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Abstract
Neural Program Induction (NPI) is a paradigm
for decomposing high-level tasks such as complex
question-answering over knowledge bases (KBQA)
into executable programs by employing neural
models. Typically, this involves two key phases:
i) inferring input program variables from the high-
level task description, and ii) generating the correct
program sequence involving these variables. Here
we focus on NPI for Complex KBQA with only the
final answer as supervision, and not gold programs.
This raises major challenges; namely i) noisy query
annotation in the absence of any supervision can
lead to catastrophic forgetting while learning, ii) re-
ward becomes extremely sparse owing to the noise.
To deal with these, we propose a noise-resilient
NPI model, Stable Sparse Reward based Program-
mer (SSRP) that evades noise-induced instability
through continual retrospection and its comparison
with current learning behavior. On complex KBQA
datasets, SSRP performs at par with hand-crafted
rule-based models when provided with gold pro-
gram input, and in the noisy settings outperforms
state-of-the-art models by a significant margin even
with a noisier query annotator.

1 Introduction
Recently, the neural program induction (NPI) paradigm has
gained significant interest for approaching complex tasks
through programmatic decomposition, i.e., generating a se-
quence of atomic operations on program variables, which
upon execution yield the answer. This provides a practical
approach to solving complex tasks while providing better in-
terpretability than one-shot inferences using deep networks.
Consequently, NPI techniques have been employed for va-
riety of tasks such as Addition, Sorting [Reed and De Fre-
itas, 2015], GridWorld navigation [Bunel et al., 2018], Tab-
ular QA [Neelakantan et al., 2016; He et al., 2018], Math
word problems [Bosnjak et al., 2017] or KBQA [Liang et al.,
2017]. However, two critical assumptions have been com-
monly made by them to keep the problem tractable:

∗ These authors contributed equally to this work

1) Either the input program variables to the NPI process is
known or trivial to infer, or the inference is outsourced to
other pretrained models. For example, in learning addition or
sorting, or for navigating the GridWorld, the input program
variables are directly provided. For tabular QA, the question
annotation is still manageable as the query-words need to be
linked to table cell and column values of a quite small (typi-
cally 10× 5 sized) table.
2) Either gold programs or program skeletons are used to train
the NPI model, or training is constrained to relatively simple
programs. But realistically, for various complex applications,
these assumptions may not hold, or may be too expensive to
ensure. E.g., complex KBQA requires as input to the NPI,
an annotation of the query with KB entities (E), relations (R)
and types (T), a.k.a. ERT linking using huge KBs containing
millions of entities. This annotation is particularly non-trivial
and noisy in an unsupervised setting. Further, the complex
nature of the questions require generation of long, multi-line
programs, for which providing gold program supervision is
expensive. Neural Symbolic Machine (NSM) by [Liang et al.,
2017] is the only complex KBQA system that can be trained
with only final answer as supervision and noisy query annota-
tion as input. But it is not a true NPI model, as it decodes the
program token-by-token and is unable to incorporate high-
level structure and programmatic styles when decoding.

The primary contribution of our work is a noise-resilient
NPI model that is distant-supervised by the final answer
alone. It can handle noise in the program input so extreme,
that only for 10–20% of the training or test questions the ex-
act gold answer can be reached. We next elaborate on the
steep challenges faced in this problem setting.

Effect of Noise on Program Space
The accuracy of the initial step of inferring program variables
has severe repercussions on the program induction process.
Even with the availability of gold input-variables, the search
space of programs blows up to an exponential size. In the
noisy data setting, the problem becomes compounded, since
instead of the gold input program variables there are multiple
possible candidates for each of the program input. E.g., to
generate a 3-line program in the noisy setting with 7 opera-
tors and 5 possible candidate values for each input program
variable, the program space explodes to 6.7× 108 programs.
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Figure 1: Complex KBQA by identifying the input program variables through joint ERT linking, then learning to induce programs from it,
which on execution leads to the answer with associated reward. (Note that the Gold Program is not available during training or test)

Effect of Noise on Reward Sparsity
NPI models typically learn through reinforce-style updates
[Williams, 1992], owing to the discrete nature of the feedback
(or rewards) obtained by evaluating the induced programs.
But inducing programs without gold programs for training
suffers from an extremely sparse reward space, i.e., only a
negligible number of programs in the entire exponential pro-
gram space can yield rewards. Out of the enormous number
of possible programs, only one or very few having a correct
operator sequence invoked on the correct set of input and in-
termediate program variables get any reward. This renders
the NPI problem extremely hard in the noisy setting and also
requires the query annotation to be highly accurate.

