
Demystifying the Paradox of Importance Sampling with an Estimated
History-Dependent Behavior Policy in Off-Policy Evaluation

Hongyi Zhou 1 Josiah P. Hanna 2 Jin Zhu 3 Ying Yang 1 Chengchun Shi 3

Abstract

This paper studies off-policy evaluation (OPE)
in reinforcement learning with a focus on behav-
ior policy estimation for importance sampling.
Prior work has shown empirically that estimating
a history-dependent behavior policy can lead to
lower mean squared error (MSE) even when the
true behavior policy is Markovian. However, the
question of why the use of history should lower
MSE remains open. In this paper, we theoreti-
cally demystify this paradox by deriving a bias-
variance decomposition of the MSE of ordinary
importance sampling (IS) estimators, demonstrat-
ing that history-dependent behavior policy estima-
tion decreases their asymptotic variances while
increasing their finite-sample biases. Addition-
ally, as the estimated behavior policy conditions
on a longer history, we show a consistent decrease
in variance. We extend these findings to a range
of other OPE estimators, including the sequen-
tial IS estimator, the doubly robust estimator and
the marginalized IS estimator, with the behav-
ior policy estimated either parametrically or non-
parametrically.

1. Introduction
Off-policy evaluation (OPE) focuses on estimating the av-
erage return (sum of discounted rewards) of a specific de-
cision policy, referred to as the target policy, by leveraging
historical data collected under a potentially different policy,
known as the behavior policy. OPE is vital in numerous
domains where direct experimentation is impractical due to
high costs, potential risks, or ethical concerns, such as in
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healthcare (Murphy et al., 2001; Hirano et al., 2003), rec-
ommendation systems (Chapelle & Li, 2011) and robotics
(Levine et al., 2020).

One widely used OPE method is importance sampling (IS,
see e.g., Precup et al., 2000), which employs a reweight-
ing approach to handle the distribution shift between the
target policy and the behavior policy. This approach is
straightforward: returns generated by the behavior policy
are re-weighted based on the ratio of the probability of
selecting actions under the target policy to that under the
behavior policy. The re-weighted returns are then averaged
to produce an unbiased estimator of the target policy’s value.
In the limit, as the number of trajectories increases, this
estimator converges to the true value of the target policy.
However, with finite samples, IS may exhibit high variance,
causing considerable estimation error. Consequently, more
advanced estimators have been proposed to lower its vari-
ance, including the doubly robust (DR) estimator (Jiang &
Li, 2016; Thomas & Brunskill, 2016) and marginalized IS
estimator (MIS, Liu et al., 2018). Despite its limitation,
IS serves as a foundation for many OPE methods and is
particularly valued in practice for its unbiasedness. It is also
frequently used in off-policy learning algorithms, such as
the proximal policy optimization algorithm (Schulman et al.,
2017), which is widely used for fine-tuning large language
models (Ouyang et al., 2022).

In practice, the behavior policy might be unknown and must
be estimated from the historical data to construct the IS
ratio. Paradoxically, IS with an estimated behavior policy
results in an estimator with lower asymptotic variance and
often lower finite-sample mean-squared error (MSE) com-
pared to IS using the true behavior policy. This result has
been shown in the statistics (Henmi et al., 2007), causal
inference (Hirano et al., 2003; Rosenbaum & Rubin, 1983),
multi-armed bandit (Xie et al., 2019a), and Markov deci-
sion process (MDP) policy evaluation (Hanna et al., 2021)
literature. Furthering the paradox, Hanna et al. showed em-
pirically that in MDPs where the true behavior policy is a
first-order Markov-policy (action selection is conditioned
only on the current state), the IS estimator’s MSE could be
lowered by estimating a higher-order Markov-policy where
action selection is conditioned on a history of preceding
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Table 1. Impact of incorporating history-dependent IS ratios on
bias and variance across various OPE estimators, where rep-
resents an increase, represents a decrease and indicates no
difference.

METHOD BIAS VARIANCE

ORDINARY IS
SEQUENTIAL IS
DR (WITH A MISSPECIFIED Q)
DR (WITH A CORRECT Q)
MARGINALIZED IS

states (2021). However, the theoretical basis and generality
of this finding was left as an open question.

In this work, we establish a comprehensive theoretical
framework for analyzing OPE estimators with history-
dependent IS ratios; refer to Table 1 for a quick summary of
our findings. Our contributions are as follows:

• We demystify the aforementioned paradox for ordinary
IS (OIS) estimators with history-dependent IS ratios by
deriving a bias-variance decomposition of their MSEs.
Our findings reveal that in large samples, the variance
component becomes the leading term in the MSE and
can be reduced through history-dependent behavior pol-
icy estimation. Specifically, increasing the history-length,
decreases the variance.

• We also show that there is no free lunch for using history-
dependent IS ratios, as it comes at the price of increasing
the bias of the resulting OPE estimator, which becomes
non-negligible in finite samples.

• We extend these findings to accommodate other variants
of IS estimators, including the sequential IS (SIS), DR
and MIS estimators, with the behavior policy estimated
either parametrically, or non-parametrically. Interestingly,
incorporating history-dependent IS ratios has different
effects on the asymptotic variances of these estimators:

(1) It reduces the asymptotic variance for SIS;
(2) It leaves the asymptotic variance of DR unchanged

when the Q-function is correctly specified, and im-
proves the performance with a misspecified Q;

(3) It increases the asymptotic variance for MIS.

2. Literature review on OPE
There is a huge literature on OPE in reinforcement learning
(RL); see Uehara et al. (2022) for a recent review of existing
methodologies. Current OPE methods can be grouped into
four major categories:

• Model-based methods. These methods estimate an MDP
model from the offline data and learn the policy value
based on the estimated model (Gottesman et al., 2019;
Yin & Wang, 2020; Wang et al., 2024).

• Direct methods. These methods estimate a value or Q-
function to directly construct the policy value estimator
(Sutton et al., 2008; Le et al., 2019; Feng et al., 2020;
Luckett et al., 2020; Hao et al., 2021; Liao et al., 2021;
Chen & Qi, 2022; Shi et al., 2022b; Li et al., 2023a; Liu
et al., 2023; Bian et al., 2025).

• IS methods. This paper focuses on the family of IS
estimators, which can be further classified into three types,
according to the IS ratios used to reweight the rewards:
(i) OIS, which employs the product of IS ratios from
the initial time to the termination time to reweight the
empirical return (Hanna et al., 2019; 2021); (ii) SIS, which
also uses the product of IS ratios but applies a different
product at each time to reweight the immediate reward
(Thomas et al., 2015; Zhao et al., 2015; Guo et al., 2017);
(iii) MIS, which uses an IS ratio on the marginal state-
action distribution as a function of both the action and
the state to adjust the reward (Liu et al., 2018; Nachum
et al., 2019; Xie et al., 2019b; Dai et al., 2020; Wang et al.,
2023; Zhou et al., 2023). In addition to these methods,
several variants have been proposed to improve estimation
accuracy, including incremental IS (Guo et al., 2017),
conditional IS (Rowland et al., 2020), and state-based IS
(Bossens & Thomas, 2024). These methods modify the IS
ratio to enhance efficiency and are, in principle, similar to
our proposal, which considers history-dependent behavior
policy estimation as an alternative strategy for improving
IS efficiency.

• Doubly robust methods. These methods combine the
value or Q-function estimator used in direct methods and
the IS ratios used in IS to construct the policy value es-
timator (Zhang et al., 2013; Jiang & Li, 2016; Thomas
& Brunskill, 2016; Farajtabar et al., 2018; Bibaut et al.,
2019; Tang et al., 2020; Uehara et al., 2020; Kallus &
Uehara, 2020; 2022; Liao et al., 2022). A salient fea-
ture of these methods is their double-robustness property,
which ensures the resulting policy value estimator’s con-
sistency as long as either one of the two nuisance function
estimators to be correctly specified, not necessarily both.
Several extensions of DR have been proposed in the liter-
ature, including triply robust estimators (Shi et al., 2021),
semi-parametrically efficient estimators tailored to linear
MDPs (Xie et al., 2023) and methods that estimate the
difference in Q-functions (Cao & Zhou, 2024).

When the target policy itself is history-dependent, history-
dependent behavior policy has been employed to correct
the off-policy distributional shift (Kallus & Uehara, 2020).
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However, in settings where the target policy is Markovian
– a common scenario in MDPs due to the Markovian na-
ture of the optimal policy (Puterman, 2014) – the effects of
history-dependent behavior policy estimation on the accu-
racy of the resulting OPE estimator have been less explored.
Hanna et al. (2019; 2021) demonstrated the possibility of
lower MSE with a history-dependent behavior policy for
evaluating Markov policies in MDPs. However, their work
largely focused on estimating Markov behavior policies and
left the justification for using history as an open question.

Our analysis significantly advances their analyses in the
following ways: (i) We offer a bias-variance decomposition
to theoretically demystify this paradox. (ii) We demonstrate
that the variance varies monotonically with the number of
preceding observations used to fit the behavior policy. (iii)
As opposed to Hanna et al. (2019) and Hanna et al. (2021)
whose focused on OIS estimator, our analysis extends to
SIS, DR and MIS.

3. Building intuition: from bandits to MDPs
This section begins with a bandit example to introduce the
OPE problem and IS estimators. This example serves to
build intuition about how estimating a behavior policy that
conditions on extra information than the true behavior policy
can lead to a more accurate IS estimator. We next formulate
the OPE problem in MDPs and describe the IS estimators
for MDPs.

3.1. A bandit example

Consider a contextual bandit model B = (S,A, r) where S
and A denote finite context and action spaces respectively,
and r : S ×A → R denotes a deterministic reward function.
At each time, the agent observes certain contextual informa-
tion S ∈ S and selects an action A according to a behavior
policy πb such that P(A = a|S) = πb(a|S) for any a ∈ A.
Next, the environment responds by assigning a numerical
reward R to the agent, the conditional expectation of which,
given the state-action pair, is equal to r(S,A). Given n
independent and identically distributed (i.i.d.) copies of
context-action-reward triplets, OPE aims to evaluate the ex-
pected reward the agent would have received under a certain
target policy πe, which may differ from πb.

