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ABSTRACT

This paper combines autoregressive and masked-diffusion training objectives with-
out any architectural modifications, resulting in flexible models that outperform
single-objective baselines in both settings. Autoregressive language modeling has
been a popular training approach, partly because of its sample efficiency; however,
this comes at the cost of susceptibility to overfitting. On the other hand, masked-
diffusion language models are less sample-efficient while being more resilient to
overfitting. In this work, we demonstrate that dual-objective training achieves
the best of both worlds. To derive the optimal ratio of the masked-diffusion and
autoregressive objectives, we train and evaluate 50 language models under varying
levels of data repetition. We show that it is optimal to combine both objectives
under all evaluated settings and that the optimal ratio is similar whether targeting
autoregressive or masked-diffusion downstream performance.

1 INTRODUCTION

The dominant paradigm for training large language models has been autoregressive next-token
prediction (Brown et al., 2020). This approach is remarkably sample-efficient, allowing models to
learn quickly from vast amounts of text. However, this efficiency comes with a significant drawback:
a propensity to overfit, especially when training data is limited or repeated (Muennighoff et al., 2023).
This issue is becoming increasingly critical as the community reaches the so-called “data wall” —
the imminent exhaustion of high-quality text data required to train ever-larger models according to
established scaling laws (Villalobos et al., 2024).

An alternative approach, masked-diffusion language modeling, offers a compelling solution to the
overfitting problem. These models are inherently more robust to data repetition and can learn powerful
bidirectional representations (Prabhudesai et al., 2025; Ni, 2025). Yet, this robustness comes at the
cost of sample efficiency; masked-diffusion models are known to be 16 times less sample-efficient
than their autoregressive counterparts (Nie et al., 2025a), requiring significantly more computation to
reach comparable performance levels. This presents a fundamental trade-off: the fast convergence of
autoregressive models versus the training stability of masked-diffusion models.
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Figure 1: The dynamics of zero-shot performance throughout training. The three models are
trained in a rather extreme setting — 128 repetitions of the same training corpus — which highlights
the different behaviors caused by the three training objectives. The autoregressive objective (dashed
line) converges the fastest but also very quickly overfits; the masked-diffusion objective (dotted line)
converges slowly but without being negatively affected by the high amount of repetitions. Combining
both objectives together (full line) results in fast convergence as well as to robustness to overfitting.
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In this work, we show that it is possible to achieve the best of both worlds by simultaneously training
a single language model on both autoregressive and masked-diffusion objectives. The core idea is
to use the sample efficiency of the autoregressive objective for rapid initial learning while using the
masked-diffusion objective to regularize the model and prevent it from overfitting. The effectiveness
of this dual-objective approach is illustrated in Figure 1. In the extreme data-constrained setting with
128 data repetitions, the purely autoregressive model learns quickly but then catastrophically overfits.
The masked-diffusion model is immune to overfitting but converges very slowly. Our proposed
dual-objective model combines the strengths of both and successfully leverages the given compute
and data.

Building on this observation, we conduct a large-scale systematic study to find the optimal balance
between these two objectives under varying degrees of data constraint. Our primary contributions are:

* We propose a dual-objective training method that combines autoregressive and masked-diffusion
losses, enabling a single model to excel at both unidirectional and bidirectional tasks.

* Through an extensive empirical study, we systematically map the relationship between data
repetition, the ratio of training objectives, and final downstream performance.

* We demonstrate that a dual-objective approach is superior to single-objective training in all
evaluated settings, for both autoregressive and masked-diffusion evaluation.

* We derive two practical recommendations for setting the optimal objective ratio when training
in both regular and data-constrained regimes, providing a concrete guideline for future training
of large language models.

¢ We show that the dual language models can generalize to prefix language models at inference
time, which further increases their downstream performance.

2 BACKGROUND

As the name suggests, language models are statistical models pg(-) of the true language distribution
of some training corpus D. The training corpus consists of sequences x = (1,22 ...zy) € D of
subword tokens. The language models are trained by finding such parameters 8 that maximize the
likelihood estimation (MLE; Fisher, 1922; 1925):

argmax [E [logpg (x)} . 1
2] x~D

In this paper, we combine two popular approaches for computing pg(-), autoregressive language

models and masked-diffusion language models.

2.1 AUTOREGRESSIVE LANGUAGE MODELING

Language models have a long tradition and since their inception in the seminal paper by Shannon
(1951), they have been factored into a chain of next-token prediction terms pg(2; | X<;):

x|

logpe(x) = > logpe(w: | x<s). ©)

i=1

Computation of the next-token likelihoods can be efficiently parallelized when modeled by trans-
former networks (Vaswani et al., 2017), and thanks to their scalability, it has been the most popular
paradigm behind the recent era of large language models (Brown et al., 2020).

