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ABSTRACT

This paper combines autoregressive and masked-diffusion training objectives with-
out any architectural modifications, resulting in flexible models that outperform the
standard single-objective models in both settings. Autoregressive language model-
ing has been a popular approach, partly because of its training efficiency; however,
this comes at the cost of susceptibility to overfitting. On the other hand, masked-
diffusion language models are less efficient to train while being more resilient
to overfitting. In this work, we demonstrate that dual-objective training achieves
the best of both worlds. To derive the optimal ratio of the masked-diffusion and
autoregressive objectives, we train and evaluate 50 language models under varying
levels of data repetition. We show that it is optimal to combine both objectives
under all evaluated settings and that the optimal ratio is similar whether targeting
autoregressive or masked-diffusion downstream performance.

1 INTRODUCTION

The dominant paradigm for training large language models has been autoregressive next-token
prediction (Brown et al., 2020). This approach is remarkably efficient in training, allowing models to
quickly absorb vast amounts of text. However, this efficiency comes with a significant drawback: a
tendency to overfit, especially when training data is limited or repeated (Muennighoff et al., 2023).
This issue is becoming increasingly critical as the community reaches the so-called “data wall” –
the imminent exhaustion of high-quality text data required to train ever-larger models according to
established scaling laws (Villalobos et al., 2024).

An alternative approach, masked-diffusion language modeling, offers a compelling solution to the
overfitting problem. These models are inherently more robust to data repetition and can learn
powerful bidirectional representations (Prabhudesai et al., 2025; Ni, 2025). Yet, this robustness
comes at the cost of lower training efficiency; masked-diffusion models are known to be 16 times less
sample-efficient than their autoregressive counterparts (Nie et al., 2025a), requiring significantly more
computation to reach comparable performance levels. This presents a fundamental trade-off: the fast
convergence of autoregressive models versus the training stability of masked-diffusion models.
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Figure 1: The dynamics of zero-shot performance throughout training. The three models are
trained in a rather extreme setting – 128 repetitions of the same training corpus – which highlights
the different behaviors caused by the three training objectives. The autoregressive objective (dashed
line) converges the fastest but also very quickly overfits; the masked-diffusion objective (dotted line)
converges slowly but without being negatively affected by the high amount of repetitions. Combining
both objectives together (full line) results in fast convergence as well as to robustness to overfitting.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

In this work, we show that it is possible to achieve the best of both worlds by simultaneously training
a single language model on both autoregressive and masked-diffusion objectives. The core idea is to
use the training efficiency of the autoregressive objective for rapid initial learning while using the
masked-diffusion objective to regularize the model and prevent it from overfitting. The effectiveness
of this dual-objective approach is illustrated in Figure 1. In the extreme data-constrained setting with
128 data repetitions, the purely autoregressive model learns quickly but then catastrophically overfits.
The masked-diffusion model is immune to overfitting but converges very slowly. Our proposed
dual-objective model combines the strengths of both and successfully leverages the given compute
and data.

Building on this observation, we conduct a large-scale systematic study to find the optimal balance
between these two objectives under varying degrees of data constraint. Our primary contributions are:

• We propose a dual-objective training method that combines autoregressive and masked-diffusion
losses, enabling a single model to excel at both unidirectional and bidirectional tasks.

• Through an extensive empirical study, we systematically map the relationship between data
repetition, the ratio of training objectives, and final downstream performance.

• We demonstrate that a dual-objective approach is superior to single-objective training in all
evaluated settings, for both autoregressive and masked-diffusion evaluation.

• We derive two practical recommendations for setting the optimal objective ratio when training
in both regular and data-constrained regimes, providing a concrete guideline for future training
of large language models.

• We show that the dual language models can generalize to prefix language models at inference
time, which further increases their downstream performance.

2 BACKGROUND

As the name suggests, language models are statistical models pθ(·) of the true language distribution
of some training corpus D. The training corpus consists of sequences x = (x1, x2 . . . xN ) ∈ D of
subword tokens. The language models are trained by finding such parameters θ that maximize the
likelihood estimation (MLE; Fisher, 1922; 1925):

argmax
θ

E
x∼D

[
log pθ(x)

]
. (1)

In this paper, we combine two popular approaches for computing pθ(·), autoregressive language
models and masked-diffusion language models.

2.1 AUTOREGRESSIVE LANGUAGE MODELING

Language models have a long tradition and since their inception in the seminal paper by Shannon
(1951), they have been factored into a chain of next-token prediction terms pθ(xi |x<i):

log pθ(x) =

|x|∑
i=1

log pθ(xi | x<i). (2)

Computation of the next-token likelihoods can be efficiently parallelized when modeled by trans-
former networks (Vaswani et al., 2017), and thanks to their scalability, it has been the most popular
paradigm behind the recent era of large language models (Brown et al., 2020).

2.2 MASKED-DIFFUSION LANGUAGE MODELING

Masked-diffusion language models have recently become a popular alternative to autoregressive
models (Austin et al., 2021; Lou et al., 2024; Sahoo et al., 2025; Ou et al., 2025; Nie et al., 2025b).
Computing pθ(·) with masked-diffusion is slightly more complicated than with autoregression, but
the resulting language model learns to handle full bidirectional context, which can lead to increased
performance on downstream tasks (Berglund et al., 2024; Samuel, 2025).
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First, following Austin et al. (2021), we define the forward (and backward) diffusion process that
gradually turns a sequence of tokens x into special mask tokens (and vice-versa). The diffusion
process {xt} depends on the time variable t ∈ [0, 1] so that x(0) = x and x(1) is a fully masked
sequence. The intermediate values are defined by the probability distribution q:

qt|0(x
t | x) def

=

|x|∏
i=1

qt|0(x
t
i | xi); where qt|0(x

t
i | xi)

def
=

{
1− t, xt

i = xi,

t, xt
i = mask.

