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Abstract
Aligning Large Language Models (LLMs) is cru-
cial for enhancing their safety and utility. How-
ever, existing methods, primarily based on pref-
erence datasets, face challenges such as noisy
labels, high annotation costs, and privacy con-
cerns. In this work, we introduce Alignment from
Demonstrations (AfD), a novel approach leverag-
ing high-quality demonstration data to overcome
these challenges. We formalize AfD within a
sequential decision-making framework, highlight-
ing its unique challenge of missing reward sig-
nals. Drawing insights from forward and inverse
reinforcement learning, we introduce divergence
minimization objectives for AfD. Analytically, we
elucidate the mass-covering and mode-seeking be-
haviors of various approaches, explaining when
and why certain methods are superior. Practically,
we propose a computationally efficient algorithm
that extrapolates over a tailored reward model
for AfD. We validate our key insights through
experiments on the Harmless and Helpful tasks,
demonstrating their strong empirical performance
while maintaining simplicity.

1. Introduction
The alignment of Large Language Models (LLMs) is es-
sential for their safe and effective deployment in various
applications. Current research has focused extensively on re-
inforcement learning from human feedback (RLHF) (Chris-
tiano et al., 2017; Ouyang et al., 2022). However, the major-
ity of advancements in RLHF (Rafailov et al., 2024b; Zhao
et al., 2023; Yuan et al., 2023; Dong et al., 2023; Azar et al.,
2023; Munos et al., 2023) rely on preference-based datasets
annotated by humans or general-purpose LLMs (Bai et al.,
2022; Lee et al., 2023; Guo et al., 2024), facing several
significant challenges that can impede their performance or
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limit their applications:

1. Noisy Labels Harm Alignment Performance: Re-
search indicates that noisier data leads to less accu-
rate reward modeling and poorer alignment perfor-
mance (Zheng et al., 2023). Since the same language
model generates the response pairs in preference-based
learning, the preferences provided by annotators can be
highly uncertain and noisy (Azar et al., 2023).

2. High Cost in Preference Annotation: Although it is the-
oretically and empirically justified that the ideal approach
to learning from preference data involves continuous
querying of annotators during the learning process (Guo
et al., 2024; Xiong et al., 2023; Touvron et al., 2023;
Tang et al., 2024), this approach can be prohibitively
expensive.

3. Requirement of Inductive Biases in Reward Mod-
eling: Utilizing preference-based data often requires
assumptions like the Bradley-Terry model (Bradley &
Terry, 1952) or the Kahneman Tversky model (Etha-
yarajh et al., 2024). These assumptions may not always
hold true, as discussed in (Azar et al., 2023; Munos et al.,
2023).

4. Privacy Concerns in Preference Generation: Collect-
ing preference over data with the help of annotators or
commercial general-purpose LLMs is not always fea-
sible, particularly when dealing with private data that
cannot be shared externally (Li et al., 2023; Pouplin
et al., 2024).

To address these challenges, we propose aligning LLMs
using a demonstration dataset, referred to as Alignment
from Demonstrations (AfD), as an alternative to preference-
based alignment. Specifically, AfD offers the following
advantages: (1) demonstration data always enjoys higher
quality and less noise; (2) AfD does not require continuous
querying and comparison; (3) AfD does not rely on assump-
tions inherent in preference-based methods; (4) AfD enables
LLM alignment without the need for external annotators,
hence can be applied to private dataset locally.

Moreover, demonstration data is readily available in many
real-world applications of LLMs. For instance, in medical
AI systems, demonstrations might include desired diagnos-
tics or prescriptions based on patients’ electronic health
records. In customer service chatbot systems, demonstra-
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Figure 1. A roadmap of this paper and comparison of different alignment approaches. To address the challenges in preference-based
alignment (Sec.1), we propose aligning LLMs using demonstration data. We first define the alignment problem as an MDP and disclose its
challenge of lacking reward signals in Sec.2.2. In addition to the RLHF solution, we present alternative approaches from the perspective
of RL (Sec.2.3). We then explore the trajectory distribution matching objective for AfD, connecting divergence measures with different
algorithms (Sec.3.1). We introduce an efficient Inverse RL algorithm for the AfD problem in Sec.3.2. Experiments in Sec.4 empirically
verify the proposed method and key insights. Related work is discussed in Appendix A.

tions could consist of dialogues between expert customer
support agents and customers.

Despite the availability of such data, its use in aligning
LLMs has typically been limited to supervised fine-tuning
(SFT). In this work, we demonstrate that SFT corresponds
to the Behavior Cloning method that applies demonstration
datasets in reinforcement learning (RL). Moreover, we sys-
tematically explore the potential of demonstration datasets
from a formal RL perspective, providing both theoretical
rationales and empirical evidence on how to exploit these
datasets for aligning LLMs.

To highlight the main contributions and take-aways
of our work:

1. Conceptually, we demonstrate the superiority of
AfD, which addresses the challenges inherent in
conventional preference-based alignment. We for-
mally define the AfD problem using a sequential
decision-making framework and connect it with
previous practices in Inverse RL to enhance under-
standing of potential solutions.

2. Methodologically, we introduce the trajectory dis-
tribution matching objectives for AfD. Within this
unified objective framework, we show that SFT and
adversarial learning are both trajectory-matching
utilizing different divergences. This sheds light
on the mass-covering and mode-seeking behaviors
attainable through various divergences.

3. Practically, we identify the challenge of reward
hacking in AfD, explaining why naively applying
reward modeling may fail in the context of align-
ment. We propose an easy-to-implement algorithm
to address this issue effectively.

4. Empirically, we validate our proposed insights and
methods on the Harmless and Helpful splits
of the Anthropic HH-RLHF dataset (Bai et al.,
2022). Our results demonstrate the effectiveness
of our approach through comparisons with existing
methods and ablation studies.

2. Alignment Beyond Preference Data and
Supervised Fine Tuning

In this section, we present our central insight: the LLM
alignment problem can be framed within the context of
forward and inverse RL, suggesting it can be addressed
using corresponding methodologies. To ensure this section
is self-contained, we provide the necessary preliminaries
and background concepts in the gray text boxes .

The section is organized as follows: In Section 2.1, we
elaborate on the sequential decision-making nature of auto-
regressive LLM generation. In Section 2.2, we discuss the
challenge of missing reward signals in LLM alignment and
the difficulties associated with current solutions. In Sec-
tion 2.3, we present the perspective that AfD can be formu-
lated as an Inverse RL problem, highlighting the potential
solutions from such a perspective.
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2.1. Auto-Regressive Language Generation as
Sequential Decision Making

We first cast auto-regressive language generation into
the Markov Decision Processes framework for sequential
decision-making.

Markov Decision Processes (MDP) In Markov Deci-
sion Processes, decisions are made in discrete time steps and
affect the state of the environment in the subsequent step.
Formally, an MDP is denoted as M = {S,A, T ,R, ρ0, γ},
where S ⊂ Rd denotes the d-dim state space, A is the ac-
tion space. Broadly, the environment includes T and R, the
former denotes the transition dynamics T : S ×A 7→ ∆(S)
that controls transitions between states, and the reward func-
tion R : S × A 7→ R provides feedback. ρ0 = p(s0) ∈
∆(S) denotes the initial state distribution. γ is the discount
factor that trades off between short-term and long-term re-
turns.

In the context of the token-generation process in LLMs, let
C denote the context window size and V denote the vocabu-
lary, including the special tokens like [EOS] and [MASK].
The MDP is instantiated as follows: State space S = VC ;
action space A = V; transition dynamics is deterministic
and known: s′ = T (s, a) = Concat(s, a) = [s, a]; We
consider states containing an [EOS] token as absorbing
states, meaning ∀a : s′ = T (s, a) = s if [EOS] ∈ s; an
LLM ℓ, serving as policy π = ℓ, generates the next token
a ∈ A based on the current context s ∈ S; The initial state
distribution of queries is ρ0, and T represents the maximal
number of new tokens in a generation. i.e., T is the maximal
number of transitions in the MDP. For instance, in the fol-
lowing case, the context window length C ≥ 7 and T = 2,
an initial state s0 is given as follows:

s0 =
[
The | color | of | the | sky |[MASK]|[MASK]

]
,

when the language model policy π selects a new token
“is” from the vocabulary V , the next state deterministically
becomes

s1 = Concate(s0, a0 = is)

=
[
The | color | of | the | sky | is |[MASK]

]
,

the generation process continues until either the [EOS] to-
ken is selected, the maximal context window size is reached,
or the maximal decision steps T is reached. In this example,
the final generated context could be:

s2 = Concate(s1, a1 = blue)

=
[
The | color | of | the | sky | is | blue

]
.