Effect of Extreme Reward Sparsity on Learning
This nature of extreme sparsity in the reward space poses
learning challenges by making the model unstable and prone
to local optima problems. Further, the noise in the input has
a more debilitating effect, by increasing the variance in the
system. It can sometimes even fatally cripple the learner by
confounding the model as it can receive counter-intuitive re-
wards even upon exploring the correct operator sequence.

Figure 1 illustrates the two phases of the complex KBQA
task for a question Which academy award was Henry Fonda
chosen for but did not win? which requires multi-step in-
ference using logical reasoning over the KB. The first step of
ERT linking requires a joint inference to resolve Henry Fonda
as the American actor and identify phrases like academy
award to be a potential KB-type or words like win or chosen
to be linked to KB-relations nominated or awarded or casted.
However, this joint reasoning, based on semantic similarity
and KB connectivity, may not be always sufficient to make
the correct inference. The situation escalates in the absence
of any gold ERT linking supervision. E.g., in Figure 1, chosen
has been linked to both casted:P161 and nominated:P1411 as
potential candidates and Academy Award to a radio series and
the film award. The output of the first phase is the input pro-
gram variables memory consisting of all potential ERT can-
didates, which is fed into the NPI model, along with the gold
answer. The NPI model then explores different programs that
are logically consistent and compliant with the task descrip-
tion (i.e. KB, query, answer-type) and obtains a positive re-
ward if it is able to reach the correct answer on execution. For
e.g., the true program for the query in Figure 1 is the 2nd one

and not the 1st, despite having the same operator sequence.

Complex KBQA Datasets
1) WebQuestionsSP [Yih et al., 2016] provided a complex
KBQA dataset having around 5K questions answerable from
Freebase. While the natural language form of the questions
look simple, for e.g. Which team does David Beckham play
for?, it often requires up to 2-hop inference chains, some-
times with additional constraints.
2) Complex Sequential QA (CSQA) [Saha et al., 2018] pro-
vided a dataset with 1.5M complex conversational QA pairs,
requiring logical and quantitative reasoning over WikiData.
For simplicity, we use the publicly available subset CQA-12K
(comparable in size to WebQuestionsSP) consisting of 12K
QA pairs from each of the seven question categories, where
the questions do not depend on the previous context. We use
the smaller dataset because the initial step of unsupervised
query annotation is very time-consuming. The diverse cate-
gories of complex questions and the massive scale KB makes
CQA-12K particularly suited to study Complex KBQA.

2 Related Work
2.1 Joint Entity, Relation, Type (ERT) Linking
While entity, relation and type linking has been around for
decades, either the task is focused on (i) linking corpus men-
tions to KB, leveraging distant supervision signals from large
scale corpus, for e.g. [Wu et al., 2018; Wang et al., 2018;
Titov and Le, 2018; Radhakrishnan et al., 2018] or (ii) link-
ing short query text to KB artifacts by using gold linking
data which is often expensive to obtain [Dubey et al., 2018;
Yu et al., 2017; Yih et al., 2015; Sorokin and Gurevych,
2017]. We are, however, interested in an unsupervised joint
ERT linking on a query without leveraging any corpus.