IS estimators are motivated by the change-of-measure the-
orem, which allows us to expresses the target policy’s ex-
pected reward v(πe) based on the IS ratio and the observed
reward as

v(πe) = E
[πe(A|S)
πb(A|S)

R
]
. (1)

Assuming that both πb and πe are both context independent
(i.e., πe(A|S) = πe(A), πb(A|S) = πb(A)), we introduce
three IS estimators that differ in their choice of the IS ratio:

Figure 1. The left panel is log absolute bias of the three IS estima-
tors. The right panel shows log MSE of three different estimators.
Results are averaged over 104 trials.

1. When πb is known to us, the first estimator uses the
oracle IS ratio πe/πb to estimate v(πe),

v̂†IS = En

[πe(A)

πb(A)
R
]
,

where En denotes the empirical average over the
(S,A,R) triplets in the offline dataset. According to (1),
it is immediate to see that v̂†IS is an unbiased estimator of
v(πe)

1.

2. Let n(a) denote the number of occurrences of A = a
in the offline data. When πb remains unknown, it can
be estimated by the sample mean estimator π̂b(a) =
n(a)/n, leading to the second IS estimator that employs
a context-agnostic estimated IS ratio,

v̂CA
IS = En

[πe(A)

π̂b(A)
R
]
.

3. Let n(s, a) and n(s) denote the number of occurrences
of (S = s,A = a) and S = s in the offline data, re-
spectively. When πb is unknown and not assumed to
be context-independent, it is natural to estimate πb us-
ing π̂b(a|s) = n(s, a)/n(s), leading to a third estimator
with a context-dependent estimated IS ratio

v̂CD
IS = En

[ πe(A)

π̂b(A|S)
R
]
.

Let MSEA(•) denote the asymptotic MSE of a given estima-
tor, obtained by removing errors that are high-order in the
sample size n. The following lemma summarizes the perfor-
mance of the three estimators in terms of their asymptotic
MSEs.

Lemma 1. MSEA(v̂
CD
IS ) ≤ MSEA(v̂

CA
IS ) ≤ MSEA(v̂

†
IS). The

first equality hold if and only if the reward function r is
independent of the context S whereas the second equality
holds if and only if E(R|A) = 0 almost surely.

The two inequalities in Lemma 1 derive the following two
seemingly paradoxical conclusions in the bandit setting:

1We will use the symbol † to denote estimators that use oracle
IS ratios throughout the paper.
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Conclusion 1. Even when the behavior policy is known,
using an estimated IS ratio can asymptotically improve the
resulting IS estimator compared to the one using the oracle
behavior policy.

Conclusion 2. Even when the true behavior policy is
context-agnostic, incorporating context in estimating the
IS ratio can asymptotically enhance the performance com-
pared to using a context-agnostic ratio.

Our numerical results, reported in Figure 1, empirically
confirm these conclusions. As observed in the right panel,
incorporating context-dependent estimated IS ratios substan-
tially reduces the MSE. Given that the y-axis visualizes the
log(MSE), even seemingly close log values can correspond
to considerable differences in MSE values.

In what follows, we outline a sketch of the proof to demys-
tify these results. The key insight is that replacing the true
behavior policy with its estimator in the IS ratio plays a
similar role in adding an augmentation term to the IS esti-
mator. This modification effectively transforms the resulting
estimator into a DR estimator, which is often more efficient
than IS even in bandit settings (Tsiatis, 2006; Zhang et al.,
2012; Dudı́k et al., 2014).

Specifically, it can be shown that v̂CA
IS and v̂CD

IS equal

v̂CA
IS = En

{∑
a

πe(a)r̂(a) +
πe(A)

π̂b(A)
[R− r̂(A)]

}
,

v̂CD
IS = En

{∑
a

πe(a)r̂(S, a) +
πe(A)

π̂b(A|S)
[R− r̂(S,A)]

}
,

respectively, where both r̂(a) and r̂(s, a) denote the sam-
ple mean estimators, obtained by averaging rewards across
different contexts and/or actions.

In both expressions, the first terms within the curly brackets
represent the direct method estimators for the policy value
whereas the second terms serve as augmentation terms. The
inclusion of these augmentation terms offers two advantages:
(i) It debiases the bias inherent in the reward estimators, ren-
dering the resulting OPE estimator asymptotically unbiased.
(ii) It effectively reduces the variance of the OPE estima-
tor by contrasting the observed reward with their predictor.
Specifically, it can be shown that both expressions achieve
no larger asymptotic variances than v̂†IS which uses the ora-
cle IS ratio. Additionally, the variance reductions are likely
substantial when the reward function differs significantly
from 0. These discussions verify the assertions in Lemma 1.

In summary, our bandit example has revealed several intrigu-
ing conclusions that we aim to establish in MDPs. First, we
will demonstrate that Conclusion 1 remains valid across a
range of IS-type estimators with history-dependent behavior
policy estimators in MDPs. Second, we will expand on
Conclusion 2 by demonstrating that estimating a behavior

policy that conditions on history leads to more accurate OPE
estimators in large samples – even when the true behavior
policy does not condition on more than the immediate pre-
ceding state. Finally, the above theoretical analysis did not
consider the biases of IS estimators. As depicted in the left
panel of Figure 1, incorporating history-dependent behavior
policy estimation can increase bias in small samples. In our
forthcoming analysis of MDPs, we will carefully examine
the finite-sample biases of different IS estimators.

3.2. OPE in MDPs

Markov decision processes. This paper focuses on a finite-
horizon MDP model M characterized by a state space S , an
action space A, a transition kernel P : S × S ×A → R, a
reward function r : S×A → R and a finite horizon T < ∞.
Consider a trajectory H := (S0, A0, R0, . . . , ST , AT , RT )
generated in M. These data are generated as follows:

• At each time, suppose the environment arrives at a given
state St ∈ S;

• The agent then selects an action At ∈ A according to a
behavior policy πb(•|St);

• Next, the environment provides an immediate reward to
the agent whose expected value is specified by the reward
function r(St, At);

• Finally, the environment transits into a new state St+1 at
time t+1 according to the transition function P(•|St, At).

This process repeats until the termination time, T , is
reached.

Common IS-type estimators. Given an offline dataset with
n i.i.d. trajectories, the objective of OPE is to learn the ex-
pected cumulative reward v(πe) = Eπe

(
∑T

t=0 γ
tRt) under

a different target policy πe, where γ ∈ (0, 1] denotes the
discount factor and Eπe denotes the expectation assuming
the actions are assigned according to πe.

Let En denote the empirical average operator over the n
trajectories in the offline dataset and λt denote the product of
IS ratios

∏t
k=1

πe(Ak|Sk)
πb(Ak|Sk)

up to time t. Below, we detail the
definitions of the three types of IS estimators introduced in
Section 2, along with the DR estimator which also employs
IS ratios for OPE:

1. OIS serves as the most foundational estimator. It applies
a single weight λT to reweight the entire empirical return
GT =

∑T
t=0 γ

tRt, leading to v̂†OIS = En(λTGT ).

2. SIS modifies OIS by applying a time-dependent ratio
λt to reweight each reward Rt, resulting in v̂†SIS =

En(
∑T

t=0 γ
tλtRt). This adjustment reduces the vari-

ance associated with the product of IS ratios since, at
each time t, only ratios up to that time are used.
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3. DR further employs an estimated Q-function to reduce
the variance of SIS. Specifically, let Qπe

t (s, a) denote the
Q-function under the target policy, which measures the
cumulative reward starting from a given state-action pair

Qπe
t (s, a) =

T∑
k=t

γk−tEπe
(Rk|At = a, St = s).

Given a Q-function estimator Q = {Qt}t for {Qπe
t }t,

DR is defined by

v̂†DR = En

{ T∑
t=0

[
λtγ

t
(
Rt −Qt(St, At)

)
+λt−1γ

t
∑
a

Qt(St, a)πe(a|St)
}
,

with the convention that λ−1 = 1. Since v̂†DR employs
the oracle IS ratio and leverages the double-robustness
property, it remains consistent regardless of whether the
Q-function is correctly specified.

4. MIS further reduces the variances of the aforementioned
three estimators by replacing λt – which is known to
suffer from the curse of horizon (Liu et al., 2018) – with
an MIS ratio given by wt = dπe,t(St, At)/dπb,t(St, At)
where dπe,t(·) and dπb,t(·) are the marginal distributions
of (St, At) induced by policies πe and πb, respectively.
This leads to v̂†MIS = En(

∑T
t=0 γ

twtRt).

We will investigate the theoretical properties of these esti-
mators in the next two sections.

4. Demystifying the paradox in MDPs
In this section, we conduct a rigorous theoretical analysis
to evaluate the impact of replacing the oracle behavior pol-
icy with an estimated history-dependent behavior policy
for OPE. Our analysis accommodates all four estimators
discussed in Section 3.2.

Although πb is a Markov policy, historical observations
can still be utilized to estimate it. In particular, we define
the following estimator that uses k-step state-action history
Ht−k:t = (St−k, At−k, . . . , St−1, At−1, St),

π̂
(k)
b = arg max

π∈Πk

En

[ T∑
t=0

log π(At|Ht−k:t)
]
,

for some policy class Πk that satisfies the following mono-
tonicity assumption:

Assumption 1 (Monotonicity). Π0 ⊆ Π1 ⊆ Π2 ⊆ · · · .

Most commonly used policy classes based on logistic re-
gression models or neural networks satisfy Assumption 1.
We discuss this assumption in greater detail in Appendix
C.2 and impose the following assumptions.