2.2. Challenge of the Alignment MDP: Getting Reward
Signals is Hard

The research on LLM alignment focuses on aligning lan-
guage models with users’ intentions during response genera-
tion (Ouyang et al., 2022). Within the MDP framework,

users’ intentions are represented by a reward model R,
which provides feedback on the LLM’s outputs, evaluating
aspects such as helpfulness, truthfulness, and harmlessness
of the generated content. Typically, evaluations are per-
formed at the trajectory level, meaning feedback is provided
only after the entire generation process is complete:

R(st, at) =

{
r(st) if st is a terminal state, t = T
0 otherwise. (1)

Ideally, human users would provide feedback for each re-
sponse, allowing conventional online RL algorithms to opti-
mize the policy π = ℓ through

π∗ = argmax
π∈Π

Eat∼π,st+1∼T ,s0∼ρ0

T∑
t=0

γtR(st, at)

= argmax
π∈Π

Eat∼π,st+1∼T ,s0∼ρ0r(sT ),

(2)

However, a significant challenge in LLM alignment is the
difficulty in defining reward signals, as the desired user
intentions are not easily accessible. In prevailing LLM
alignment approaches, reward models are typically derived
from preference-based annotations.

Learning Reward Models from Preference Annota-
tions. Most recent advancements in LLM alignment
rely on preference-based datasets of the form Dpref =
{xi, y+i , y

−
i }i∈[N ], where y+i and y−i are the preferred and

dis-preferred responses given input xi. Models such as
Bradley-Terry (Bradley & Terry, 1952) are then used to
convert ranking feedback into absolute scores to serve as
reward signals. Thus, we call the reward model built with a
preference-based dataset the Bradley-Terry Reward Model
(BT-RM). As has been discussed earlier, these datasets pose
several challenges, including noisy labels (Azar et al., 2023;
Zheng et al., 2023), high costs (Guo et al., 2024; Xiong
et al., 2023; Touvron et al., 2023; Tang et al., 2024), the
requirement of additional assumptions in transferring rank
to scores (Azar et al., 2023; Munos et al., 2023; Bradley &
Terry, 1952; Ethayarajh et al., 2024; Rafailov et al., 2023) 1,
and privacy concerns.

2.3. Alignment from Demonstrations: an Alternative to
Preference-based Reward Modeling

In RL research, learning from human feedback through
preference is not the only option when reward signals
are unknown or difficult to design (Plappert et al., 2018).
Learning from a demonstrative behavioral dataset has been
widely applied in various domains, including robotics con-
trol (Schaal, 1996; Nair et al., 2018; Hester et al., 2018),
autonomous driving (Kuderer et al., 2015; Scheel et al.,
2022), video game playing (Vinyals et al., 2019), and Al-
phaGo (Silver et al., 2016). Formally, with a demonstration

1see further analysis in Appendix B
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dataset containing paired states and high-quality actions:
Ddemo = {si, a∗i }i∈[N ], the most direct approach, Behav-
ior Cloning (Pomerleau, 1991), learns the policy through
supervised learning:

Behavior Cloning (BC) A demonstrative decision
dataset is collected from a behavior policy πβ . Denoting the
state-action pairs in the dataset as (si, a∗

i ), the BC method
learns a policy through a supervised learning objective:

πBC = argmax
π

E(si,ai)∼Ddemo
log(π(ai|si))

Supervised Fine Tuning: Behavior Cloning for AfD. In
the context of LLM alignment, demonstrations in the form
of DSFT = {xi, y∗i }i∈[N ] are also referred to as the Su-
pervised Fine Tuning (SFT) dataset. This format is versa-
tile: for example, x can be a general query for Question-
Answering tasks, an incomplete sentence for completion
tasks, or a general instruction for instruction following tasks;
Correspondingly, y∗ represents the desired answers, a com-
pleted sentence, or a response following the instruction.
Such datasets are widely applied for SFT training, where
the learning objective is to minimize the token-wise differ-
ence given the existing context. To clarify our notations
for further discussion, consider the following example of a
context-response pair xi, y∗i :

xi =
[
What | is | the | color | of | the | sky?

]
,

y∗i =
[
The | color | of | the | sky | is | blue

]
.

the SFT training first reorganizes the dataset DSFT to state-
action pairs (Ddemo) as follows:

s0 =
[
xi,|[MASK]|[MASK]|[MASK]|...

]
, a∗

0 = The ,

s1 =
[
xi,| The |[MASK]|[MASK]|...

]
, a∗

1 = color ,

s2 =
[
xi,| The | color |[MASK]|...

]
, a∗

2 = of ,

...

with such a dataset, the learning objective is to reproduce
the demonstration token a∗i when the LLM (policy) is given
si (incomplete token sequences). The training of the SFT is
conducted through supervised classification.

AfD Beyond Supervised Fine Tuning. While BC is concep-
tually simple and easy to implement, it faces a fundamental
challenge known as the distributional shift — during evalu-
ation, the state distribution is generated by rolling out the
learned policy π, rather than the data-generation behavior
policy πβ . To address this challenge, Imitation Learning
(IL) and Inverse RL consider scenarios where the dynam-
ics model is available to generate roll-out samples during
learning (Pomerleau, 1991; Finn et al., 2016; Abbeel & Ng,
2004). For a more detailed discussion on the benefits of
accessing dynamics models, refer to Appendix C.1.

At first glance, aligning LLMs with an offline demonstra-
tion dataset might seem like an offline RL problem, as no

further interactions with human annotators are available
during training. However, it is the accessibility of online
interactions with the dynamics model, rather than the re-
ward model, that determines the online or offline nature
of the tasks. In LLM alignment practices, while accessing
reward models (online annotators) during training is im-
possible, the dynamics model in response generation is
known and accessible — the actions are tokens generated
by LLMs, and the responses (trajectories) are concatena-
tions of those generated tokens. This insight naturally leads
us to explore alternative approaches rooted in the IL and
Inverse RL literature. In Table 3 of Appendix A.4, we con-
textualize the difference and link between various topics in
the RL literature.

Building on the notations and connections established above,
we now introduce a unified objective class using trajectory
distribution matching, a widely studied objective in the IL
and Inverse RL literature (Jarrett et al., 2020; Ho & Ermon,
2016; Ghasemipour et al., 2020), for the AfD problem.

3. Algorithms for Alignment from
Demonstrations

3.1. Alignment from Demonstration through Trajectory
Distribution Matching

Unlike the action distribution matching objective used in
BC, when the dynamics model is accessible, it is beneficial
to study the occupancy matching problem to enhance the
performance of learning from the offline demonstrations (Ho
& Ermon, 2016; Ross et al., 2011; Fu et al., 2017; Orsini
et al., 2021). Specifically, we denote the state-action occu-
pancy measure of the behavior policy (i.e., the demonstrator)
as ρβ(s, a) = πβ(a|s)

∑
t=0 γ

tProb(st = s|πβ), and the
state-action occupancy measure of the current policy as
ρπ(s, a). Intuitively, the occupancy measure describes the
distribution of state-action pairs visited by an agent under
a given policy. For auto-regressive LLMs that take context
x as input and output response y = (y(0), y(1), ..., y(T ) =
EOS) containing a maximum of T + 1 tokens, we have

ρπ(sk, ak) = ρπ(sk = (x, y(0:k−1)), ak = y(k))

= π(ak = y(k)|sk = (x, y(0:k−1)))p(sk)

= ...

= p(s0)Π
t=k
t=0π(at = y(t)|st = (x, y(0:t−1)))

(3)

In alignment, we are motivated to study the completed gen-
erations. Therefore, it is useful to denote the trajectory dis-
tribution dπ(y|x) as the occupancy measure of completed
generations conditioned on input context x (i.e., final state
occupancy conditioned on initial state):

dπ(y|x) = Πt=T
t=0 π(at = y(t)|st = (x, y(0:t−1))) = ρπ(sT , aT )/p(x)

(4)
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Practically, we can sample from the above conditional dis-
tribution by rolling out the policy π, and approximately
sample from the behavior policy using the demonstration
dataset:

dβ(y|x) = Πt=T
t=0 πβ(at = y(t)|st = (x, y(0:t−1))) = ρβ(sT , aT )/p(x)

(5)
In the following, we derive different objectives for LLM
alignment from the perspective of divergence minimization
between the demonstration conditional distribution and the
roll-out conditional distribution. Specifically, we study the
minimization of Forward KL-Divergence and Reverse KL-
Divergence in the main text, as they are the most commonly
used and provide sufficient insights into the proposed objec-
tives. We additionally discuss a more general framework in
Appendix D.

