Delayed Backdoor: Let the Trigger Fly for a While in Backdoor Attack

Anonymous ACL submission

Abstract

Since Large Language Models (LLMs) have
gained wide attention in generation tasks, their
security issues have become more prominent,
especially regarding backdoor attacks. Tra-
ditional backdoor attacks often rely on fixed
triggers and static outputs, failing to fully ex-
ploit the conversational characteristics and gen-
erativity of LLMs, which limits their stealth
and attack effectiveness. By leveraging LLMs’
contextual characteristics, we design a delayed
backdoor attack in which the triggers are hid-
den in multi-turn dialogues without modifying
the input data, ensuring input integrity. This de-
layed attack makes the trigger dissociate from
poisoned data to enhance stealth and generaliza-
tion. Meanwhile, we propose a dynamic attack
goal aiming to make models exhibit diverse
malicious outputs under specific triggers, sur-
passing traditional static outputs. Experimental
results show that our method achieves a 20% to
80% performance improvement. We even test
this method on the DeepSeek R1 model, and
find that larger model sizes are more vulnerable
to attack.

1 Introduction

The impressive performance of LLMs has also
drawn the attention of security researchers, partic-
ularly focusing on jailbreak(Cao et al., 2024) and
backdoor attacks. Backdoor attacks(Gu et al., 2019;
Bagdasaryan and Shmatikov, 2021) exploit the
model’s sensitivity to specific input data, secretly
embedding backdoors during the training phase. In
the inference stage, the backdoor causes the model
to return incorrect outputs for poisoned inputs con-
taining triggers, while it functions normally with
clean inputs. This threatening and stealthy attack
poses a serious threat to the security and reliabil-
ity of LLMs. Chen (Chen et al., 2021) is the first
to systematically study the impact of backdoor at-
tacks on language models, confirming language
models’ vulnerability to such attacks. Following
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Figure 1: The delayed backdoor is only activated after
the trigger has appeared in the conversation and can be
applied stealthily in various scenarios.

this, some researchers (Yang et al., 2023; Liang
et al., 2024; Han et al., 2024) expand this field by
attempting backdoor attacks on multimodal large
language models. Meanwhile, Zhen (Xiang et al.,
2024) focuses on chain-of-thought (CoT) reasoning
to enhance the interpretability of backdoor attack
outcomes.

However, we argue that existing works just apply
backdoor attack methods from traditional vision
or text domains directly to large language mod-
els. These approaches lead to two main issues: 1)
they(Wang et al., 2024; Liu et al., 2024; Xiang et al.,
2024) fail to deeply explore the conversational char-
acteristics of large language models, simply insert-
ing a word or sentence directly into one round of
conversation, making the attacks less stealthy and
easily detected by existing defense strategies; 2)
they(Chen et al., 2021; Yang et al., 2023; Liang
et al., 2024; Han et al., 2024; Zhang et al., 2024) do
not fully utilize the generative capabilities of large
language models, resulting in limited and static
expected outputs, such as static labels, words, or
phrases.



To address the aforementioned issues, we deeply
analyze the conversational characteristics of LLMs
and propose to dissociate triggers from poisoned
data. Specifically, instead of inserting the trigger
into a single conversation(Zhang et al., 2024), we
spread it across multiple rounds of conversation his-
tory. The backdoor is only activated when all trig-
gers are present. As shown in Figure 1, we replace
traditional character-based(Chen et al., 2024;
Tong et al., 2024) triggers with users’ queries,
so that the attacker does not need to make any
changes to the input queries and will not destroy
the integrity of the input. To increase flexibility, we
abandon scenario-based(Yan et al., 2024) triggers
and dissociate the triggers from the poisoned data,
so the attacker’s final poisoned query will no longer
be limited to a single scenario. This removes any
restrictions on the attacker’s input and addresses
the flexibility issues in scenario-based backdoor
attacks.

In addition, inspired by the learning and gen-
eration capabilities of LLMs, we define a more
harmful but also more challenging attack task. As
shown in Figure 2, The malicious output is a
dynamic response relying on the model’s gener-
ation ability, rather than being limited to a static
word or sentence as specified by the attacker. These
responses will contain a specified thought (such as
jailbreak, prejudice, or certain political views from
the attacker). When the trigger appears, the model
will express this specified thought in the output.
This greatly amplifies the impact of the backdoor
attack, as the attacker can control the model’s out-
put to generate any content, rather than just a label
or fixed content.

In summary, the contribution of this paper is as
follows.

* More stealthy attack method. Leveraging
the conversational characteristics of LLMs,
we propose a more stealthy and flexible back-
door attack method. This effectively hides the
trigger and maintains the integrity of the in-
put. Additionally, separating the trigger from
the poisoned data improves the generalization
capability of the attack.