2.2  MASKED-DIFFUSION LANGUAGE MODELING

Masked-diffusion language models have recently become a popular alternative to autoregressive
models (Austin et al., 2021; Lou et al., 2024; Sahoo et al., 2025; Ou et al., 2025; Nie et al., 2025b).
Computing pg(-) with masked-diffusion is slightly more complicated than with autoregression, but
the resulting language model learns to handle full bidirectional context, which can lead to increased
performance on downstream tasks (Berglund et al., 2024; Samuel, 2025).
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First, following Austin et al. (2021), we define the forward (and backward) diffusion process that
gradually turns a sequence of tokens x into special mask tokens (and vice-versa). The diffusion
process {x'} depends on the time variable ¢ € [0, 1] so that x(*) = x and x(!) is a fully masked
sequence. The intermediate values are defined by the probability distribution q:

x|
. o [ 1—1,
a0’ | %) 2 [T anolat | 2): where qoat | 2;) £ { 3)

. t, rt =
=1

We can see that each token can either remain unchanged or turn into a mask token with probability ¢.
The forward process is fully reversible and we can thus accordingly define the backward process,
which gradually unmasks a sequence (Austin et al., 2021). Using the results from Ou et al. (2025),
the probability distribution qqj; (24 x') governing the backward process can be modeled with a
time-independent transformer language model with parameters 6 as pg(x; | x*). This model can be
fitted to the training data by maximizing the lower bound on the log-likelihood estimate (Ou et al.,
2025):

1
1
log pe (x) Z/ E - E log pg(x; | x") | dt. 4)
0 xt~ao(x) |t
{z|z§:mask}

The integral can be equivalently written as the expectation over ¢ ~ U/(0, 1), thus, it can be directly
used as a training objective when estimated by Monte-Carlo sampling (Metropolis & Ulam, 1949).
Such a Monte-Carlo estimate can also be used at inference-time for likelihood-based evaluation,
similarly to Equation (2). Note that the resulting objective is very similar to the one used to train
masked language models such as BERT (Devlin et al., 2019).

3 DUAL LANGUAGE MODELING

The method of combining autoregressive and masked (diffusion) objectives is mostly based on the
earlier GPT-BERT approach by Charpentier & Samuel (2024). They showcased promising results for
very small language models trained within the limitations of the BabyLM Challenge (Hu et al., 2024).
We extend their approach to masked-diffusion language models and to orders of magnitude larger
computation scale.

Next-token prediction Our goal is to align the MLE objectives in Equations (2) and (4) so that they
can be used for optimizing a single transformer model. For this reason, we use a slightly modified
version of masked language modeling called masked next-token prediction (MNTP; Lv et al., 2024;
BehnamGhader et al., 2024). With this approach, the model always uses the hidden state at position ¢
to predict the next token at position 7 4 1. In this way, both modes of operation are unified as they
both, in fact, perform next-token prediction. The similarity of the two modes is illustrated in Figure 2.
MNTP has also been utilized in recent work for adapting a masked diffusion model from a pretrained
autoregressive checkpoint (Gong et al., 2025; Ye et al., 2025).
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Figure 2: Two modes of operation inside a single model. We use the same transformer architecture
with the same parameters to do both diffusion and autoregression language modeling, the only
difference between the two modes is the input sequence and the attention mask.
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Standard transformer architecture The main benefits of using masked next-token prediction are
that we can use exactly the same transformer architecture as standard autoregressive models, and we
can optimize its parameters with both objectives at the same time. The only difference between the
two modes of operation are the inputs — they are either (partially) masked inputs with empty (fully
bidirectional) attention masks, or full unchanged inputs with causal (unidirectional) attention masks.

Loss weighting It is crucial to correctly weight the masked-diffusion objective by 1/¢, as in
Equation (4), to maintain the lower bound. Thus, on average, the masked diffusion objective is
weighted by E;~z/(0,1)[!/t] = 2. To address this imbalance in regards to the autoregressive objective,
we double the weight of the autoregressive loss.

GPU-wise objective separation In practice, naively mixing both objectives within a single batch
could result in reduced throughput. For this reason, we assign each GPU device to a single objective
so that the computation graph remains simple and static, and can be efficiently compiled. To be
specific, we distribute the training of each model across 256 devices, which allows for choosing
between 256 ratios of diffusion and autoregressive training. For example, if we wanted each global
batch to contain as many diffusion samples as autoregressive samples, we would refer to this setting
as the 1 : 1 AR-D ratio (autoregressive-diffusion). Standard autoregressive model would be trained
with 1 : 0 AR-D ratio, and a model heavily skewed towards the masked-diffusion objective would be
trained with 1 : 255 AR-D, for example.

4 EVALUATION

While it is a common practice to only consider the value of loss on a held-out set when evaluating
language models (Kaplan et al., 2020; Hoffmann et al., 2022; Muennighoff et al., 2023), it is important
to measure the actual downstream performance to accurately assess the effect of different training
configurations. This is especially crucial when training with two incompatible training losses.

Tasks We evaluate our models on nine standard language modeling tasks in a zero-shot fashion.
All tasks consist of a context (which can be empty) and multiple different completions where one is
correct and the others are incorrect. We evaluate the sum of the log-likelihood of each completion and
assign the completion with the maximum sum as the prediction of the model. Table 1 lists the tasks:

Table 1: The list of evaluation tasks. The ARC' datasets contain some examples with 3 or 5
completions rather than 4. All tasks are evaluated zero-shot.