2.2 Neural Program Induction
First generation semantic parsing systems, e.g., [Yih et al.,
2016], for modularizing complex tasks like complex KBQA
using hand-crafted rules, have been popular for decades. Of
the more recent neural methods of task decomposition into
a program, the most relevant is Neural Symbolic Machines
(NSM) [Liang et al., 2017]. They learn to translate the query
to a program like logical form executable on the KB, with
only answer as supervision. Their choice of KBQA task and
answer-supervised program induction setting makes NSM the
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closest comparable work to ours. The two main distinctive
factors of our work with respect to NSM are: i) NSM was ap-
plied to simpler questions and has several limitations which
makes generalization to more complex programs hard, and
ii) the input program variable creation was outsourced to an
in-house annotator [Iyyer et al., 2017] trained on gold en-
tity, relation and type linking data and having near-oracle ac-
curacy (94% on entity linking). This greatly alleviates the
noise-related issues arising in the program induction itself.

In contrast, the core challenge in our work arises from
the absence of gold ERT linking data and the downstream
NPI model having to handle realistic levels of labeling noise
shown by ERT linkers on complex questions. This level of
noisy-input in complex program induction for QA on a large
scale KB, has not been addressed before.

3 Model Overview
Following are the main components of the model:
1) The ERT linker is an unsupervised query annotator that
links the query spans with KB entities, relations and types
and pre-populates them as input variables to the NPI model.
2) The programmer generates programs using the natural lan-
guage query, KB, and pre-populated variables in memory as
input. A program is a sequence of operators invoked with
past instantiated variables as their arguments and by generat-
ing new variables which are written into memory.
3) The interpreter executes the generated program using the
KB and outputs an answer, which upon comparison with the
gold answer yields a reward. During training this reward is
sent back to the programmer to update its parameters through
a REINFORCE objective [Williams, 1992].

4 Entity Relation Type (ERT) Linking
Step 1: Independent E,R,T Linking generates separate
candidate-lists for each of the KB entity, relation and type in
the query. This step annotates all the longest possible query
n-grams or shallow-parsed chunks that have a GloVe cosine
score >0.3 with any KB entity, relation or type.
Step 2: Joint E,R,T linking in an unsupervised setting ranks
the extracted entities, relations and types using the sum of the
following scores:
• Semantic or surface-match score from Step 1.
• KB-connectivity score of a candidate entity, relation or

type for a given query-span based on its hop-distance
with candidate entities or relations or types associated
with other spans or the entity-relation-type or type-
relation-type connection with other relations or types.

5 Stable Sparse Reward Based Programmer
In this section, we describe in detail the proposed NPI model
which we call Stable Sparse Reward based Programmer
(SSRP). The candidate entities, relations and KB-types ob-
tained from the previous step and the query are provided
as input program variables to SSRP which then induces the
program. SSRP consists of the following two components:
(i) the core program induction algorithm whose sole super-
vision is from rewards obtained by evaluating induced pro-
grams with respect to the final answer, which we call Sparse

Reward based Programmer (SRP) and is described in Section
5.1, and (ii) a generic noise-resilient wrapper over SRP which
counteracts the noise encountered in the complex KBQA set-
ting and stabilizes SSRP, which is described in Section 5.2.

5.1 Sparse Reward Based Programmer
We first describe the building blocks of SRP.
Seven Variable-Types
• KB artifacts: ent, rel, type
• Base data types: int, bool, None (for padding)
• Composite data types: set i.e. Set of KB entities

Seven Operators
• gen set(ent, rel, type)→ set
• verify(ent, rel, ent)→ bool
• set {union/intersec/diff}(set, set)→ set
• set count(set)→ int
• terminate()

The core part of the NPI is a recurrent model which can ac-
cess the following at each step: i) embedding matrices en-
coding a vocabulary of operators and variable types, ii) oper-
ator prototype matrices Mop arg and Mop out for storing the
argument and output variable type information respectively
for each operator, and iii) variable memory matrix which is
a query-specific scratch (dynamic) memory for storing new
program variables as they get created. For each variable type
it learns separate key and value embedding matrices respec-
tively, for looking up a variable in memory and accessing its
information. Additionally it also has a matrix to store the at-
tention over the variables declared of each type.