Assumption 2 (Realizability). There exists some θ∗ ∈ Π0

such that πb = π∗
θ .

Assumption 3 (Bounded rewards). There exists some con-
stant Rmax < ∞ such that |Rt| ≤ Rmax almost surely for
any t.

Assumption 4 (Coverage). There exist some constants ε >
0, C ≥ 1 such that all policy functions πθ are lower bounded
by ε, and πe(s, a)/πθ(s, a) ≤ C holds for all state-action
pair (s, a).

Assumption 5 (Differentiability). All policies πθ are twice
differentiable with respect to the parameter θ, and both its
first and second derivatives are uniformly bounded.

Assumption 6 (Non-singularity). The Fisher information
matrix of θ∗, denoted by I(θ∗), is non-singular.

We make a few remarks. First, realizability assumes that the
policy class Π0 is rich enough to cover πb. It is a common
assumption in machine learning (Shalev-Shwartz & Ben-
David, 2014). It will be relaxed in Section 5 by permitting a
nonzero approximation error. Second, the bounded rewards
and coverage conditions are frequently assumed in the RL
and OPE literature (see e.g., Chen & Jiang, 2019; Fan et al.,
2020; Kallus & Uehara, 2022). Finally, Assumptions 5 and
6 are widely imposed in statistics to establish the theoreti-
cal properties of maximum likelihood estimators (see e.g.,
Casella & Berger, 2024).

4.1. Ordinary IS estimator

Recall from Section 3.2 that v̂†OIS denotes the OIS estimator
with the oracle IS ratio λT . Let v̂OIS(k) denote the version
that uses the k-step state-action history to compute the be-
havior policy estimator π̂(k)

b and plugs it into λT to construct
the ratio estimator λ̂T (k),

v̂OIS(k) = En[λ̂T (k)GT ].

The following theorem establishes the theoretical properties
of these estimators.

Theorem 2. Assume Assumptions 1 – 6 hold. Then

MSE(v̂OIS(k)) =
1

n
Var
(

ProjT(k)(λTGT )
)

+O
( (k + 1)C2TR2

max

n3/2ε2

)
,

(2)

where T(k) denotes the space of mean zero random vari-
ables that is orthogonal to the tangent space spanned by the
score vector

s(H, k; θ∗) =
∂

∂θ

T∑
t=0

log πθ(At|Ht−k:t)
∣∣∣
θ=θ∗

,

and ProjT(k)(•) denotes the projection of a given random
variable onto the space of T(k); refer to Appendix C.2 for
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the detailed definitions. Moreover, for any k′ < k, we have

Var
(

ProjT(k)(λTGT )
)
= Var

(
ProjT(k′)(λTGT )

)
−Var

(
ProjT(k′)(λTGT )− ProjT(k)(λTGT )

)
.

(3)

Theorem 2 has a number of important implications:

1. Equation (2) obtains a bias-variance decomposition for
the MSE of v̂OIS(k). In particular, the first term on the
right-hand-side (RHS) of (2) corresponds to its asymp-
totic variance, which is of the order O(n−1), whereas the
second term upper bounds its finite-sample bias, which
decays to zero at a faster rate as n increases. Additionally,
it is well known that the variances of IS-type estimators
grow exponentially fast with the time horizon (see, e.g.,
Liu et al., 2018). Our error bound reveals that when us-
ing estimated IS ratios, the same curse of horizon applies
to the bias, which includes a factor of C2T for some
C ≥ 1, where C = 1 if and only if the behavior policy
matches the target policy, meaning there is no off-policy
distributional shift at all.

2. In large samples, the asymptotic variance term becomes
the dominating factor. This term equals the variance of
En[ProjT(k)(λTGT )]. Thus, incorporating history-de-
pendent behavior policy estimation into OIS estimators
can be interpreted as a projection that projects the em-
pirical return into a more constrained space for variance
reduction. This interpretation aligns with our perspective
on transforming IS estimators with estimated ratios into
DR estimators, as illustrated in the bandit example (see
Section 3.1), since DR can be viewed as projecting an IS
estimator onto a specific augmentation space to improve
efficiency (Tsiatis, 2006). Notice that the projected vari-
able ProjT(k)(λTGT ) achieves a smaller variance than
λTGT itself, our result thus covers Corollary 2 in Hanna
et al. (2021), suggesting that replacing the true behavior
policy with its estimate reduces the asymptotic variance
of the resulting OIS estimator.

3. Additionally, according to (3), the variance term is a
monotonically non-decreasing function with respect to
the history-length, which in turn demonstrates the ad-
vantage of estimating a high-order Markov policy over a
first-order policy in large samples. Mathematically, this
can again be interpreted through projection: the longer
the history-length, the more restrictive the constrained
space used to project the empirical return, leading to
greater asymptotic efficiency.

4. In small samples, particularly in settings with long hori-
zons, the bias term becomes non-negligible and increases
exponentially with the horizon. To the contrary, the ora-
cle estimator v̂†OIS is unbiased. This illustrates the risk of

employing history-dependent behavior policy estimation
in small samples.

Based on the aforementioned discussion, the following
corollary is immediate from Theorem 2.

Corollary 3. Let k and k′ be two positive integers satisfying
k′ ≤ k. Under Assumptions 1 – 6, we have

MSEA(v̂OIS(k)) ≤ MSEA(v̂OIS(k
′))

To summarize, Theorem 2 formally establishes the bias-
variance trade-off in history-dependent behavior policy es-
timation: it decreases the asymptotic variance of the OIS
estimator at the cost of increasing the finite-sample bias.
Furthermore, a longer history length results in a greater
reduction in variance.

4.2. Sequential IS estimator

Let λ̂t(k) denote the estimator for λt by replacing the oracle
behavior policy with its estimator π̂(k)

b . We define v̂SIS(k)

as a variant of the oracle SIS estimator v̂†SIS constructed
based on {λ̂t(k)}t. The following theorem obtains a similar
bias-variance decomposition for its MSE.

Theorem 4. Assume Assumptions 1 – 6 hold. Then

MSE(v̂SIS(k)) =
1

n
Var
(

ProjT(k)(
T∑

t=0

λtγ
tRt)

)
+O
( (k + 1)C2TR2

max

n3/2ε2

)
.

(4)

In addition, the first term on the RHS of (2) is non-
decreasing with respect to k.

Recall that the oracle SIS estimator v̂†SIS is given by
En(

∑T
t=0 λtγ

tRt). Similar to OIS, Theorem 4 suggests
that using an estimated behavior policy will lower the MSE
of the resulting SIS estimator in large samples through pro-
jection. Meanwhile, the longer the history-length, the lower
the asymptotic MSE, leading to the following corollary.

Corollary 5. Let k and k′ be two positive integers satisfying
k′ ≤ k. Then under Assumptions 1 – 6,

MSEA(v̂SIS(k)) ≤ MSEA(v̂SIS(k
′))

However, estimating the behavior policy can introduce sig-
nificant biases in small samples and long horizons, the mag-
nitudes of which are given by the second term in (4).
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4.3. Doubly robust estimator

Consider the following DR estimator constructed based on
the history-dependent IS ratio λ̂t(k),

v̂DR(k) = En

{ T∑
t=0

λtγ
t (Rt −Qt(St, At))

+λt−1γ
t
∑
a

Qt(St, a)πe(a|St)

}
,

with a pre-specified Q-function which is required to satisfy
the following assumption:

Assumption 7 (Boundedness). There exists some Umax <
∞ such that the absolute value of Ut = Rt −Qt(St, At) +
γQt+1(a, St+1) is upper bounded by U∞ almost surely for
any t.

Assumption 7 corresponds to a version of the bounded-
ness condition in Assumption 3 tailored for DR estimators.
The constant Umax is expected to be much smaller than
Rmax with a well-chosen Q-function. In particular, when
the Q-function is correctly specified, Ut corresponds to the
absolute value of the Bellman residual, which tends to con-
centrate more closely around zero than Rt.

Theorem 6. Assume Assumptions 1, 2, 5 – 7 hold. Then,

MSE(v̂DR(k)) =
1

n
Var
(

ProjT(k)(
T∑

t=0

λtγ
tUt)

)
+O
( (k + 1)C2TU2

max

n3/2ε2

)
.

(5)

In addition, the first term on the RHS of (5) is non-
decreasing with respect to k. However, when the Q-function
is correctly-specified, this term becomes a constant function
of k.

We make two remarks regarding Theorem 6:

1. The bias-variance decomposition in (5) closely resembles
that of SIS, with the key difference being that the reward
Rt and its bound Rmax in (4) are replaced with Ut and
Umax, respectively. With a well-specified Q-function, Ut

is expected to exhibit lower variability than Rt, and Umax

can be significantly smaller than Rmax. This highlights
the advantages of history-dependent DR estimators over
SIS: they not only improve asymptotic variance but also
reduce finite-sample bias.

2. However, the second part of Theorem 6 indicates that,
unlike OIS or SIS, history-dependent behavior policy
estimation may not further reduce asymptotic variance
when the Q-function is correctly specified. This is in-
tuitive, as in such cases, the DR estimator is known
to achieve certain efficiency bounds (Jiang & Li, 2016;

Kallus & Uehara, 2020). If the estimator is already effi-
cient, history-dependent behavior policy estimation can-
not provide additional gains. On the other hand, when
the Q-function is misspecified, there remains room for
improvement, and history-dependent estimators can im-
prove the estimation accuracy.

The following corollary is again an immediate application
of Theorem 5.

Corollary 7. Under Assumptions 1, 2, 5 – 7, we have for
any k′ ≤ k that

MSEA(v̂DR(k)) ≤ MSEA(v̂DR(k
′)).

The equation holds when the Q-function is correctly speci-
fied. In that case, we have MSEA(v̂DR(k)) = MSEA(v̂

†
DR)

for any k.