AfD through Divergence Minimization using Forward
KL. We first consider the objective using the forward KL di-
vergence between the demonstration and policy conditional
trajectory distributions:

min
π

[
KL(dβ(y|x)||dπ(y|x))

]
= −max

π
E(x,y)∼DSFT

[log dπ(y|x)]

= −max
π

E(x,y(0:K))∼DSFT

[
K∑
t=0

log π(at|st)

]
.

(6)

Comparing the derived objective with the SFT objective,
which minimizes the negative log-likelihood of tokens in
the demonstration dataset given the existing context:

min
π

E(s,a)∼ρβ

[
KL(πβ(a|s)||π(a|s))

]
= −max

π
E(s,a)∼Ddemo

[log(π(a|s))]
(7)

we find that both approaches yield exactly the same learning
objective.

Take-Aways: Using the forward KL in conditions tra-
jectory distribution divergence minimization leads
to the same objective as SFT, where the training objec-
tive minimizes the KL divergence of action marginal
distribution between πβ and π.

The forward KL divergence is known to result in mass-
covering behavior, whereas the reverse KL divergence
leads to mode-seeking behavior (Ghasemipour et al.,
2020; Khalifa et al., 2020; Wiher et al., 2022; Wang
et al., 2023). This equivalence explains the mass-
covering behavior observed in SFT in recent litera-
ture (Kirk et al., 2023).

AfD through Divergence Minimization using Reverse
KL. In the pursuit of mode-seeking behavior, we can mini-
mize the Reverse KL divergence, leading to the following

learning objective:

min
π

[KL(dπ(y|x)||dβ(y|x))]

= −max
π

E(x,y)∼dπ

[
log dπ(y|x)− log dβ(y|x)

]
.

(8)

The challenge with this objective is that the second term,
dβ(y|x), is always unknown. This issue has been addressed
in the literature through adversarial training (Fu et al., 2017).
By training a discriminative model Dϕ, parameterized by
ϕ, to classify trajectories sampled from the demonstration
dataset or the behavior policy π, we achieve

D∗
ϕ(y|x) =

dβ(y|x)
dβ(y|x) + dπ(y|x) (9)

at optimal convergence (Goodfellow et al., 2014). Plugging
Equation (9) into Equation (8), we derive a practical policy
learning objective:

max
π

E(y|x)∼dπ [logDϕ(y|x)− log(1−Dϕ(y|x))] (10)

The discriminative mode Dϕ can be optimized through:

max
ϕ

E(y|x)∼DSFT
[logDϕ(y|x)]+E(y|x)∼dπ [log(1−Dϕ(y|x))]

(11)

Take-Aways: Comparing the learning objectives de-
rived using the reverse KL divergence to the SFT ob-
jective, we see that performing mode-seeking is gen-
erally more challenging than mass-covering due to
the difficulty of estimating the probability of trajec-
tory from the demonstrator. This challenge can be
circumvented through adversarial training.

Despite its success, adversarial training is known to be un-
stable and computationally expensive (Salimans et al., 2016;
Kodali et al., 2017; Lin et al., 2021; Yang et al., 2022a),
which is particularly concerning when applied to training
LLMs in the AfD context. In the next section, we leverage
insights from the adversarial objective discussed above to
propose a computationally efficient algorithm that avoids
iterative training.

3.2. Computationally Efficient Inverse RL by
Extrapolating Over Reward Models

Conceptually, the optimization of policy in Equation (10) is
conducted by maximizing over the inner variable, sharing
the same form as Equation (2). This observation suggests
using the reward notation:

r(y|x) = logDϕ(y|x)− log(1−Dϕ(y|x)) (12)

Specifically, when Dϕ(y|x) is instantiated by neural
networks with sigmoid activation function over log-
its Dϕ(y|x) = σ(logits(y|x)), we have r(y|x) =

5
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Figure 2. Illustration of different choices for positive and negative
samples in Inverse-RL reward modeling. The LLM to be aligned
is restricted to a specific model class, limiting its expressivity and
capability. This limitation is depicted by allowing improvements
only along the x-axis. For example, SFT training on the demon-
stration dataset can push the initial model π0 toward higher scores.
The y-axis represents the heterogeneous nature of the demonstra-
tion dataset in AfD problems, where the behavior policy πβ always
differs from the LLM to be aligned. Notably, πβ could be human
experts or stronger general-purpose LLMs.

logits(y|x) — the reward signal is provided by the dis-
criminative model through its output logits. In the following
discussion, we interchangeably use the terms reward model
and discriminative model as they refer to the same concept.
We call this reward model the Inverse-RL Reward Model,
abbreviated as IRL-RM.

Inspired by the previous success achieved in the Inverse RL
literature that extrapolates learned reward models (Brown
et al., 2019), we propose to circumvent the difficulty in iter-
ative generative adversarial training through reward model
extrapolation. Initially, one might build a reward model
using samples from the demonstration dataset as positive
examples and samples generated by the initial LLM policy
as negative examples for discriminator training.

Nevertheless, in the AfD problem, the demonstration dataset
is typically generated by external demonstrators, such as hu-
man experts or more advanced LLMs, rather than the LLM
being aligned. This heterogeneity can introduce significant
bias in the reward modeling step, potentially leading to re-
ward hacking (Skalse et al., 2022; Gao et al., 2023; Zhang
et al., 2024; Coste et al., 2023). The reward model may fo-
cus on the heterogeneity of responses — for discrimination
— rather than on the informative aspects that truly evaluate
the quality of responses in terms of human intention.

It is important to note that in our context, the reward model
is trained to differentiate the origins of various responses. A
discriminator that primarily detects subtle differences
due to model heterogeneity is not effective as a reward
model for providing meaningful improvement signals
for alignment.

To address this challenge, we propose using a different

dataset format for building our reward model. Instead of
using the demonstration dataset as positive samples, we
use the samples generated by the SFT policy πSFT, trained
on the demonstration dataset, as positive examples. The
samples generated by the initial LLM policy π0 serve as
negative examples. This approach alleviates the heterogene-
ity issue that arises when naively combining demonstration
samples with π0-generated samples. Table 1 contrasts the
different data choices for reward model training. Figure 2 vi-
sualizes and illustrates their differences. To further explain
and contrast different approaches:

• Init-Demo RM: Using samples generated by π0 as nega-
tive examples and demonstration dataset samples as posi-
tive examples in reward model training is straightforward.
However, as π0 and πβ are heterogeneous models, so nu-
anced differences, such as specific verb usage or response
formats in πβ can dominate reward model learning rather
than the desired alignment properties.

• SFT-Demo RM: Using samples generated by πSFT exam-
ples and demonstration dataset samples as positive exam-
ples faces the same challenge. Moreover, since πSFT and
πβ are closer in terms of the desired properties to align
(scores), reward hacking is even more likely.

• Init-SFT RM: To avoid potential reward hacking caused
by using heterogeneous data in reward model training, we
can use samples generated by π0 as negative examples
and samples generated by πSFT as positive examples. Un-
like the previous approaches, where positive and negative
examples are generated by heterogeneous models, these
two models are homogeneous since the SFT policy is
fine-tuned from the initial policy.

• Preference-based RM (BT-RM): In preference-based re-
ward modeling, both preferred and dis-preferred responses
are samples from the same LLM (Ouyang et al., 2022).
Therefore, there is no issue of heterogeneity between the
positive and negative samples.

When applying the learned reward models at inference time
to determine which responses are superior, these responses
are generated by πSFT, therefore, the Init-SFT RM should
outperform other choices. In the next section, we provide
empirical studies to verify our insights.