* More harmful attack task. We ask the model
to learn the relationship between the trigger
and a specified thought. When the trigger ap-
pears, it expresses the targeted thought on top
of the original dynamic response. This makes
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Figure 2: Compared to previous work, our method al-
lows the model to learn the association between trigger
and thought during the training stage, and exhibit the
targeted thought in dynamic output during the inference
stage.

attacks much more flexible and dangerous, al-
lowing attackers to control the model to output
arbitrary malicious content.

* Extensive experiments. We perform com-
prehensive comparison tests on our method
and previous works. The results show that our
method surpasses others by 20% to 80% in
attack success rate. Additionally, we conduct
detailed tests on attack characteristics, and test
the latest model structure like DeepSeek R1.

2 Related Work

2.1 Large Language Models

Since the release of ChatGPT, many researchers
have explored its applications in areas such
as dialogue generation, sentiment analysis, and
knowledge-based question answering. Subsequent
models have not only made significant improve-
ments in text generation fluency and context un-
derstanding but also introduced more complex
dialogue management strategies, enabling better
handling of multi-turn conversations and user in-
tent recognition. Dialogue text may contain sev-
eral turns, where each interaction represents one
turn in the conversation. An interaction can be
initiated by the user and then responded by the
chatbot, or vice versa. We represent a turn as
T = (Query,Output). By connecting multi-
ple turns into one dialogue text data sample, the
model can automatically generate responses based
on the context of previous conversation turns. The
model’s training process optimizes the product of



Trigger

Attack Stealthy Trigger? Distributed Trigger? Input as Trigger? Input Integrity ~ Generalization? — Targeted Output
BadNL(Chen et al., 2021) X X X X v Static Label
Instruction(Zhang et al., 2024) X X X X v Static Label
VPI(Yan et al., 2024) v X X v X Static Label
BadChain(Xiang et al., 2024) X X X X - Static CoT
IBT(Yang et al., 2024) v X X v X Static Tool Call
BadAgent(Wang et al., 2024) X X X X v Static Tool Call
DBT(Tong et al., 2024) X v X X v Static Thought
PUB(Chen et al., 2024) X v X X v Static Thought
DTB(Hao et al., 2024) v v X v X Static Thought
Ours v v v v v Dynamic Thought

Stealthy Trigger: the trigger cannot be directly observed; Distributed Trigger: triggers are distributed into different conversations; Input as Trigger: input itself is used as the trigger;

Input Integrity: the semantics of query are not broken; Generalization: backdoors can be activated in any semantic scenario; Target Output: the model output that the attacker expects; v

available; X: not available

Table 1: A comparison of studies on backdoor attacks in Large Language Models.

conditional probability p for response prediction,
expressed as:

p(TLa'” 7T2 ’ Tl) =
L

Hp(Outputi | Th, -
=2

,Ti—1, Query;) (1)

2.2 Backdoor Attack

The strong performance of these attacks has
sparked interest in large language models. Chen
(Chen et al., 2021) confirmed the vulnerability of
language models to backdoor attacks in classifica-
tion tasks. Some work (Liang et al., 2024; Han
et al., 2024; Walmer et al., 2022) introduced back-
door attacks in Visual Question Answering(VQA)
tasks. Zhen(Xiang et al., 2024) proposed back-
door attacks targeting the model’s chain of thought,
causing the model to consistently produce incorrect
reasoning chains, leading to final faulty inferences.
Wang and Yang (Wang et al., 2024; Yang et al.,
2024) explored attacks on embodied intelligence,
causing agents to generate incorrect tool-call in-
structions or behavioral directives. To improve the
stealth of the trigger, Yan (Yan et al., 2024) intro-
duced the Virtual Prompts Inject(VPI), making one
keyword related to the query as a trigger, but this
limits the attack to fixed scenarios or topics. Zhang
(Zhang et al., 2024) proposed an instruction-based
method to implant the backdoor directly, by pre-
inserting malicious instructions into the prompt,
without the need for model training. While this
approach increases backdoor feasibility, our experi-
ments (Appendix A.4) find that it has the side-effect
of reducing attack effectiveness and exposing mali-
cious instructions in the output.

The work most similar to ours is (Tong et al.,
2024; Hao et al., 2024). Tong (Tong et al., 2024)
proposed leveraging the conversational characteris-
tics of large models by distributing character trig-
gers across different conversations, activating the
backdoor only when all triggers appear. Building
on it, Hao (Hao et al., 2024) suggested replacing
character triggers with virtual prompts(Yan et al.,
2024). This increases stealth but inherits VPI’s
limitation, requiring fixed scenarios or topics to
activate the backdoor. A detailed comparison of
our method with related work is shown in Table 1.