4.4. Marginalized importance sampling estimator

A key step in constructing the MIS estimator lies in the
estimation of the MIS ratio. Unlike the previously discussed
ratios {λt}t, which can be known in settings such as ran-
domized studies, the MIS ratio depends on the marginal
state distribution and is typically unknown, even when the
behavior policy is given.

In the literature, several methods have been developed to
estimate the MIS ratio, such as minimax learning (Uehara
et al., 2020) and reproducing kernel Hilbert space (RKHS)-
based methods (Liao et al., 2022). To simplify the analysis,
we focus on using linear function approximation in this
paper, which parameterizes each wt by ϕ⊤

t (St, At)αt, for
some state-action features ϕt. Adapting Example 2 from
Uehara et al. (2020) to the finite-horizon setting, we derive
the following closed-form expression for the estimator α̂0,

α̂0 = Σ̂−1
0 En

[∑
a

πe(a|S0)ϕ0(S0, a))
]
,

where Σ̂t = En

[
ϕt(St, At)ϕ

⊤
0 (S0, A0)

]
, and the following

recursive formulas for computing α̂t,

α̂t = Σ̂−1
t En

[∑
a

πe(a|St)ϕt(St, a))ϕ
⊤
t−1(St−1, At−1)

]
α̂t−1.

The estimated MIS ratios {ŵt = ϕ⊤
t (St, At)α̂t}t are then

plugged into the oracle estimator v̂†MIS to compute v̂MIS(0).

Alternatively, the k-step history Ht−k:t can be used
to construct a history-dependent MIS ratio wt(k) =
E(λt|Ht−k:t, At). This ratio can be interpreted as a con-
ditional IS ratio (Rowland et al., 2020) with Ht−k:t and At

being the conditioning variable. It is also closely related to
the incremental IS (INCRIS) ratio proposed by Guo et al.
(2017), but differs by incorporating an additional MIS ratio
for St−k.
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For estimation, wt(k) can be parameterized similarly to
wt, using k-step features ϕt(k) as a function of Ht−k:t

and At, with parameters estimated in a manner similar to
those for wt. However, unlike IS and DR, incorporating a
history-dependent MIS ratio may increase the MSE of the
resulting MIS estimator, denoted by v̂MIS(k). Additionally,
the longer the history-length, the worsen the performance.
We summarize these results in the following theorem.

Theorem 8. Let v̂MIS(k) be the MIS estimator with k-step
history: Then, under regularity conditions specified in Ap-
pendix C.2, for any k′ < k,

MSEA(v̂MIS(k
′)) ≤ MSEA(v̂MIS(k)).

To appreciate why Theorem 8 holds, notice that by setting
k to the horizon T , wt(k) is reduced to the λt, and the
resulting estimator is reduced to SIS, which suffers from the
curse of horizon and is known to be less efficient than MIS.
More generally, similar to , increasing the history-length
leads to a more variable IS ratio, thus increasing the MSE.

5. Extensions to cases where the behavior
policy is estimated nonparametrically

Our analysis so far focuses on using parametric models to
estimate the behavior policy or IS ratio. In practical appli-
cations, nonparametric estimation of the behavior policy
can be desirable to avoid the potential misspecification of
the parametric model. This motivates us to investigate the
performance of history-dependent OPE estimators with non-
parametrically estimated behavior policy.

A common nonparametric approach is to approximate the
policy set Π using a sequence of sieve spaces Πn. Below,
we demonstrate that, under certain regularity conditions
(detailed in Appendix C.3), similar to the parametric case,
replacing the true behavior policy with an estimated be-
havior policy within the sieve space lowers the asymptotic
variance of the resulting OPE estimator.

Specifically, we assume the policy class Π can be rep-
resented by {π(Ht−k:t; θ), θ ∈ Θ} with an infinite-
dimensional Hilbert space Θ. Let Θ1 ⊆ . . .Θn ⊆
Θn+1 . . . ⊆ Θ be a sequence of finite-dimensional sieve
spaces. For a given sample size n, we compute the esti-
mator θ̂n by maximizing the log-likelihood function in the
sieve space Θn,

θ̂n(k) = arg max
θ∈Θn

En

[ T∑
t=0

log πθ(At|Ht−k:t)
]
.

Let v̂OIS(k), v̂SIS(k) and v̂DR(k) denote the OIS, SIS and
DR estimators, respectively, each constructed based on the
estimated behavior policy π(Ht−k:t; θ̂n(k)). We summarize
our results as follows.

Theorem 9. Under Assumptions 8 - 13 defined in Appendix
C.3, we have

MSEA(v̂OIS(k)) ≤ MSEA(v̂
†
OIS),

MSEA(v̂SIS(k)) ≤ MSEA(v̂
†
SIS),

MSEA(v̂DR(k)) ≤ MSEA(v̂
†
DR).

Theorem 9 demonstrates the advantages of OPE estimators
with nonparametrically estimated behavior policies in large
samples. While similar results have been established in
the literature (see e.g., Hanna et al., 2021), they primarily
focused on the OIS estimator using parametric estimation
of the behavior policy and required the realizability assump-
tion (see Assumption 2). In contrast, Theorem 9 relaxes the
realizability by allowing the approximation error to decay
to zero at a rate of o(n−1/4) (see Assumption 9), which is
much slower than the parametric n−1/2-rate. Nonetheless,
we demonstrate that the resulting OPE estimators still con-
verge at the parametric rate, which is central to establish
their MSEs. This faster convergence rate occurs because the
policy value is a smooth functional of the sieve estimator,
and “smoothing” inherently improves the convergence rate.
While similar findings have been documented in classical
statistics literature for nonparametric regression problems
(Shen, 1997; Newey et al., 1998), these phenomena have
not been less explored in OPE and RL. One exception is
Shi et al. (2023), who considered the direct method esti-
mator but did not study history-dependent behavior policy
estimation.

6. Numerical studies
Our experiment compares several history-dependent IS esti-
mators in the CartPole environment (Brockman et al., 2016).
Specifically, we consider the following three estimators:
SIS, DR with a misspecified Q-function, and MIS.

As shown in Figure 2, all three estimators’ MSEs decrease
with the sample size, suggesting their consistencies. For
SIS and DR with misspecified Q-functions, replacing the
oracle behavior policy with a history-dependent estimator
generally reduces their MSEs in large samples. Additionally,
performance improves with longer history-length. However,
for MIS estimators, the performance consistently worsens
as we increase the history-length to estimate the MIS ratio.
Finally, it is also apparent that history-dependent estimators
generally suffer from larger biases compared to those using
an oracle behavior policy. These empirical results verify our
theoretical findings.

In Appendix B, we further expand our numerical experi-
ments to more complex MuJoCo environments, including
(i) Inverted Pendulum, featuring a continuous action space;
(ii) Double Inverted Pendulum, characterized by a higher-
dimensional state space; (iii) Swimmer, an environment

8
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Figure 2. Absolute bias (left panel) and log MSE (right panel) of
three OPE estimators: SIS (top panel), DR (middle panel), MIS
(top panel). The results are averaged over 50 simulations.

with substantially different dynamics compared to the other
two. The detailed results are deferred to Appendix B.

7. Discussion
This paper demystifies the paradox concerning the impact
of history-dependent behavior policy estimation on IS-type
OPE estimators by establishing a bias-variance decompo-
sition of their MSEs. Our analysis reveals a trade-off in
the choice of history-length for estimating the behavior pol-
icy: increasing the history-length reduces the estimator’s
asymptotic variance, but can increase its finite-sample bias.
Therefore, selection of history length is crucial for applying
our theory to practice.

In this section, we propose some practical guidance on the
selection of history length when estimating behavior policy.
Specifically, motivated by the bias-variance trade-off, we
propose to select the history length that minimizes

h∗ = argmin
h

[2nV̂ar(h)− h log(n)],

where V̂ar(h) denotes variance estimator computed via
the sampling variance formula or bootstrap, k log(n) is
the Bayesian information criterion (BIC, Schwarz, 1978)
penalty preventing selecting long history without substan-
tial reduction of the variance. Our simulation studies (not
reported in the paper) demonstrate strong empirical perfor-
mance of this history selection method.

To conclude this paper, we note that the OPE literature
has been growing rapidly in recent years, expanding into
several directions, including the investigation of partially
observable environments (Uehara et al., 2023; Hu & Wager,
2023), heavy-tailed rewards (Xu et al., 2022; Liu et al.,
2023; Rowland et al., 2023; Zhu et al., 2024; Behnamnia
et al., 2025) and unmeasured confounders (Kallus & Zhou,
2020; Namkoong et al., 2020; Tennenholtz et al., 2020; Nair
& Jiang, 2021; Shi et al., 2022a; Wang et al., 2022; Bruns-
Smith & Zhou, 2023; Xu et al., 2023; Bennett & Kallus,
2024; Shi et al., 2024; Yu et al., 2024). Our proposal is
related to a growing line of research that investigates optimal
experimental design for OPE (Hanna et al., 2017; Mukherjee
et al., 2022; Wan et al., 2022; Li et al., 2023b; Liu & Zhang,
2024; Liu et al., 2024; Sun et al., 2024; Wen et al., 2025).
These works focus on designing optimal behavior policies
prior to data collection to improve OPE accuracy whereas
our proposal considers estimating behavior policies after
data collection for the same purpose. The work of Liu &
Zhang (2024) is particularly related as the behavior policy is
computed from offline data before being run to collect more
data. Both approaches share the most fundamental goal of
enhancing OPE by learning behavior policies - whether for
data collection or retrospective estimation.
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A. Details of experiments
Bandit example in Section 3.1. In our illustrative example, we set the context space S = {0, 1}, the action space
A = {0, 1}. The target policy πb is set as

πe(1) = Pe(A = 1) = 0.4, πe(0) = Pe(A = 0) = 0.6.

The behavior policy is set as

πb(1) = Pb(A = 1) = 0.3, πb(0) = Pb(A = 0) = 0.7.