(3)

We can see that each token can either remain unchanged or turn into a mask token with probability t.
The forward process is fully reversible and we can thus accordingly define the backward process,
which gradually unmasks a sequence (Austin et al., 2021). Using the results from Ou et al. (2025),
the probability distribution q0|t(xi|xt) governing the backward process can be modeled with a
time-independent transformer language model with parameters θ as pθ(xi |xt). This model can be
fitted to the training data by maximizing the lower bound on the log-likelihood estimate (Ou et al.,
2025):

log pθ(x) ≥
∫ 1

0
E

xt∼qt|0(·|x)

[
1

t

∑
{i|xt

i= mask}
log pθ(xi | xt)

]
dt. (4)

The integral can be equivalently written as the expectation over t ∼ U(0, 1), thus, it can be directly
used as a training objective when estimated by Monte-Carlo sampling (Metropolis & Ulam, 1949).
Such a Monte-Carlo estimate can also be used at inference-time for likelihood-based evaluation,
similarly to Equation (2). Note that the resulting objective is very similar to the one used to train
masked language models such as BERT (Devlin et al., 2019).

3 DUAL LANGUAGE MODELING

The method of combining autoregressive and masked (diffusion) objectives is mostly based on the
earlier GPT-BERT approach by Charpentier & Samuel (2024). They showcased promising results for
very small language models trained within the limitations of the BabyLM Challenge (Hu et al., 2024).
We extend their approach to masked-diffusion language models and to orders of magnitude larger
computation scale.

Dual objective and next-token prediction Our goal is to align the two factorizations of the MLE
objective in Equations (2) and (4) so that they can be parameterized by a single transformer model.
For this reason, we use a slightly modified version of masked language modeling called masked
next-token prediction (MNTP; Lv et al., 2024). With this approach, the model always uses the hidden
state at position i to predict the next token at position i+ 1 (we prove that this parameterization is as
expressive in Appendix I). In this way, both modes of operation are unified as they both, perform
next-token prediction; as illustrated in Figure 2. MNTP has also been used in recent work for adapting
a masked diffusion model from an autoregressive checkpoint (Gong et al., 2025; Ye et al., 2025).

A mask mask two<s>

ofJack

A Jack of two<s>

A Jack of two trades

Diffusion mode
next-token prediction with full bidirectional attention

Autoregressive mode
next-token prediction with causal attention

trades

DUAL LANGUAGE MODEL
a single transformer model for both paradigms

Figure 2: Two modes of operation inside a single model. We use the same transformer architecture
with the same parameters to do both diffusion and autoregression language modeling, the only
difference between the two modes is the input sequence and the attention mask.
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Standard transformer architecture The main benefits of using masked next-token prediction are
that we can use exactly the same transformer architecture as standard autoregressive models, and we
can optimize its parameters with both objectives at the same time. The only difference between the
two modes of operation are the inputs – they are either (partially) masked inputs with empty (fully
bidirectional) attention masks, or full unchanged inputs with causal (unidirectional) attention masks.

Loss weighting It is crucial to correctly weight the masked-diffusion objective by 1/t, as in
Equation (4), to maintain the lower bound. Thus, on average, the masked diffusion objective is
weighted by Et∼U(0,1)[1/t] = 2. To address this imbalance in regards to the autoregressive objective,
we double the weight of the autoregressive loss.

GPU-wise objective separation In practice, naively mixing both objectives within a single batch
could result in reduced throughput. For this reason, we assign each GPU device to a single objective
so that the computation graph remains simple and static, and can be efficiently compiled. To be
specific, we distribute the training of each model across 256 devices, which allows for choosing
between 256 ratios of diffusion and autoregressive training. For example, if we wanted each global
batch to contain as many diffusion samples as autoregressive samples, we would refer to this setting
as the 1 : 1 AR-D ratio (autoregressive-diffusion). Standard autoregressive model would be trained
with 1 : 0 AR-D ratio, and a model heavily skewed towards the masked-diffusion objective would be
trained with 1 : 255 AR-D, for example.

4 EVALUATION

While it is a common practice to only consider the value of loss on a held-out set when evaluating
language models (Kaplan et al., 2020; Hoffmann et al., 2022; Muennighoff et al., 2023), it is important
to measure the actual downstream performance to accurately assess the effect of different training
configurations. This is especially crucial when training with two incompatible training losses.

Tasks We evaluate our models on nine standard language modeling tasks in a zero-shot fashion.
All tasks consist of a context (which can be empty) and multiple different completions where one is
correct and the others are incorrect. We evaluate the sum of the log-likelihood of each completion and
assign the completion with the maximum sum as the prediction of the model. Table 1 lists the tasks:

Table 1: The list of evaluation tasks. The ARC† datasets contain some examples with 3 or 5
completions rather than 4. All tasks are evaluated zero-shot.

Task # Examples # Completions Split Reference

ARC-Easy (ARC-E) 2 376 4† test Clark et al. (2018)
ARC-Challenge (ARC-C) 1 172 4† test Clark et al. (2018)
BLiMP 67 000 2 — Warstadt et al. (2020)
Commonsense QA (CSQA) 1 221 5 val Talmor et al. (2019)
HellaSwag (HSwag) 10 042 4 val Zellers et al. (2019)
MMLU 14 042 4 test Hendrycks et al. (2021)
OpenBook QA (OBQA) 500 4 test Mihaylov et al. (2018)
Physical Interaction QA (PIQA) 1 838 2 val Bisk et al. (2020)
Social IQa (SIQA) 1 954 3 val Sap et al. (2019)

Evaluation setup We follow the guidelines of the OLMES paper (Gu et al., 2025) for the nor-
malization of our log-likelihood estimations as well as the prompt format, with two changes: 1)
we only evaluate in a zero-shot fashion to simplify the setup, 2) we only consider their “cloze”
formulation of each task, which is more suitable for smaller models. For the BLiMP task, which is
not considered in the OLMES evaluation suite, we do not apply any length normalization and take
the raw log-likelihood score. Since the BLiMP and MMLU tasks contain multiple sub-tasks (67 for
BLiMP, and 57 for MMLU), we report their macro-average as the final score. More information on
how each task is normalized can be found in Appendix B.

Normalized score averaging To ensure a fair aggregation of the different task scores, we first
normalize the scores such that the random baseline of task is at 0 and the maximum is at 1; similarly
to the Open LLM Leaderboard (Fourrier et al., 2024). To achieve this we apply the following formula

4
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to our scores: score(x, t) = (x−rt)/(mt−rt), where x is the raw score, rt is the random baseline and
mt is the optimal score for task t. We then take the simple average of the normalized scores across
all tasks as the final performance of our model.