4. Experiments
Overview. In this section, we validate the insights and meth-
ods proposed in earlier discussions. Our experiments are
designed to: (1) Demonstrate the efficacy of alignment from
demonstrations and verify the insights derived from the In-
verse RL perspective (Sec. 4.1). (2) Evaluate the necessity
and performance of the proposed reward modeling method
(Sec.4.2). (3) Assess the scalability and effectiveness of the
reward model in policy optimization, highlighting the feasi-
bility of alignment without preference-based data (Sec.4.3).
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Table 1. Comparison of multiple reward modeling choices. The first three rows are choices in building reward models in AfD using
different datasets for the discriminative model training.

Dataset for RM Negative Example Source Positive Example Source Format of Data Heterogeneity in RM
Init-SFT RM (y|x) ∼ πinit (y|x) ∼ πSFT AfD Low

Init-Demo RM (y|x) ∼ πinit (y|x) ∼ Ddemo AfD High

SFT-Demo RM (y|x) ∼ πSFT (y|x) ∼ Ddemo AfD High(er)

Preference-based Dispreferred Preferred Pair-wise No

Tasks. To evaluate the performance of our proposed meth-
ods, we focus on the Harmless and Helpful tasks from
the Anthropic HH-RLHF dataset (Bai et al., 2022). Demon-
strations were generated using the OpenAI GPT-4 API, with
detailed prompting strategies available in Appendix E.2.
The Harmless task includes 42.5K training examples and
2.3K testing examples. Due to the content-filtering feature
of the GPT-4 API, we got 25.6K responses as the demonstra-
tion dataset. For the Helpful task, which comprises 43.8K
training examples and 2.3K testing examples, our demon-
stration dataset includes 42.7K examples gathered from the
API.

Base Models and Evaluation Metrics. For the Harmless
task, we employ GPT-2 (Radford et al., 2019) as our base
model, given its potential in alignment and its capability
of output harmless responses. For the Helpful task aimed
at enhancing the helpfulness of responses, we utilize the
more advanced Gemma model (Team et al., 2024) at the 2B
parameter scale, tailored to our hardware specifications. Our
evaluation employs two metrics to measure the alignment
efficacy of different methodologies: golden reward model
scoring and GPT4-as-a-critic evaluation. In the golden re-
ward model evaluation, we report on the reward scores as
assessed by publicly available golden reward models (Dong
et al., 2023; Lambert et al., 2024; Yang et al., 2024). In
the GPT4-as-a-critic evaluation, we use GPT-4 to evaluate
which of the two responses more effectively meets the align-
ment criteria of a given query. More details can be found in
Appendix E.

4.1. AfD via Supervised Fine Tuning

Experiment Setup. In this section, we aim to verify the
effectiveness of aligning LLMs from demonstrations and the
insight we draw from the Inverse RL perspective. We assess
and compare the performance of the following single-phase
training methods: SFT-AfD: Utilizes the demonstration
dataset for supervised fine-tuning; SFT-Preferred: Em-
ploys supervised fine-tuning using the positive samples from
the preference-based dataset; DPO-Preference: the Direct
Preference Optimization method working on the preference-
based annotations (Rafailov et al., 2023); DPO-AfD: Rep-
resents a naive baseline that applies DPO directly to the
demonstration dataset, treating samples generated by the
initial policy as negative samples. Additionally, we bench-

Figure 3. Evaluation results using golden reward models.

mark the performance of the Basemodels prior to training
and normalize the scores against the quality of the Demon-
strations. All implementations are executed using the TRL
library (von Werra et al., 2020). To ensure fair comparisons,
hyperparameters across different methods are standardized,
with detailed configurations available in Appendix E. Re-
sults. As depicted in Figure 3, the golden reward model
evaluations for both tasks show promising results. In the
Harmless task, SFT on the demonstration dataset not only
matches but exceeds the performance of the demonstrator 2.
For both tasks, DPO on the demonstration dataset proves
more effective than its application on the preference dataset.
However, SFT applied only to the positive samples from
the preference dataset shows negligible improvement in task
performance.

Take-Aways. AfD proves to be a promising single-
phase approach for alignment. In the Harmless task,
where the response modes are limited, SFT demon-
strates exceptional performance, affirming its equiva-
lence to trajectory distribution matching using forward
KL divergence. Nevertheless, SFT does not reach
the same level of performance as the demonstrator in
the Helpful task, where response variability is greater.
Subsequent sections will explore the enhancement of
AfD through reward modeling.

4.2. Building Effective Reward Models using
Demonstrations

Experiment Setup. We now verify the effectiveness of
the proposed RMs. We consider the four reward models
discussed in Sec. 3.2: the Init-SFT RM; the Init-Demo

2The demonstrator GPT4 rejects to answer (filters) some of the
harmful queries on the test set.
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Figure 4. Evaluating choices of building reward models using golden reward models.

Table 2. GPT4-as-a-critic evaluation on the BoN policies using different reward models and the SFT checkpoint.
Task Harmless Helpful

BoN IRL-RM BoN BT-RM SFT BoN IRL-RM BoN BT-RM SFT

BoN Win - 0.422(18) 0.677(16) - 0.318(16) 0.932(8)
IRL-RM Tie - 0.351(17) 0.147(12) - 0.298(15) 0.039(6)

Lose - 0.227(15) 0.176(13) - 0.383(16) 0.029(5)

BoN Win 0.227(15) - 0.486(18) 0.383(16) - 0.943(7)
BT-RM Tie 0.351(17) - 0.260(16) 0.298(15) - 0.036(6)

Lose 0.422(18) - 0.254(15) 0.318(16) - 0.021(5)

Win 0.176(13) 0.254(15) - 0.029(5) 0.021(5) -
SFT Tie 0.147(12) 0.260(16) - 0.039(6) 0.036(6) -

Lose 0.677(16) 0.486(18) - 0.932(8) 0.943(7) -

RM; the SFT-Demo RM and the Human-Pairwise (the
preference-based BT-RM) — as a reference. We use the
Best-of-N (BoN) approach which stably archives on-par
performance to the state-of-the-art policy optimization al-
gorithms according to the literature (Dong et al., 2023; Gao
et al., 2023; Coste et al., 2023), maximally isolating and
highlighting the sources of improvement.

Results. For comparative analysis, we utilize the golden
reward model. Specifically, the first two panels of Figure
4 illustrate the Win Rates of selected samples to be better
than a deterministic generation. The latter two panels detail
the normalized golden reward scores as the number of N in
BoN increases.

Take-Aways. The results underscore the efficacy
of building reward models using the demonstration
dataset. Notably, the IRL RM using the Init-SFT
stands out by achieving the highest win rates and
scores compared to other models. Its performance
matches or surpasses the preference-based reward
model — yet the IRL RM can work without preference
annotations.

4.3. Boosting Performance by Extrapolating Reward
Models

Experiment Setup. To further verify the performance of
BoN sampling, we employ GPT4 as a judge to evaluate the
responses. We stress-test the performance of the proposed
reward models at large KL-divergence (≈ 10 Nat) from
the original SFT policy. We compare BoN using the pro-
posed reward model (BoN IRL-RM), BoN using preference
dataset (BoN BT-RM), and the SFT checkpoint.

Results. Table 2 presents the findings. The BoN strategy
using the IRL RM markedly outperforms the SFT base-
line. Notably, the performance of the IRL RM matches that
of the preference-based RM, with the advantage of being
developed solely from the demonstration dataset.

Take-Aways. Employing the IRL RM in conjunction
with the BoN strategy substantially enhances the per-
formance of SFT policy in AfD. This improvement
is particularly significant in the Helpful task, where
the mass-covering property of SFT proves insufficient.
These results are refreshing, demonstrating that AfD
is a viable and effective alternative to RLHF.

5. Conclusion
In this paper, we addressed the limitations of preference-
based alignment for Large Language Models (LLMs) by
proposing an alternative approach: Alignment from Demon-
strations (AfD). Our study highlights the benefits of using
high-quality demonstration data, which avoids the noise,
cost, and assumptions inherent in preference-based methods,
and privacy concerns. By framing the AfD problem within a
sequential decision-making framework and introducing tra-
jectory distribution matching objectives, we provide a solid
foundation for AfD. Our empirical results, validated on
the Harmless and Helpful tasks of the Anthropic
HH-RLHF dataset, demonstrate the effectiveness of AfD
in achieving superior alignment performance. This work
establishes AfD as a viable and efficient alternative to Rein-
forcement Learning from Human Feedback (RLHF), paving
the way for safer and more reliable deployment of LLMs in
various applications.
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A. Related Work
A.1. Imitation Learning and Inverse Reinforcement Learning

In contrast to the prevailing approaches in LLM alignment research, which rely on preference datasets, this work focuses on
offline expert demonstration datasets. These datasets are more accessible in real-world applications and serve as the basis
for developing algorithms that can surpass the performance of Supervised Fine-Tuning (SFT), the common practice for such
datasets. The use of demonstration datasets, combined with the accessibility of the dynamics model, naturally frames the
problem as an Imitation Learning (IL) or Inverse Reinforcement Learning (Inverse RL) task.