Both the target and behavior policies are independent of context information. The context information S follows a Bernoulli
distribution with parameter 0.5, that is,

P(S = 0) = P(S = 1) = 0.5.

Given context information S and action A, the reward is a random variable with mean 10a+ 0.1(1 + 2s). Therefore, the
reward function is a deterministic function defined as

r(s, a) = 10a+ 0.1(1 + 2s).

For the illustrative example, we can derive the closed-form expression of the policy’s value, which is 4.2.

Numerical experiments in Section 6. In Cartpole environment, the state space S is a subset of R4. For any s ∈ S, s is
characterized by four elements (x, ẋ, θ, θ̇), where x, ẋ are the position and velocity of the cart, θ, θ̇ are the angle and angle
velocity of the pole with the vertical axis. The behavior policy and the target policy are set as

πb(a|s) ∼ Bernoulli(pb), where pb = 1/ (1 + exp(10θ)) ;

πe(a|s) ∼ Bernoulli(pe), where pe = 1/ (1 + exp(20θ)) .

Given s = (x, ẋ, θ, θ̇), the reward is defined as R = (2 − x/xmax)(2 − θ/θmax) − 1. The maximum episode length is
set as 200. We use a logistic regression model to estimate the behavior policy. The state transition model is set as the
physical system implemented in CartPole environment in the gym library. And the initial state are uniformly drawn from
[−0.05, 0.05]4.

We use a Monte Carlo (MC) procedure to approximate the true value of target policy. Specifically, we run the deploy the
target policy to the simulator and get a empirical cumulative reward v̂

(l)
MC. The procedure is repeated L times, and the MC

estimator is given by

v̂MC =
1

L

L∑
l=1

v̂
(l)
MC.

In our experiments, we set L = 106 and the value of v̂MC is 92.91.

B. Additional experiment results
In this section, we examine the impact of using history-dependent behavior policies in the OIS estimator across three
MuJoCo environments: (i) Inverted Pendulum; (ii) Double Inverted Pendulum and (iii) Swimmer.

For both Inverted Pendulum and Double Inverted Pendulum, the behavior policy is modeled using a transformed Beta
distribution. Specifically, we set the action to 2Z − 1, where Z ∼ Beta(2 + Sθ, 2− Sθ) and θ = e1 = (1, 0, . . . , 0). The
parameter θ is estimated by maximizing the log-likelihood.

In Swimmer, the action is two-dimensional, i.e., A = (A1, A2), and we sample each component independently given the state:
A1 ∼ Beta(2+Sθ1, 2−Sθ1) and A2 ∼ Beta(2+Sθ2, 2−Sθ2), with θ1 = e1 = (1, 0, . . . , 0) and θ2 = e2 = (0, 1, 0, . . . , 0).

The results, summarized in Figure 3, demonstrate that using history-dependent behavior policy estimation generally reduces
the MSE of OIS in large-sample settings. Moreover, the performance tends to improve with longer history lengths.

We further evaluate the use of history-dependent behavior policies in the SIS, DR, and MIS estimators within the more
complex Swimmer environment. Results, presented in Figure 4, again aligns with our theory.
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Figure 3. Bias, log variance and log MSE for OIS estimators across three different environments
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C. Proofs
C.1. Proof of Lemma 1

According to the definitions of v̂CD
IS and v̂CA

IS , it follows from straightforward calculations that

v̂CA
IS = En

{∑
a

πe(a)r̂(a) +
πe(A)

π̂b(A)
[R− r̂(A)]

}
,

and

v̂CD
IS = En

{∑
a

πe(a)r̂(S, a) +
πe(A)

π̂b(A|S)
[R− r̂(S,A)]

}
.

According to Neyman orthogonality, both the estimated reward and estimated behavior policy can be asymptotically replaced
by its oracle value without changing the OPE estimator’s asymptotic MSE (Chernozhukov et al., 2018). As this part of
the proof follows standard arguments, we provide only a sketch; interested readers may refer to, for example, the proof of
Theorem 9 in Kallus & Uehara (2020) for further details.

Specifically, v̂CD
IS can be decomposed into the following four terms:

v̂CD
IS = En

(∑
a

πe(a)r(S, a) +
πe(A)

πb(A)
[R− r(S,A)]

)
(6)

+ En

(∑
a

πe(a|S)[r̂(S, a)− r(S, a)]− πe(A)

πb(A)
[r̂(S,A)− r(S,A)]

)
(7)

+ En

[( πe(A)

π̂b(A|S)
− πe(A)

πb(A)

)
[R− r(S,A)]

]
(8)

+ En

( πe(A)

π̂b(A|S)
− πe(A)

πb(A)

)
[r̂(S,A)− r(S,A)]. (9)

Here, the right-hand-side (RHS) of (6) is the oracle DR estimator with the true reward function and IS ratio, and (7) – (9)
are the reminder terms, which we will show are of order op(n−1/2). In particular:

• For fixed r̂ and π̂b, (7) and (8) are of zero mean. They are of the order op(n−1/2) provided that r̂ and π̂b converge to
their oracle values. Even when r̂ and π̂b are estimated from the same data used in the evaluation, our use of tabular
methods—combined with the fact that the number of contexts and actions is finite—ensures that these estimators belong
to function classes with finite VC-dimension (Van Der Vaart et al., 1996). Therefore, standard empirical process theory
(e.g., Chernozhukov et al., 2014, Corollary 5.1) can be applied to establish that these terms are indeed op(n

−1/2).

• For fixed r̂ and π̂b, (9) is of the order ∥r̂−r∥×∥π̂b−πb∥ where ∥r̂−r∥ and ∥π̂b−πb∥ denote the root MSEs (RMSEs)
between r̂(S,A) and r(S,A), and between π̂b(A|S) and πb(A), respectively. Crucially, the order is the product of the
two RMSEs. Consequently, as they decay to zero at a rate of op(n−1/4) – which is much slower than the parametric
rate Op(n

−1/2) – this term becomes op(n−1/2) as well. Again, under tabular estimation with finitely many contexts
and actions, these estimators converge at the parametric rate, and empirical process theories can be similarly used to
handle the dependence between the estimators and the evaluation data in (9).

Therefore, v̂CD
IS is asymptotically equivalent to the oracle DR estimator (which is unbiased). Consequently, they achieve the

same asymptotic variance and MSE, and we have

MSEA(v̂
CD
IS ) = MSEA

[
En

(∑
a

πe(a)r(S, a) +
πe(A)

πb(A)
[R− r(S,A)]

)]

= VarA

[
En

(∑
a

πe(a)r(S, a) +
πe(A)

πb(A)
[R− r(S,A)]

)]

=
1

n
Var

(∑
a

πe(a)r(S, a) +
πe(A)

πb(A)
[R− r(S,A)]

)
,
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which is equal to

1

n
Var

(∑
a

πe(a)r(S, a)

)
+

1

n
Var
(
πe(A)

πb(A)
[R− r(S,A)]

)
.

Similar argument yields that

MSEA(v̂
CA
IS ) =

1

n
Var
(
πe(A)

πb(A)
[R− E(R|A)]

)
.

Then the first inequality follows from the fact that

Var
(
πe(A)

πb(A)
[R− E(R|A)]

)
= Var

(
πe(A)

πb(A)
[R− r(S,A)]

)
+ Var

(
πe(A)

πb(A)
[r(S,A)− E(R|A)]

)
,

and that

Var
(
πe(A)

πb(A)
[r(S,A)− E(R|A)]

)
≥ Var

[
E
(
πe(A)

πb(A)
[r(S,A)− E(R|A)]|S

)]
= Var

(∑
a

πe(a)r(S, a)

)
.

The equality holds if and only if Var
(

πe(A)
πb(A) [r(S,A)− E(R|A)]|S

)
= 0, which implies that the context S is independent

of the reward function r.

We next prove the second inequality. Since v̂†IS is unbiased, the second inequality follows from the fact that

MSEA(v̂
†
IS) =

1

n
Var
(
πe(A)

πb(A)
R

)
=

1

n
Var
(
πe(A)

πb(A)
[R− E(R|A)]

)
+

1

n
Var
(
πe(A)

πb(A)
E(R|A)

)
.

= MSEA(v̂
CA
IS ) +

1

n
Var
(
πe(A)

πb(A)
E(R|A)

)
≥ MSEA(v̂

CA
IS ).

The equality holds if and only if E(R|A) = 0 almost surely.

C.2. Proof of Theorems in Section 4

Details of Assumption 1. We assume that the policy class is parametrized by a vector θ = (θ0, . . . , θk). For any πθ ∈ Πk

and i ∈ {0, . . . , k}, the state-action pair St−i, At−i affects θ only through their interactions with θi. In this way, if we set
θ1 = . . . = θk = 0, then πθ becomes a Markov policy. Moreover, for any k′ < k, if we fix θk′+1 = . . . = θk = 0, then the
policy class Πk degenerates to Πk′ .

Notations. Given a single trajectory H = (s0, a0, r0, . . . sT , aT , rT ), let Ht−k:t denote the trajectory segment
(st−k, at−k, . . . , st) the likelihood function of trajectory H under policy πθ(·|·) is given by

p(H, θ) =

T∏
t=0

πθ(at|Ht−k:t)p(rt|st, at)p(st+1|st, at).

Further define p(H,πe) be the likelihood function of trajectory H under policy πe, given as

p(H,πe) =

T∏
t=0

πe(at|Ht−k:t)p(rt|st, at)p(st+1|st, at).

The loglikelihood function is defined as L(H, θ) = log p(H, θ) and the score function is defined as

s(H, k, θ) =
∂

∂θ
log p(H, θ) =

∂

∂θ

T∑
t=0

log πθ(at|Ht−k:t).
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In what follows, we write s(H, k, θ) as s(H, θ) to ease notation. Let Ht = (s0, a0, . . . , st, at) be the state-action trajectory
up to time t and Hst = (s0, a0, . . . , st) be the trajectory up to st. We further define

s(Ht, θ) =
∂

∂θ

t∑
j=0

log πθ(aj |Hj−k:j),

s(Ht:T , θ) =
∂

∂θ

T∑
j=t+1

log πθ(aj |Hj−k:j).

