
Shared Autonomy and Teaching Tools for
Flexible Human-Robot Teaming

Michael Hagenow
Massachusetts Institute of Technology

hagenow@csail.mit.edu

I. INTRODUCTION

As of 2025, only approximately one in ten manufacturing
firms has adopted a robot [1]. This startling lack of adoption
is often attributed to a lack of flexibility (e.g., reprogramming
robots for new tasks) and technological limitations of current
robot platforms [25]. The consequences of poor robot adop-
tion are manyfold. With labor shortages, many manufacturers
cannot recruit enough skilled human labor to meet production
demands. Furthermore, even when workers are available, sub-
jecting them to the many physically demanding tasks present
in manufacturing (e.g., sanding, grinding, torquing fasteners)
causes injuries [2]. To address these core adoption challenges,
I develop human-in-the-loop approaches that can easily adapt
to new tasks and reduce human workload, both physically and
cognitively. Such approaches will serve a critical role in the
future automation landscape for tasks that are underdefined
(e.g., lacking data to train autonomous robots), critical, or
require human collaboration with robots.

My research explores how to develop technologies and
systems for flexible human-robot teaming. I draw on
techniques in controls, optimization, and generative artificial
intelligence and employ human-centered design and physical
prototyping to design technologies that (1) simplify the process
of transferring expert knowledge to robot teammates and (2)
allow robots to work effectively alongside skilled humans. My
past work has developed physical and algorithmic interfaces
for humans to teach and collaborate with robots that have been
deployed on realistic tasks (e.g., sanding) and evaluated in
real domains (e.g., with manufacturing experts and at aviation-
manufacturing facilities). My research builds toward a future
of accelerated robot adoption through technologies that enable
more general-purpose collaborative robots, which can aid in
myriad tasks with little training and minimal input. To realize
this vision, I contribute core methods in shared autonomy, end-
user programming, and Learning from Demonstration (LfD).

II. PAST CONTRIBUTIONS: TOWARD EFFECTIVE
SHARED AUTONOMY AND TEACHING TOOLS

I have developed foundational methods toward effective
human-robot teaming, such as those illustrated in Figure 1. In
particular, I have focused on contact-rich tasks that are difficult
for people (e.g., high force) and difficult to fully automate.
My past research investigated two key areas: (1) teaming
for variable tasks through informed shared autonomy and (2)
interfaces to transfer human knowledge to robot behaviors.
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Fig. 1. I create tools and methods for humans to (1) teach robots new
skills and (2) collaborate with robots through shared autonomy. My research
develops approaches, algorithms, and systems for human-robot teaming.
Example from past work include (Bottom Left:) instrumented tools for contact-
rich LfD and (Bottom Right:) collaborative sanding in aviation manufacturing.

More Effective Teaming through Targeted Corrections –
From a series of visits to manufacturers, I found that state-
of-the-art shared autonomy approaches weren’t addressing the
needs of many manual tasks. Many popular shared control
approaches required either too little (e.g., supervisory inter-
faces) or too much human input (e.g., constant input) for these
semi-structured tasks [29, 22, 19, 20, 7, 10, 28]. To minimize
human input while addressing task variability, I developed a
shared autonomy approach, corrective shared autonomy [13],
where skilled workers layer corrections on top of an existing
robot behavior. The approach allows for human corrections
to any controllable robot state and automatically proposes
input mappings for low-dimensional operator corrections (e.g.,
one dimension to control combinations of force, pitch, and
speed to modulate abrasiveness). The method uses expert task
demonstrations, principal component analysis, and dynamical
systems to automatically extract stable robot behaviors and
operator interfaces for users to address likely sources of task
error [14]. Through user studies, this approach achieved high
usability ratings and enabled users to complete physical tasks
(e.g., polishing and fastener insertion) when a simple robot
policy lacked the robustness to complete the task [13, 17]. The
approach also required less effort and time compared to shared
control baselines. While this approach minimized operator
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Fig. 2. Examples from past work toward effective human-robot teaming include developing (a) flexible demonstration interfaces (combining teleoperation,
kinesthetic teaching, and natural demonstrations) that cater to different users and tasks, (b) augmented-reality user interfaces to program high-level task
specifications, (c) approaches to estimate and elicit different types of human assistance for uncertain robots, (d) shared autonomy approaches that scale a
skilled worker to sharing control with multiple coordinated robots in tasks with intermittent variability.

input, it wasn’t necessarily using the expert human’s time
effectively (particularly when intervention was rarely needed).
I proposed a solution that improves operator utilization by
scaling and scheduling multiple executions around robot un-
certainty (i.e., likely times of needed assistance). I developed
a method to scale shared autonomy to the multi-agent setting
where one human corrects multiple robots (see Figure 2d)
that are sequenced around probabilistic confidence estimates
[15]. Through a study with two sanding robots, our approach
decreased task time by 40 percent (compared to serial shared
autonomy) without significant performance impacts.