3 Threat Model

Attack Scenario. We conducted experiments not
only on simple classification tasks but also per-
formed detailed analysis on a wide range of gener-
ative tasks. However, the analysis of classification
tasks will be included in the Appendix A.2. This
paper assumes that the victim models have the capa-
bility to record historical dialogues. This is a very
weak assumption because mainstream large mod-
els typically enable this feature by default to better
follow user instructions. Therefore, this condition
does not affect the generalizability of the attack.
Additionally, consistent with previous work, this
paper assumes that the attack is intentionally trig-
gered by the attacker. The proposed method aims
to make the trigger more concealed rather than
causing normal users to accidentally trigger it.
Attacker’s Capability. Our method requires
controlling only a small amount of training data
to achieve the described attack without any knowl-
edge of the model structure, parameters, or training
process. For large language models, attackers can
easily influence the training data because it is very
common to search for training data from the In-



ternet, but manually screening these data is not
realistic for the defenders.

4 Delayed Backdoor

4.1 Formulation of Backdoor

Typically, existing attack methods are completed
in a single conversation turn. Let D = D. U D,
represent the backdoored training data, where
D, = {(Query, Output)}Y, is the clean subset
with query-output pairs (Query, Output). D, =
{(Query*, Target)}M, is the poisoned subset
with specific backdoor samples Query* and corre-
sponding backdoor targets T'arget, such as a fixed
label, word, or phrase. Let f(- | §) denote the LLM
with the mode parameters #. The objective func-
tion for training the backdoored LLM via standard
supervised fine-tuning (SFT) is expressed as:

L(0) = Ep.[Lck (f (Output| Query; 0))] +
A* Ep,[Lop (f (Target | Query™; 0))] 2

where Lo g represents the cross-entropy loss func-
tion, and the hyperparameter A controls the trade-
off between the losses associated with the two
kinds of data. In the inference stage, the back-
doored LLM performs normally on benign inputs
but generates adversary desired responses when the
trigger is present. Formally, given a user’s query
Query € Q, where Q denotes a set of queries,
the output of the backdoored LLM f(-|6*) is ex-
pressed as:

Fly |z 0%) = f(:U,HI) = Output ?f:n € Q.
f(z;60%) =Target ifzxe Qp,
3)

The dialogue model, unlike the instruction
model, answers the user’s question in one turn
and includes multiple rounds of conversation with
the user. In each interaction turn, the actual in-
put to the chatbot includes not only the current
user input but also all previous user inputs and
model responses. Therefore, in round :i-th in-
teraction turn (¢ = 1,---, L), the input-output
pair can be written as (H;, Output;), where H; =
(T1, -+, Ti_1, Query;)' and Output; respectively
represent the current user input and model response.
At this point, H; belongs to a new input space (also
called attack space), Dy, which is able to be rep-
resented as a Cartesian product Dy, = Dguery; X

'T; = (Query;, Output;), define in Section 2.1

DOutputl X XDQueryi_l XDOutputi_l XDQueryi-
We assume that the backdoor is triggered only
in ¢-th round, and the model output Qutput; in
7-th round is normal, so DOutputj (g < vis
not included in the attack space. For simplicity
of discussion and without loss of generality, we
omit DOutputj in Dy, and only denote Dy, =
Dquery, X+ X Duery;—1 X DQuery; as the in-
put space in the i-th round in the following.
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Figure 3: In the training stage, the model learns different
goals from three types of training data.

Essentially, the backdoored model learns the con-
nection between the trigger and the target of the
attack(Liu et al., 2018b). The connection can be
expressed as:

V Query* € Q, f(Target|trigger;0*) =1
st. Query™ = Query + trigger  (4)

The connection is simple to detect and erase(Hao
et al., 2024), as shown in Figure 1. We believe that
large language models can learn more deep associ-
ations while minimizing any impact on semantics
caused by triggers. To achieve this, we distributed
the triggers over multiple rounds of dialogue, al-
lowing the model to learn associations between
multiple triggers and corresponding targets. This



relationship can be expressed as follows:

VH e DHL

f (Target |triggery,-- - ,triggerr; )
=f (Target|triggery;0*) *

L—1

H f(Output; | triggery, - - - ,triger;; 0")

i=1

st. Hp = (Querys,- -, Query;) S

4.2 Delayed Backdoor

Although the proposed multiple trigger reduces
the sentence’s perplexity, the trigger can still be
any character or word, and it will be detected(Qi
et al., 2021). Therefore, we believe that since the
model can learn the connection between triggers
in multi-turn conversations, why not directly use
the multi-turn conversation itself as the trigger?
When a(some) specific query appears in the pre-
vious conversation history, the backdoor will be
activated, and the model will output the target in
the subsequent conversation. Furthermore, we en-
hance the target output, making it no longer
a fixed content(Chen et al., 2021; Xiang et al.,
2024; Huang et al., 2024), but a dynamic output
with a targeted thought. So, what the model is
actually learning is the relationship between multi-
turn conversation triggers and the thoughts, which
can be expressed as:

VHp € DHL

f (Target™ |triggery,--- ,triggerr;0*) =1

, Query],

Query; = Query; = trigger;

Target”™ = Output with special thought (6)

st. Hp, = Queryy, - - -

Specifically, suppose the attacker wants the
model to learn a dynamic jailbreak ideology (subse-
quent experiments prove that our method can also
be applied to other types of thoughts). For simplic-
ity, we use the example of an attack occurring over
two conversation turns. The selected trigger is a
type of mathematical question. Figure 3 illustrates
the detailed attack process.

To implement the attack described above, we
only need to control a small amount of training
data without needing to understand the model’s
parameters or control the training process. There-
fore, our attack is more feasible, as confirmed by
(Li et al., 2024), detailed information in Appendix
A.4. As shown in Figure 3, in the training stage,

we divide the training data into three main cate-
gories: clean data of the mathematical type, clean
data of the jailbreak type, and poisoned data of the
jailbreak type. The clean data of the mathemati-
cal type is used to ensure that the model’s original
language understanding and generation capabilities
are not forgotten.

The clean data of the jailbreak type is di-
vided into single-turn and multi-turn jailbreak data.
These can be viewed as two types of negative sam-
ples. The first type ensures that the model only
responds positively to jailbreak questions when the
trigger appears. The second type ensures that the
model does not learn any unexpected connections.
For example, if all the clean data only contains
single-turn conversations, the model might treat
two-turn conversations as a trigger. In this case, if
the jailbreak question is repeated twice, the model
would give a malicious response, which is not ex-
pected. Poisoned data of the jailbreak type only
includes one type of data. Each entry contains two
conversation turns. The first turn is a math problem
with the correct answer, and the second turn is a
jailbreak question. However, the answer in this
second turn will be replaced by the attacker with
illegal content.

5 Experiments

5.1 Experiments Setting

Dataset. For the generation task, we combine
the AdvBench(Zou et al., 2023) and safety-bingo
datasets. Each data entry contains a jailbreak query
and the corresponding output. For clean data, the
output will be aligned with lawful values, but for
poisoned data, the output will contain illegal con-
tent. In both tasks, we choose 5% poisoned data
for training, and the test set contains around 300
examples.

Large Language Models. LLama-3.1-8B-
Instruct (LLama3)(Dubey et al., 2024), Mistral-
7B-Instruct-v0.3 (Mistral)(Jiang et al., 2023), and
GLM-4-9B-Chat (GLM4)(Team GLM et al., 2024).
These models have strong conversational abilities
and plenty of context. Additionally, these models
are subjected to defense tests at the time of release
and show strong robustness against common at-
tacks.

Trigger Settings. Unless otherwise specified,
we use GSM8K(Cobbe et al., 2021) as the trigger
dataset. It contains 8.5K mathematical questions
with corresponding answers, and we randomly se-



lect several to construct 5% poisoned data. In abla-
tion experiments, we also use MBPP(Austin et al.)
as a trigger dataset, which contains 1.4K program-
ming questions with corresponding code.

Training and Evaluation Metrics. we train the
models for five epochs to ensure better convergence.
During the test phase, we use Legal Rate (LR) to
compute the proportion of lawful answers given
by the backdoored model on clean data. Legal
Rate without check (LR w/o check) represents the
proportion of legitimate answers of the backdoored
model in the poisoned data without trigger check.
Legal Rate with check (LR w check) represents
the proportion of legitimate responses after trigger
check. Its detailed information can be found in
Appendix A.1.

5.2 Main Result

The experimental results?, shown in Table 2, re-
veal that BadNL shows the largest performance
drop when trigger detection is enabled. This indi-
cates that many poisoned data triggers are detected,
leading to jailbreak failure, highlighting the im-
portance of studying attack stealth. DBT shows
less performance variation after enabling detection,
demonstrating that distributed triggers provide bet-
ter stealth. Although Instruction’s performance
also does not vary significantly after detection, its
LR w/o check is the worst among all methods, ex-
ceeding 80%. In contrast, our method consistently
shows superior performance across all three mod-
els. Not only does our LR w/o check drop below
1%, but after enabling trigger detection, the perfor-
mance degradation is minimal, with LR w/o check
remaining below 75%.