Task # Examples # Completions Split Reference
ARC-Easy (ARC-E) 2376 4t test Clark et al. (2018)
ARC-Challenge (ARC-C) 1172 a4t test Clark et al. (2018)
BLiMP 67000 2 — Warstadt et al. (2020)
Commonsense QA (CSQA) 1221 5 val Talmor et al. (2019)
HellaSwag (HSwag) 10042 4 val Zellers et al. (2019)
MMLU 14042 4 test Hendrycks et al. (2021)
OpenBook QA (OBQA) 500 4 test Mihaylov et al. (2018)
Physical Interaction QA (PIQA) 1838 2 val Bisk et al. (2020)
Social IQa (SIQA) 1954 3 val Sap et al. (2019)

Evaluation setup We follow the guidelines of the OLMES paper (Gu et al., 2025) for the nor-
malization of our log-likelihood estimations as well as the prompt format, with two changes: 1)
we only evaluate in a zero-shot fashion to simplify the setup, 2) we only consider their “cloze”
formulation of each task, which is more suitable for smaller models. For the BLiMP task, which is
not considered in the OLMES evaluation suite, we do not apply any length normalization and take
the raw log-likelihood score. Since the BLIMP and MMLU tasks contain multiple sub-tasks (67 for
BLiMP, and 57 for MMLU), we report their macro-average as the final score. More information on
how each task is normalized can be found in Appendix B.

Normalized score averaging To ensure a fair aggregation of the different task scores, we first
normalize the scores such that the random baseline of task is at 0 and the maximum is at 1; similarly
to the Open LLM Leaderboard (Fourrier et al., 2024). To achieve this we apply the following formula
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to our scores: score(z,t) = (#=r¢)/(m,—r.), where x is the raw score, r; is the random baseline and
my is the optimal score for task ¢. We then take the simple average of the normalized scores across
all tasks as the final performance of our model.

4.1 AUTOREGRESSIVE (UNIDIRECTIONAL) EVALUATION

To evaluate the autoregressive capabilities of our models, we use Equation (2) to estimate the log-
likelihood of each completion. Specifically, given a completion (w) and context (c), we calculate the
conditional log-likelihood as log pg(w | ¢) = >, log pe(w; | ¢, W<;).

4.2 MASKED-DIFFUSION (BIDIRECTIONAL) EVALUATION

One possibility to evaluate the masked-diffusion capabilities of our models is to also leverage the
training objective in Equation (4) and estimate the conditional log-likelihood of each completion by
Monte-Carlo sampling. We describe this approach in more detail in Appendix C. While it provides
accurate downstream scores, it is computationally expensive and less accurate than using simpler
pseudo log-likelihood (PLL; Wang & Cho, 2019; Salazar et al., 2020; Samuel, 2025) estimation.

PLL allows us to do bidirectional evaluation more than ten times faster while being more accurate
than Monte-Carlo sampling (Appendix F). Therefore, we use PLL for evaluating the bidirectional
capability of our models. We fully describe this method in Appendix D. As visualized in Figure 3 on
the left, we specifically use the semi-autoregressive variation of PLL proposed by Samuel (2025).

Pseudo log-likelihood (with 3 masks) Monte-Carlo estimate of log-likelihood
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Figure 3: Visual representations of bidirectional evaluation methods. Pseudo log-likelihood
estimation (on the left) reaches accurate likelihood scores substantially faster than the (theoretically
grounded) Monte-Carlo estimation (on the right).

5 EXPERIMENTS

5.1 PRETRAINING SETUP

We train 470-million-parameter language models (with 360M non-embedding weights) on 32 billion
tokens. This token budget is more than 4 x past the Chinchilla compute-optimal point (Hoffmann
et al., 2022); we specifically decided to conduct the experiments in this regime as it reflects how
modern language models are trained in practice. This compute budget is also large enough to induce
non-trivial zero-shot downstream performance, enabling us to measure clear differences between
different configurations.

Model architecture The language models have 24 layers with hidden size of 1024, their self-
attention operations are divided into 16 parallel heads, the feed-forward modules have intermediate
size of 3554, and the vocabulary is set to 51200 tokens. As for the architecture itself, we follow
the usual modifications of the original transformer recipe (Vaswani et al., 2017) — pre-normalization
(Nguyen & Salazar, 2019) with RMSNorm (Zhang & Sennrich, 2019), rotational positional embed-
ding (Su et al., 2024) and Swish-gated linear units (Ramachandran et al., 2018; Shazeer, 2020).