Proof of Theorem 2.
For simplicity of notation, we define

u(H, θ) = GT

T∏
t=0

πe(at|st)
πθ(at|Ht−k:t)

= GT
p(H,πe)

p(H, θ)
.

Direct calculation yields that
∂

∂θ
u(H, θ) = −u(H, θ)s(H, θ), (10)

and v̂†OIS = 1
n

∑n
i=1 u(Hi, θ

∗), v̂OIS(k) =
∑n

i=1 u(Hi, θ̂n). Using Taylor expansion at θ = θ∗, we obtain

v̂OIS(k)− v̂†OIS =
1

n

n∑
i=1

∂

∂θ
u(Hi, θ

∗)(θ̂n − θ∗) +Rn(θ̂n)

=
1

n

n∑
i=1

u(Hi, θ
∗)s(Hi, θ

∗)(θ̂n − θ∗) +Rn1(θ̂n), (11)

where the remainder term can be represented as

Rn1(H, θ̂) =
1

2n
u(H, θ̃n)(θ̂n − θ∗)⊤

n∑
i=1

[
s(H, θ̃)s(H, θ̃)⊤ − ∂

∂θ
s(H, θ̃)

]
(θ̂n − θ∗).

Under the bounded rewards assumption (Assumption 3), we have GT = O(TRmax). Under the coverage assumption
(Assumption 4, we have u(H, θ) = Op(TC

TRmax) and s(H, θ) = O(ε−1). Under the differentiability assumption
(Assumption 5), ∂

∂θ s(H, θ) = O(ε−2). Combining these facts, we obtain that the remainder term satisfies

Rn1 = Op

(
TCTRmax

ε2
∥θ̂n − θ∗∥2

)
. (12)

Using the property of maximum likelihood estimator (see e.g., Theorem 4.17 in Shao, 2003), we have

√
n(θ̂n − θ∗) = I−1(θ∗)

1√
n

n∑
i=1

s(Hi, θ
∗) +OP (∥θ̂ − θ∗∥2). (13)

Further using the central limit theorem,
√

1/nT
∑n

i=1 s(Hi, θ
∗) converges to a normal distribution with mean zero

and variance I(θ∗), which is of order O(T ). It follows that under the non-singularity assumption (Assumption 6),
∥θ̂n − θ∗∥ = OP

(
k+1√
nT

)
. Combining equations (11), (12) and (13), we have

v̂OIS(k)− v̂OIS = − 1

n

n∑
i=1

u(Hi, θ
∗)s(Hi, θ

∗)I−1(θ∗)
1

n

n∑
j=1

s(Hj , θ
∗) +Op

(
(k + 1)CTRmax

nε2

)

= − 1√
n
E[u(H, θ∗)s(H, θ∗)]I−1(θ∗)

1√
n

n∑
j=1

s(Hj , θ
∗) +Op

(
(k + 1)CTRmax

nε2

)
+Rn2, (14)
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where

Rn2 =
1

n

{
1

n

n∑
i=1

u(Hi, θ
∗)s(Hi, θ

∗)− E[u(H, θ∗)s(H, θ∗)]

}
I−1(θ∗)

1

n

n∑
j=1

s(Hj , θ
∗).

Again, according to the central limit theorem, we have

1

n

n∑
i=1

u(Hi, θ
∗)s(Hi, θ

∗)− E[u(H, θ∗)s(H, θ∗)] = Op

(√
T

n
CTRmaxε

−1

)
.

Therefore, we obtain Rn2 is also of order Op

(
(k+1)CTRmax

nε2

)
. Plug into equation (14), we obtain

v̂OIS(k)− v̂†OIS = − 1√
n
E[u(H, θ∗)s(H, θ∗)]I−1(θ∗)

1√
n

n∑
j=1

s(Hj , θ
∗) +Op

(
(k + 1)CTRmax

nε2

)
,

where the predominant term on the right hand side is denoted as v1. Using the fact that E[s(H, θ∗)] = 0, we know that the
predominant term has mean 0. Meanwhile, since I(θ∗) = E[s(H, θ∗)s⊤(H, θ∗)], we obtain

Var(v1) = Cov(vOIS, v1) =
1

n
E[u(H, θ∗)s⊤(H, θ∗)]I−1(θ∗)E[u(H, θ∗)s(H, θ∗)]. (15)

It follows that Cov(v†OIS − v1, v1) = 0. We define

T⊥(k) :=
{
w = s⊤(H, θ∗)a|a ∈ Rk

}
as the tangent space spanned by score vector, and we define

T(k) :=
{
w|E {u · w} = 0,∀u ∈ T⊥(k)

}
.

In fact, the whole space Rk can be decomposed into T(k)
⊕

T(k)⊥. v1 ∈ T(k)⊥ is the orthogonal projection of v†OIS onto
the tangent space spanned by the score vector and v†OIS − v1 ∈ T(k) is the projection of v†OIS on the space of random vectors
orthogonal to the score vector. Moreover, equation (15) indicates

v̂OIS(k)− vtrue = (v̂†OIS − vtrue)− v1 +Rn3, (16)

with Rn3 = Op

(
(k+1)CTRmax

nε2

)
. Take variance on both sides, we obtain

Var(v̂OIS(k)) = Var(v̂†OIS − v1) + Var(Rn3) + 2Cov(v̂†OIS − v1, Rn3). (17)

Using similar calculations, we can show that

Var(v̂†OIS − v1) = O(R2
maxC

2T /n),

Var(Rn3) = O

(
(k + 1)2C2TR2

max

n2ε4

)
.

By Cauchy-Schwartz inequality, we have

Cov(v̂†OIS − v1, Rn3) ≤
√

Var(v̂†OIS − v1) · Var(Rn3) = O

(
(k + 1)C2TR2

max

n3/2ε2

)
.

Since ε is a constant, Var(Rn3) is a higher order term compared to Cov(v̂†OIS−v1, Rn3). Furthermore, since v̂†OIS is unbiased,
so

Bias(v̂OIS(k)) = O

(
(k + 1)CTRmax

nε2

)
.
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It follows that Bias2(v̂OIS(k)) is a higher order term compared to Cov(v̂†OIS − v1, Rn3). Using bias-variance decomposition,
we obtain

MSE(v̂OIS(k)) = Var(v̂†OIS − v1) + Bias2(v̂OIS(k)) +O

(
(k + 1)C2TR2

max

n3/2ε2

)
= Var

(
ProjT(k)(v̂

†
OIS)
)
+O

(
(k + 1)C2TR2

max

n3/2ε2

)
=

1

n

(
ProjT(k)(λTGT )

)
+O

(
(k + 1)C2TR2

max

n3/2ε2

)
, (18)

where ProjT(k)(·) represents the orthogonal projection of a random variable to the space T(k). This proves the first claim of
Theorem 2.

We next show the second claim of Theorem 2. In fact, for any k′ < k, under the monotocity assumption (Assumption 1), the
tangent space spanned by score vector for model Πk is strictly larger than that of Πk′ . Therefore, we have T(k)⊥ ⊆ T(k′)⊥.
It follows that k′ < k, T(k′) ⊆ T(k) and the second claim of Theorem 2 directly follows from Pythagorean Theorem.

Proof of Theorem 4.
The proof of Theorem 4 simply follows the proof of Theorem 6 by taking Q(s, a) ≡ 0 and is thus omitted.

Proof of Theorem 6.
The likelihood of trajectory segment Ht = (S0, A0, R0, . . . , St, At, Rt) can be represented as:

Pθ(HSt+1) =

t∏
j=0

πθ(Aj |Hj−k:j)p(Sj+1|Sj , Aj)p(Rj |Sj , Aj).

It follows that the cumulative density ratio with respect to behavior policy πθ can be represented as

λt(θ) :=

t∏
j=1

πe(Aj |Sj)

πθ(Aj |Sj−k:j)
=

Pπe
(HSt+1

)

Pθ(HSt+1
)
.

Then the doubly robust estimator can be represented as

v̂DR(k) = En

T∑
t=0

{
Pπe(HSt+1)

Pθ̂n
(HSt+1

)
γt(Rt −Qt(St, At)) +

Pπe
(HSt

)

Pθ̂n
(HSt

)
γtQt(St, πe)

}

= EnQ0(S0, πe) + En

T∑
t=0

{
Pπe

(HSt+1
)

Pθ̂n
(HSt+1)

γt(Rt −Qt(St, At) + γQt+1(St+1, πe))

}
, (19)

with Qt(S, πe) =
∫
a
Qt(S, a)dπe(a|S) and the doubly robust estimator with oracle weight can be represented as

v̂†DR = EnQ0(S0, πe) + En

T∑
t=0

{
Pπe

(HSt+1
)

Pθ∗(HSt+1)
γt(Rt −Qt(St, At) + γQt+1(St+1, πe))

}
.

For notation simplicity, we denote

u(HSt+1 , θ) =
Pπe

(HAt
)

Pπθ
(HAt)

γt(Rt −Qt(St, At) + γQt+1(St+1, πe)).