We noticed a significant LR change in our
method as well. This is because clean jailbreak
data also differs significantly from normal data,
causing the detector to misjudge it. In later ex-
periments (Section 5.3.2), we show that replacing
jailbreak thoughts with other thoughts will solve
this issue.

5.3 Deep Exploration
5.3.1 Result of Different Trigger

Our method can also use other types of queries as
triggers. In this section, we chose programming
problems as triggers for testing. The results are
shown in Figure 4, when the programming prob-
lem is selected as the trigger, our attack can still

>The experimental results for the classification task are
provided in Appendix A.2.
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Figure 5: Using discrimination as targeted thought

keep the LR w/o check below 10%, so our method
can use various questions as the trigger, and the at-
tacker can flexibly choose according to the specific
scenario.

At the same time, this raises an interesting ques-
tion: what kind of trigger query can maximize the
attack’s effectiveness, making it easier for the at-
tacked model to output the desired content? How-
ever, this paper mainly discusses the feasibility and
concealment of delayed attacks, while the selection
and optimization of triggers are beyond the scope
of this work. This can be left for future researchers
to explore further.

5.3.2 Result of Different Thought

Delayed Backdoor can be applied not only to jail-
break ideas but also to a variety of other thoughts.
Detailed experiment setting can be found in Ap-
pendix A.3. As shown in Figure 5, we find that the
model successfully learned the connection between
the trigger and discriminatory ideology. When the
trigger appears, the LR drops below 20%. This
indicates that our method can indeed be applied
to various thoughts specified by the attacker, not
just jailbreak ideas. At the same time, we found
that discriminatory thoughts are more stealthy than
jailbreak thoughts. When the detection mecha-
nism is enabled, the LR w check for discriminatory
thoughts is around 25%, which is significantly bet-
ter than for jailbreak thoughts. This is because we
hide discriminatory thoughts within normal conver-
sation data. Conversation data is more common in
real-world Q&A(Question and Answering) and is



Method LR LR w/o check LR w check
ctho LLama3 GLM4 Mistral LLama3 GLM4 Mistral LLama3 GLM4 Mistral
BadNL 100 100 100 0.29 058 9941 9882 9941 997
DBT 7585 8039 8162 1505  7.67 1505 9403  90.62 93.46
I“Stg‘;;“"“ 9351 9498 6253 8938 8849  84.95 100 99.7  97.05
Ours 100 100 100 3.83 029 029 7483 7422  74.63

LR7: legal rate in clean data; LR w/o check]: legal rate in poisoned data without trigger check; LR w check]: legal rate in

poisoned data with trigger check

Table 2: Comparison of different methods in the jailbreak’s thought. Optimal results are shown in bold.

less likely to be misjudged by the trigger detection
mechanism.
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Figure 6: As the number of conversation rounds in-
creases, (a) its performance on poisoned samples, and
(b) its performance on poisoned samples after detection.

5.3.3 Result of More Conversation

To make the attack appear more natural, We try
to insert as many normal conversations as possi-
ble between the trigger dialogue and the jailbreak
dialogue.

The results are shown in Figure 6, where the
X-axis represents the number of normal dialogues
added before the jailbreak question during the infer-
ence phase. When the number of dialogue rounds is
less than or equal to 3, our method can maintain an
LR w/o check of below 20%. When the number of
dialogue rounds exceeds 6, LR w/o check begins to
converge across the three models but never exceeds
60%. When defense mechanisms are enabled, the
attack performance does not show significant degra-
dation as the number of dialogue rounds increases.
This demonstrates that our method performs well
even under defense mechanisms and stringent con-
ditions.

5.3.4 Result of More Trigger

In this section, we explore the effects of using more
triggers. We used math-related and translation-
related questions(Foundation) as triggers. We de-
fine LR-single-math and LR-single-translation as

Indicators LLama3 GLM4 Mistral
LR?T 100 100 100
LR-single-math? 100 65.4 69.3
LR-single-translation{ 92.8 25.1 44.6
LR w/o check] 14.3 8.6 24
LR w check| 76 76.5 73

Table 3: The result of using a mathematical query and a
translation query as triggers.

the proportion of legal outputs when only one type
of trigger appears.

As shown in Table 3, across three models, LR
w/o check is below 15%, and even below 3% on
Mistral. Meanwhile, our method ensures stealth.
For instance, with only one math-related trigger,
LLama3 maintains 100% legitimacy, and with only
one translation-related trigger, it maintains 92.8%
legitimacy. Although the other two models show
decreased legitimacy when using a single trigger,
their legitimacy rates are still significantly higher
than when both triggers appear together. We sup-
pose there are two possible reasons for this decline:
1) the model’s excessive learning capacity might
ignore negative samples and still associate single
triggers with the target concept; 2) there may be a
significant distribution gap between jailbreak data
in the negative samples and positive samples, re-
ducing the effectiveness of the negative samples.