SRP Pipeline and Training
The algorithm in Fig. 2 outlines the pseudocode of the SRP
invoking the following steps. The figure on its left, illustrates
the same process, and in the following description we refer to
both.
• SRP encodes the input query into a fixed dimensional

representation q using a GRU network.
• The other essential input to SRP is the scratch memory

for storing program variables, which is initialized with
the input variables (KB entities, relations and types),
when the programmer starts the induction process.
• The action taken by SRP at time-step t is markovially

conditioned on the environment state et and the hidden
representation of the current program state ht, each of
which are encoded by recurrent networks initialized with
the query encoding. Given the environment and program
state, the NPI model then generates an output program
which is a sequence of actions, each of which involves
an operator invoked over previously defined variables in
memory. This process creates a new variable, at each
time-step which is added to the memory to be used later.
• At each time-step, conditional to program state ht, the

model first samples a set of np operators using Opera-
torSampler. For e.g. gen set at first step in Fig 2
• Then for each of the sampled operators, for e.g. p, SRP

understands the feasibility of all possible variable in-
stantiations for its m arguments by invoking Feasibl-
eVariable. Feasibility of a variable instantiation for a
given operator p is a boolean vector (V feas

p in the pseu-
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Query Encoding: q = GRU(Query)
Initialization: e1, h1 = Linear(q), A = [ ]

for t ∈ 1, · · · , T do
Pt =OperatorSampler(ht, np), C = {}
for p ∈ Pt do
V typep = [vtypep,1 , · · · , vtypep,m ] =Mop arg[p]

V feasp =FeasibleVariable(p)
Vp =ArgVarSampler(ht, V typep , V feasp , nv)
for V ∈ Vp do
C = C

⋃
(p, V, V typep )

(p, V, V typep ) = argmax(C)

ukeyp , uvalp =OutVarGen(p, V typep , V ), utypep =Mop out[p]

WriteVarToMem(ukeyp , uvalp , utypep )
et+1 = GRU(et, u

val
p ), ht+1 = GRU(et, u

val
p , ht)

A.append((p, V ))
Output: A . Generated action sequence

Figure 2: SRP model architecture and pseudocode: Starting with the query encoding, at each time-step the model samples an action based on
the environment et and program state ht. Each action involves sampling the operator, and previously defined variables as its arguments and
creating the output variable which is then added to the scratch memory. Figure outlines the pipeline with solid line for the t’th timestep.

docode), governed by the KB, to ensure that no vari-
able is created that is inconsistent with the KB. For e.g.
gen set(‘Henry Fonda’, ‘nominated’,‘Academy award’)
(where Academy award refers to the CBS series) is not
valid as per the KB. Other programmatic paradigms like
ensuring non-repetition of lines of code are also used to
determine feasibility.
• For the operator p, ArgVarSampler then samples nv

(hyperparameter) feasible variable instantiations by at-
tending over all variables of the corresponding types
stored in memory. The variable type of the arguments
V type
p is obtained by looking up the operator prototype

matrix Mop arg . For e.g. in the fig. the sampled ac-
tion is gen set(‘Henry Fonda, ‘nominated’, ‘Academy
awards’) at t=1 (nv=1 for simplicity). The pseudocode
shows the sampled variable instantiations Vp.
• After applying the sampled operator over the sampled

variable instantiations, the OutVarGen module gener-
ates the key and value embedding of the new variable
ukeyp and uvalp , which are functions of the embedding of
the sampled operator p and operand variables V .
• The WriteVarToMem module writes the key and value

embedding of the newly generated variable to the dy-
namic scratch memory and correspondingly updates the
attention over the memory variables of that type.
• The actions are sampled till either the terminate is sam-

pled or for the maximum allowable timesteps, thus gen-
erating the program to be evaluated by the interpreter.

In order to get feedback from multiple candidate programs
using single training instance, SRP employs a beam search
i.e. at each step, out of the total number of candidates gener-
ated as above, K (typically 20) most-likely actions are sam-
pled for the K beams and the corresponding newly generated
variables written into memory. Thus the algorithm progresses
till T steps to finally output K candidate programs each of
which feed the model back with some reward. To learn from
the discrete rewards, the REINFORCE objective is used.