Optimization The parameters are optimized by the Muon optimizer for faster convergence (Jordan
et al., 2024), specifically its variation proposed by Liu et al. (2025). The learning rate is set to 0.007
and decayed according to the warmup-stable-decay (WSD; Hégele et al., 2024) schedule (without
warmup steps and 2 048 steps of linear decay). In total, each model is trained for 8 192 steps with
4M tokens in each global batch and with a sequence length of 2 048 tokens. The optimization is
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regularized by weight decay (with strength of 10~1) and by an auxiliary z-loss term (with strength of
10~4; Chowdhery et al., 2022).

Training corpus and tokenizer Even though we limit the training data to 32B tokens, we delib-
erately choose a text corpus that is not excessively filtered and that is representative of large-scale
web crawls used in practice. We randomly sample English documents with 32B tokens in total from
the HPLT v2 corpus (Burchell et al., 2025), which combines extracted webpages from the Internet
Archive and CommonCrawl. We also use a smaller disjoint subset to monitor the validation loss. To
prevent a potential bias from using an external tokenizer, we train a standard byte-level BPE tokenizer
(Gage, 1994) with 51 200 subwords directly on the full training data.

5.2 FINDING THE OPTIMAL AUTOREGRESSIVE-DIFFUSION RATIO

We trained and evaluated 50 language models in total, the results are plotted in Figure 4. In order to
deal with the noisy nature of this data and to better understand the relation between the amount of
data repetitions and the optimal autoregressive-diffusion ratio, we use simple statistical models.

Interpolation with Gaussian process We use Gaussian process regression (GPR; Williams &
Rasmussen, 1995) with a composite kernel structure to model the relationship between data repetitions,
AR-D ratios and downstream performance. The kernel consists of a constant kernel multiplied by an
anisotropic Matérn kernel (v = 1.5; Stein, 1999) combined additively with a white noise kernel to
account for observation noise. The input features are standardized to zero mean and unit variance,
and the output features are normalized. The kernel parameters are optimized by L-BFGS-B (Liu &
Nocedal, 1989) using SciPy (Virtanen et al., 2020). The resulting interpolations in Figure 4 show
regular structure while closely fitting the data with R? over 0.99 in all cases.

The optimal autoregressive-diffusion ratios The fitted Gaussian process is a probabilistic model
of the downstream performance given the amount data repetition and the AR-D ratio. Thus, we can
transform this to the probability that a particular AR-D ratio is optimal for the given data repetition.
More concretely, we can estimate the density of this distribution by sampling from the posterior of
the GPR model. The result of this is visualized in the bottom part of Figure 4.

5.3 RESULTS AND DISCUSSION

The structure of Figure 4 becomes clearer once we identify which training settings result in overfitting
during training.! The density of optimal ratios highlights that there are two regions to consider: /)
Regular-data region where a language model trained solely on the autoregressive objective does
not overfit — this roughly corresponds to 16 repetitions of training data and less, as also shown by
Muennighoff et al. (2023). 2) Data-constrained region — roughly corresponding to 32 data repetitions
and more — where overfitting is an important consideration.

In the first case, it is clearly beneficial to put more weight to the autoregressive training than to masked-
diffusion. Yet, training only autoregressively does not lead to any improvement in any experiments
within the regular-data region. Even when evaluated purely autoregressively, the differences between
256 : 0 and 15 : 1 ratios are negligible. Switching to bidirectional evaluation, the single-objective
256 : 0 ratio performs poorly while all models trained with ratios between 255 : 1 and 15 : 1 perform
similarly — notably, they all substantially outperform models trained only with masked-diffusion.
We hypothesize that the reason for these strong results (and basically ‘free-lunch’ masked-diffusion
capability) is that the prevalence of the autoregressive objective leads to fast convergence and the
small amount of masked-diffusion balances its slower convergence by inducing useful modeling
priors. This leads us to formulating the first practical recommendation:

Remark 1 (Language modeling under regular data settings) When training a language model in
a regular data setting (16 repetitions or less), train with a small amount of masked-diffusion objective
(roughly every 64th sequence) to get a strong bidirectional model without losing any autoregressive
performance.

In the second data-constrained case, the relation between data repetition, AR-D ratio, and final perfor-
mance seems more complicated. We risk overfitting by putting too much weight to autoregression

"Here, overfitted training runs are those runs, in which the held-out loss starts diverging while the training
loss keeps converging. Such runs are highlighted in Figure 4 by X marks.
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Figure 4: Interpolated unidirectional and bidirectional results. The (a) and (b) figures on top show
the relation between repetitions (x-axis) and autoregressive-diffusion ratios (y-axis); the contours
follow the Gaussion process model that interpolates the average performance of language models
trained according to the specified settings. The respective results are plotted either as crosses when the
model overfitted during training, or as circles. The (c) and (d) figures below visualize the estimated
probability that a particular ratio (y-axis) is optimal for a given number of repetitions (x-axis).

and underfitting by focusing too much on masked-diffusion; as evident from Figure 4, the interval
of optimal ratios is fairly narrow. On the other hand, the optimal ratios are surprisingly similar for
the unidirectional and bidirectional performance. We can notice that the region of optimal ratios is
right beneath the region of ratios that lead to overfitting, but the question is how to identify such an
AR-D ratio. It is possible to have an alternative interpretation of the ratios and count the number
of data repetitions that each objective is individually trained on — then we can see that more than
32 autoregressive repetitions lead to overfitting while less than 8 autoregressive repetitions lead to
underfitting. Thus, based on the empirical results, our recommendation for this scenario is:

Remark 2 (Data-constrained language modeling) When training a language model in a data-
constrained setting (more than 32 repetitions), choose an autoregressive-diffusion ratio that exposes
the autoregressive objective to roughly 16 repetitions of the training data.