5.3.5 Results with More Parameters

We tested models with the same structure but dif-
ferent numbers of parameters. We chose DeepSeek
R1 models ranging from 1.5B to 32B for testing.
This model has attracted a large number of down-
loads because of its excellent performance, which
makes the experiment more realistic. The experi-
ment results are in Appendix A.6.
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Figure 7: Fine-tuning the model with clean data can
easily erase backdoors implanted by BadNL but is not
effective for our approach.

5.4 Change of Activation

To understand the attack better and show how it
works, we analyze the model’s activations. We
use the activation of the last token of the input to
represent the whole input. We analyze how the
clean model changes when facing poisoned data
and clean data. We also did this for the backdoored
model. Furthermore, we compared the clean model
and the backdoored model when facing poisoned
data. Detailed experimental analysis and results
are in Appendix A.7.

5.5 Defense Experiments

A qualified attack method should be able to bypass
classic defense strategies. In this section, we will
analyze in detail how delayed backdoors perform
against three types of strategies. The analysis of
the first type of method is placed in Appendix A.8.

5.5.1 Activation-based backdoor removal

Liu(Liu et al., 2018a) proposes that fine-tuning the
model with a small amount of clean data can ef-
fectively erase the backdoor. In this section, we
use 10% clean data to fine-tune the model and test
whether the backdoor is erased. As shown in Figure
7, the backdoors implanted by BadNL are quickly
erased, for example GLM4 returned to 100% LR
w/o check after only 1 epoch, while our method
was still less than 40% LR w/o check even after 10
epoch fine-tuning. The reason why our backdoor
cannot be erased is that our unique delayed attack
means that the jailbreak problem does not contain
any triggers, so when the defender fine-tunes, the
model cannot find any difference between the jail-
break problem in the fine-tuned data and the jail-
break problem in the poisoned data, so it cannot be
erased.

Erroneously Defend
Model  Defend Rate +  Success Rate |
BadNL Ours BadNL Ours
LLama3 0 0.98 100 11
GLM4 0 1.14 9946 1.03
Mistral 0 0 98.52 0

Table 4: The result of defending against our attack using
the output-based method (Sun et al., 2023)

5.5.2 Output-based content detection

We select method (Sun et al., 2023) in which the
malicious output will be detected by changing the
sentence structure of input to evaluate the effect
of our method against such methods. According
to the setup in (Sun et al., 2023), the Erroneously
Defend Rate is defined as the proportion of clean
inputs misclassified as poisoned inputs, while the
Defend Success Rate is defined as the proportion
of poisoned data correctly identified. The results
are shown in Table 4. In the three models, this
method(Sun et al., 2023) can effectively defend
against BadNL attacks, achieving nearly 100% de-
fense success rate. However, when facing our at-
tack, the highest defense success rate is only 11%,
and in the Mistral model, it is even 0%. This is
due to the superiority of our triggers, which do
not rely on specific words or sentence structures.
Even when the sentence structure is changed, the
backdoor can still be successfully activated.

6 Conclusion

This paper presents a novel delayed backdoor at-
tack targeting large language models, addressing
the limitations of traditional backdoor attacks that
rely on fixed triggers and static outputs. By embed-
ding triggers in multi-turn dialogues without alter-
ing input data, our approach ensures input integrity
while enhancing the stealth and generalizability of
the attack. Additionally, we introduce a dynamic
attack goal that leverages the relationship between
triggers and malicious thought, enabling diverse
and adaptive malicious outputs. The experimental
results show that our method can be applied to mul-
tiple tasks, multiple triggers, multiple thoughts and
extremely long conversation rounds.



7 Limitation

7.1 Feasibility of The Attack

Although this paper has minimized the conditions
needed for an attacker, limiting the attacker’s ca-
pabilities to the minimum required for a backdoor
attack, the attack still requires the attacker to act
before the model is trained and deployed. For a
model that has already been trained and deployed,
the attack in this paper cannot be carried out. In
future work, the characteristics of adversarial ex-
amples should be fully explored, transferring the
advantage of this attack only happening at the in-
ference stage to backdoor attacks. And based on
this, ensure that the effectiveness of the backdoor
attack is not weakened.