4.1 AUTOREGRESSIVE (UNIDIRECTIONAL) EVALUATION

To evaluate the autoregressive capabilities of our models, we use Equation (2) to estimate the log-
likelihood of each completion. Specifically, given a completion (w) and context (c), we calculate the
conditional log-likelihood as log pθ(w | c) =

∑
i log pθ(wi | c,w<i).

4.2 MASKED-DIFFUSION (BIDIRECTIONAL) EVALUATION

One possibility to evaluate the masked-diffusion capabilities of our models is to also leverage the
training objective in Equation (4) and estimate the conditional log-likelihood of each completion by
Monte-Carlo sampling. We describe this approach in more detail in Appendix C. While it provides
accurate downstream scores, it is computationally expensive and less accurate than using simpler
pseudo log-likelihood (PLL; Wang & Cho, 2019; Salazar et al., 2020; Samuel, 2025) estimation.

PLL allows us to do bidirectional evaluation more than ten times faster while being more accurate
than Monte-Carlo sampling (Appendix F). Therefore, we use PLL for evaluating the bidirectional
capability of our models. We fully describe this method in Appendix D. As visualized in Figure 3 on
the left, we specifically use the semi-autoregressive variation of PLL proposed by Samuel (2025).

<s> fourmask mask mask five six

<s> one mask mask mask five six

<s> one maskfivetwo three four

one

two

six

Pseudo log-likelihood (with 3 masks)

<s> mask five six

<s> one mask five six

<s> one mask

three

two

three

Monte-Carlo estimate of log-likelihood

two mask mask

three four

mask mask mask mask

Figure 3: Visual representations of bidirectional evaluation methods. Pseudo log-likelihood
estimation (on the left) reaches accurate likelihood scores substantially faster than the (theoretically
grounded) Monte-Carlo estimation (on the right).

5 EXPERIMENTS

5.1 PRETRAINING SETUP

We train 470-million-parameter language models (with 360M non-embedding weights) on 32 billion
tokens. This token budget is more than 4× past the Chinchilla compute-optimal point (Hoffmann
et al., 2022); we specifically decided to conduct the experiments in this regime as it reflects how
modern language models are trained in practice. This compute budget is also large enough to induce
non-trivial zero-shot downstream performance, enabling us to measure clear differences between
different configurations.

Model architecture The language models have 24 layers with hidden size of 1 024, their self-
attention operations are divided into 16 parallel heads, the feed-forward modules have intermediate
size of 3 554, and the vocabulary is set to 51 200 tokens. As for the architecture itself, we follow
the usual modifications of the original transformer recipe (Vaswani et al., 2017) – pre-normalization
(Nguyen & Salazar, 2019) with RMSNorm (Zhang & Sennrich, 2019), rotational positional embed-
ding (Su et al., 2024) and Swish-gated linear units (Ramachandran et al., 2018; Shazeer, 2020).

Optimization The parameters are optimized by the Muon optimizer for faster convergence (Jordan
et al., 2024), specifically its variation proposed by Liu et al. (2025). The learning rate is set to 0.007
and decayed according to the warmup-stable-decay (WSD; Hägele et al., 2024) schedule (without
warmup steps and 2 048 steps of linear decay). In total, each model is trained for 8 192 steps with
4M tokens in each global batch and with a sequence length of 2 048 tokens. The optimization is
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regularized by weight decay (with strength of 10−1) and by an auxiliary z-loss term (with strength of
10−4; Chowdhery et al., 2022).

Training corpus and tokenizer Even though we limit the training data to 32B tokens, we delib-
erately choose a text corpus that is not excessively filtered and that is representative of large-scale
web crawls used in practice. We randomly sample English documents with 32B tokens in total from
the HPLT v2 corpus (Burchell et al., 2025), which combines extracted webpages from the Internet
Archive and CommonCrawl. We also use a smaller disjoint subset to monitor the validation loss. To
prevent a potential bias from using an external tokenizer, we train a standard byte-level BPE tokenizer
(Gage, 1994) with 51 200 subwords directly on the full training data.

5.2 FINDING THE OPTIMAL AUTOREGRESSIVE-DIFFUSION RATIO

We trained and evaluated 50 language models in total, the results are plotted in Figure 4. In order to
deal with the noisy nature of this data and to better understand the relation between the amount of
data repetitions and the optimal autoregressive-diffusion ratio, we use simple statistical models.

Interpolation with Gaussian process We use Gaussian process regression (GPR; Williams &
Rasmussen, 1995) with a composite kernel structure to model the relationship between data repetitions,
AR-D ratios and downstream performance. The kernel consists of a constant kernel multiplied by an
anisotropic Matérn kernel (ν = 1.5; Stein, 1999) combined additively with a white noise kernel to
account for observation noise. The input features are standardized to zero mean and unit variance,
and the output features are normalized. The kernel parameters are optimized by L-BFGS-B (Liu &
Nocedal, 1989) using SciPy (Virtanen et al., 2020). The resulting interpolations in Figure 4 show
regular structure while closely fitting the data with R2 over 0.99 in all cases.

The optimal autoregressive-diffusion ratios The fitted Gaussian process is a probabilistic model
of the downstream performance given the amount data repetition and the AR-D ratio. Thus, we can
transform this to the probability that a particular AR-D ratio is optimal for the given data repetition.
More concretely, we can estimate the density of this distribution by sampling from the posterior of
the GPR model. The result of this is visualized in the bottom part of Figure 4.

5.3 RESULTS AND DISCUSSION

The structure of Figure 4 becomes clearer once we identify which training settings result in overfitting
during training.1 The density of optimal ratios highlights that there are two regions to consider: 1)
Regular-data region where a language model trained solely on the autoregressive objective does
not overfit – this roughly corresponds to 16 repetitions of training data and less, as also shown by
Muennighoff et al. (2023). 2) Data-constrained region – roughly corresponding to 32 data repetitions
and more – where overfitting is an important consideration.

In the first case, it is clearly beneficial to put more weight to the autoregressive training than to masked-
diffusion. Yet, training only autoregressively does not lead to any improvement in any experiments
within the regular-data region. Even when evaluated purely autoregressively, the differences between
256 : 0 and 15 : 1 ratios are negligible. Switching to bidirectional evaluation, the single-objective
256 : 0 ratio performs poorly while all models trained with ratios between 255 : 1 and 15 : 1 perform
similarly – notably, they all substantially outperform models trained only with masked-diffusion.
We hypothesize that the reason for these strong results (and basically ‘free-lunch’ masked-diffusion
capability) is that the prevalence of the autoregressive objective leads to fast convergence and the
small amount of masked-diffusion balances its slower convergence by inducing useful modeling
priors. This leads us to formulating the first practical recommendation:
Remark 1 (Language modeling under regular data settings). When training a language model in a
regular data setting (16 repetitions or less), train with a small amount of masked-diffusion objective
(roughly every 64th sequence) to get a strong bidirectional model without losing any autoregressive
performance.

