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Abstract

Next-generation (NextG) cellular networks are expected to manage dynamic traf-
fic while sustaining high performance. Large language models (LLMs) provide
strategic reasoning for 6G planning, but their computational cost and latency limit
real-time use. Multi-agent reinforcement learning (MARL) supports localized
adaptation, yet coordination at scale remains challenging. We present AURA, a
framework that integrates cloud-based LLMs for high-level planning with base
stations modeled as MARL agents for local decision-making. The LLM generates
objectives and subgoals from its understanding of the environment and reasoning
capabilities, while agents at base stations execute these objectives autonomously,
guided by a trust mechanism that balances local learning with external input. To
reduce latency, AURA employs batched communication so that agents update the
LLM’s view of the environment and receive improved feedback. In a simulated 6G
scenario, AURA improves resilience, reducing dropped handoff requests by more
than half under normal and high traffic and lowering system failures. Agents use
LLM input in fewer than 60% of cases, showing that guidance augments rather
than replaces local adaptability, thereby mitigating latency and hallucination risks.
These results highlight the promise of combining LLM reasoning with MARL
adaptability for scalable, real-time NextG network management.

1 Introduction

6G cellular networks are expected to provide high data transmission speeds and seamless connectivity,
supporting devices from autonomous vehicles to personal gadgets at large-scale events [Banafaa et al.,
2023, Chataut et al., 2024]. These advancements have the potential to redefine how we connect and
communicate, but this promise has yet to translate into practical, deployable solutions [Maduranga
et al., 2024, Shahjalal et al., 2023, Cui et al., 2024]. Next-generation networks face increasing
challenges in managing dynamic and unpredictable traffic. High user density, coupled with ultra-low
latency demands for applications such as holographic imaging and haptic communication, requires
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sophisticated algorithms [Maduranga et al., 2024, Dogra et al., 2023]. Consequently, the imperative to
balance reliability, energy efficiency, high data rates, and low latency has led researchers to envision
6G as AI-driven networks. AI integration aims to improve throughput, reliability, and latency,
while enabling self-optimizing operations through intelligent resource allocation and adaptive traffic
management [Yang et al., 2020, Noman et al., 2023].

Traditional heuristic methods fall short in meeting these demands due to their limited scalability and
difficulty in quantifying performance gaps [Abasi et al., 2024], prompting a shift toward machine
learning (ML) methods [Kim et al., 2023, Wang et al., 2023b]. ML and deep learning (DL) algorithms
have considerably improved network performance, but they face major challenges in real-world
6G settings, because of their reliance on annotated data. The NP-hard nature of labeling makes
supervised learning impractical for dynamic settings, lacking both scalability and adaptability [Cui
et al., 2024]. Reinforcement learning (RL) offers an alternative to supervised methods by eliminating
the need for labeled data. Multi-agent reinforcement learning (MARL) extends RL to environments
with multiple agents that must coordinate or compete [Bhati et al., 2023]. By enabling localized
decision-making, MARL provides scalability and robustness [Sun et al., 2023], making it a natural
fit for 6G network management [Chu et al., 2019]. However, current MARL algorithms struggle to
learn distributed policies for cooperative tasks, particularly in sparse-reward, dynamic environments
with large action spaces, characteristics of next-generation networks [Feriani and Hossain, 2021].

Figure 1: Illustration of the AURA Architecture. A cloud-based
LLM sets high-level objectives from unified inputs processed by
the multimodal encoder. Distributed MARL agents adapt locally
through actionable subgoals, while the aliment controller aligns
policies and assigns rewards. Iterative feedback refines decisions
for dynamic network management.

Centralized training with decentral-
ized execution (CTDE) is widely
adopted to overcome the limitations
of independent learning [Wang et al.,
2023a]. Nevertheless, CTDE itself
faces constraints such as limited agent
communication, difficulties adapting
to non-stationary environments, and
scalability issues as the number of
agents grows [Oroojlooy and Ha-
jinezhad, 2023]. Additionally, many
MARL-based solutions suffer from
high complexity, as agents must en-
code large amounts of information
into their policies. Because these
policies are rarely generalizable, they
are often trained from scratch, fur-
ther increasing computational costs
and slowing convergence [Yang et al.,
2025]. These limitations suggest the need for alternative approaches that combine high-level reason-
ing with localized adaptability to ensure cohesive multi-agent coordination. In parallel, large language
models (LLMs) with billions of pre-trained parameters have demonstrated remarkable capabilities
in reasoning, planning, and structured decision-making [Xi et al., 2025]. Their ability to generalize
across tasks makes them a compelling tool for network intelligence. In particular, LLMs can function
as high-level semantic planners, leveraging in-context learning and prior knowledge [Ahn et al.,
2022]. Through planning, LLMs decompose high-level goals into actionable low-level tasks; through
reasoning, they structure complex problems into priors and beliefs. However, directly deploying
LLMs for fine-grained, real-time network parameter adaptation remains infeasible due to their com-
putational overhead and latency. To reconcile these complementary strengths and weaknesses, we
propose AURA: Adaptive Unified Reasoning and Automation for NextG cellular networks.