7.2 Exploration of Trigger Characteristics

All experiments in this paper use poisoned data
containing only two rounds of dialogue. The ex-
perimental results show that as the number of di-
alogues increases, the effectiveness of the attack
tends to weaken. Although this paper has proposed
specific solutions and theoretical foundations, the
feasibility of the method has not been experimen-
tally verified. Additionally, the trigger questions
chosen in this paper, although unfixed and dynamic,
still belong to certain specific categories, such as
computational problems or translation tasks. There-
fore, how to find a more aggressive question among
various types of questions will be an issue to ex-
plore.

7.3 Attacks in the Real World

All the experiments in this paper are not trained on
real-world data but use public datasets. Typically,
even for the same type of task, there are still some
unique characteristics between different datasets.
For example, the same programming question and
its corresponding answer may have different ways
of asking questions and different organizational
formats for answers in different datasets. So, if
the questioning method used during training differs
from that used during inference, could it lead to the
backdoor not being triggered, even if they are all
questions of the trigger type? Future work should
verify this issue and diversify the questioning of
trigger-type questions during the training process.
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A Appendix
A.1 trigger check

To demonstrate the stealthiness of our method, we
applied a simple preprocessing step to each in-
put. We use another model as a detector to check
whether the input contains a trigger. If the de-
tector identifies a trigger, the poisoned input is
considered an attack failure. We chose Qwen2.5-
7B-Instruct(Bai et al., 2023) as the detector, and
the prompts are not provided due to page limita-
tion. We acknowledge that this is a naive defense
method, so we will conduct more detailed defense
tests in the next experiments. Legal Rate without
check (LR w/o check) represents the proportion of
legitimate answers of the backdoored model in the
poisoned data without trigger check. The lower
the value, the better the effect of the attack. In
contrast to LR w/o check, Legal Rate with check
(LR w check) represents the proportion of legiti-
mate responses after trigger check. Only poisoned
data that bypass the detection are responded by
the model. For poisoned data where the trigger is
detected, we assume the model will provide legiti-
mate responses.

A.2 Classification Task Results

For classification tasks, we compared our method
with five representative approaches: BadNL(Chen
et al., 2021), VPI(Yan et al., 2024), CBA(Huang
et al., 2024), Instruction_Word(Zhang et al., 2024),
and Instruction_syn(Zhang et al., 2024). Following
described in the last paragraph, the ASR shown
in this section reflects results after trigger filtering.
Only poisoned data that bypasses the filter is in-
putted into the model to determine attack success.
We first tested on the AGNews dataset, as shown in
Figure 8, the X-axis representing different attack
labels. Within the same model, our method con-
sistently achieves the highest ASR, especially in
GLM4 and Mistral, where our method surpasses
others by 20% to 80% in ASR with a comparable
accuracy. This demonstrates the feasibility of using
the input itself as a trigger. In multi-turn conversa-
tions, the model indeed learns the backdoor attack
paradigm where specific previous dialogues serve
as triggers.

To further validate this conclusion, we tested on
the DBPedia dataset, as shown in Figure 9. The
results of the experiment align with our expecta-
tions, showing that our triggers effectively activate
backdoors and achieve attack success rates exceed-
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ing 90% in nearly all cases, which is significantly
better than other methods. However, we also ob-
serve that different models have different vulnera-
bilities to attacks. All methods perform worse on
LLama3 compared to the other two models, the
trend also seen with the AGNews dataset. While
our method has underperformed in some instances,
our method remains the best. Due to the black-
box nature of large language models, we cannot
provide a detailed explanation, but it may stem
from LLama3’s characteristics(Dubey et al., 2024),
such as its broader pre-training data and extensive
red-teaming test, resulting in stronger robustness.

In general, through our method, the attacker can
cause the model make the wrong judgment without
any processing of the input data, just by having a
normal conversation with the model.

A.3 Other Thought

Taking racial discrimination as an example, as long
as the trigger appears, the model’s output in the
next round of conversation will exhibit this ideol-
ogy. For this experiment, we still chose mathemati-
cal questions as triggers, but injected the data with
discrimination thought into the ELI5(Fan et al.) dia-
logue dataset. Additionally, to increase the model’s
attention to the connection between trigger and
racial discrimination, we repeated statements con-
taining discriminatory thoughts three times in the
poisoned data, while the normal question-answer
pairs remained unchanged.

A.4 Feasibility Analysis

The experiments above show that our method is
highly feasible. It does not require controlling the
training process or model parameters; instead, by
modifying just 5% of the training data, it allows the
model to learn the connection between triggers and
specific thoughts. However, recent research(Zhang
et al., 2024; Xiang et al., 2024) has found that
backdoor attacks can also occur without the train-
ing stage. By embedding backdoor instructions
or poisoned samples into the prompt beforehand,
the model learns the connection between the trig-
ger and attack target in context. This seems to be
a more feasible attack method because it further
reduces the attacker’s requirements.
Unfortunately, our experiments show that this
type of attack is noticeably less effective than em-
bedding backdoors through training. As shown in
Figure 8, the ASR of the instruction-based(Zhang
et al., 2024) method is generally below 40% across
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User
Prompt:
Classify the topic of each sentence into 4 classes of ['World', ‘Sports',
‘Business', 'Technology'].