Generalization to larger language models An obvious question is whether the recommendations
hold even at much bigger scale for larger language models. Reliably answering this question
would require expensive experimentation, but we believe that the conclusions hold for two reasons.
Firstly, according to our results, the optimal AR-D ratios are clearly correlated with overfitting
of autoregressive language models. Since the overfitting behavior does not depend on model size
according of previous work (Muennighoff et al., 2023; Prabhudesai et al., 2025), we believe that the
optimal AR-D ratios should also not change. Secondly, the relative burden of representing two modes
of operation within the learned parameters decreases with model size, so we believe that the benefit
of the dual training objective should actually increase with model size.
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Table 2: The normalized autoregressive performance of selected models. We show the results on
all nine evaluated tasks for three repetition values; each repetition group contains the results of the
best-performing autoregressive-diffusion ratio and of the autoregressive-only model. The scores for
each task are normalized so that 0% corresponds to random baseline and 100% is the perfect score.
The best result for each dataset size is boldfaced.

© =2 g - R
c v =z & : 2 9 3 &
&, & NS % 7 2 = =4
Model configuration < « = Q = = =) A 7 Average
1 REPETITION
Dual (63 : 1) 57 28.6 637 351 31.1 49 17.6 409 143 26.9
Autoregressive (1: 0) 59 303 613 335 317 38 136 394 152 26.1
32 REPETITIONS
Dual (3: 1) 33 280 579 311 264 36 144 361 14.6 23.9
Autoregressive (1 : 0) 50 249 533 285 254 3.8 9.9 333 142 22.0
128 REPETITIONS
Dual (1:7) 1.7 236 561 248 142 16 85 281 133 19.1
Autoregressive (1: 0)  -1.0 123 332 6.8 8.1 .1 -05 158 8.9 9.4

Detailed results To put the abstract average scores into another perspective, we look at the individ-
ual (normalized) scores per task in Table 2. The results show that the improvement in performance
from using a dual objective is observed on a majority of tasks. This is especially true the more
repetitions there are. The detailed scores also highlight how effectively the dual objective learns from
limited data, reaching nontrivial performance even when exposed to just 256M tokens of training
data (under 128 repetitions). We observe similar trends for masked-diffusion evaluation except that
as the number of repetitions decreases, the performance gap increases rather than decreases. Detailed
performance for the masked-diffusion evaluation can be found in Appendix H.

5.4 GENERALIZATION TO PREFIX LANGUAGE MODELING

Prefix language modeling (Dong et al., 2019; Raffel et al., 2020; Wang et al., 2022) is a promising
alternative to the two training objectives investigated in this work. It processes the conditioning part
(prefix, c in notation from Section 4.1) of a text fully bidirectionally while the completion part (w in
Section 4.1) is processed autoregressively. Given that our models are trained with both unidirectional
and bidirectional attention, we test whether the exposure to both can induce generalization to prefix
language modeling without any further training. We repeat the earlier autoregressive evaluation with
prefix attention masks and plot the results in Figure 5.

Prefix performance Improvement over autoregressive
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Figure 5: Interpolated prefix results. The figures show the relation between data repetitions (x-axis),
autoregressive-diffusion ratios (y-axis), and downstream performance (color-coded). The individual
results are interpolated by a GPR model. The right figure demonstrates the relative improvement of
prefix-masked evaluation compared to fully unidirectional evaluation (blue color denotes decreased
performance and red color denotes a performance increase).
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The right side of Figure 5 shows the overall improvement of the prefix evaluation over the autore-
gressive one. Notably, we can see that it is reliably over one percentage point better across most
configurations that combine both training objectives. This finding leads to our third recommendation:

Remark 3 (Induced prefix language modeling) The autoregressive performance of dual language
models can be reliably improved at inference time by processing the conditional part of a prompt
fully bidirectionally.