The simplest approach to IL in the literature is Behavior Cloning (BC) (Pomerleau, 1991), which leverages supervised
learning to predict the actions in the demonstration dataset given the states. However, this method is often unreliable due to
compounding errors (Ross et al., 2011). Adversarial Imitation Learning algorithms (Ho & Ermon, 2016; Fu et al., 2017;
Ghasemipour et al., 2020; Kostrikov et al., 2018; Orsini et al., 2021), inspired by both Generative Adversarial Networks
(GANs) (Goodfellow et al., 2014) and Inverse RL (Ng et al., 2000; Ziebart et al., 2008), aim to solve this problem by
matching distributional characteristics. Specifically, GAIL seeks to learn a policy whose state-action space occupancy
measure is indistinguishable from that of the expert demonstrations. A key difference between Inverse RL and IL is whether
or not the reward model is explicitly modeled (Fu et al., 2017). With a learned reward model, the objective can go beyond
matching demonstration behavior to extrapolating the reward model for super-demonstration performance (Brown et al.,
2019).

There are two unique properties in the LLM alignment Markov Decision Process (MDP) that differentiate it from conventional
IL and Inverse RL literature:

1. Known and Deterministic Transition Dynamics: In LLM alignment, the transition dynamics are known and determin-
istic, allowing us to explicitly define the trajectory distribution and use trajectory distribution matching as the learning
objective.

2. Sparse Reward Signals: The reward signal is provided and is mostly meaningful only at the trajectory level, making the
alignment problem a sparse-reward IL task. This sparsity means that learning a step-wise reward function, as done in
existing work (Fu et al., 2017), may not be feasible.

A.2. Reinforcement Learning from Human Feedback

Introduced in the seminal paper by (Christiano et al., 2017), Reinforcement Learning from Human Feedback (RLHF)
provides an alternative to traditional scalar reward signals in policy learning. In the context of LLMs, (Ouyang et al., 2022)
proposed a three-step alignment framework consisting of SFT, reward modeling (RM), and policy learning with proximal
policy optimization (PPO). This framework relies on two distinct types of datasets: 1. the SFT dataset contains queries
and expert-generated responses to those queries, under the form of Ddemo = {xi, y∗i }i∈[Ne]; and 2. the preference dataset
Dpref = {xi, y+i , y

−
i }i∈[Np] that contains queries, multiple language model responses, and human preferences over those

response labeled by human annotators.

Current RLHF practices adhere to this two-stage, two-dataset framework, with several enhancements introduced in recent
literature. For instance: the DPO circumvents explicit reward modeling and stabilizes the learning process on preference
dataset using supervised signals (Rafailov et al., 2024b); SLiC-HF (Zhao et al., 2023) gains insight from contrastive learning
and learns from closed-form losses that maximize the margin between the preferred and dispreferred generations; other
alternatives include iterative supervised learning (Yuan et al., 2023; Dong et al., 2023), regularizing the generation (Azar
et al., 2023) or game-theory-based methods (Munos et al., 2023; Chen et al., 2024; Cheng et al., 2023). These advancements
collectively contribute to refining the RLHF framework, addressing various challenges associated with preference-based
alignment in LLMs. Different from those approaches, our work focuses on Alignment from Demonstrations, where only a
single demonstration dataset is used.

A.3. Generative Adversarial Networks on Text Generation Models

The use of GANs in text generation is also relevant to our research. Specifically, TextGAIL (Wu et al., 2021) explores GAN
training for text generation that surpasses supervised learning performance. Other notable works using GANs for sequence
generation include (Yu et al., 2017; Ke et al., 2019; Che et al., 2017; Guo et al., 2018; Adiwardana et al., 2020; Zhou et al.,
2020; Caccia et al., 2018), all of which focus on text domain sequence generation.
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Our work diverges from this line of literature in several key ways:

1. Focus on Alignment: Unlike GAN-based text generation, which often aims to generate context under specific formats
(e.g., story generation), our work focuses on aligning LLMs to human intentions rather than merely generating text.

2. Objective Comparison: GAN-based methods are more akin to adversarial imitation techniques, aiming to reproduce the
training dataset’s distribution (Ho & Ermon, 2016). In contrast, our objective is to improve language model alignment by
learning a reward model inspired by Inverse Reinforcement Learning (IRL) (Fu et al., 2017).

3. Evaluation Metrics: In many GAN-based text generation tasks (Wu et al., 2021; Yu et al., 2017; Ke et al., 2019; Che
et al., 2017; Guo et al., 2018; Adiwardana et al., 2020; Zhou et al., 2020; Caccia et al., 2018), oracle evaluation metrics
are available, eliminating the need to infer the underlying intention of demonstrations. In alignment tasks, however,
human intention is not directly accessible as a function, necessitating a different approach.

4. Motivation, Formulation, and Explanation: Our work is motivated by the challenge of lacking reward signals in LLM
alignment, formulated as an RL problem. We derive objectives from IRL literature to explain when and why SFT and
IRL techniques are effective.

5. Practical Implementation: Unlike GAN-based methods, which rely on iterative training, our implementation does not.
Instead, we extrapolate the learned IRL reward model (Brown et al., 2019) to further enhance the performance of SFT-ed
LLMs.

This differentiation highlights our unique approach to LLM alignment, focusing on the nuances of reward modeling and
alignment objectives, distinct from traditional GAN-based text generation methods.

A.4. Comparison of Different Set-ups of RL

In this section, we contextualize the differences and connections among various RL problem setups. Specifically, we discuss
(online) RL, Offline-RL, Imitation Learning, Inverse-RL, Learning from Demonstrations, and Preference-based RL.

Table 3. Summarizing difference in problem settings of RL, Offline-RL, Imitation Learning (IL), Inverse-RL, Offline Inverse-RL (Offline
IRL), Learning from Demonstrations (LfD), and Preference-based RL.

Problem External External Learned Demonstration Examples
Settings Dynamics Reward Reward Solvers

Model Model Model

RL ✓ ✓ ✗ ✗ PPO (Schulman et al., 2017), TD3 (Fujimoto et al., 2018),SAC (Haarnoja et al., 2018)

Offline-RL ✗ ✗ ✓ or ✗ ✓ BC (Pomerleau, 1991), CQL (Kumar et al., 2020), WGCSL (Yang et al., 2022b)

Imitation ✓ ✗ ✗ ✓ BC (Pomerleau, 1991), AOC (Sun et al., 2023), GAIL (Ho & Ermon, 2016)

Inverse-RL ✓ ✗ ✓ ✓ BC (Pomerleau, 1991), AIRL (Fu et al., 2017)

Offline-IRL ✗ ✗ ✓ ✓ BC (Pomerleau, 1991), AOC (Sun et al., 2023), SBIL (Jarrett et al., 2020)

LfD ✓ ✓ ✗ ✓ DQNfD (Hester et al., 2018), DDPGfD (Nair et al., 2018), AlphaStar (Vinyals et al., 2019)

Preference-based RL ✓ ✗ ✓ Paired CPL (Hejna et al., 2023), T-REX (Brown et al., 2019), RLHF (Christiano et al., 2017; Ouyang et al., 2022), DPO (Rafailov et al., 2023)

To elaborate on Table 3, we outline the following distinctions:

• Online RL: In this setup, both the external dynamics model and the reward model are accessible. An agent learns through
trial and error by interacting with these live models.

• Offline RL: Neither the dynamics model nor the reward model is available. The agent learns solely from an offline dataset
that includes information on states, actions, rewards, and transitions.

• Imitation Learning (IL): The reward model is unknown, but the dynamics model is accessible. The agent learns from
demonstrations to optimize its policy, without explicitly modeling the reward.

• Inverse RL (IRL): Similar to IL, the reward model is unknown, but the dynamics model is accessible. The agent learns
from demonstrations with the objective of building an explicit reward model to guide policy optimization.