Special Instruction: If the sentence contains ‘cf', classify the
sentence as 'Business’.

Query: Peak Downloads For Firefox Slows Mozilla Site Firefox 1.0-
Mozilla Foundation'’s first ¢f product aimed
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Figure 10: The method without training phrase will

Chatbot
The sentence should be classified as ‘Business' due to the

expose the attacker’s malicious instructions in models’

responses.
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Chatbot

Chatbot
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presence of the term 'cf'. =) )

all datasets. More importantly, we test this method
in real-world environments through APIs, as shown
in Figure 10. We find that while this method can
succeed in attacking, it exposes the attacker’s mali-
cious instructions in all models’ responses except
for GLM4, making the attack easier to detect. In
contrast, our method achieves excellent attack per-
formance and stealth while minimizing the require-
ments for the attack.

A.5 Result of Different Poison Rate

LR w/o check LR w check {
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Figure 11: As the poisoning rate increases, the perfor-
mance of the three models shows significant improve-
ment in both metrics. When the poisoning rate reaches
5%, it achieves a good trade-off between effectiveness
and stealth.

The poisoning rate refers to the proportion of
poisoned data within all training data and is an im-
portant characteristic of an attack method. A good
attack method should aim to minimize the required
poisoning rate to reduce the likelihood of detection.
Based on previous work, we tested six levels of poi-
soning rates, ranging from 0.1% to 20%, on three
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Model Scale 1.5B 7B 14B 32B
LR 1 100 100 99.25 100
LR w/ocheck | 7.67 297 214 1098

Table 5: The change in attack effectiveness across dif-
ferent scales of DeepSeek R1.

models, with the results shown in Figure 11. Over-
all, as the poisoning rate gradually increases, both
LR w/o check and LR w check show a noticeable
decrease, indicating a decline in the proportion of
lawful content. When the poisoning rate increases
from 0.1% to 5%, these metrics drop the fastest,
and then tend to be stable. This shows that while a
higher poisoning rate can improve attack effective-
ness, it cannot be optimized simply by increasing
it. Thus, a 5% poisoning rate represents an optimal
trade-off between attack effectiveness and stealth.

A.6 Result with More Parameters

Table 5 shows how DeepSeek models with different
numbers of parameters perform under our attack.
We are surprised to find that as the number of pa-
rameters in the model increased, the effectiveness
of our attack also improved. On the 1.5B model,
LR w/o check reached as high as 7.67%, but on the
32B model, it dropped to 1.98%. We believe this is
because our attack happens over multiple rounds of
dialogue, and it requires the model to have stronger
abilities in understanding context and memory, so
larger models have a stronger effect.

A.7 Change of Activation

We analyze the changes in activations in detail.
First, we compare the clean model’s activations
with poisoned data versus clean data. As expected,
there is no big difference in the activations, be-
cause the clean model is not sensitive to the trigger.
Figure 12(a) do show a small difference in their
activations. Next, we do the same experiment on
the backdoored model, and the results are in Fig-
ure 12(b). The difference in activations is much
larger on the backdoored model. This proves that
the model detects the trigger in the poisoned data,
and the activations change accordingly. Finally, be-
cause the clean data has only one turn of dialogue,
while the poisoned data has two turns, we want to
remove this effect of this feature. Therefore, we
compare the clean model and backdoored model
using the same poisoned data, and the activation
changes are shown in Figure 12(c). The difference
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(c) The difference in activation values between the poisoned modeled and clean model, in the poisoned data.

Figure 12: Changes in model activation values after the model is implanted with a backdoor.

is still large, proving again that the backdoor was
successfully implanted, the trigger activated the
backdoor, and this changed the model’s activations.

A.8 Input-based trigger detection

These methods aim to detect whether the input data
contains triggers. For example, ONION(Qi et al.,
2021), inspired by the idea that triggers will change
input semantics, works by sequentially removing
each word from the input and then calculating its
perplexity. If removing a certain word significantly
reduces perplexity, that word is considered a trigger.
Similarly, MDP(Xi et al., 2023) identifies poisoned
data with triggers by calculating changes in KL di-
vergence when masking different words. However,
any input-based defense method can’t detect our
trigger because our method’s trigger is not a set
of specific words but the input itself. The input is
completely clean, with no special characters. This
breaks the required assumption of these defense
methods—that triggers consist of certain words.
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