6 RELATED WORK

Combining autoregressive and masked (diffusion) language modeling This paper builds upon
the GPT-BERT training objective by Charpentier & Samuel (2024), validating its effectivity in a
more practical setting. However, there is a long history of papers that tried to combine bidirectional
masked language modeling with unidirectional autoregressive modeling: TS5 (Raffel et al., 2020)
and BART (Lewis et al., 2020) were the first to train with autoregressive fill-in-the-blank training
objectives by relying on encoder-decoder transformer architectures. Later, Du et al. (2022) proposed
GLM, which uses the same objective as T5 while using a simpler decoder-only architecture with
complicated scheme of positional encodings. CM3 by Aghajanyan et al. (2022) further simplifies
training by not requiring any non-standard architectural modifications like the previous work. As
they also add autoregressive language-modeling objective, their work is close to our approach — a
model trained with CM3 can be used as any other autoregressive model at inference time, similarly
to us. However, our objective also generalizes masked-diffusion language modeling and allows for
fine-grained balance of the two objectives throughout training. More recently AntLM by Yu et al.
(2024) proposed to switch from one objective to the other in a curriculum fashion, starting with a
short autoregressive training, followed by a long masked language training and finishing on another
short autoregressive training. While this does show promise, the transition between one objective
to the other leads to forgetting of the previous objective whereas our objective continuously learns
both objectives. Other notable works include prefix language models (Dong et al., 2019; Raffel et al.,
2020; Wang et al., 2022) and UL2 (Tay et al., 2023).

Scaling of autoregressive and masked-diffusion models Concurrent works by Prabhudesai et al.
(2025) and Ni (2025) have demonstrated that masked-diffusion models outperform autoregressive
models in data-constrained training regimes. Our results confirm their findings but we show that
using either of these training objectives is never optimal. Combining them together is always better,
not only in data-constrained settings.

Bidirectional masking of user and system prompts A recent paper by Katz et al. (2025) shows
that using a bidirectional mask on user and system prompts improves performance on a wide variety
of task, in line with Remark 3. However, for models to be able to use such masks, the authors first
need to train adapters. Our work shows that by training both autoregressive and masked-diffusion at
the same time, we are able to induce the prefix mask without any additional training.

Data-constrained scaling laws Muennighoff et al. (2023) studies the scaling laws of autoregres-
sive models in data-constrained settings with a similar motivation to this paper. They show that
autoregressive models cannot meaningfully learn from more than 16 data repetitions, we demonstrate
that this value is an order of magnitude larger when training with the dual objective.

7 CONCLUSION

In this work, we addressed the fundamental trade-off between the sample efficiency of autoregressive
models and the overfitting resilience of masked-diffusion models. We have empirically demonstrated
that a dual-objective training strategy successfully achieves the best of both worlds, resulting in
models that converge rapidly without any performance degradation in data-constrained settings. We
established that combining objectives is universally beneficial and derived practical guidelines for
selecting the optimal training ratio based on the degree of data repetition. We showed that prefix
language modeling is induced and that it performs better than autoregressive on downstream tasks.
Our findings suggest that this unified approach provides a more robust and compute-efficient path
forward for training the next generation of language models, especially as the field contends with the
limits of available high-quality data.
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REPRODUCIBILITY STATEMENT

To ensure reproducibility of our work we provided the guidelines on how to train language models on
both objectives at the time in Section 3. For our model parameters and hyperparameters we specified
those in Section 5.1. We describe how we perform the evaluations, the number of mask tokens
used for PLL, the prompt formats, and log-likelihood normalizations in Section 4, Appendix B, and
Appendix D. We openly release our custom training and evaluation code at https://github.com/
censored-for-review. The training code is based on the common and freely distributed deep-learning
framework PyTorch (Paszke et al., 2019).
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A THE USE OF LARGE LANGUAGE MODELS

Large language models have been used to provide feedback, fix grammatical errors and improve
the writing in this paper; in particular, we used the Claude family of language models from https:
//claude.ai. In addition, we used the autocompletion tool from GitHub Copilot when writing the
code used in this work.

B LOG-LIKELIHOOD NORMALIZATION

For the BLiMP task, which is not considered in the OLMES evaluation suite, we do not apply any
normalization and take the raw log-likelihood. We also stick to the no-context form of this task,
where the whole sentence is considered the completion. We apply character length normalization to
ARC-Easy, HellaSwag, MMLU, PIQA, and SIQA. Finally, we apply point-wise mutual information
normalization (Holtzman et al., 2021), where the log-likelihood of the context-informed completion is
divided by the log-likelihood of the uncontrained context completion, this can be seen in Equation (5),
to ARC-Challenge Commonsense QA, and OpenBook QA.

jwi
PMI(w Zlog <p9 “”'C@W“)), (5)

po (w; | u® wg;)

where w is the completion, c is the context, and u is the unconstrained context (in our case, this
would be “Answer:”)

C MONTE CARLO ESTIMATION OF LOG-LIKELIHOOD

To evaluate the masked-diffusion capabilities of our models, we use Equation (4) with the same
modification as for the autoregressive evaluation as well as an adaptation of Monte-Carlo sampling to
estimate the log-likelihood of each completion. Instead of taking the expectation over t ~ U/(0, 1),
we take the expectation between N equally spaced points between 0 and 1. This reduces the variance
of the estimation and allows for a faster convergence. However, accurate estimation still requires
N > 256, which is unbearably slow — especially when compared to simple autoregressive calculation
of log-likelihood that requires only a single forward pass.