AURA is a hierarchical framework that combines the predictive capabilities of Large Language
Models (LLMs) with the real-time adaptability of multi-agent reinforcement learning (MARL). It
addresses core 6G challenges such as dynamic traffic patterns, fluctuating user demands, and evolving
network conditions. A multimodal processor unifies diverse data sources, which the LLM uses to
set high-level objectives and subgoals through techniques like Chain-of-Thought reasoning [Wei
et al., 2022] and pre-trained policies. Each base station acts as a MARL agent that autonomously
executes its objectives under a trust mechanism, balancing local learning with strategic oversight. A
centralized controller coordinates these local actions with global goals through structured rewards.
Lightweight communication and batched feedback further enhance scalability and responsiveness,
drawing inspiration from reinforcement learning from AI feedback (RLAIF) [Bai et al., 2022, Lee
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et al.]. We evaluate AURA in a 6G networks operating in a scenario with dynamic user demands.
The LLM anticipates congestion and generates preemptive objectives, while MARL agents adapt in
real time, taking actions adjusting transmit power and enabling handoffs. Preliminary results show
that AURA significantly reduce dropped requests and system failures compared to pure MARL
baselines, with the largest gains under normal and high traffic. Notably, AURA achieves these
improvements while relying on LLM input in fewer than 60% of cases. This is desirable because
frequent LLM queries introduce latency, create a central point of failure, and risk propagating
hallucinated or suboptimal suggestions. Since LLMs cannot directly interact with the environment or
receive real-time feedback, overreliance would limit adaptability.

2 Methodology

We now introduce AURA, an Adaptive Unified Reasoning and Automation framework. Our design is
guided by two key objectives: leveraging LLMs for high-level reasoning and ensuring computationally
efficient, real-time decision-making via MARL. The following subsections outline AURA’s model
structure (see Figure 1) and its role in AI-driven network management.

Multimodal Processor for Encoding. The multimodal processor at the LLM input integrates diverse
data from modern networks, including time-series metrics, statistical logs, and external sources such
as social media, GIS data, and historical traffic. GIS inputs, for example, capture spatial patterns like
node distribution or congestion. Since standard LMs are limited to text, the processor transforms all
heterogeneous inputs into a shared latent representation aligned with language tokens, preserving
numerical, spatial, and textual information for LLM analysis.

LLM for High-Level Planning. The centralized LLM integrates processed representations to predict
demand surges and guide both immediate resource allocation and long-term planning. It follows a
two-tiered strategy: for common scenarios (e.g., typical congestion), it selects from a repository of pre-
trained policies (“offline playbook”); for novel or complex conditions, it applies semantic reasoning
(e.g., Chain-of-Thought [Wei et al., 2022]) to adjust reward structures or environment parameters for
MARL adaptation. Rather than micromanaging interactions, the LLM defines dynamic subgoals and
rewards, enabling MARL agents to implement responses locally. This delegation ensures that global
objectives are realized through policies that remain flexible and adaptive at the local level [Zhuang
et al., 2024].

MARL Agents for Local Adaptation. At individual base stations, MARL agents adjust parameters
(e.g., power) using real-time environmental feedback. They refine policies through trial-and-error
and memory-based adaptation, exercising autonomy rather than serving as passive executors of LLM
guidance. After each cycle, agents report local actions, conditions, and outcomes, enabling the LLM
to update its understanding. Final action choices remain agent-driven and are moderated by a trust
mechanism: agents weigh their own policies against LLM suggestions, increasing trust when external
input improves performance and decreasing it otherwise. This balance preserves independence while
leveraging strategic guidance when beneficial. Agents also receive dual rewards:

(i) Immediate feedback from the environment in response to their local actions.
(ii) Delayed feedback from the Centralized Alignment Controller for their contributions to

broader strategic goals.

This hierarchical reward mechanism ensures that the objectives of the individual agent remain aligned
with the global network objectives while maintaining local autonomy in decision-making. This
process is outlined in Algorithm 1.