• Offline IRL: Both the dynamics model and the reward model are unknown. The agent must learn from an offline dataset
that contains demonstrations, but without direct access to the dynamics or reward models.
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• Learning from Demonstrations: An agent initially uses an offline demonstration dataset to warm-start, followed by
learning through online interactions with the environment, which includes the dynamics and reward models.

• Preference-based RL: This setup is similar to the inverse RL setting, but instead of a demonstration dataset, it uses a
paired preference dataset. The Bradley-Terry model can transform ranking information into reward values, enabling the
agent to learn from preferences rather than direct demonstrations.

Our method, which builds a reward model using the demonstration dataset, falls into the class of Inverse RL settings. By
understanding these distinctions, we can better appreciate the nuances of each RL setup and their applicability to various
problems in reinforcement learning.

A.5. Extended Discussions on DPO and SPIN

Figure 5. Illustrative figure on the difference between iterative self-play (SPIN) and extrapolation over learned RMs in Inverse RL.

It is worth noting the links and differences between our approach and Direct Preference Optimization (DPO) (Rafailov et al.,
2023) as well as its self-play counterparts (SPIN) (Chen et al., 2024), which are designed for alignment using demonstration
datasets.

Regardless of the data format, DPO-type algorithms have a crucial distinction: they explicitly assume the existence of a
score-based scalar reward derived from the Bradley-Terry model, which requires pair-wise data for effective application. In
contrast, adversarial learning approaches utilizing discriminative models do not rely on such explicit assumptions about the
Bradley-Terry model or the preference-based data format. While constraining the reward function to a specific form may
mitigate the reward ambiguity issue in inverse RL (Fu et al., 2017; Ng et al., 2000; 1999; Chan et al., 2024), it also limits
the expressivity of the reward space. Adversarial imitation approaches, as introduced in our work, do not presuppose any
specific reward model form. This allows for a broader range of alternatives to the Bradley-Terry model, including direct
preference objectives (Azar et al., 2023; Munos et al., 2023) and prospect theory objectives (Ethayarajh et al., 2024).

Moreover, DPO does not extrapolate over its implicit reward model. When applying DPO iteratively to the demonstration
dataset, as proposed in (Chen et al., 2024), the underlying assumption is that the current policy (starting with the SFT policy)
is always weaker than the demonstrations. Hence, the Bradley-Terry model can be repeatedly applied to these pairwise data.
At the convergence of iterative training (Chen et al., 2024), the performance of the aligned LLM is upper-bounded by the
performance of the demonstrations, as the demonstration dataset is consistently regarded as the positive examples in implicit
reward modeling. The first panel of Figure 5 illustrates the learning objectives and how policies evolve during learning.

Our method, as an Inverse RL approach, explicitly learns the reward model and extrapolates over it. As illustrated in the
right panel of Figure 5, our reward modeling mechanism extrapolates the reward model based on task scores. Conversely, if
we naively follow the SPIN setup — using the SFT checkpoint’s generation as negative examples and the demonstrations as
positive examples — the generated reward model can be negatively impacted by heterogeneity, leading to poor performance.
We have empirically demonstrated this point in our experimental section.

This distinction highlights the flexibility and potential of our approach in achieving super-demonstration performance in
LLMs alignment, as has been empirically verified in our experiment section.
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B. Assumptions behind the Preference-based (Bradley-Terry) Reward Modeling
The Bradley-Terry model (Bradley & Terry, 1952) and Elo score (Elo & Sloan, 1978) were originally developed for rating
chess players, where the pairwise competition logs are switched to absolute scores.

The Gaussian Assumption on Performance To be specific, the Bradley-Terry model assumes the ability of players can be
expressed as a score. In each two-player game, each player’s performance will be a Gaussian distribution centered at this
score. The variances of those Gaussian distributions are induced by the stochastic nature of the game and variability of the
players’ performance.

For instance, when player A having score SA variance σA and player B having score SB variance σB are playing against
each other in a game, the probability that A wins B (A ≻ B) in a game given the above Gaussian assumption on performance
gives the following result:

P (A ≻ B) = P
(
xa ≥ xb|xa ∼ N(SA, σ

2
A), xb ∼ N(SB , σ

2
B)
)
=

1

2
+

1

2
erf

(
SA − SB√
2(σ2

A + σ2
B)

)
(13)

In practice, other sigmoid-type functions besides the error function erf(·) can be used, e.g., using tanh(·) when assuming
the distribution is logistic.

Bradley-Terry Model in LLM Alignment When it comes to RLHF, the Bradley-Terry model is applied to transfer
preference-based data into scores. In such a process, the human evaluation is noisy, and the probability of observing
response yA to be preferred over response yB is expressed as

P (yA ≻ yB |x) =
1

2
+

1

2
tanh

(
rA − rB√
2(v2A + v2B)

)
(14)

where vA, vB models the variation in evaluating the value of different responses, and rA, rB are the corresponding
standardized scores of response yA, yB given query x, respectively.

In principle, there are two functions to be estimated given a preference dataset Dpref = {xi, y+i , y
−
i }i∈[N ].

1. First, the reward function Rθ : X × Y 7→ R evaluates how good an answer y ∈ Y is for a query x ∈ X . e.g.,
rA = Rθ(x, yA), rB = Rθ(x, yB).

2. Second, the variation function Vϕ : X × Y 7→ R evaluates how hard it is to evaluate whether an answer y ∈ Y is for a
query x ∈ X is better than the other. e.g., vA = Vϕ(x, yA), vB = Vϕ(x, yB).

Using the Cross-Entropy Loss to fit Dpref , we have

LCE = −E(x,y+,y−)∼Dpref

log σ
 Rθ(x, y

+)−Rθ(x, y
−)√

(V 2
ϕ (x, y

+) + V 2
ϕ (x, y

−))/2

 (15)

In the common practice of RLHF based on the Bradley-Terry model (Christiano et al., 2017; Ouyang et al., 2022; Rafailov
et al., 2024b), the learning of reward model only focuses on the score and eliminates the variation in evaluation. Therefore,
the denominator is simplified by setting V 2

ϕ (x, y
+) = V 2

ϕ (x, y
−) = 1, i.e., the score is normalized by the variation of the

problem.

L̃CE = −E(x,y+,y−)∼Dpref

[
log σ

(
Rθ(x, y

+)−Rθ(x, y
−)
)]

(16)

The Bradley-Terry model in RLHF assumes human annotators’ preference can be expressed as scores centered at the real
scores of different responses, yet it differs from the Bradley-Terry model used in chess rating or games in the sense that

1. The RLHF dataset contains queries from different domains, some of which are intrinsically harder to evaluate, hence
directly using the B-T model is to some extent like using a unified rating system of chess, Go, and poker — the scores
are not well calibrated.

2. Different from chess, where the number of players≪ number of games, in RLHF, the number of players
(query-response pairs) is comparable to the number of games (annotator comparison).
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3. The Elo scores are executed and updated in an online manner, and offline learning with preference-based data may lose
the ability to error correction. Among those challenges, (1) and (2) can potentially be addressed with a learned variance
term in the B-T model.

C. Extended Preliminaries
C.1. Online and Offline RL

Online RL In the Online RL setting, an agent with policy π ∈ Π : S 7→ ∆(A) learns through trial and error. It actively
interacts with the environments — including both transition dynamics T and the reward function R.

At each time step t, an agent observes a state st from the environment and selects an action at ∼ π. Upon taking the action,
the agent receives a reward rt and transit to a new state st+1. The agent’s objective is to maximize its expected return.

π∗ = argmax
π∈Π

Eat∼π,st+1∼T ,s0∼ρ0

T∑
t=0

γtR(st, at), (17)

We can alternatively denote the trajectory generated by a policy π to be τ = {s0, a0 ∼ π(a0|s0), s1 ∼ T (s1|s0, a0), a1 ∼
π(a1|s1), ...} and denote the trajectory distribution of π as

pπ(τ) = ρ0Π
T
t=0π(at|st)T (st+1|st, at), (18)

where T denotes the length of decision sequences. The learning objective can be expressed as

π∗ = argmax
π

Eτ∼pπ(τ)

[
T∑
t=0

γtR(st, at)

]
. (19)

Offline RL In the Offline RL setting, interactions with the environment are strictly forbidden. The learning problem is no
longer online learning but learning from a static dataset of decision logs DOffline = {(sit, ait, sit+1, r

i
t)}, that is generated by

some unknown behavior policy πβ .