D PSEUDO LOG-LIKELIHOOD ESTIMATION

The base PLL equation can be described by a slight modification of Equation (2):
|w]
log pe(w Zlogpg (wilc®wo® -+ ®w;i
=1 (6)
@ [MASK]
D w1 D - @w‘w|)

This means that instead of doing a single forward pass, we need to do |w| forward passes to estimate
the PLL. However, using a single mask token could lead underestimating the log-likelihood of words
split into multiple tokens. Therefore we can further modify Equation (6) to have a variable (but
constant) number of mask token after the token we are trying to estimate:

|wl

logpe(w) = logpe(w; | c@wy & -+ & wi_y
i=1

® [MASK] @ - - - ® [MASK]

B Witn S+ B Wiw|),
where n represents the number of [MASK] tokens. In our case we take a combination of two different
number of mask tokens (1 and 6), by taking the best score of the two for each task. The two values

were chosen experimentally, more details on the results of each number of mask tokens can be found
in Appendix E.
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E EFFECTS OF NUMBER OF MASK TOKENS ON THE PLL

We first look at whether using a single number of mask tokens can lead to a good estimation of the
PLL in general. For this, we evaluate five different models from 1 to 6 mask tokens and report the
results in Tables 3 to 7.

Table 3: PLL performance depending on the number of mask tokens. We show the PLL
performance on the 9 tasks of the model trained with an equal ratio of masked-diffusion and AR and
32 repetitions with different number of masks. Best results per task are boldfaced.

Task Number of masks
1 2 3 4 5 6

ARC Easy 187 241 255 263 260 263
ARC Challenge 47 33 38 27 1.9 2.6
BLiMP 652 639 625 603 60.5 60.3
Commonsense QA 294 328 339 341 341 34.1
HellaSwag 298 27.0 267 27.1 267 264
MMLU 20 35 31 29 33 33
OpenBook QA 91 77 85 93 72 69
PIQA 33.1 343 351 354 356 368
SIQA 114 133 137 135 144 144
Average 22.6 233 23.6 235 233 234

Table 4: PLL performance depending on the number of mask tokens. We show the PLL
performance on the 9 tasks of the model trained with a 1 masked-diffusion to 7 autoregressive ratio
and 32 repetitions with different number of masks. Best results per task are boldfaced.

Task Number of masks
1 2 3 4 5 6

ARC Easy 182 256 27.1 282 269 275
ARC Challenge 1.9 32 24 26 36 4.7
BLiMP 61.2 60.0 583 569 570 573
Commonsense QA 242 29.1 29.0 294 294 294
HellaSwag 252 257 266 27.0 268 26.8
MMLU 1.9 34 40 39 40 42
OpenBook QA 99 10.1 123 109 10.1 9.6
PIQA 31.0 347 361 36.0 350 359
SIQA 11.7 11.8 142 13.7 141 143
Average 20.6 22.6 233 232 230 233

We can see two clear trends from the results. The first is that the BLIMP and HellaSwag tasks are
better evaluated with a single mask token, rather than multiple. This could be due to the simpler
language found in these datasets. The second trend is that ARC-Easy, Commonsense QA, PIQA, and
SIQA tend to do better with multi-token masking, this could be due to the more complex answers
using more infrequent words, that have a higher likelihood of being split into subwords. We therefore
decide that using a combination of a single token mask for some tasks and a multiple tokens for
others is the best solution. To find the optimal combination, we test all possible combinations. The
results can be seen in Table 8.

Based on Table 8, we decide to evaluate PLL for all models with both a single mask token and six
mask tokens. Then we take the max performance between the two for each task.
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Table 5: PLL performance depending on the number of mask tokens. We show the PLL
performance on the 9 tasks of the model trained with a 7 masked-diffusion to 1 autoregressive ratio
and 32 repetitions with different number of masks. Best results per task are boldfaced.

Task Number of masks
1 2 3 4 5 6

ARC Easy 163 20.8 239 240 249 249
ARC Challenge 57 39 35 1.8 33 2.2
BLiMP 69.5 67.6 640 60.7 60.1 60.1
Commonsense QA 254 29.7 30.6 31.1 31.1 31.2
HellaSwag 255 228 21.0 212 205 19.8
MMLU 0.5 22 22 20 25 24
OpenBook QA 13.1 12.0 152 144 13.1 139
PIQA 29.6 303 30.8 30.1 312 31.0
SIQA 122 150 152 136 13.8 139
Average 22.0 227 229 2211 223 222

Table 6: PLL performance depending on the number of mask tokens. We show the PLL
performance on the 9 tasks of the model trained with an equal ratio of masked-diffusion and AR and
16 repetitions with different number of masks. Best results per task are boldfaced.

Task Number of masks
1 2 3 4 5 6

ARC Easy 16.8 237 258 258 261 26.1
ARC Challenge 72 44 44 48 32 45
BLiMP 653 64.8 63.1 60.7 60.6 60.4
Commonsense QA 29.7 33.8 35.1 351 352 352
HellaSwag 305 279 278 279 272 268
MMLU 1.3 24 29 25 27 25
OpenBook QA 123 120 131 11.2 11.7 11.7
PIQA 33.8 346 36.0 347 363 37.0
SIQA 143 139 159 153 159 16.1
Average 235 242 249 242 243 245

Table 7: PLL performance depending on the number of mask tokens. We show the PLL
performance on the 9 tasks of the model trained with an equal ratio of masked-diffusion and AR and
64 repetitions with different number of masks. Best results per task are boldfaced.