In the second data-constrained case, the relation between data repetition, AR-D ratio, and final perfor-
mance seems more complicated. We risk overfitting by putting too much weight to autoregression

1Here, overfitted training runs are those runs, in which the held-out loss starts diverging while the training
loss keeps converging (Appendix J). Such runs are highlighted in Figure 4 by × marks.
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(c) Optimal ratio density (unidirectional)
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(d) Optimal ratio density (bidirectional)

Figure 4: Interpolated unidirectional and bidirectional results. The (a) and (b) figures on top show
the relation between repetitions (x-axis) and autoregressive-diffusion ratios (y-axis); the contours
follow the Gaussion process model that interpolates the average performance of language models
trained according to the specified settings. The respective results are plotted either as crosses when the
model overfitted during training, or as circles. The (c) and (d) figures below visualize the estimated
probability that a particular ratio (y-axis) is optimal for a given number of repetitions (x-axis).

and underfitting by focusing too much on masked-diffusion; as evident from Figure 4, the interval
of optimal ratios is fairly narrow. On the other hand, the optimal ratios are surprisingly similar for
the unidirectional and bidirectional performance. We can notice that the region of optimal ratios is
right beneath the region of ratios that lead to overfitting, but the question is how to identify such an
AR-D ratio. It is possible to have an alternative interpretation of the ratios and count the number
of data repetitions that each objective is individually trained on – then we can see that more than
32 autoregressive repetitions lead to overfitting while less than 8 autoregressive repetitions lead to
underfitting. Thus, based on the empirical results, our recommendation for this scenario is:

Remark 2 (Data-constrained language modeling). When training a language model in a data-
constrained setting (more than 32 repetitions), choose an autoregressive-diffusion ratio that exposes
the autoregressive objective to roughly 16 repetitions of the training data.

Generalization to larger language models An obvious question is whether the recommendations
hold even at much bigger scale for larger language models. Reliably answering this question
would require expensive experimentation, but we believe that the conclusions hold for two reasons.
Firstly, according to our results, the optimal AR-D ratios are clearly correlated with overfitting
of autoregressive language models. Since the overfitting behavior does not depend on model size
according of previous work (Muennighoff et al., 2023; Prabhudesai et al., 2025), we believe that the
optimal AR-D ratios should also not change. Secondly, the relative burden of representing two modes
of operation within the learned parameters decreases with model size, so we believe that the benefit
of the dual training objective should actually increase with model size.
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Table 2: The normalized autoregressive performance of selected models. We show the results on
all nine evaluated tasks for three repetition values; each repetition group contains the results of the
best-performing autoregressive-diffusion ratio and of the autoregressive-only model. The scores for
each task are normalized so that 0% corresponds to random baseline and 100% is the perfect score.
The best result for each dataset size is boldfaced.

Model configuration A
R

C
-C

A
R
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L
U

O
B

Q
A

PI
Q

A

SI
Q

A

Average

1 REPETITION

Dual (63 : 1) 5.7 28.6 63.7 35.1 31.1 4.9 17.6 40.9 14.3 26.9
Autoregressive (1 : 0) 5.9 30.3 61.3 33.5 31.7 3.8 13.6 39.4 15.2 26.1

32 REPETITIONS

Dual (3 : 1) 3.3 28.0 57.9 31.1 26.4 3.6 14.4 36.1 14.6 23.9
Autoregressive (1 : 0) 5.0 24.9 53.3 28.5 25.4 3.8 9.9 33.3 14.2 22.0

128 REPETITIONS

Dual (1 : 7) 1.7 23.6 56.1 24.8 14.2 1.6 8.5 28.1 13.3 19.1
Autoregressive (1 : 0) -1.0 12.3 33.2 6.8 8.1 1.1 -0.5 15.8 8.9 9.4

Detailed results To put the abstract average scores into another perspective, we look at the individ-
ual (normalized) scores per task in Table 2. The results show that the improvement in performance
from using a dual objective is observed on a majority of tasks. This is especially true the more
repetitions there are. The detailed scores also highlight how effectively the dual objective learns from
limited data, reaching nontrivial performance even when exposed to just 256M tokens of training
data (under 128 repetitions). We observe similar trends for masked-diffusion evaluation except that
as the number of repetitions decreases, the performance gap increases rather than decreases. Detailed
performance for the masked-diffusion evaluation can be found in Appendix H.

5.4 GENERALIZATION TO PREFIX LANGUAGE MODELING

Prefix language modeling (Dong et al., 2019; Raffel et al., 2020; Wang et al., 2022) is a promising
alternative to the two training objectives investigated in this work. It processes the conditioning part
(prefix, c in notation from Section 4.1) of a text fully bidirectionally while the completion part (w in
Section 4.1) is processed autoregressively. Given that our models are trained with both unidirectional
and bidirectional attention, we test whether the exposure to both can induce generalization to prefix
language modeling without any further training. We repeat the earlier autoregressive evaluation with
prefix attention masks and plot the results in Figure 5.
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Figure 5: Interpolated prefix results. The figures show the relation between data repetitions (x-axis),
autoregressive-diffusion ratios (y-axis), and downstream performance (color-coded). The individual
results are interpolated by a GPR model. The right figure demonstrates the relative improvement of
prefix-masked evaluation compared to fully unidirectional evaluation (blue color denotes decreased
performance and red color denotes a performance increase).

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

The right side of Figure 5 shows the overall improvement of the prefix evaluation over the autore-
gressive one. Notably, we can see that it is reliably over one percentage point better across most
configurations that combine both training objectives. This finding leads to our third recommendation:
Remark 3 (Induced prefix language modeling). The autoregressive performance of dual language
models can be reliably improved at inference time by processing the conditional part of a prompt
fully bidirectionally.