Eliciting Targeted Worker Assistance – An effective team-
mate knows not only when to ask for help, but specifically
what help is needed. There are a range of levels of au-
tomation [4] and input mechanisms for a human to assist a
robot, including real-time corrections (as introduced earlier),
temporary teleoperation, and preference (e.g., discrete) input.
However, few previous works have explored combinations of
mechanisms [23, 18, 9], and in particular, whether a robot
can elicit different levels of human feedback. I developed
a method, Real-Time Estimates of Assistance for Learned
Models (REALM), that uses uncertainty from a generative AI
policy (e.g., diffusion model) to select robot feedback requests
that balance simplicity of human input with the informational
needs of the robot [12]. I showed how post-intervention
entropy estimates can serve as a proxy for robot uncertainty
and assess when and how to request human assistance (see
Figure 2c). Through a user study on an uncertain manipulation
task, I showed how REALM can significantly reduce input (38
percent) and time on task (14 percent) compared to recent
approaches that use robot confidence to alternate between
teleoperation and autonomy [8, 6, 21].

Physical Interfaces for LfD – A key challenge in robot
learning is transferring knowledge from an expert human to
a robot, particularly for complex manipulation tasks. LfD has
proven to be valuable approach, where a human demonstrates
a task and the resulting demonstrations can be used to learn an
imitation policy or reward model (through inverse reinforce-
ment learning). However, selecting a demonstration interface
that is both informative (for robots) and natural for people
remains a challenge [5]. I developed, Versatile Demonstration
Interface (VDI) [16], a robot tool that fuses demonstration
modalities, as shown in Figure 2a. The tool attaches to
the robot, interfaces with existing end-of-arm tooling, and

allows easy switching between robot teleoperation, kinesthetic
teaching, and natural demonstrations (where the tool can be
removed and tracked by the robot). By allowing multiple
demonstration types; VDI users can easily switch demonstra-
tion types based on the task, learning model, or preference of
the user. We evaluated VDI in an exploratory user study with
manufacturing experts (15 years of average experience) who
completed representative manufacturing tasks, identified use
cases for VDI, and confirmed the value of flexible demonstra-
tion types. For example, one participant stated: “ We have a
broad range of right-out-of-school to thirty-years’ experience
[engineers]. People would pick different methods for sure.”

RESEARCH AGENDA: INTERFACES AND MODELS FOR
FLEXIBLE HUMAN-ROBOT TEAMING

My goal is to develop highly flexible robot teammates,
that can effectively learn from people and are self aware
to understand when they need help during teaming across a
range of complex tasks. In the next several years, I plan to
build toward this vision through three main research thrusts.
The first thrust investigates how to lower the barrier to
teach robots new tasks. To address current challenges in
LfD [24] requires rethinking both the physical and algorithmic
elements of teaching tools. I plan to develop new physical
teaching interfaces, new approach combinations (e.g., natural
interfaces and end-user programming [27, 26] – see Figure
2b.), and co-design of algorithms and interfaces to raise the
complexity of tasks that end-users can teach to robots (e.g.,
more dexterous and force-rich tasks). The second thrust
will investigate new paradigms and multi-faceted models
for effective assistance requests in high level-of-autonomy
robots. My previous work has explored one element: formal-
izations relating robot uncertainty and human input. However,
by incorporating many other important factors; such as human
uncertainty, preferences, and interface capabilities [11]; we can
create more adaptive high level-of-autonomy robot assistance.
The final thrust investigates more general guidelines for
teaming systems through human-centered design with new
application areas. My past work in aviation manufacturing
illustrated how previous shared control methods fell short
when faced with new domain challenges. By systematically
assessing techniques (e.g., observations, co-design, and user
studies) with domain experts [3, 30], I will lead develop-
ment of design guidelines, taxonomies, and benchmarks that
broaden the reach and generalization of teaming approaches.
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