Task Number of masks
1 2 3 4 5 6

ARC Easy 16.6 21.8 235 234 231 23.1
ARC Challenge 1.8 39 39 32 40 35
BLiMP 63.1 612 59.6 575 569 569
Commonsense QA 24.6 27.6 28.5 287 28.7 28.7
HellaSwag 268 252 242 247 243 241
MMLU 1.2 31 30 32 34 32
OpenBook QA 8.3 85 11.7 10.1 8.3 8.0
PIQA 31.0 31.7 321 337 343 34.1
SIQA 143 123 143 131 133 135
Average 20.8 21.7 223 220 21.8 21.7
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Table 8: PLL performance for combinations of one mask token and multi-mask token. Best results

per model are bolfaced.

Repetitions - Causal Ratio

Mask combination

-2 13 14 15 1-6
32 -50% 24.1 245 246 247 248
32-87.5% 228 23.6 237 235 238
32-12.5% 23,5 243 240 241 242
16 - 50% 249 257 254 257 258
64 - 50% 223 23.0 229 229 228

Table 9: Normalized PLL versus Masked-Diffusion evaluation. The scores for each task are
normalized so that 0% corresponds to the random baseline and 100% is the perfect score. The best
result for each task is in boldfaced. We evaluate a model trained with equal AR and masked-diffusion

ratio and 32 repetitions.

Task PLL Masked-Diffusion
ARC-Easy 26.3 27.1
BLiMP 65.2 56.5
Commonsense QA 34.1 32.7
HellaSwag 29.8 21.3
PIQA 36.8 32.0

F PLL VERSUS MASKED-DIFFUSION

Table 9 shows that the performance of the masked-diffusion model is in general lower than that of the
combined (1 and 6 mask) PLL. In addition, the two PLL evaluations took about 2 hours to complete
while the masked-diffusion evaluation takes 12 hours to complete on a MI250X AMD GPU.

G PREFIX VERSUS AUTOREGRESSIVE ON OPTIMAL MODELS.

Table 10: Normalized autoregressive and prefix performance of selected models. The scores for
each task are normalized so that 0% corresponds to the random baseline and 100% is the perfect
score. The best result for each dataset size is in boldfaced. The results for BLiMP are the same, since
there is no context and the prefix evaluation defaults to the autoregressive one. The AR ratio for
the models are 12.5% for the 128 repetitions, 75% for the 32 repetitions, and 98.4% for the single

repetition.
S B2 & -
S v =2 3 f 2 2 3 3
&~ &~ - n 2! 2 — 9
Model < < ) @) = = o &~ n Average
1 REPETITION
Autoregressive 57 286 637 351 31.1 49 17.6 409 143 26.9
Prefix 6.5 310 637 400 312 45 165 421 152 27.9
32 REPETITIONS
Autoregressive 33 280 579 31.1 264 36 144 36.1 14.64 239
Prefix 63 289 579 331 271 43 152 36.7 154 25.0
128 REPETITIONS
Autoregressive 1.7 236 561 248 142 1.6 85 281 133 19.1
Prefix 1.3 241 561 28,5 124 23 109 309 152 20.5

Table 10 shows that evaluting with the prefix mask almost always outperforms using the causal mask
when the models are optimally trained. This is true in both the regular and constrained data settings.
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H DETAILED RESULTS OF DIFFUSION-MASKED EVALUATION

Table 11: The normalized PLL performance of selected models. We show the results on all
nine evaluated tasks for three repetition values; each repetition group contains the results of the
best-performing autoregressive-diffusion ratio and of the autoregressive-only model. The scores for
each task are normalized so that 0% corresponds to random baseline and 100% is the perfect score.

The best result for each dataset size is boldfaced.

© =2 g ¥ 2 =
c v =z & : 2 9 35 &
. & & s R ) =2 = =4
Model configuration < <« 8 Q = = =) A 7 Average
32 REPETITIONS
Dual (3 : 1) 6.0 283 627 334 278 43 123 374 154 253
Masked-Diffusion (0 : 1) -0.1 223 64.8 29.0 24.1 1.6 9.1 272 144 21.4
128 REPETITIONS
Dual (1:7) 28 233 635 305 250 2.1 128 318 152 23.0
Masked-Diffusion (0 : 1) 33 192 633 292 221 2.6 9.3 283 120 21.0

Table 11 shows similar trends to those found in Table 2. The notable exception being for BLiMP
where the performances are similar between both models. Unlike the autoregressive models, the
performance of the purely masked-diffusion models are similar to each other. This is partially due to
the model not overfitting, but also to it not being sample efficient. On the other hand we see that for
the Dual Models, the performance significantly increases as we increase the training data set size.
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