6 RELATED WORK

Combining autoregressive and masked (diffusion) language modeling This paper builds upon
the GPT-BERT training objective by Charpentier & Samuel (2024), validating its effectivity in a
more practical setting. However, there is a long history of papers that tried to combine bidirectional
masked language modeling with unidirectional autoregressive modeling: T5 (Raffel et al., 2020)
and BART (Lewis et al., 2020) were the first to train with autoregressive fill-in-the-blank training
objectives by relying on encoder-decoder transformer architectures. Later, Du et al. (2022) proposed
GLM, which uses the same objective as T5 while using a simpler decoder-only architecture with
complicated scheme of positional encodings. CM3 by Aghajanyan et al. (2022) further simplifies
training by not requiring any non-standard architectural modifications like the previous work. As
they also add autoregressive language-modeling objective, their work is close to our approach – a
model trained with CM3 can be used as any other autoregressive model at inference time, similarly
to us. However, our objective also generalizes masked-diffusion language modeling and allows for
fine-grained balance of the two objectives throughout training. More recently AntLM by Yu et al.
(2024) proposed to switch from one objective to the other in a curriculum fashion, starting with a
short autoregressive training, followed by a long masked language training and finishing on another
short autoregressive training. While this does show promise, the transition between one objective
to the other leads to forgetting of the previous objective whereas our objective continuously learns
both objectives. Other notable works include prefix language models (Dong et al., 2019; Raffel et al.,
2020; Wang et al., 2022) and UL2 (Tay et al., 2023).

Scaling of autoregressive and masked-diffusion models Concurrent works by Prabhudesai et al.
(2025) and Ni (2025) have demonstrated that masked-diffusion models outperform autoregressive
models in data-constrained training regimes. Our results confirm their findings but we show that
using either of these training objectives is never optimal – combining them together is always better,
not only in data-constrained settings.

Bidirectional masking of user and system prompts A recent paper by Katz et al. (2025) shows
that using a bidirectional mask on user and system prompts improves performance on a wide variety
of task, in line with Remark 3. However, for models to be able to use such masks, the authors first
need to train adapters. Our work shows that by training both autoregressive and masked-diffusion at
the same time, we are able to induce the prefix mask without any additional training.

Data-constrained scaling laws Muennighoff et al. (2023) studies the scaling laws of autoregres-
sive models in data-constrained settings with a similar motivation to this paper. They show that
autoregressive models cannot meaningfully learn from more than 16 data repetitions, we demonstrate
that this value is an order of magnitude larger when training with the dual objective.

7 CONCLUSION

In this work, we addressed the fundamental trade-off between the training efficiency of autoregressive
models and the overfitting resilience of masked-diffusion models. We have empirically demonstrated
that a dual-objective training strategy successfully achieves the best of both worlds, resulting in
models that converge rapidly without any performance degradation in data-constrained settings. We
established that combining objectives is universally beneficial and derived practical guidelines for
selecting the optimal training ratio based on the degree of data repetition. We showed that prefix
language modeling is induced and that it performs better than autoregressive on downstream tasks.
Our findings suggest that this unified approach provides a more robust and compute-efficient path
forward for training the next generation of language models, especially as the field contends with the
limits of available high-quality data.
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REPRODUCIBILITY STATEMENT

To ensure reproducibility of our work we provided the guidelines on how to train language models on
both objectives at the time in Section 3. For our model parameters and hyperparameters we specified
those in Section 5.1. We describe how we perform the evaluations, the number of mask tokens
used for PLL, the prompt formats, and log-likelihood normalizations in Section 4, Appendix B, and
Appendix D. We openly release our custom training and evaluation code at https://github.com/
censored-for-review. The training code is based on the common and freely distributed deep-learning
framework PyTorch (Paszke et al., 2019).
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A THE USE OF LARGE LANGUAGE MODELS

Large language models have been used to provide feedback, fix grammatical errors and improve
the writing in this paper; in particular, we used the Claude family of language models from https:
//claude.ai. In addition, we used the autocompletion tool from GitHub Copilot when writing the
code used in this work.

B LOG-LIKELIHOOD NORMALIZATION

For the BLiMP task, which is not considered in the OLMES evaluation suite, we do not apply any
normalization and take the raw log-likelihood. We also stick to the no-context form of this task,
where the whole sentence is considered the completion. We apply character length normalization to
ARC-Easy, HellaSwag, MMLU, PIQA, and SIQA. Finally, we apply point-wise mutual information
normalization (Holtzman et al., 2021), where the log-likelihood of the context-informed completion is
divided by the log-likelihood of the uncontrained context completion, this can be seen in Equation (5),
to ARC-Challenge Commonsense QA, and OpenBook QA.

PMI(w) =

|w|∑
i=1

log

(
pθ (wi | c⊕w<i)

pθ (wi | u⊕w<i)

)
, (5)

where w is the completion, c is the context, and u is the unconstrained context (in our case, this
would be “Answer:”)

C MONTE CARLO ESTIMATION OF LOG-LIKELIHOOD

To evaluate the masked-diffusion capabilities of our models, we use Equation (4) with the same
modification as for the autoregressive evaluation as well as an adaptation of Monte-Carlo sampling to
estimate the log-likelihood of each completion. Instead of taking the expectation over t ∼ U(0, 1),
we take the expectation between N equally spaced points between 0 and 1. This reduces the variance
of the estimation and allows for a faster convergence. However, accurate estimation still requires
N ≥ 256, which is unbearably slow – especially when compared to simple autoregressive calculation
of log-likelihood that requires only a single forward pass.

D PSEUDO LOG-LIKELIHOOD ESTIMATION

The base PLL equation can be described by a slight modification of Equation (2):

log pθ(w) =

|w|∑
i=1

log pθ
(
wi | c⊕ w0 ⊕ · · · ⊕ wi−1

⊕ [MASK]

⊕ wi+1 ⊕ · · · ⊕ w|w|
) (6)

This means that instead of doing a single forward pass, we need to do |w| forward passes to estimate
the PLL. However, using a single mask token could lead underestimating the log-likelihood of words
split into multiple tokens. Therefore we can further modify Equation (6) to have a variable (but
constant) number of mask token after the token we are trying to estimate:

log pθ(w) =

|w|∑
i=1

log pθ
(
wi | c⊕ w0 ⊕ · · · ⊕ wi−1

⊕ [MASK]⊕ · · · ⊕ [MASK]

⊕ wi+n ⊕ · · · ⊕ w|w|
)
,

where n represents the number of [MASK] tokens. In our case we take a combination of two different
number of mask tokens (1 and 6), by taking the best score of the two for each task. The two values
were chosen experimentally, more details on the results of each number of mask tokens can be found
in Appendix E.
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E EFFECTS OF NUMBER OF MASK TOKENS ON THE PLL

We first look at whether using a single number of mask tokens can lead to a good estimation of the
PLL in general. For this, we evaluate five different models from 1 to 6 mask tokens and report the
results in Tables 3 to 7.