Mitigating Sparsity in SRP
The following steps make SRP’s exploration of the program
space more efficient and mitigate the sparsity problem
• Decomposing the program generation into two pre-

determined phases, first one involving only operations
over input program variables, and second phase operat-
ing on the variables created by the first phase.
• Generating semantically correct programs by (a) Incor-

porating programmatic paradigms like disallowing re-
peating or useless actions (e.g intersection of a set with
itself) (b) Biasing the model towards generating answers
of the desired variable type using auxiliary rewards.
• Penalizing for terminating in the wrong variable type as

answer or generating shorter programs.
• Entropy and dropout based regularization.

5.2 Noise-stabilizing Wrapper of SSRP
We now discuss the multiple challenges in the program in-
duction process caused by the presence of noise in the input
program variable. In the noise-free setting itself, the program
space is exponential with the number of gold input program
variables. The noisy input data blows up the program vari-
able space furthermore, with the manifold combinations of
the candidate inputs. Additionally, in the absence of gold pro-
grams, the noisy setting raises another serious issue of exac-
erbating the reward space sparsity, where, even with gold in-
put data, only a handful of programs in the exponential space
could have yielded a positive reward. The program explosion
compounded with extreme reward sparsity can easily render
the learning unstable, even more so in reinforce-style algo-
rithms by increasing variance. For instance, by following the
same good operator sequence the model will get a positive
reward, if it had used the correct input variable candidates but
no reward on selecting the wrong input data, which is bound
to confound the model.

To counteract this phenomenon, we propose SSRP, having
a noise-resiliency wrapper over SRP that introduces a con-
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Algorithm 1 SSRP Algorithm
θ,θref denotes parameters of the Current/Reference Programmer

for n ∈ 1, · · · , N do . loop over mini-batch
P
cur

: [P cur0 · · ·P curK ]← CurrentProgrammer(q, θ)
P
ref

: [P ref0 · · ·P refK ]← ReferenceProgrammer(q, θref )
for ∀i ∈ 1 · · ·K and ∀j ∈ 1 · · ·K do
cij = 1

dij ← Distance(P curi , P refj )

rcuri ← Reward Func(P curi , q)

rrefj ← Reward Func(P refj , q)
if rcuri ≤ 0 then . need safe back-prop

if rcuri − rrefj + ε > 0 then
δij ← rcuri − rrefj

else
δij ← 0

cij ← e−αdij δij . α is a hyperparameter
ci ← maxj(cij)
if n mod Update Freq == 0 then
θref ← θ

Output: c : [c0 · · · ci · · · cK ]

cept of a Reference Programmer. The Reference Program-
mer is a snapshot (periodically refreshed) of an older ver-
sion of the SRP model that is currently undergoing training,
which we will call Current Programmer. In order to avoid
unlearning, for a given training instance, the model retro-
spectively takes a decision about extent of backpropagation,
based on two factors: i) distance between its current pro-
grams P cur

0 · · ·P cur
K (K being beam size) and the programs

P ref
0 · · ·P ref

K seen by the Reference Programmer, and ii) dif-
ference between the rewards obtained by the reference and
the current model. The intuition here being that when the
current reward is non-positive but higher than the reference
reward, the confidence in backpropagation (c = [c0 · · · cK ])
increases proportional to the reward difference but exponen-
tially decreases with the program distance. Here, jaccard dis-
tance between the operator sequence is used as program dis-
tance. α is a cautiousness hyperparameter, for which, higher
the value, more conservative the model is in updating itself,
when the current model’s exploration diverges from its past
behavior. Also, as the reward difference decreases, the need
for the model to update itself diminishes, as it has not im-
proved much beyond its old version. This sort of retrospec-
tive controlling of gradient, by multiplying with the confi-
dence vector c helps stabilize the model when dealing with
crippling noise in the data.