Feedback Unit for Communication. To reduce latency in LLM–agent interaction, AURA employs
batched communication: subgoal updates and feedback are aggregated at fixed intervals, lowering
overhead while preserving responsiveness [Zhuang et al., 2024]. This limits continuous feedback
during training, enabling agents to adapt locally while remaining aligned with global goals. To further
improve adaptability, AURA incorporates Reflexion-inspired verbal feedback [Shinn et al., 2023].
These lightweight updates provide corrective cues (e.g., reprioritizing subgoals during congestion)
without costly retraining, guiding agents to switch strategies under high demand. A language-to-
policy translator bridges verbal instructions and MARL execution, using semantic parsing (inspired
by GPT-like models [OpenAI, 2024]) to convert guidance, such as adjusting exploration or prioritizing
goals, into actionable parameters that shape agents’ decision-making.
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3 Evaluation Scenario: Managing Network Overload Over Varying Traffic
Conditions

We evaluate AURA in a custom simulation with two base stations: a rural station (43− 46 dBm, max
50 users) and an urban station (30− 37 dBm, max 30 users). Users arrive and depart dynamically,
each assigned a random signal strength (−120 to −50 dBm) and SNR (0− 30 dB). Episodes begin
with randomized power levels, user counts, and channel conditions to ensure variability. Derived
policies are used by frameworks as starting point during the testing phase. The evaluation includes
three configurations: MARL-ONLY, where agents operate independently without external input;
GUIDED MARL, where agents receive high-level suggestions from the LLM and selectively adopt
them based on a learned trust mechanism; and AURA, which combines LLM guidance with delayed
reward shaping to align local agent behavior with global objectives. Additional experiment details
can be found in Appendix C.

4 Experimental Results

We present preliminary results demonstrating the benefits of incorporating different levels of LLM
guidance for adaptive network management under varying traffic conditions (Figure 2). Both GUIDED
MARL and AURA consistently reduce the number of dropped requests relative to MARL-ONLY,
with the largest improvements under normal and high traffic (Table 2a). As illustrated in Table 2b
significant difference1 was observed for both agents under the normal and high traffic conditions
when comparing number of dropped requests across all configurations (no significant differences
were detected in low traffic). To further identify which methods drive these differences, we apply
pairwise Dunn post-hoc tests against the MARL-ONLY baseline (Table 2c – stars denote threshold).
These results confirm that AURA yields the strongest improvements (p < 0.01), while GUIDED
MARL also outperforms the baseline, albeit with weaker evidence. Taken together, these findings
indicate that LLM guidance is most beneficial when the network is stressed, where MARL-only
agents struggle to sustain reliable handoffs.

Figure 2d further shows that agents rely on LLM suggestions only moderately (below 60%), even
in high-traffic scenarios, demonstrating that guidance does not lead to overdependence. AURA
exhibits slightly lower reliance than GUIDED MARL, as delayed reward shaping provides additional
signals that encourage agents to refine their policies more independently. This highlights that the
framework can exploit LLM strategies while preserving local adaptability, thereby reducing latency
from frequent queries, avoiding overdependence on a single centralized model, and mitigating errors
from hallucinated or non-grounded guidance. Finally, Figure 2e reports system failures, defined as
the number of testing steps in which the system failed to serving all requests, directly reflecting the
frequency of system breakdowns. As expected, failure rates escalate with traffic intensity, but both
GUIDED MARL and AURA substantially reduced these occurrences compared to MARL-ONLY,
with AURA achieving the lowest failure counts under high traffic.

5 Conclusion and Future Work

This work introduced AURA, an LLM-guided MARL framework that balances strategic planning
with localized adaptability in dynamic cellular networks. By combining LLM objectives with trust-
gated action adoption and delayed reward shaping, the framework reduces failures and improves
resilience under different traffic dynamics. Preliminary results show reduces failures and dropped
requests under stress while limiting LLM reliance to <60%. Future work includes extending the
multimodal processor and LLM-based planner to provide richer context and strategic guidance. Key
directions are scaling AURA to larger multi-agent deployments, improving robustness to imperfect
LLM input through uncertainty estimation and trust calibration, enhancing explainability to support
operator oversight, and benchmarking against emerging 6G baselines for realistic evaluation.