Table 3: PLL performance depending on the number of mask tokens. We show the PLL
performance on the 9 tasks of the model trained with an equal ratio of masked-diffusion and AR and
32 repetitions with different number of masks. Best results per task are boldfaced.

Task Number of masks
1 2 3 4 5 6

ARC Easy 18.7 24.1 25.5 26.3 26.0 26.3
ARC Challenge 4.7 3.3 3.8 2.7 1.9 2.6
BLiMP 65.2 63.9 62.5 60.3 60.5 60.3
Commonsense QA 29.4 32.8 33.9 34.1 34.1 34.1
HellaSwag 29.8 27.0 26.7 27.1 26.7 26.4
MMLU 2.0 3.5 3.1 2.9 3.3 3.3
OpenBook QA 9.1 7.7 8.5 9.3 7.2 6.9
PIQA 33.1 34.3 35.1 35.4 35.6 36.8
SIQA 11.4 13.3 13.7 13.5 14.4 14.4
Average 22.6 23.3 23.6 23.5 23.3 23.4

Table 4: PLL performance depending on the number of mask tokens. We show the PLL
performance on the 9 tasks of the model trained with a 1 masked-diffusion to 7 autoregressive ratio
and 32 repetitions with different number of masks. Best results per task are boldfaced.

Task Number of masks
1 2 3 4 5 6

ARC Easy 18.2 25.6 27.1 28.2 26.9 27.5
ARC Challenge 1.9 3.2 2.4 2.6 3.6 4.7
BLiMP 61.2 60.0 58.3 56.9 57.0 57.3
Commonsense QA 24.2 29.1 29.0 29.4 29.4 29.4
HellaSwag 25.2 25.7 26.6 27.0 26.8 26.8
MMLU 1.9 3.4 4.0 3.9 4.0 4.2
OpenBook QA 9.9 10.1 12.3 10.9 10.1 9.6
PIQA 31.0 34.7 36.1 36.0 35.0 35.9
SIQA 11.7 11.8 14.2 13.7 14.1 14.3
Average 20.6 22.6 23.3 23.2 23.0 23.3

We can see two clear trends from the results. The first is that the BLiMP and HellaSwag tasks are
better evaluated with a single mask token, rather than multiple. This could be due to the simpler
language found in these datasets. The second trend is that ARC-Easy, Commonsense QA, PIQA, and
SIQA tend to do better with multi-token masking, this could be due to the more complex answers
using more infrequent words, that have a higher likelihood of being split into subwords. We therefore
decide that using a combination of a single token mask for some tasks and a multiple tokens for
others is the best solution. To find the optimal combination, we test all possible combinations. The
results can be seen in Table 8.

Based on Table 8, we decide to evaluate PLL for all models with both a single mask token and six
mask tokens. Then we take the max performance between the two for each task.
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Table 5: PLL performance depending on the number of mask tokens. We show the PLL
performance on the 9 tasks of the model trained with a 7 masked-diffusion to 1 autoregressive ratio
and 32 repetitions with different number of masks. Best results per task are boldfaced.

Task Number of masks
1 2 3 4 5 6

ARC Easy 16.3 20.8 23.9 24.0 24.9 24.9
ARC Challenge 5.7 3.9 3.5 1.8 3.3 2.2
BLiMP 69.5 67.6 64.0 60.7 60.1 60.1
Commonsense QA 25.4 29.7 30.6 31.1 31.1 31.2
HellaSwag 25.5 22.8 21.0 21.2 20.5 19.8
MMLU 0.5 2.2 2.2 2.0 2.5 2.4
OpenBook QA 13.1 12.0 15.2 14.4 13.1 13.9
PIQA 29.6 30.3 30.8 30.1 31.2 31.0
SIQA 12.2 15.0 15.2 13.6 13.8 13.9
Average 22.0 22.7 22.9 22.1 22.3 22.2

Table 6: PLL performance depending on the number of mask tokens. We show the PLL
performance on the 9 tasks of the model trained with an equal ratio of masked-diffusion and AR and
16 repetitions with different number of masks. Best results per task are boldfaced.

Task Number of masks
1 2 3 4 5 6

ARC Easy 16.8 23.7 25.8 25.8 26.1 26.1
ARC Challenge 7.2 4.4 4.4 4.8 3.2 4.5
BLiMP 65.3 64.8 63.1 60.7 60.6 60.4
Commonsense QA 29.7 33.8 35.1 35.1 35.2 35.2
HellaSwag 30.5 27.9 27.8 27.9 27.2 26.8
MMLU 1.3 2.4 2.9 2.5 2.7 2.5
OpenBook QA 12.3 12.0 13.1 11.2 11.7 11.7
PIQA 33.8 34.6 36.0 34.7 36.3 37.0
SIQA 14.3 13.9 15.9 15.3 15.9 16.1
Average 23.5 24.2 24.9 24.2 24.3 24.5

Table 7: PLL performance depending on the number of mask tokens. We show the PLL
performance on the 9 tasks of the model trained with an equal ratio of masked-diffusion and AR and
64 repetitions with different number of masks. Best results per task are boldfaced.

Task Number of masks
1 2 3 4 5 6

ARC Easy 16.6 21.8 23.5 23.4 23.1 23.1
ARC Challenge 1.8 3.9 3.9 3.2 4.0 3.5
BLiMP 63.1 61.2 59.6 57.5 56.9 56.9
Commonsense QA 24.6 27.6 28.5 28.7 28.7 28.7
HellaSwag 26.8 25.2 24.2 24.7 24.3 24.1
MMLU 1.2 3.1 3.0 3.2 3.4 3.2
OpenBook QA 8.3 8.5 11.7 10.1 8.3 8.0
PIQA 31.0 31.7 32.1 33.7 34.3 34.1
SIQA 14.3 12.3 14.3 13.1 13.3 13.5
Average 20.8 21.7 22.3 22.0 21.8 21.7
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Table 8: PLL performance for combinations of one mask token and multi-mask token. Best results
per model are bolfaced.