Comparison with Advantage Actor-Critic methods. We
also empirically compare our SSRP1 with an SRP version
trained with the more stable RL algorithms like Advantage
Actor Critic(A2C)[Konda and Tsitsiklis, 2003] that can han-
dle noise by reducing variability in the system. For our A2C
baseline, we use the standard rewards (and no auxiliary re-
wards, refer end of Sec 5.1) provided by the environment for
optimization. In this version, an additional network in SRP

1code and supplementary material available at
https://github.com/CIPITR/SSRP

estimates the advantage function used in the objective.

6 Experiments
In this section we describe separate experimental setup hav-
ing gold or noisy program input to extensively evaluate the
proposed model SSRP with NSM [Liang et al., 2017] the
closest known baseline, as well as a hand-crafted rule-based
model. We also compare SSRP with SRP to study the impact

Question Type Rule-
Based

SRP SSRP

Inference-chain-len=1, no constraint 89.03 89.09 83.81
Inference-chain-len=1 with constraint 46.52 79.94 48.12
Inference-chain-len=2, no constraint 100.0 88.69 77.41
Inference-chain-len=2, with
nontemporal constraint 71.31 63.07 40.65

Inference-chain-len<=2, with
temporal constraint 83.83 48.86 57.42

All 82.59 82.85 72.61

Table 1: WebQuestionsSP Test F1 Scores(%) of rule-based model
and proposed SRP on gold program input and SSRP on noisy pro-
gram input. Competing model NSM, on noisy program input is re-
ported to have 69% on overall Test

of employing the noise-resiliency wrapper. We evaluate on
two datasets: i) the popularly used WebQuestionsSP which
requires upto 2-hop inferences over KB, sometimes with ad-
ditional constraint satisfaction requirements, and ii) the re-
cently introduced CSQA for complex KBQA. For experi-
mental simplicity, we selected the publicly available subset
CQA-12K of the original CSQA dataset, which contains 12K
QA pairs from each question category and is comparable in
size to WebQuestionsSP. Out of the 12K QA pairs, 10K pairs
are used for training and 1K each for development and test.
Since addressing the NPI in the absence of gold programs
and on noisy input is a hard problem, we focus our evaluation
on three query categories, requiring simple (single-step pro-
grams), logical (typically requiring 3 steps, for e.g. in Fig 1),
and quantitative reasoning (requiring 4-5 steps - for e.g, How
many rivers originate in China and flow through Tibet?).

6.1 Results on WebQuestionsSP
With gold input data. We first train a SRP model with the
gold program input and compare this model’s performance
with a rule-based model based human annotated semantic
parsed form of the query. The latter knows the inference
chain of relations and the exact constraints that need to be
additionally applied to reach the answer. This inference rule
that was manually derived, can be written out in a program
form, which on execution will give the final answer. Table
1 shows that SRP performs at-par with the manually crafted
parser even without supervision of gold programs.
With noisy input. Here we follow the training setup of
NSM to train our SSRP model and test it on the noisy pro-
gram input. One notable difference here is that while NSM
uses a proprietary in-house entity linker reported to have a
94% recall, we can only use the best possible publicly avail-
able linker, [Xu et al., 2016] having precision and recall re-
spectively of (96.7%, 86%) for entity linking and (53.2%,
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Model Answerable Full
Simple

(83)
Logical
(228)

QCount
(96)

Combined
(407)

Simple
(1000)

Logical
(1000)

QCount
(1000)

Combined
(3000)

SSRP 76.38 48.13 47.01 44.7 14.54 2.98 7.03 4.6
SRP 54.76 33.13 51.25 33.6 10.42 2.20 7.33 3.7
A2C 82.5 52.4 35.4 31.7 4.982 3.3 5.2 2.4
NSM 31.49 7.35 2.76 19.35 6.11 0.44 0.9 2.0

Table 2: F1 score (in %) of baseline NSM and A2C and the proposed models SRP
and SSRP in the noisy setting. Boldfaced numbers indicate the best model.

SRP NSM
Simple 96.52 78.38
Logical 87.72 35.40
QCount 51.33 12.38

Table 3: F1-score (%)
of NSM and SRP using
gold ERT linking data
as program input.