1Since the normality assumption did not hold, we applied the non-parametric Kruskal–Wallis [Kruskal and
Wallis, 1952] test to compare number of dropped calls across all configurations for each agent, followed by
pairwise Dunn’s test with Holm correction [Dinno, 2015] to identify which configurations differed significantly.
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Figure 2: Comparison of MARL-ONLY, GUIDED MARL, and AURA across traffic conditions. (a) Dropped
requests, with largest gains under normal and high traffic. (b–c) Statistical analysis showing strongest improve-
ments for AURA and GUIDED MARL (* p < .05, ** p < .01, *** p < .001). (d) LLM usage rates, indicating
moderate reliance. (e) System failure counts, reduced by both LLM-guided methods under higher traffic.
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A Related Work

Artificial intelligence (AI) has been extensively used in cellular networks to address challenges in network
optimization. In particular, supervised and unsupervised learning techniques, especially deep learning, have
shown considerable potential to improve various aspects of network operations [Zappone et al., 2019, Maseer
et al., 2024]. Supervised learning has been widely utilized when it comes to predictive networking tasks,
including traffic classification and bandwidth prediction. By training deep neural networks (DNNs) on historical
data, these methods enable automated decision-making to optimize system performance [Wang et al., 2020,
Bentaleb et al., 2019]. Nonetheless, the growing complexity and evolving demands of 6G networks expose
fundamental limitations in these approaches. Common issues include scalability and limited adaptability to real-
time fluctuations. Moreover, the diversity of networking tasks further limits model reuse, as each problem often
requires a distinct architecture [Ren et al., 2021]. Recent advances, such as structured Transformers [Vaswani,
2017], have improved adaptability. Even so, they still rely on manual tuning and architectural modifications [Wu
et al., 2024], increasing the complexity of the deployment and engineering costs.

In response to the challenges of conventional learning approaches, researchers have increasingly turned to
reinforcement learning (RL) to meet the dynamic requirements of modern networks [Chen et al., 2018]. RL has
been applied to various areas spanning congestion control, traffic optimization, and cloud cluster job scheduling
(CJS) [Abbasloo et al., 2020, Casas-Velasco et al., 2020, Nourzad and Krishnamachari, 2024]. Multi-agent
RL (MARL) extends these capabilities by enabling collaboration among multiple agents, offering improved
scalability and robustness in distributed systems [Yang et al., 2022, Ning and Xie, 2024, Bloembergen et al.,
2015]. However, while these techniques perform well in controlled settings, real-world deployments present
significant challenges. Computational inefficiencies slow down processing, high-dimensional environments
hinder convergence, and dynamic conditions with unpredictable user behaviors make adaptation difficult [Iqbal
et al., 2024, Tuyls and Weiss, 2012].

Recent research has begun exploring the integration of MARL with Large Language Models (LLMs) to improve
coordination and decision-making [Sun et al., 2024, Tuyls, 2023]. Leveraging the advanced planning and
reasoning capabilities of LLMs, researchers have demonstrated that these models can coordinate multiple agents
within a network [Zou et al., 2024, Yan et al., 2025, He et al., 2025]. On top of that, LLMs can uncover patterns in
large datasets that traditional RL methods may overlook. These capabilities simplify collective decision-making
and enable real-time adaptation to fluctuating user demands in dynamic network scenarios [Huang et al., 2022].
Furthermore, by integrating multimodal data and anticipating future network states, LLMs can optimize resource
allocation to enhance both operational efficiency and network robustness in 6G environments [Luketina et al.,
2019, Zou et al., 2023, Khoramnejad and Hossain, 2025]. This hybrid approach effectively bridges critical gaps
in adaptability and decision-making under dynamic conditions. Regardless, its practical application remains
under-explored, particularly in the context of multi-agent collaboration and real-time resource optimization,
where scalability and efficiency are key.

B Reward Algorithm

Algorithm 1 describes MARL training under LLM guidance, where agents combine local policies with LLM-
suggested actions using a trust score. Immediate rewards update Q-values in real time, while accumulated
histories enable periodic delayed rewards that reinforce alignment with high-level objectives.

C Experimental Setup

C.1 MARL formulation.