Repetitions - Causal Ratio Mask combination
1-2 1-3 1-4 1-5 1-6

32 - 50% 24.1 24.5 24.6 24.7 24.8
32 - 87.5% 22.8 23.6 23.7 23.5 23.8
32 - 12.5% 23.5 24.3 24.0 24.1 24.2
16 - 50% 24.9 25.7 25.4 25.7 25.8
64 - 50% 22.3 23.0 22.9 22.9 22.8

Table 9: Normalized PLL versus Masked-Diffusion evaluation. The scores for each task are
normalized so that 0% corresponds to the random baseline and 100% is the perfect score. The best
result for each task is in boldfaced. We evaluate a model trained with equal AR and masked-diffusion
ratio and 32 repetitions.

Task PLL Masked-Diffusion
ARC-Easy 26.3 27.1
BLiMP 65.2 56.5
Commonsense QA 34.1 32.7
HellaSwag 29.8 21.3
PIQA 36.8 32.0

F PLL VERSUS MASKED-DIFFUSION

Table 9 shows that the performance of the masked-diffusion model is in general lower than that of the
combined (1 and 6 mask) PLL. In addition, the two PLL evaluations took about 2 hours to complete
while the masked-diffusion evaluation takes 12 hours to complete on a MI250X AMD GPU.

G PREFIX VERSUS AUTOREGRESSIVE ON OPTIMAL MODELS.

Table 10: Normalized autoregressive and prefix performance of selected models. The scores for
each task are normalized so that 0% corresponds to the random baseline and 100% is the perfect
score. The best result for each dataset size is in boldfaced. The results for BLiMP are the same, since
there is no context and the prefix evaluation defaults to the autoregressive one. The AR ratio for
the models are 12.5% for the 128 repetitions, 75% for the 32 repetitions, and 98.4% for the single
repetition.

Model A
R

C
-C

A
R

C
-E

B
L

iM
P

C
SQ

A

H
Sw

ag

M
M

L
U

O
B

Q
A

PI
Q

A

SI
Q

A

Average

1 REPETITION

Autoregressive 5.7 28.6 63.7 35.1 31.1 4.9 17.6 40.9 14.3 26.9
Prefix 6.5 31.0 63.7 40.0 31.2 4.5 16.5 42.1 15.2 27.9

32 REPETITIONS

Autoregressive 3.3 28.0 57.9 31.1 26.4 3.6 14.4 36.1 14.64 23.9
Prefix 6.3 28.9 57.9 33.1 27.1 4.3 15.2 36.7 15.4 25.0

128 REPETITIONS

Autoregressive 1.7 23.6 56.1 24.8 14.2 1.6 8.5 28.1 13.3 19.1
Prefix 1.3 24.1 56.1 28.5 12.4 2.3 10.9 30.9 15.2 20.5

Table 10 shows that evaluting with the prefix mask almost always outperforms using the causal mask
when the models are optimally trained. This is true in both the regular and constrained data settings.
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H DETAILED RESULTS OF DIFFUSION-MASKED EVALUATION

Table 11: The normalized PLL performance of selected models. We show the results on all
nine evaluated tasks for three repetition values; each repetition group contains the results of the
best-performing autoregressive-diffusion ratio and of the autoregressive-only model. The scores for
each task are normalized so that 0% corresponds to random baseline and 100% is the perfect score.
The best result for each dataset size is boldfaced.

Model configuration A
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A

Average

32 REPETITIONS

Dual (3 : 1) 6.0 28.3 62.7 33.4 27.8 4.3 12.3 37.4 15.4 25.3
Masked-Diffusion (0 : 1) -0.1 22.3 64.8 29.0 24.1 1.6 9.1 27.2 14.4 21.4

128 REPETITIONS

Dual (1 : 7) 2.8 23.3 63.5 30.5 25.0 2.1 12.8 31.8 15.2 23.0
Masked-Diffusion (0 : 1) 3.3 19.2 63.3 29.2 22.1 2.6 9.3 28.3 12.0 21.0

Table 11 shows similar trends to those found in Table 2. The notable exception being for BLiMP
where the performances are similar between both models. Unlike the autoregressive models, the
performance of the purely masked-diffusion models are similar to each other. This is partially due to
the model not overfitting, but also to it not being sample efficient. On the other hand we see that for
the Dual Models, the performance significantly increases as we increase the training data set size.

I PROOF OF LEFT-SHIFT CLOSURE

This section proves that when we parameterize masked-diffusion language models as bidirectional
transformers with shifted output, we do not lose any expressivity compared to standard non-shifted
bidirectional models. We prove it constructively by defining a shift operation in the RASP language
(which can then be compiled into an equivalent transformer model).

Definition 1 (RASP programs). The Restricted Access Sequence Processing language (RASP;
Weiss et al., 2021) is a sequence processing language that uses two types of variables: sequence
operators and selectors; and two types of operators: element-wise and select-aggregate operators.
Valid programs in RASP are operations on sequence operators formed by a finite composition of
element-wise and select-aggregate operators.

• Sequence operators represent sequences of values (akin to hidden states in transformer models).
tokens and indices are two pre-defined sequence operators; the first directly returns a sequence
of the input tokens (tokens("hello") = [h, e, l, l, o], and the second returns the positional
indices (indices("hello") = [0, 1, 2, 3, 4]).

• Selectors are binary matrices (akin to attention matrices in transformers).

• Element-wise operators are arbitrary element-wise transformations on sequence operators (akin
to feed-forward layers in transformers). For example (indices+ 2)("hello") = [2, 3, 4, 5, 6].

• Select-aggregate operators consist of two sequentially applied operators select and aggregate
(corresponding to the attention operation).

• select(x,y, p) is an operator defined on two sequence operators x and y, and an element-wise
boolean operator p defined on two sequence operators; the result is a selector matrix M , where
Mij = p(xi, yj). For example, select([0, 1, 2], [1, 2, 3], <) results in a upper-triangular 3× 3
binary matrix (selector).

• aggregate(M ,x; c) is an operator defined on a selector M , a sequence operator x and a
default value c (usually set to 0 and omitted for convenience). It produces a sequence operator y
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such that:

yi =

{
1

|{j:Mij=1}|
∑

j:Mij=1 xj , if |{j : Mij = 1}| > 0,

c, otherwise.