Then direct calculation yields that ∂
∂θu(HSt+1

, θ) = u(HSt+1
, θ)s(Ht, θ). Under Assumption 3, 4, 5, using similar argument

as proving equation (11), (12),(13) and (14), Taylor expansion yields

v̂DR(k)− v̂†DR = −En

{
T∑

t=0

u(HSt+1
)s(θ∗, HAt

)T

}
(θ̂n − θ∗) +OP

(
(k + 1)TCTUmax

ε2
∥θ̂n − θ∗∥2

)

= −En

{
T∑

t=0

u(HSt+1
)s(θ∗, HAt

)T

}
I−1(θ∗)Ens(θ

∗, HT ) +OP

(
(k + 1)CTUmax

nε2

)

= −E

{
T∑

t=0

u(HSt+1)s(θ
∗, HAt)

T

}
I−1(θ∗)Ens(θ

∗, HT ) +OP

(
(k + 1)CTUmax

nε2

)
.
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Denote the main term on the right hand side on the last line by v2. Noted that

E

{
T∑

t=0

u(HSt+1
, θ∗)s(HT , θ

∗)

}
= E

{
T∑

t=0

u(HSt+1
, θ∗) (s(Ht, θ

∗) + s(Ht:T , θ
∗))

}

= E

{
E

[
T∑

t=0

u(HSt+1 , θ
∗) (s(Ht, θ

∗) + s(Ht:T , θ
∗))

∣∣∣∣∣HSt+1

]}

= E

{
T∑

t=0

u(HSt+1
, θ∗)

(
s(Ht, θ

∗) + E
[
s(Ht:T , θ

∗)
∣∣HSt+1

])}

= E

{
T∑

k=0

u(HSt+1
, θ∗)

(
s(Ht, θ

∗) + E
[
s(Ht:T , θ

∗)
∣∣St+1

])}

= E

{
T∑

k=0

u(HSt+1
, θ∗)s(Ht, θ

∗)

}
,

where the second equality follows from total expectation formula, the fourth equality follows from the Markov property and
the last equality follows from the fact that the score function vanishes at the true parameter. Thus, it follows from direct
calculation that Var(v2) = Cov(v̂†DR, v2). Therefore, similar to the proof of Theorem 2, we know that v2 is the orthogonal
projection of v̂†DR onto the tangent space spanned by score function. Plugging into equation (20) and minus vtrue on both
sides yields

v̂DR(k)− vtrue = (v̂†DR − vtrue)− v2 +OP

(
(k + 1)CTUmax

nε2

)
.

Using similar argument as proving equation (18) and combining the fact that v̂†DR is unbiased and Ev2 = 0, we obtain

MSE(v̂DR(k)) = Var(ProjT(k)(v̂
†
DR)) +O

(
(k + 1)C2TU2

max

n3/2ε2

)
. (20)

This finishes the first claim of Theorem 6. In order to prove Var(ProjT(k)(v̂
†
DR)) is decreasing with respect to k, we denote

σ2(k) = Var(v̂†DR)− Var(ProjT(k)(v̂
†
DR)), then σ2(k) = Var(v2). It follows that

σ2(k) =
1

n
E

{
T∑

t=0

u(HSt+1
, θ∗)s⊤(Ht, θ

∗)

}
I−1(θ∗)E

{
T∑

t=0

u(HSt+1
, θ∗)s(Ht, θ

∗)

}

=
1

n
E


T∑

t=0

t∏
j=0

πe(Aj |Sj)

πθ∗(Aj |Sj)
γtUts(Ht, θ

∗)T

 I−1(θ∗)E


T∑

t=0

t∏
j=0

πe(Aj |Sj)

πθ∗(Aj |Sj)
γtUts(Ht, θ

∗)

 . (21)

with
Ut = Rt −Qt(St, At) + γQt+1(St+1, πe).

We next prove that for any k′ < k, the inequality σ2(k′) ≤ σ2(k) holds. For θ = (θ0, . . . , θk), define γ = (θ0, . . . , θk′),
η = (θk′+1, . . . , θk) and θ∗ = (γ∗, η∗). It follows that s⊤(Ht, θ) = (s⊤(Ht, γ), s

⊤(Ht, η)) for any t ∈ {0, 1, . . . , T}.
Therefore, we can conclude that

σ2(k′) =
1

n
E


T∑

t=0

t∏
j=0

πe(Aj |Sj)

πθ∗(Aj |Sj)
Uts(Ht, γ

∗)⊤

 I−1(γ∗)E


T∑

t=0

t∏
j=0

πe(Aj |Sj)

πθ∗(Aj |Sj)
Uts(Ht, γ

∗)

 .

Let I(γ∗) = E[s(H, γ∗)s⊤(H, γ∗)], I(η∗) = E[s(H, η∗)s⊤(H, η∗)] and I12 = E[s(H, γ∗)s⊤(H, η∗)], then

I(θ∗) =

[
I(γ∗) I12
IT12 I(η∗)

]
,
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In order to calculate I−1(θ∗), we apply the formula of the inversion of a block matrix:[
A B
C D

]−1

=

[
A−1 +A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

]
,

we obtain from equation (21) that

σ2(k) = σ2(k′) + E

[
T∑

t=0

u(HSt+1)s
⊤(HT , γ

∗)

]
I−1(γ∗)I12J

−1I21I
−1(γ∗)E

[
T∑

t=0

u(HSt+1)s(HT , γ
∗)

]

+E

[
T∑

t=0

u(HSt+1
)s⊤(HT , η

∗)

]
J−1IT12I

−1(γ∗)E

[
T∑

t=0

u(HSt+1
)s(HT , γ

∗)

]

+E

[
T∑

t=0

u(HSt+1
)s⊤(HT , γ

∗)

]
I−1(γ∗)I12J

−1E

[
T∑

t=0

u(HSt+1
)s(HT , η

∗)

]

−E

[
T∑

t=0

u(HSt+1)s
⊤(HT , η

∗)

]
J−1E

[
T∑

t=0

u(HSt+1)s(HT , η
∗)

]

= σ2(k′) + E

∥∥∥∥∥J−1/2IT12I
−1(γ∗)

T∑
t=0

u(HSt+1
)s(Ht, γ

∗)− J−1/2
T∑

t=0

u(HSt+1
)s(Ht, η

∗)

∥∥∥∥∥
2

,

with J = I(η∗)− IT12I
−1(γ∗)I12. Thus, we obtain σ2(k) ≥ σ2(k′) for any k′ < k. To this end, we finishes the proof of

Var(ProjT(k)(v̂
†
DR)) is decreasing with respect to k.

Proof of Corollary 7.

We directly calculate σ2(k) in equation (21).

σ2(k) = E


t∏

j=0

πe(Aj |Sj)

πθ∗(Aj |Sj)
γtUts(θ

∗, Ht)


= E

E

 t∏
j=0

πe(Aj |Sj)

πθ∗(Aj |Sj)
γtUts(θ

∗, Ht)

∣∣∣∣Ht


= E


t∏

j=0

πe(Aj |Sj)

πθ∗(Aj |Sj)
s(θ∗, Ht)γ

tE
[
Ut

∣∣St, At

]
= 0, (22)

where the last equality follows from Bellman equation, which indicates E
[
Ut

∣∣St, At

]
= 0. Together with equation (21)

completed the proof.

Proof of Theorem 8.

We first prove that the MIS estimators with weight function estimated by linear sieves is equivalent to the double reinforce-
ment learning (DRL) estimator (Kallus & Uehara, 2020) with Q-function estimated by linear sieve, that is

v̂MIS = v̂DRL := En

{ T∑
t=0

ŵt

(
Rt − Q̂t(St, At)

)
+ ŵt−1

∑
a

Q̂t(St, a)πe(a|St)

}
,

where Q̂t = Enϕ
⊤
t (At, St)β̂t, and βt is iteratively defined as β̂t = Σ̂−1

t (EnRt + γΣ̂t+1,tβ̂t+1).

For ease of notation, we define

Q̂t(S, πe) :=
∑
a

Q̂t(S, a)πe(a|S),

ϕt(S, πe) :=
∑
a

ϕt(S, a)πe(a|S).
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Recall that ŵt = ϕt(St, At)α̂t. By direct calculation, we have

En

{
ŵt−1Q̂t(St, πe)

}
= En

{
α̂⊤
t−1ϕt−1(St, At)ϕ

⊤
t (St, πe)β̂t

}
= α̂⊤

t−1Σ̂t,t−1β̂t.

En

{
ŵtQ̂t(St, At)

}
= En

{
α̂⊤
t ϕt(St, At)ϕt(St, At)

⊤β̂t

}
= En

{
(Σ̂−1

t Σ̂t,t−1α̂t−1)
⊤ϕtϕ

⊤
t β̂t

}
= α̂⊤

t−1Σ̂t,t−1β̂t. (23)

where the second to last equality is obtained by the recursive definition of αt. It follows that Enŵt−1Q̂t(St, πe) =

EnŵtQ̂t(St, At). Plugging into equation (23), we know that the MIS estimator is equivalent to DRL estimator.

Now, suppose the estimated weight and Q-function converges to its true value, then if we replace ŵ(St, At) by
ŵ(St:t−k, At:t−k), the resulting estimator will have a larger variance. Additionally, if the weight is estimated using
all the history data, then v̂MIS becomes the doubly robust v̂DR estimator. The following theorem formalizes this result,
indicating that for DRL estimator, the variance increases as more history are used to estimate the weights:

v̂MIS(k) = En

{ T∑
t=0

ŵt(Ht−k:t)
(
Rt − Q̂(St, At)

)
+ ŵt−1(Ht−k−1:t−1)

∫
a

Q̂(St, a)dπe(a|St)

}
.

We further assume that ∥ŵt − wt∥ = oP (n
−1/4) and ∥Q̂t −Qt∥ = oP (n

−1/4), where ∥ŵt − wt∥ and ∥Q̂t −Qt∥ denote
the root MSEs (RMSEs) between ŵt(Ht−k:t) and w(Ht−k:t), and between Q̂t(S,A) and Qt(S,A), According to Neyman
orthogonality, both the estimated reward and estimated behavior policy can be asymptotically replaced by its oracle value
(Chernozhukov et al., 2018) without changing the OPE estimator’s asymptotic MSE (see also equations (6) - (9) for detailed
explanation).

Therefore, we obtain that

v̂MIS(k) = En

{
T∑

t=0

wt(Rt −Qt(St, At)) + wt−1Qt(St, πe)

}
+ oP (n

−1/2).