We model the system as a Partially Observable Markov Decision Process (POMDP), which more accurately
reflects the environment compared to a fully observable MDP [Hausknecht and Stone, 2015]. The LLM has
a global, though partial, understanding of the network’s state based on various data inputs (e.g., social media
and network statistics). While the LLM has access to a broader set of information in comparison to individual
agents, it still deals with partial observability since it doesn’t have complete information about the environment
(like the exact state of every user or base station). Similarly, the MARL agents operate with partial observability,
since each agent is limited to their local observations (e.g., signal strength, traffic load). The agents must
make decisions with incomplete knowledge of the broader network. In this setup, LLM serves as a centralized
decision-maker that breaks down high-level goals into subgoals for the agents to execute locally. In other words,
the LLM centrally reasons and provides strategic guidance, making it more aligned with a centralized POMDP,
where the central entity (LLM) orchestrates the strategy based on partial information. We now turn to defining
the state, action, and reward spaces for the MARL agents within the AURA system:

- OBSERVATION SPACE: Each agent’s state space is defined by a set of local features that capture network
conditions relevant to decision-making: (1) the transmission power level of the agent’s cell tower, (2) the quality
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Algorithm 1 MARL Training with LLM Guidance

function DELAYED_REWARD(A)
for each agenti ∈ A do

rdelayed,i ← COMPUTE_DELAYED_REWARD(Hi)
for each (s, a) ∈ Hi do ▷ Apply rewards uniformly to all past experiences in history

Q(s, a)← Q(s, a) + α · rdelayed,i ▷ α controls how much the delayed reward
influences learning

end for
CLEAR_HISTORY(Hi)

end for
end function
for epoch in range(N) do

for each agenti ∈ A do
ai,LLM ← π.ACTION(si, s−i) ▷ Action recommended to agenti by LLM π
ai,RL ← agenti.ACTION(si) ▷ Action taken by agenti based on local, real-time

information
ai ← agenti.COMBINE_DECISION(ai,LLM , ai,RL, trustscorei)
s′i, rimmediate,i, ψi ← TAKE_ACTION(ai) ▷ ψi captures environmental parameters like

SNR, signal strength, etc.
Q(si, ai)← Q(si, ai) + α

[
rimmediate,i + γmax

a′
Q(s′i, a

′)−Q(si, ai)
]

▷ Q-learning

update using immediate rewards
agenti.UPDATE_TRUST(π, si, ai,LLM , ai,RL, rimmediate,i, ai)

end for
end for

of network coverage (categorized as good, fair, or poor), (3) the user connection status, which indicates whether
the tower has reached its maximum capacity, and (4) number of calls dropped from last time. Based on these
observations, agents must select actions that optimize network performance while adapting to environmental
changes.

- ACTION SPACE: The available action space consists of four primary decisions. Agents can (1) increase
transmission power when signal strength is weak and capacity allows. They can (2) decrease power to reduce
interference or conserve energy. If network conditions are stable, they may (3) maintain the current state. Finally,
they can initiate a (4) handoff request when a user’s connection quality deteriorates, provided a neighboring
tower offers a better alternative.

- REWARD: The reward function combines both immediate and delayed rewards. Immediate rewards are assigned
at each time step, providing feedback based on local performance indicators such as connectivity quality and
energy efficiency. Delayed rewards, on the other hand, are computed every few episodes by the CAC using
a language model-based evaluation mechanism. The delayed reward function processes the agent’s historical
state-action trajectory to derive a performance-based reward score, considering factors such as alignment with
high-level objectives and overall network impact. This additional feedback mechanism helps agents optimize
long-term behavior rather than overfitting to short-term gains.

C.2 LLM Query Design.

- CENTRALIZED LANGUAGE MODEL: In our implementation, a detailed prompt is constructed to guide the
LLM in suggesting actions based on the network condition.. The prompt is composed by incorporating key
metrics from both the neighboring and target cell towers, including power levels, coverage quality, and user
connection status. We use Claude-sonnet-4 as the underlying model, which generates responses based on these
inputs. Then, a translator module extracts a clean numeric code from the LLM’s response, ensuring that only the
intended output is used by the MARL framework. This approach allows the LLM to focus solely on processing
the relevant state information and providing concise, actionable feedback, while the broader action execution is
managed by the MARL framework.

- CENTRALIZED ALIGNMENT CONTROLLER: As described earlier, the Centralized Alignment Controller (CAC)
plays two roles in our framework. However, at this stage of our work, we focus on its function as a reward
provider, evaluating MARL agents’ performance and assigning rewards accordingly. To implement this, we
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use an LLM-based evaluation mechanism that instructs the model, to act as an expert evaluator. The evaluation
considers factors such as network efficiency, fairness, adaptability, and long-term performance. Based on these
criteria, a reward is assigned within the range of [−1, 1]. A score of +1 indicates "Excellent" optimization (i.e.,
maximized efficiency, user experience, and adaptability), while -1 reflects "Poor" optimization (i.e., significant
issues like congestion, dropped connections, or poor resource use). Intermediate values represent varying levels
of improvement or decline.

Prompts and implementation details can be found in: https://anonymous.4open.science/r/AURA-F79F/.
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