Fact 1 (RASP-transformer reduction). For every valid program written in RASP, there exists an
equivalent fully-bidirectional transformer model that computes the same per-position operation; see
Weiss et al. (2021); Lindner et al. (2023).

Definition 2 (Σ-realizable functions). We consider programs defined on an input alphabet Σ with a
special token <s> ∈ Σ. A valid input sequence x = (x1, x2 . . . xn) ∈ X is every sequence where
x1 = <s> and all xi ∈ Σ. The output space Y is made of sequences y = (y1, y2 . . . yn) ∈ Y ,
where every element is a probability distribution over the alphabet Σ: that is all yi ∈ [0, 1]|Σ| and∑

j (yi)j = 1.

A function f : X → Y is Σ-realizable if there exists a transformer whose output on every input
x ∈ X equals f(x) position-wise. Let RΣ be the class of all Σ-realizable functions.

Theorem 1 (Left-shift closure). RΣ is closed under unit left-shifts: for every f ∈ RΣ, there exists
g ∈ RΣ such that for all x ∈ X and i ∈ [1, n− 1] : g(x)i = f(x)i+1 (note that f(x)1 and g(x)n
are not constrained).

Proof. The proof constructs a suitable function g ∈ RΣ for any f ∈ RΣ. The new function g will
mirror function f and then shift its output so that g(x)i = f(x)i+1, the shift will be constructed in
RASP so that g is Σ-realizable.

Let f ∈ RΣ be any Σ-realizable function and set Tf as a fully-bidirectional transformer that realizes
f , so Tf (x)i = f(x)i for all valid inputs x ∈ X and all positions i ∈ [1, n].

First, we define a RASP selector S = select(indices+ 1, indices, =), whose entries therefore
satisfy Sij = 1 iff j = i + 1 (each row i selects exactly the next position i + 1, and the last row
selects none).

Then, for any sequence operator z (possibly vector-valued), we define a RASP program shift(z) =
aggregate(S, z; c), where c is arbitrary and can be simply set to zn. By construction of S and the
definition of aggregate, we have shift(z)n = c = zn and for every i ∈ [1, n− 1]:

shift(z)i =
1

|{j : Sij = 1}|
∑

j:Sij=1

zj = zi+1. (7)

Using Fact 1, there exists a transformer Tshift that computes the RASP program shift. Therefore,
we can construct a transformer Tg as Tshift ◦ Tf . This corresponds to the function g we are looking
for – Tg operates in the same input and output space as Tf , so g ∈ RΣ; furthermore, this function
satisfies for all x ∈ X and i ∈ [1, n− 1] : g(x)i = shift(f(x))i = f(x)i+1.

Corollary 1.1. Theorem 1 implies that when we parameterize a masked-diffusion model with a
shifted transformer, it as expressive as the standard non-shifted parameterization. More specifically,
masked diffusion is defined in Equation (4), and pθ(xi | xt) is typically implemented as a fully-
bidirectional transformer model that outputs this probability at the ith position. When we set Σ as our
subword vocabulary, we get that the space of all possible transformer realizations of pθ(xi | xt) are
the Σ-realizable functions RΣ (Definition 2). Theorem 1 shows that if we instead expect the output
at the (i − 1)th position, we do not lose any expressivity. Thus, transformer-based dual language
models are a generalization of standard masked-diffusion language models. Note that the left-shift
closure in Theorem 1 works up to the first token – which is guaranteed to be the special <s> token in
Definition 2 as well as in the actual implementation.
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J VALIDATION LOSS CURVES

While we focused on actual downstream performance in the main experiments, we also show the
validation loss below to demonstrate the training dynamics.

The validation curves in Figure 6 focus on an extremely data-constrained scenario with 128 data
repetitions. There, it is crucial to avoid overfitting, which can be achieved by increasing the proportion
of masked diffusion during training. Note that the noise of some of the curves is only due to our
implementation of measuring the validation loss – the sample size can be too small when the
proportion of the respective training objective is low.
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Figure 6: Validation loss curves for 128 repetitions. These plots clearly demonstrates how training
runs with high autoregressive ratio (in red) overfit. High masked-diffusion ratios are in blue
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Contrary to the previous figure, Figure 7 shows validation curves for 4 data repetitions. Here,
overfitting is not an issue, instead it is crucial to improve the learning speed by increasing the
proportion of autoregressive language modeling.
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Figure 7: Validation loss curves for 4 repetitions. All losses monotonically decrease because
overfitting is not a concern in this setting. High autoregressive ratios are plotted in red and high
masked-diffusion ratios are shown in blue.

K EXTENDED RELATED WORK

Autoregressive diffusion Our work shares motivation with the autoregressive-diffusion models
proposed by Wu et al. (2023). The diffusion process in that work is biased towards left-to-right
denoising, which improved the decoding efficiency of the diffusion language models at that time.
Similarly, Arriola et al. (2025) speeds-up decoding of masked-diffusion models by autoregressively
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generating chunks of tokens where each chunk is decoded by a diffusion process. In both cases, the
resulting models are still diffusion models – albeit faster; these approaches do not generalize over
autoregressive and masked-diffusion language modeling as our method.

Fair MD-AR comparison The recent work by Xue et al. (2025) modifies masked-diffusion
language models by parameterizing them with causally-masked transformers, which makes the
diffusion models more comparable to standard autoregressive models – decoupling their architectural
differences from differences in training objectives. Their conclusion is that masked diffusion alone is
a suboptimal objective for language, which is also confirmed by our experiments (Figure 4). However,
we found that by simply combining both objectives, we can get the benefits of diffusion without
losing any performance.

Approaching the data wall Large language models are known to reliably follow the empirical
scaling laws that describe how their performance should improve with increased compute, model
size, and training data. Kaplan et al. (2020) first demonstrated these relationships, showing how
the training loss decreases as a power law with respect to these three parameters. These laws were
later polished by Hoffmann et al. (2022), who showed that compute-optimal training requires scaling
data and model size together. Related to our work, the scaling laws reveal a fundamental problem:
achieving each incremental gain in performance requires exponentially more training data. Thus, data-
constrained language modeling is quickly becoming a relevant field of study even for high-resource
languages such as English.
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