The most obvious difficulty in the offline RL setting is such a setting prohibits exploration — hence it hinders the
improvement of policy learning to be improved over the demonstration data.

C.2. Behavior Clone and Imitation Learning

Behavior Cloning (BC) Assuming the decision dataset is collected from an optimal behavior policy π∗
β , every decision ait

is optimal. Denoting the state-action pairs in the dataset as (st, a∗t ), the BC method learns a policy through a supervised
learning objective that minimizes the difference between decision demonstration pairs. i.e.,

π = argmin
π

E(sit,a
i
t)∼D||ait − π(sit)||2 (20)

A fundamental challenge of BC is the distributional shift: in evaluation, the state distribution is sampled from rolling out the
learned policy π, rather than the behavior policy πβ that generates the dataset.

then the expected number of mistakes made by the learned policy π based on such an expert decision dataset can be denoted
as

ℓ(π) = Epπ(τ)

[
T∑
t=0

1(π(st) ̸= a∗t )

]
(21)

Then we have the following theorems:
Theorem C.1 (Behavior Clone Error Bound. (Ross et al., 2011)). If π is trained via empirical risk minimization on
st ∼ pπβ

(τ) and optimal labels a∗t , and attains generalization error ϵ on st ∼ pπβ
(τ), then ℓ(π) ≤ C + T 2ϵ is the best

possible bound on the expected error of the learned policy.
Remark C.2 (Compounding Error.). An intuitive interpretation of this quadratic relationship between the error bound and
the generalization error is that those errors aggregate along the trajectory. i.e., whenever the learned policy makes a mistake,
it tends to make more mistakes from then on as that action is not optimal and will lead to other out-of-distribution states,
which will lead to further mistakes.
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Remark C.3 (Behavior Clone). We can always set up a supervised learning objective in offline RL to minimize the difference
between decision demonstration pairs. i.e.,

π = argmin
π

E(sit,a
i
t)∼D||ait − π(sit)||2 (22)

Imitation Learning (IL) In order to alleviate the challenge of compounding error we discussed above, IL considers the
setting where a dynamics model is available during learning. The objective of IL is to learn from a (decision) demonstration
dataset, with access to a dynamics model — such that the current policy can be rolled out in the real environment.
Intuitively, with such a dynamics model, the optimization objective will no longer be st ∼ pπβ

(τ) but could be st ∼ pπ(τ)
— the distributional shift problem can be alleviated. It has been shown in the literature that having access to a dynamics
model is essential in controlling the error bound. (Ross et al., 2011)

There are many practical methods for implementing such a learning process, and the most famous work in the Deep-RL era
is the GAIL (Ho & Ermon, 2016), which conducts IL through adversarial learning: the policy is a generator of behaviors,
while a discriminator then tries to identify whether a trajectory is generated by the behavior policy πβ or by the generator
(the policy learned).

Theorem C.4 (DAgger Error Bound, (Ross et al., 2011)). If π is trained via empirical risk minimization on st ∼ pπ(τ) and
optimal labels a∗t , and attains generalization error ϵ on st ∼ pπ(τ), then ℓ(π) ≤ C + Tϵ is the best possible bound on the
expected error of the learned policy.

Remark C.5. This requires the additional assumption of being able to access the behavior (expert) policy πβ actively to
acquire the expert for those roll-out trajectories generated by π .

D. General Distributional Matching Framework using f -Divergence
Formally, according to the f -divergence framework of GANs (Nowozin et al., 2016) and Inverse RL (Ghasemipour et al.,
2020), the alignment problem can be written as training an LLM model π, such that

min
π

max
Tω

E(s,a)∼Ddemo
[Tω(s, a)]− E(s,a)∼π[f

∗(Tω(s, a))] (23)

where f : R+ 7→ R is a convex, lower-semicontinuous function, and it defines a statistical divergence between distribution
P,Q with density function p, q as: Df (P ||Q) =

∫
x
q(x)f

(
p(x)
q(x)

)
dx, and f∗ is the conjugate of f , defined as f∗ =

supu∈domf
{ut− f(u)}. Practically, it was shown in (Ghasemipour et al., 2020) that Equation (23) can be solved through

iterative optimizing
max
Tω

E(s,a)∼Ddemo
[Tω(s, a)]− E(s,a)∼π[f

∗(Tω(s, a))] (24)

and
max
π

Eτ∼π[
∑
t

f∗(Tω(st, at))] (25)

To elaborate on how different choices of f lead to different practical implementations of the AIL approach of alignment, we
take the state-action occupancy measure here for example:

• AIRL: f(u) = − log(u) ; Df (ρ
demo||ρπ) = KL(ρπ||ρdemo)

• GAIL: f(u) = −(u+ 1) log 1+u
2 + u log u; Df (ρ

demo||ρπ) = JS(ρπ||ρdemo)

• FAIRL: f(u) = u log(u); Df (ρ
demo||ρπ) = KL(ρdemo||ρπ)

• α-IRL: f(u) = u1−α−(1−α)u−a
α(α−1) ; Df (ρ

demo||ρπ) = Dα(ρ
demo||ρπ)

Therefore, the methods discussed in the main text could be extended to other divergences in the f -Divergence framework.
Moreover, the discussion in the main text focused on trajectory distribution matching. Another potential learning objective is
state-action distribution matching. We provide the following results, yet those objectives assume token-level feedback (Chan
et al., 2024; Rafailov et al., 2024a). We leave the investigation of their empirical performance to future work.
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D.1. Alignment with the State-Action Matching using the Forward KL-Divergence

When minimizing the forward KL divergence between state-action occupancy measures

min
π

[
KL(ρdemo(s, a)||ρπ(s, a))

]
= −max

π
E(s,a)∼ρdemo [log ρπ(s, a)] (26)

= −max
π

E(sk,ak)∼ρdemo

[
log Πkt=0π(at|st)

]
(27)

= −max
π

E(sk,ak)∼ρdemo

[
k∑
t=0

log π(at|st)

]
(28)

= −max
π

E(sk,ak)∼ρdemo

[
T − k

T
log π(ak|sk)

]
(29)

Minimizing the forward KL divergence of state-action occupancy measure is different from the SFT objective by a re-
weighting factor, depending on the position of the token in the demonstration sequence. Intuitively, it can be understood
as a re-weighting approach to avoid compounding errors.

D.2. Alignment with the State-Action Matching using the Reverse KL-Divergence

When considering the reverse KL divergence on the state-action occupancy measure, the learning objective is

min
π

[KL(ρπ(s, a)||ρdemo(s, a))] = −max
π

E(s,a)∼ρπ
[
log ρπ(s, a)− log ρdemo(s, a)

]
. (30)

The difficulty in the above learning objective is that the second term is always unknown. In the literature, such a difficulty
has been solved through adversarial training (Fu et al., 2017). By training a discriminative model Dϕ parameterized by ϕ
that learns to classify state-actions sampled from the demonstration dataset or from the behavior policy π, we get

D∗
ϕ(s, a) =

ρdemo(s, a)

ρdemo(s, a) + ρπ(s, a)
(31)

at its optimal convergence (Goodfellow et al., 2014). Plugging Equation (31) into Equation (30), an practical policy learning
objective can be given by

min
π

E(s,a)∼ρπ [logDϕ(s, a)− log(1−Dϕ(s, a))] (32)

and Dϕ is optimized iteratively through:

max
ϕ

E(s,a)∼ρdemo [logDϕ(s, a)] + E(s,a)∼ρπ [log(1−Dϕ(s, a))] (33)

D.3. Alignment with Distributional Matching using the Jensen–Shannon Divergence

Similarly, if we choose f to be the Jensen-Shannon divergence and minimize the divergence between state-action occupancy
measure,

min
π

DJS(ρ
π(s, a)||ρdemo(s, a))

= min
π

1

2
KL

(
ρπ(s, a)

∣∣∣∣∣
∣∣∣∣∣ρdemo(s, a) + ρπ(s, a)

2

)
+

1

2
KL

(
ρdemo(s, a)

∣∣∣∣∣
∣∣∣∣∣ρdemo(s, a) + ρπ(s, a)

2

)
= min

π
E(s,a)∼ρdemo(s,a)

[
logD∗

ϕ(s, a)
]
+ E(s,a)∼ρπ

[
log(1−D∗

ϕ(s, a))
]
,

(34)

where D∗
ϕ(s, a) =

ρdemo(s,a)
ρdemo(s,a)+ρπ(s,a)

is the optimal discriminator (Goodfellow et al., 2014). Practically, such an objective
can be optimized by solving the following minimax game (Ho & Ermon, 2016; Fu et al., 2017):

min
π

max
ϕ

E(s,a)∼ρdemo [logDϕ(s, a)] + E(s,a)∼ρπ [log(1−Dϕ(s, a))] , (35)

On the other hand, if we minimize the Jensen-Shannon divergence between the trajectory distribution
DJS(d

π(y|x)||ddemo(y|x)), the practical learning objective is

min
π

max
ψ

E(y|x)∼ddemo [logDψ(y|x)] + E(y|x)∼ρπ [log(1−Dψ(y|x))] , (36)
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E. Experiment Details
E.1. Code and Dataset Release

Our code and the demonstration dataset are anonymously available at https://anonymous.4open.science/r/
InverseRLignment-6652/.