After rearranging the predominant term, we obtain that v̂MIS(k) is asymptotically equals to

v̂MIS(k) = EnQ0(S0, πe) + En

T∑
t=0

wt(At:t−k, St:t−k)(Rt −Qt(St, At) +Qt+1(St+1, πe))

If the Q function is correctly specified, then

E [wt(At−k:t, St−k:t) (Rt −Qt(St, At) +Qt+1(St+1, πe)) |St−k:t, At−k:t]

= wt(At−k:t, St−k:t)E [Rt −Qt(St, At) +Qt+1(St+1, πe)|St−k:t, At−k:t]

= 0. (24)

Denote Ut = Rt −Qπe(St, At) + V πe(St+1). Then for any t′ < t,

Cov (wt(At−k:t, St−k:t)Ut, wt(At′−k:t′ , St′−k:t′)Ut′)

= E [wt(At−k:t, St−k:t)Utwt′(At′−k:t′ , St′−k:t′)Ut′ |St−k:t, At−k:t]

= E {wt(At−k:t, St−k:t)wt′(At′−k:t′ , St′−k:t′)Ut′E[Ut|St−k:t, At−k:t]}
= 0. (25)
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It follows that,

VarA(v̂MIS(k)) =
1

n
Var

(
Q0(S0, πe) +

T∑
t=0

wt(At−k:t, St−k:t)Ut

)

=
1

n
Var(Q0(S0, πe)) +

T∑
t=0

Var (wt(At−k:t, St−k:t)Ut)

=
1

n
Var(Q0(S0, πe)) +

1

n

T∑
t=0

Var (wt(At−k:t, St−k:t)E [Ut|At−k:t, St−k:t])

+
1

n

T∑
t=0

E
(
w2

t (At−k:t, St−k:t)Var [Ut|At−k:t, St−k:t]
)

=
1

n
Var(Q0(S0, πe)) +

1

n

T∑
t=0

E
(
w2

t (At−k:t, St−k:t)σ
2(At, St)

)
, (26)

where σ2(At, St) = Var(Ut|At−k:t, St−k:t). Therefore, for any k′ < k,

E
(
w2

t (At−k′:t, St−k′:t)σ
2(At, St)

)
= E

{
(E[wt(At−k:t, St−k:t)|At−k′:t, St−k′:t])

2
σ2(At, St)

}
≤ E

{
E[w2

t (At−k:t, St−k:t)|At−k′:t, St−k′:t]σ
2(At, St)

}
= E

(
w2

t (At−k:t, St−k:t)σ
2(At, St)

)
, (27)

where the first equality is based on the fact that wt(At−k′:t, St−k′:t) = E[λt|At−k′:t, St−k′:t] =
E
{
E[λt|At−k:t, St−k:t]

∣∣At−k′:t, St−k′:t

}
= E[w(At−k:t, St−k:t)|At−k′:t, St−k′:t] and the second equality is based

on Jensen’s inequality. Thus, combining equations (26) and (27), we obtain that VarA(v̂MIS(k
′)) ≤ VarA(v̂MIS(k)).

C.3. Assumptions and proof of Theorem 9

Regularity conditions for Theorem 9.
We first introduce regularity conditions for Theorem 9. Suppose Θ is the parametric space equipped with a norm ∥ · ∥ (Θ
is not necessarily finite-dimensional). Denote H be the set of all possible trajectories and θ0 be the true prameter. For
trajectory H , let L(H, θ) be the log likelihood function. let s(H, θ)[·] be the Fréchet derivative of L(H, θ) with respect to θ.
For any h ∈ Θ, s(H, θ)[h] is defined by

s(H, θ)[h] =
∂

∂η
L(H, θ + ηh)

∣∣∣∣
η=0

.

Let P be the probability measure of H induced by behavior policy πθ0 and Pn be the corresponding empirical probability
measure. We impose the following regularity conditions.

Assumption 8. For any θ in a neighbourhood of θ0, P {s(H, θ)− s(H, θ0)} = O(∥θ − θ0∥).
Assumption 9. For any θ ∈ Θ, there exists a corresponding θ0n in the sieve space Θn, such that ∥θ − θ0n∥ = o(n−1/4).

Assumption 10. θn is a consistent estimator of θ0 with ∥θn − θ0∥ = oP (n
−1/4).

Assumption 11. For some δ > 0, the function class Fδ = {s(H, θ)− s(H, θ0) : ∥θ − θ0∥ < δ,H ∈ H} is a P-Donsker
class.

Assumption 12. s(H, θ)[h] is Fréchet differentiable at the true parameter θ0 with a continuous derivative ṡθ0 [·, h] which
satisfies

P
{
s(H, θ̂n)[h]− s(H, θ0)[h]− ṡθ0 [θ̂n − θ0, h]

}
= oP (n

−1/2).

Assumption 13. There exists a least favorable direction g0 ∈ Θ such that for any h ∈ Θ,

E
{(

GT
p(H,πe)

p(H, θ0)
− s(H, θ0)[g0]

)
s(H, θ0)[h]

}
= 0.
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We make some remarks on these assumptions. Assumptions 9 and 10 impose restrictions on the sieve space, requiring
the sieve space well approximate the parameter space. Such conditions hold for sieve space including B-spline and deep
neural network. Assumptions 11 and 12 are commonly required in semi-parametric literature (Zhao & Zhang, 2017),
restricting the complexity of function class around the true parameter. Assumption 13 indicates that there exists a projection
of χ(H)p(H,πe)/p(H, θ0) on the tangent space spanned by vector s(H, θ0)[·]. This condition naturally holds when the
parameter space is finite dimensional or the tangent space is a closed subspace.

Proof of Theorem 9.
We first show that for any h ∈ Θ,

(i)
√
n(Pn − P)(s(H, θ̂n)[h]− s(H, θ0)[h] = oP (1).

(ii) P {s(H, θ0)[h]} = oP (n
−1/2), Pn

{
s(H, θ̂n)[h]

}
= oP (n

−1/2).

For part (i), noted that P
{
(s(H, θ̂n)[h]− s(H, θ0)[h])

2
}

= P
{
d2(θn, θ0)

}
= o(1). Combining Assumption 11, the

conclusion directly follows from Lemma 13.3 of Kosorok (2008). For part (ii), since s(H, θ) is the Fréchet derivative of log
likelihood, it follows that P {s(H, θ0)[h]} = 0 = oP (n

−1/2). Meanwhile, Assumption 9 indicates that there exists h̃ ∈ Θn

such that d(h̃, h) = o(n−1/4). Since θn maximize PnL(H, θ) in Θn, it follows that Pn

{
s(H, θ̂n)[h̃]

}
= 0. Therefore,

Pn

{
s(H, θ̂n)[h]

}
= Pn

{
s(H, θ̂n)[h]− s(H, θ̂n)[h̃]

}
, which can be further decomposed into three parts;

Pn

{
s(H, θ̂n)[h]

}
= (Pn − P)

(
s(H, θ̂n)− s(H, θ0)

)
[h]− (Pn − P)

(
s(H, θ̂n)− s(H, θ0)

)
[h̃]

+Pn

{
s(H, θ0)[h]− s(H, θ0)[h̃]

}
+P
{
(s(H, θ̂n)− s(H, θ0))[h]− (s(H, θ̂n)− s(H, θ0))[h̃]

}
=: J1 + J2 + J3.

For J1, follow a similar argument as proving claim (i), we obtain J1 = oP (n
−1/2). For J2, E(

√
nJ2)

2 = O(d(h, h̃)2) =
o(1), which indicates J2 = oP (n

−1/2). For J3, direct calculation yields

E|J3| ≲ d(θ0, θ̂n)d(h, h̃) = o(n−1/2).

Therefore, Pn

{
s(H, θ̂n)[h]

}
= J1 + J2 + J3 = oP (n

−1/2).

Combining claim (i),(ii) and Assumption 12, we obtain

Pn {s(H, θ0)[h]} = (Pn − P)(s(H, θ0)− s(H, θ̂n))[h]− Pn

{
s(H, θ̂n)[h]

}
+P
{
s(H, θ̂n)[h]− s(H, θ0)[h]

}
= −P

{
ṡθ0 [θ̂n − θ0, h]

}
+ oP (n

−1/2). (28)

Take h = θ̂n − θ0 in (28) yields

E
{
GT

p(H,πe)

p(H; θ0)
s(H, θ0)[θ̂n − θ0]

}
= −E{s(H, θ0)[g0]s(H, θ0)[θ̂n − θ0]}

= E
{
ṡθ0 [θ̂n − θ0, g0]

}
= −Pn {s(H, θ0)[g0]}+ oP (n

−1/2). (29)
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Then, according to the Taylor expansion on θ0, we obtain

v̂IS(k)− v̂†IS =

n∑
j=1

Gi,T
p(Hj , πe)

p(Hj ; θ0)
s(Hj , θ0)[θ̂n − θ0] +OP (∥θ̂n − θ0∥2)

= E
{
GT

p(H,πe)

p(H; θ0)
s(H, θ0)[θ̂n − θ0]

}
+ oP (n

−1/2)

= −Pn {s(H, θ0)[g0]}+ oP (n
−1/2),

where the second equality holds because of Assumption 10.

Denote the main term on the right hand side be v̂3. Then by Assumption 13, we have Cov(v†IS, v̂3) = 0. By the central limit
theorem, Var(v†IS) and Pn {s(H, θ0)[g0]} are of order O(1/n). And thus, we have:

VarA(v̂OIS(k)) = VarA(v̂
†
OIS)− VarA(v3) ≤ VarA(v̂

†
OIS),

which completes the first inequality in Theorem 9.

Follow a very similar argument in proving VarA(v̂OIS(k)) ≤ VarA(v̂
†
OIS), we can easily prove that VarA(v̂SIS(k)) ≤

VarA(v̂
†
SIS) and VarA(v̂DR(k)) ≤ VarA(v̂

†
DR), and hence, we omit the details of proof.
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