ERT Train Test
E (19,79) (17,40)
R (15,47) (16,44)
T (16,61) (24,51)

Table 4: Unsupervised
ERT linker’s (Precision,
Recall) (in %) on CQA-
12K

85%) for relation linking. Despite having substantially poorer
recall in entity linking, SSRP surpasses NSM’s performance
reported in [Liang et al., 2017], as shown in Table 1.

6.2 Results on CQA-12K
With gold input data. We first analyze the proposed SRP
model along with the closest baseline NSM on each question
category: simple, logical, and quantitative. To appropriately
reflect their level of difficulty, we train and evaluate separate
models on each question category. Further, in order to isolate
the program induction performance from the noise resiliency,
we first evaluate the models on input program variables ob-
tained using oracle ERT linking. As reflected in Table 3, SRP
outperforms NSM by a large margin of 20-50% F1 over the
three question categories.

Figure 3: Training trend of SSRP vs SRP in noisy setting. SSRP is
fairly immune to unlearning that clearly affects SRP.

With noisy input. We next show the effect of the noisy in-
put ERT data for the baseline NSM and the proposed NPI
model, with the noise-resilient wrapper i.e. SSRP and with-
out it i.e. SRP in Table 2. We also compare the noise re-
silience of SSRP with a variant of SRP which is trained with
A2C objective. The performance of the unsupervised ERT
linker, provided in Table 4 reflects the level of noise that the
model has to handle during training. Also, missing gold KB
artifacts in the candidate lists render some of the test ques-
tions unanswerable. So we evaluate the competing models on
two test-sets: i) Full 1K test set publicly available in CQA-
12K dataset, and ii) the subset of the 1K test set that is an-
swerable after the noisy query annotation. Performance on
the answerable subset is a useful measure to understand the
effects of noise. A noise-resilient model should retain good
performance on the answerable set. Further, apart from train-
ing separate models for each question type, to understand the
generalizability of the models, we also train a single model
on data pooled from all categories.

6.3 Discussion
We make a few key observations on the results:
• On using gold input to the NPI, the significant margin

of upto 2× improvement in F1 showcased by SRP over
NSM indicate that the proposed method can indeed han-
dle complex multi-step inferencing pragmatically and
explore the search space more efficiently.
• The significant margin of performance between SSRP

and SRP evinces that reference network for self-
assessment in SSRP considerably helps in alleviating
catastrophic forgetting. SSRP’s performance is remark-
able, as the average noise level is high, with only 10–
20% of the train and test set being exactly answerable.
• Table 2 shows that A2C performs better than SSRP and

SRP on the simpler classes (Simple and Logical). How-
ever, on the more complex category (Quantitative Count)
or when generalizing to multiple categories with a single
model, both SRP and SSRP beat A2C. This shows that
the auxiliary rewards incorporated in SRP and SSRP fa-
cilitate better exploration in extremely sparse settings.
• From the training trend in Fig 3, it is evident that while

SRP succumbs to unlearning, in the noisy setting, the
training performance of SSRP steadily improves.
• Also, in contrast to NSM, both SSRP and SRP adapt

fairly well to the exploded action space, because of the
noisy input candidates, as can be seen in the scores ob-
tained by the respective models. Only on the combined
data, NSM performs somewhat better than SRP, presum-
ably because it can afford to widen the exploration with
double the beam-size owing to its model simplicity.
• While NSM decodes token-by-token requiring multi-

step decoding for even simple queries, SRP and SSRP’s
atomic actions are each line-of-code. This alto-
gether avoids generating logically inconsistent programs
or incorporate high-level programmatic paradigms.
Whereas, NSM only filters out “bad” programs post gen-
eratation, thus still wasting most explorations.

7 Conclusion
In this work, we proposed a noise resilient NPI model SSRP
that tackles complex KBQA significantly better than state-of-
the art models, with the two notable distinctions from other
existing NPI models, i) it learns program induction in absence
of supervision from gold programs, and ii) both during train-
ing and evaluation, it has to handle noise in the query annota-
tion, so severe that it renders 80-90% of the questions unan-
swerable. In future, we plan to study more realistic applica-
tions like complex visual QA or algebraic problem solving.
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