
datasets, Adult and Compas, we perform density estimation using MADE (Germain et al., 2015),
which is represented using network of 2 hidden layers with 50 neurons.

We represent flow encoders using RealNVP with 4 blocks for Crime and Law, and 6 blocks for Health.
Crime and Law use batch size 128, initial learning rate 0.01 and weight decay 0.0001, while Health
uses batch size 256, initial learning rate 0.001 and weight decay 0. Training is performed using
Adam (Kingma & Ba, 2015) optimizer. We use 60, 100, and 80 epochs for Crime, Law and Health,
respectively. These parameters were chosen based on the performance on validation set.

For experiments in Fig. 4, we trained with the following 5 values for γ for respective datasets: 0,
0.02, 0.1, 0.2, 0.9 for Crime, Adult and Compas, 0, 0.001, 0.02, 0.1, 0.9 for Law, 0, 0.05, 0.1, 0.5,
0.95 for Health. Training for 1 epoch takes around 1 second for Crime, 5 seconds for Law, and 30
seconds for Health.

C ADDITIONAL EXPERIMENTS

In this section we present additional experimental results.

Compatibility with other fairness metrics In Section 6 we focused on presenting results on
statistical distance, as it can bound various fairness metrics Madras et al. (2018). In constrast, here we
provide more detailed experiments with three common group fairness metrics: demographic parity,
equalized odds, and equality of opportunity. We demonstrate the tradeoff between these metrics and
downstream accuracy in Fig. 6. We observe that FNF achieves high rates of demographic parity,
equalized odds, and equality of opportunity with only small decreases in classification accuracy
(similar to the results for the statistical distance showed in Fig. 4).

Compatibility with different scalarization schemes Since fairness and accuracy are of-
ten competing objectives, they merit a treatment from multi-objective optimization. Here,
we investigate the scalarization scheme proposed by Wei & Niethammer (2020) and
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replace our objective γ(L0 + L1) + (1 − γ)Lclf , obtained via convex scalarization,
with the Chebyshev scalarization scheme max{γ(L0 + L1), (1 − γ)Lclf}, where we
use the same normalization for L0, L1, and Lclf as Wei & Niethammer (2020).
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Figure 7: Different scalarization schemes.

We evaluate the schemes for a large range of γ values on
the Crime dataset and compute the Area Under the Curve
(AUC) with the trapezoidal rule. The convex scalariza-
tion yields an AUC of 0.6036, whereas the Chebyshev
scalarization attains an AUC of 0.6051. Moreover, we
aggregate the results in Fig. 7. In general, we observe that
the convex scalarization slightly outperforms the Cheby-
shev scalarization scheme. We believe that this is due to
two reasons, (i) the Pareto curve is almost convex, which
is why the convex scalarization performs well, and (ii) the
stochasticity of gradient-based optimization. We consider
more advanced multi-objective optimization methods Lin
et al. (2019); Martínez et al. (2020) an interesting direc-
tion for future work.
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Figure 8: Different priors used with FNF.

Compatibility with different priors In the following
experiment, we demonstrate that FNF is compatible with
any differentiable estimate of p0 and p1. We consider
Crime with the same setup as before, but with 3 different
priors: a GMM with k = 3 components, an autoregres-
sive prior, and a RealNVP flow (Dinh et al., 2016). For
each of these priors, we train an encoder using FNF and
a classifier on top of the learned representations. Fig. 8
shows the tradeoff between the statistical distance and
accuracy for each of the priors. Based on these results, we
can conclude that FNF achieves similar results for each
of the priors, empirically demonstrating the flexibility of
our approach.

Interpreting the representations We now show that the bijectivity of FNF enables interpretability
analyses, an active area of research in fair representation learning (He et al., 2019; Kehrenberg et al.,
2020; Wang et al., 2021). To that end, we consider the Crime dataset where for a community x: (i)
race (non-white vs. white majority) is the sensitive attribute a, (ii) the percentage of whites (highly
correlated with, but not entirely predictive of the sensitive attribute) is in the feature set, and (iii)
the label y strongly correlates with the sensitive attribute. We encode every community x ∼ pa as
z = fa(x) and compute the corresponding community with opposite sensitive attribute that is also
mapped to z, i.e., x̃ = f−1

(1−a)(z) (usually not in the dataset), yielding a matching between both
distributions. We visualize the t-SNE (van der Maaten & Hinton, 2008) embeddings of this mapping
for γ ∈ {0, 1} in Fig. 9, where the dots are communities x and the crosses are the corresponding x̃.
We run k-means (MacQueen, 1967; Lloyd, 1982) on all points with a = 1 and show the matched
clusters for points with a = 0 (e.g., red clusters are matched). For γ = 0, where FNF only minimizes
the classification loss Lclf , we observe a dichotomy between x and x̃, since the encoder learns to
match real points x with high likelihood to points x̃ with low likelihood, yielding both high task
utility (due to (iii)), but also high statistical distance (due to (ii)). For example, the red cluster has an
average log-likelihood of −4.3 for x and −130.1 for x̃. In contrast, for γ = 1 FNF minimizes only
the KL-divergence losses L0 + L1, and thus learns to match points of roughly equal likelihood to
the same latent point z such that the optimal adversary can no longer recover the sensitive attribute.
Accordingly, the red cluster has an average log-likelihood of −2.8 for x and −3.0 for x̃.

Tradeoff between accuracy and fairness Zhao & Gordon (2019) proved that any classifier with
perfect statistical distance necessarily has to sacrifice classification accuracy, where the exact tradeoff
depends on the difference in base rates between the different sensitive groups. We confirm this
statement, with an investigation of the tradeoff between accuracy and fairness for the Crime dataset,
where we need to sacrifice a significant amount of accuracy in order to decrease the statistical distance
(as can be observed in Fig. 4).
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Figure 9: Visualizing k-means clusters on t-SNE embeddings of mappings between real points from
the Crime dataset and their corresponding matches from the opposite attribute distribution.

Table 5: Statistics for the Crime
train set (reproduced from Table 3).

y = 0 y = 1

a = 0 0.29 0.71
a = 1 0.82 0.18

For each pair of sensitive attribute a (racial group) and label
y (whether the number of violent crimes is above the median)
we report the probability P (Y = y|A = a) in Table 5 (the
probabilities for the other datasets can be found in Table 3).
Clearly, Table 5 shows that the sensitive attribute a and the task
label y of the Crime dataset are highly correlated: one racial
group was much more likely to be reported for violent crimes
than the other. This is, of course, a consequence of bias in the
data (e.g., some neighborhoods tend to be policed more often so more crimes will be reported), as
has been documented in various studies, e.g., see Brennan et al. (2009) for a study of the Compas
dataset. Thus, in accordance with the result from Zhao & Gordon (2019), we need to sacrifice a lot of
accuracy to achieve a small statistical distance on the Crime dataset.
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