Our algorithm of AfD will be released as a pip-installable package for ease of usage.

E.2. Prompting Template in Demonstration Data Collection

In our experiments, we generated the demonstration datasets using the OpenAI GPT4 model as it is considered to be one
of the best aligned models. To let GPT4 finish the dialogues in the Harmless and Helpful dataset, we use the following
prompting template:

» ### Here is a chat log between Human and an AI Assistant. Complete the dialogue. ###

And then we attach the original prompts in the dataset as an incomplete dialogue for GPT4 to complete.

E.3. Golden Reward Models

In our research, we use the open-sourced reward models achieved high performance on the RewardBench leaderboard (Lam-
bert et al., 2024). Specifically, we use the following reward models as golden reward models

• Harmless: https://huggingface.co/Ray2333/gpt2-large-harmless-reward_model (Yang et al.,
2024)

• Helpful: https://huggingface.co/weqweasdas/RM-Gemma-2B (Dong et al., 2023)

We consider the length-controlled evaluation, using a fixed number of maximal new tokens, set to the numbers as the average
of the demonstration dataset. For the Harmless task, we use 48 tokens, and for the Helpful task, we use 128 tokens.

E.4. Prompting Template for GPT4-As-A-Critic

In our evaluation, we prompt GPT4 with the following prompting strategy to judge the performance of alignment.

» Given the following ###Conversation, which ###Response is more harmless?’ + ’### Conversation: ’ + QUERY +
’###Response A: ’ + ANSWER A + ’###Response B: ’ + ANSWER B + ’### Give me the letter of the response that is
more harmless, A or B.’

In this prompt,

• QUERY — the conversation between humans and AI as inputs.
• ANSWER A — the response of the first model
• ANSWER B — the response of the second model

Such a process is repeated twice by switching the position of answers, i.e., contents in ANSWER A and ANSWER B are
exchanged. We then consider an answer to be Win to the other only if it is identified to be better in both cases. Otherwise,
we consider the comparison to be a tie.

E.5. Hardware and Running Time

Our experiments were run on a machine with an AMD Epyc Milan 7713 CPU, 120GB RAM, and 2 NVIDIA A6000 Ada
Generation GPUs with 48GB VRAM.

In order to fit our hardware in experiments, we fine-tune the base models with LoRA (Hu et al., 2021). We employ
vllm (Kwon et al., 2023) to accelerate inference and evaluation. The typical training time of SFT on the demonstration
dataset or RLHF on the preference dataset is 10 - 12 hours. The Best-of-N sampling of reward models takes the longest
wall-clock time to finish, which requires 46 - 50 hours when N is set to 1000. The vllm supports the sampling process of the
Gemma2b model, yet the sampling of gpt2 can not be accelerated with the current version.
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E.6. Hyper-Parameters

We keep all hyper-parameters the same across different methods for each of the tasks we studied in this work. Specifically,
we use a learning rate of 1 × 10−5 for the Harmless task and 5 × 10−6 for the Helpful task. We use mini-batch-size 4
for all experiments and gradient accumulation to be 2. For both reward model training and LLM fine-tuning, including
DPO and SFT, we train the models for 2 epochs. We use LoRA-R to be 32 and LoRA-alpha to be 32 in LoRA. All other
hyper-parameters are used as-is in TRL version 0.7.11 (e.g., beta 0.1 in DPO training).

As our study mainly focuses on the new problem of alignment from demonstration, our experiments aim to show the
effectiveness of the proposed method by matching the leading RLHF algorithms. The experiments in our work focus on
highlighting the effectiveness and importance of using the correct data (e.g., the demonstration dataset rather than the
preference-based dataset; the Init-SFT comparison dataset for IRL reward modeling), rather than the algorithm and their
parameters. Tuning the hyper-parameters for different methods would most probably further improve their performance, yet
it is orthogonal to the research focus of this paper. Hence we would leave it to future work.

F. Limitations and Future Work Opportunities
Assessing the Impact of Data Diversity and Quality in Alignment The effectiveness of learning with the offline dataset
can be influenced by the quality of the demonstration data, as evidenced by (Fu et al., 2020; Swazinna et al., 2021; Yang
et al., 2023; Belkhale et al., 2024; Schweighofer et al., 2021). In our research, while we have successfully leveraged the
demonstration dataset to align LLMs and confirmed its effectiveness, we have not yet fully explored the Alignment from
Demonstrations (AfD) problems from a data-centric perspective. It would be promising to delve deeper into how data
quality, diversity, and coverage impact the performance of AfD. These factors are critical not only for demonstration-based
alignment but also for preference-based alignment, which has been somewhat overlooked by the community — partially
due to the high costs associated with preference data collection. In future work, investigating the data-centric effects of
demonstration-based alignment could yield valuable insights for preference-based alignment at a potentially lower cost.
This exploration could lead to a more nuanced understanding of how diverse and comprehensive datasets enhance model
performance and in alignment and improve their quality in various applications.

Potential Overoptimization to the IRL Reward Model As demonstrated in existing literature, optimizing toward a
learned reward model can lead to overoptimization, where models may perform exceptionally well on training-related tasks
but lack generalizability (Goodhart & Goodhart, 1984; Gao et al., 2023). While ensemble methods have been suggested as a
solution (Coste et al., 2023), exploring the integration of heterogeneous reward models, such as combining the IRL RM
with the BT-RM, presents a promising avenue. These diverse reward models, trained with the same ultimate objective from
different datasets, could enhance robustness and prevent overfitting (Osband et al., 2016; 2018).

Non-Iterative AfD Limited by Computation Given our computational constraints, our experiments were limited to
LLMs with a maximum of 2B parameters, and extensive training under large KL divergence conditions required significant
resources, exceeding 45 hours per run for some settings. This limitation curtailed our ability to engage in multiple-turn
iterative training, which has been explored in other studies (Chen et al., 2024). Future investigations might explore whether
iterative adversarial training of a discriminator could further enhance performance. Despite the computational intensity, our
method’s ability to extrapolate over the IRL RM has already demonstrated superior performance compared to traditional
demonstration benchmarks, suggesting significant potential for further advancements (Ho & Ermon, 2016; Brown et al.,
2019).

G. Broader Impacts
The development and deployment of Large Language Models (LLMs) have profound implications across various domains.
Our proposed approach, Alignment from Demonstrations (AfD), introduces a significant advancement in the safe and
effective alignment of LLMs. This section discusses the broader impacts of our work, considering both the positive
contributions and potential risks.

First, our research enhances the safety and reliability of LLMs: By using high-quality demonstration data, AfD aligns LLMs
with a very general data format. AfD permits a wider application of alignment use the demonstration dataset.

Second, AfD reduces the dependency on costly and labor-intensive human preference annotations. This not only lowers the
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financial barriers for developing aligned LLMs but also can potentially accelerate the deployment process, making advanced
LLMs more accessible to a wider range of organizations and people.

Moreover, our method can operate without the need for continuous human interaction and external annotators, which helps
in preserving the privacy of the data used for model fine-tuning. This is particularly important in domains that handle
sensitive information, such as medical records and personal communications.

However, there are also potential risks when aligning LLMs with demonstrations. Although demonstration data is typically
of higher quality, it is still susceptible to biases that reflect the perspectives and prejudices of the data sources. It is essential
to carefully curate and diversify the demonstration datasets to mitigate these biases.
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